
The Hierarchically Tiled Arrays Programming Approach ∗

Basilio B. Fraguela†, Jia Guo, Ganesh Bikshandi, Maŕıa J. Garzarán,
Gheorghe Almási‡, José Moreira‡, and David Padua

Dept. of Computer Science
U. of Illinois at Urbana-Champaign

{jiaguo,bikshand,garzaran,
padua}@cs.uiuc.edu

†Dept. de Electrónica e Sistemas
Universidade da Coruña

Spain
basilio@udc.es

‡IBM Thomas J. Watson
Research Center

Yorktown Heights, NY, USA
{gheorghe,jmoreira}@us.ibm.com

ABSTRACT
In this paper, we show our initial experience with a class
of objects, called Hierarchically Tiled Arrays (HTAs), that
encapsulate parallelism. HTAs allow the construction of
single-threaded parallel programs where a master process
distributes tasks to be executed by a collection of servers
holding the components (tiles) of the HTAs. The tiled
and recursive nature of HTAs facilitates the adaptation of
the programs that use them to varying machine configu-
rations, and eases the mapping of data and tasks to par-
allel computers with a hierarchical organization. We have
implemented HTAs as a MATLABTM toolbox, overload-
ing conventional operators and array functions such that
HTA operations appear to the programmer as extensions
of MATLABTM. Our experiments show that the resulting
environment is ideal for the prototyping of parallel algo-
rithms and greatly improves the ease of development of
parallel programs while providing reasonable performance.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages

Keywords
Parallel languages

∗This work has been supported in part by the De-
fense Advanced Research Project Agency under contract
NBCH30390004. This work is not necessarily representa-
tive of the positions or policies of the U.S. Army or Govern-
ment. It has also been supported in part by the Ministry of
Science and Technology of Spain under contract TIC2001-
3694-C02-02, and by the Xunta de Galicia under contract
PGIDIT03-TIC10502PR.

1. INTRODUCTION
Parallel programs are difficult to develop, maintain and
debug. This is particularly true in the case of distributed
memory machines, where data exchanges involve message
passing. Moreover, performance in parallel programs de-
pends on many more factors than in sequential ones. Sys-
tems may be heterogeneous; the architecture to consider
involves a network for the communications and different
layers of operating system and user libraries may be in-
volved in the passing of messages. As a result, performance
tuning is also much harder. The language and compiler
community have come up with several approaches to help
programmers deal with these issues.

One of the approaches to simplify the development of dis-
tributed memory programs is to use standard message pass-
ing libraries like MPI [9] or PVM [8] which enable the
portability of the parallel applications. Still, data distribu-
tion and synchronization must be completely managed by
the programmer. Also, the SPMD programming model of
the codes that use these libraries creating room for unstruc-
tured codes in which, for example, communication may
take place between widely separated sections of code and
in which a given communication statement could interact
with several different statements during the execution of
the program. Some programming languages like Co-Array
FORTRAN [12] and UPC [5] improve the readability of
the programs by replacing explicit communications with
array assignments, but they still have all the drawbacks of
the SPMD approach.

Another strategy to improve the programmability of the
distributed memory environments consists in using a sin-
gle thread of execution and letting the compiler take care
of the distribution of the data and the schedule of parallel
tasks. This is for example the approach of the High Perfor-
mance Fortran[10, 11]. Unfortunately, compiler technology
does not seem to have reached a level in which compilers
following this approaches can generate competitive code.

In this paper we explore the possibility of extending a
single-threaded object-oriented programming language with
a new class, called Hierarchically Tiled Array or HTA [3],
that encapsulates the parallelism in the code. The objects
of this class are tiled arrays whose tiles can themselves be
recursively tiled. The tiles and the operations on them are
distributed among a collection of servers. The HTA class
provides a flexible indexing scheme for its tiles and allows
data communication between servers to be expressed by

Distributed

Local

Local

Recursive Tiling

C{2,1}

C{2,1}(1,4)
C(5,4)

, C{2,1}{1,2}(1,2) or
, or

HTA C

Figure 1: Pictorial view of a hierarchically tiled array.

means of array assignments and operations. Many of these
operations that represent array communication overload
standard operators such as circular shift and transpose.
As a result, HTA based programs look as if they had a
single thread of execution, but are actually executed on a
number of processors. This improves the readability and
ease of development and maintenance of HTA code. Fur-
thermore, the compiler support required by our parallel
programming approach is minimal, since the implementa-
tion of the class takes care of the parallelization. Also,
thanks to the recursive nature of the tiles in the HTAs,
data mapping and tasks scheduling in computers with a
hierarchical organization can be done very naturally. As
a proof of concept we have implemented the HTA class
in MATLABTM, which contains a high-level programming
language with object-oriented features that is easy to ex-
tend.

The rest of this paper is structured as follows. HTA syn-
tax and semantics are briefly described in the next Section.
Section 3 provides several code examples. Our implemen-
tation of the HTA class is described in Section 4. Then,
Section 5 evaluates the performance of this implementa-
tion and compares its ease of use with that of a traditional
MPI+C/Fortran approach. In Section 6 an analytical com-
parison of HTA with other related languages is given. The
last section is devoted to our conclusions and future work.

2. HIERARCHICALLY TILED ARRAYS
We define a tiled array as an array partitioned into tiles in
such a way that adjacent tiles have the same size along the
dimension of adjacency. A hierarchically tiled array (HTA)
is a tiled array where each tile is either an unpartitioned
array or an HTA. These definitions do not require all tiles
to have the same size, or that tiles have the same internal
partitioning. HTAs can be used to facilitate the expression
of both locality and parallelism. The idea is to distribute
across processors the outermost tiles of a HTA for paral-
lelism, and use the inner tiles for locality. In the case of
sequential programs all the tiles will be used for locality.
Fig. 1 shows an example of a legal HTA with two levels of
tiling.

2.1 Accessing the Contents
References to HTAs allow access to both tiles and elements.
Curly brackets are used when indexing tiles, while paren-
thesis denote the access to elements within the HTA or its
tiles.

Fig. 1 shows some examples. The expression C{2,1} refers
to the lower left tile. Also, the element in the fifth row
and fourth column can be referenced using C(5,4), just
as if C were a matrix. The same element can also be ac-
cessed by selecting the bottom-level tile that contains it
and its relative position inside this tile. The expression
C{2,1}{2,1}(1,4) refers to the same datum C(5,4). A
third possibility to reference C(5,4) is by selecting the
top-level tile that contains the element and flattening or
disregarding its internal tiled structure: C{2,1}(1,4).

In any kind of indexing, a range of element position or
tiles may be chosen in each dimension using triplets of
the form begin:step:end, where the step is optional. If no
step is provided, a step one is assumed. Also, the : nota-
tion can be used in any index to refer to the whole range
of possible values for that index. This way, for example,
C(:,1:3) uses flattening to refer to the first three columns
of elements of the HTA C; and C{2,:}(1:2:4,1:3) refers
to the first three elements of the odd rows of the two lower
top-level tiles of C.

2.2 Binary Operations
When two HTAs are used in an expression, they must be
conformable. That is, they must have the same topology
(number of levels and shape of each level). The operation
actually takes place tile by tile, and the output HTA has
the same topology as the operands.

An HTA can also be conformable to an array, and it is
always conformable to a scalar. In the first case, the array
is operated with each one of the tiles of the HTA, provided
that the tiles and the array are conformable; while in the
case of the scalar, the operation takes place at the element
level. Again, the output HTA has the same topology as
the input HTA.

2.3 Assignments
The semantics for assignments to HTAs have similarities
with those for binary operators. When a scalar is assigned
to a range of positions within an HTA, the scalar gets
replicated in all of them. When an array is assigned to
a range of tiles of an HTA, the array is replicated in all
of the tiles, provided such an assignment is legal. Finally,
an HTA can be assigned to another HTA (or a range of
tiles of it) if the copy of the correspondingly selected tiles
from the right-hand side (RHS) HTA to those selected in
the left-hand side (LHS) HTA is legal. The condition for

Figure 2: Bottom up tiling.

an assignment to be legal is that once it takes place, the
adjacent tiles in the resulting HTA continue to have the
same size along each dimension of adjacency, that is, the
resulting HTA continues to fulfill the properties of an HTA.

2.4 Execution Model
The machine model for an HTA program is that of a client,
which runs the main thread of execution, and that is con-
nected to a distributed memory machine with an array of
processors, called servers, onto which the top-level tiles of
the HTAs are mapped. Whenever an operation found in
the code that the client executes involves the distributed
tiles of an HTA, such operation is broadcasted from the
client to the servers so that they execute it in parallel.
When the operation only involves tiles that the server
owns, the server performs locally the computation. If, how-
ever, the computation requires tiles that the server does
not own, it first requests them to the owner servers, and
then it performs the computation. Thus, in a program
using HTAs the parallelism and the communication is en-
capsulated in the statements that operate on tiles of one
or more HTAs.

While this is the execution model from the point of view of
the programmer, and it is the way our current implemen-
tation works, HTA programs could also be translated by
a compiler into tasks that execute in the nodes of the ar-
ray of processors synchronizing and exchanging data when
required. This is perfectly feasible approach that would
improve the scalability of this programming approach.

2.5 Construction of HTAs
The simplest way to build an HTA is by providing a source
array and a series of delimiters in each dimension where
the array should be cut into tiles. For example, if M is a
1000×1000 matrix, an HTA resulting from its partitioning
in tiles of 100 × 250 elements would be created by the
statement:

A = hta(M, {1:100:1000,1:250:1000});

The triplet with the curly brackets are the partition vector
for each dimension of the source array. The elements in
each partition vector specify the hyperplanes that cut the
input matrix along the corresponding dimension to dis-
tribute it in tiles. The elements in the partition vector
mark the beginning of each sub-tile. This constructor can
also be used to create HTAs with different levels of tiling
using a bottom-up approach. For example, given a 10 ×
12 matrix D, the statements

processors

P1 P2 P1

P3 P4 P3

P1 P2 P1

matrix a distributed
HTA F

F= hta(a, {1:2:6, 1:2:6}, [2,2])
mesh of

Figure 3: Mapping of tiles to processors.

C = hta(D, {[1,3,5,7,9],[1,4,7,10]});

B = hta(C, {[1,4],[1,2,3,4]});

A = hta(B, {[1,2],[1,2]});

will generate the three HTAs shown in Fig. 2. Notice that
using this bottom-up approach matrix A can also be cre-
ated using a single statement

A = hta(D, {[1,3,5,7,9],[1,4,7,10]}, ...

{[1,4],[1,2,3,4]}, ...

{[1,2],[1,2]});

where the ... just mean the continuation of the command
in the following line.

Finally, it is also possible to build empty HTAs whose tiles
are later filled in. To build one, the HTA constructor must
be called with the number of desired tiles per dimension.
For example, F = hta(3, 3) would generate an empty 3×
3 HTA F.

The examples discussed above generate non-distributed
HTAs, which are located only in the client. Neverthe-
less, most of the times we will be interested in generating
HTAs whose contents are distributed on a mesh of proces-
sors, so that we can operate in parallel on its tiles. Our
toolbox currently supports a single form of distribution.
Namely, it can distribute the top level tiles of an HTA
cyclically on a mesh of processors. This corresponds to
a block cyclic distribution of the matrix contained in the
HTA, with the blocks defined by the top level partition.
In order to achieve this, the constructor of the HTA needs
a last parameter that specifies the dimensions of the mesh
by means of a vector. Fig. 3 shows an example where a

a = hta(MX,{dist}, [P 1]);
b = hta(P, 1, [P 1]);
b{:} = V;
r = a * b;

Figure 4: Sparse matrix vector product.

for i = 1:n
c = c + a * b;
a = circshift(a, [0, -1]);
b = circshift(b, [-1, 0]);

end

Figure 5: Main loop in Cannon’s algorithm.

6×6 matrix is distributed on a 2×2 mesh of processors as
the the last parameter of the HTA constructor indicates.
In the future we plan to offer more mappings and a repre-
sentation for hierarchical organizations of processors.

3. PARALLEL PROGRAMMING USING HTAS
In this section we illustrate the use of HTAs with five sim-
ple code examples.

3.1 Sparse Matrix-Vector Product
Our first example, sparse matrix-vector product (Fig. 4),
illustrates the expressivity and simplicity of our parallel
programming approach. This code multiplies a sparse ma-
trix MX by a dense vector V using P processors. We begin by
distributing the contents of the sparse matrix MX in chunks
of rows into an HTA a by calling an HTA constructor. The
P servers handling the HTA are organized into a single col-
umn. We rely on the dist argument to distribute the array
MX in such a way that it results in a uniform computational
load across the servers.

Next we create and empty HTA b distributed across all
processors. We assign the vector V to each of the tiles
in hta b (b{:}=V). With this assignment, the vector V is
copied to each tile of the hta b. Since HTA b is distributed
across the P processors, this copy requires that the client
broadcasts V to all the servers that have a tile of the HTA
b. Notice that since HTA b and a have the same number
of tiles and they are mapped to the same processor mesh,
each processor holding a tile of a, will now hold a copy of
V too.

The multiplication itself is in the last line of the code,
where the binary operator * is invoked on a and b. The
effect is that corresponding tiles of a and b, which are
located in the same server, are multiplied, giving place to
a distributed matrix-vector multiply. The result is a HTA
r, distributed across the servers with the same mapping as
the inputs. This HTA can be flattened back into a vector
containing the result of the multiplication of a by b by
using the r(:) notation.

The code completely hides the fact that MX is sparse be-
cause MATLABTM provides the very same syntax for dense
and sparse computations, a feature our HTA class imple-
mentation in MATLABTM has inherited.

3.2 Cannon’s Algorithm for Matrix Multipli-
cation

While the previous example only required communication
between the client, which executes the main thread, and
each individual server, Cannon’s matrix multiplication al-
gorithm [4] is an example of code that also requires com-
munication between the servers.

The algorithm has O(n) time complexity and uses O(n2)
processors (servers). In our implementation of the algo-
rithm, the operands, denoted a and b respectively, are
HTAs tiled in two dimensions which are mapped onto a
mesh of n × n processors.

In each iteration of the algorithm’s main loop each server
executes a matrix multiplication of the tile of a and b that
currently reside on that server. The result of the multipli-
cation is accumulated in a (local) tile of the result HTA,
c. After the computation, the tiles of a and b are circular-
shifted as follows: the tiles of b are shifted along the first
dimension; the tiles of a are shifted along the second di-
mension. The effect of this operation is that the tiles of a
are sent to the left processor in the mesh and the tiles of b
are sent to the upper processor in the mesh. The left-most
processor transfers its tile of a to the right-most processor
in its row and the bottom-most processor transfers its tile
of b to the top-most processor in its column.

At the end of n iterations each server holds the correct
value for its associated tile in the output HTA c=a*b. Fig. 5
shows the main loop of Cannon’s algorithm using HTAs.

3.3 Jacobi Relaxation
Referencing arbitrary elements of HTAs results in complex
communication patterns. The blocked Jacobi relaxation
code in Fig. 6 computes the new value of each element
as the average of its four neighbors. Each block of d×d

elements of the input matrix is represented by a tile of
the HTA v. In addition, the tiles also contain extra rows
and columns for use as border regions for exchanging in-
formation with the neighbors. As a result, each tile has
d+2 rows and d+2 columns. This situation is depicted in
Fig. 7, which shows an example 3 × 3 HTA v with d= 3.
The inner part of each tile, surrounded by a dotted line in
the picture, contains the data from the input matrix. The
first and last row and column in each tile are the shadows
that will receive data from the internal tile of the neigh-
bors in order to calculate locally the average of the four
neighbors for each element. This exchange of shadows is
executed in the first four statements of the main loop and
it is also illustrated in Fig. 7, which shows the execution
of the statement v{2:n,:}(1,:) = v{1:n-1,:}(d+1,:).
As we see, by using HTA addressing, communication and
computation can be easily identified by looking at the tiled
indexes.

In this case the flattened version of the HTA v does not
quite represent the desired end result, because of the ex-
istence of the border exchange regions. However, the de-
sired matrix can be obtained by first removing the bor-
der regions and applying the flattening operator afterward:
(v{:,:}(2:d+1,2:d+1))(:,:).

3.4 Embarrassingly Parallel Programs
Easy programming of embarrassingly parallel and MIMD
style codes is also possible using HTAs thanks to the parHTAFunc

while ~converged
v{2:n,:}(1,:) = v{1:n-1,:}(d+1,:);
v{1:n-1,:}(d+2,:) = v{2:n,:}(2,:);
v{:,2:n}(:,1) = v{:,1:n-1}(:,d+1);
v{:,1:n-1}(:,d+2) = v{:,2:n}(:,2);

u{:,:}(2:d+1,2:d+1) = K * (v{:,:}(2:d+1,1:d) + v{:,:}(1:d,2:d+1) + ...
v{:,:}(2:d+1,3:d+2) + v{:,:}(3:d+2,2:d+1));

end

Figure 6: Parallel Jacobi relaxation

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � �
� � � � � � �
� � � � � � �

Figure 7: HTA v in the Jacobi relaxation code.
The shared areas indicate the regions of data that
are moved in the first statement of the loop.

input = hta(P, 1, [P 1]);
input{:} = eP;
output = parHTAFunc(@estimatePi, input);
myPi = mean(output(:));

function r = estimatePi(n)
x = randx(1, n);
y = randx(1, n);
pos = x .* x + y .* y;
r = sum(pos < 1) / n * 4;

Figure 8: Estimation of π using parallel Monte
Carlo

function. It allows the execution of a function in parallel
on different tiles of the same HTA. A call to this func-
tion has the form parHTAFunc(func, arg1, arg2, ...),
where func is a pointer to the function to execute in paral-
lel, and arg1, arg2,. . . are the arguments for its execution.
At least one of these arguments must be a distributed HTA.

The function func will be executed in the servers that hold
the tiles of the distributed HTA. For each local execution,
the distributed HTA in the list of input arguments is re-
placed by the local tile of each server. If the server keeps
several tiles, the function will be executed for each of these.

Several arguments to parHTAFunc can be distributed HTAs.
In this case they all must have the same number of tiles in
every dimension and the same mapping. This way, in each
local execution, the corresponding tiles of the HTAs, which
reside in the same server, are used as inputs for func. The
result of the parallel execution is stored in an HTA (or sev-
eral, if the function has several outputs) that has the same
number of tiles and distribution as the input distributed
HTA(s).

Fig. 8 illustrates a parHTAFunc that estimates π using the
Monte Carlo method on P processors. A distributed HTA
input with one tile per processor is built. Then its tiles
are filled with eP, the number of experiments to run in
every processor. The experiments are made on each pro-
cessor by the function estimatePi defined in Fig. 8, whose
input argument is the number of experiments to make.
MATLABTM syntax is used throughout the code to define
the estimatePi function, designate its pointer @estimatePi,
and the different operations required by the function, such
as .*, the element-by-element product of two arrays. The
function randx is similar to rand in MATLABTM but gen-
erates a different sequence on each processor. The result of
the parallel execution of the function is a distributed HTA
output that has the same mapping as input and keeps a
single tile per processor with the local estimation of π. To
compute the global estimation, which is the mean of these
values, the standard MATLABTM function mean is applied
to the flattened output.

The global estimation is the mean of these values, so the
standard MATLABTM function mean is applied to the flat-
tened output to calculate this value.

3.5 Non-Numerical Problems
All the previous examples are numerical computing. We of-
ten wonder whether new parallel programming paradigms
are only suitable for this kind of applications. For this
reason, in this section we describe a parallel HTA imple-
mentation of quicksort. The code is shown in Fig. 9. The
program sorts an input vector v with num el elements using
P processors in log

2
(P) steps.

The program uses the Hyperquicksort algorithm [13]. The
algorithm regards the mesh of processors as a linear array
where the processors are numbered from 1 to P. The al-
gorithm starts by distributing the input vector v among
the processors. Then, each processor sorts each subset us-
ing the sort MATLABTMfunction. The algorithm proceeds
in log

2
(P) iterations starting with i ranging from log

2
(P)

to 1. Each iteration i divides the processors into sets of 2i

consecutive processors. Each processor set has a pivot that
is used to partition the data. At each iteration i, the data
is rearranged such that the 2i−1 processors in the upper
half of the processor set contain the values greater than
the pivot, and the processors in the lower half contain the
smaller values.

Each iteration starts by choosing a pivot in each tile of
the HTA h in which the input vector has been partitioned.
This is done by applying the function pivotelement in
parallel in every chunk, which chooses the value in the
middle of the chunk, or 0 if the tile is empty. Then, the

num_el = length(v);
h = hta(v, {1:ceil(num_el/P):num_el}, [P 1]);
h = parHTAFunc(@sort, h);
for i = log2(P):-1:1

% First stage
pivot = parHTAFunc(@pivotelement, h);
initSet = 1:2^i:P;
pivot{:} = pivot{sort(repmat(initSet, 1, 2^i))};

% Second stage
[l, u] = parHTAFunc(@partition, h, pivot);

% Third stage
tmpU = initSet;
for j=1:2^(i-1)-1

tmpU = [tmpU initSet+j];
end
tmpU = sort(tmpU);
tmpL = setdiff(1:P, tmpU);

tmptu = u{tmpU};
u{tmpU} = l{tmpL};
l{tmpL} = tmptu;

% Fourth stage
h = parHTAFunc(@cat_sort, l, u);

end

% The following functions process each tile
function t = pivotelement(h)

n = size(h,1);
half = ceil(n/2);
if half

t = h(half);
else

t = 0;
end

function [l, u] = partition(h, pivot)
l = h(h<=pivot);
u = h(h>pivot);

function r = cat_sort(l, u)
r = sort(cat(1, l, u));

Figure 9: Parallel quicksort

pivot in the first processor in each set (variable initSet

keeps the indexes of these processors) is broadcasted to the
other processors in the set by means of an assignment in
the HTA pivot.

In the second stage of the algorithm, each processor par-
titions its local chunk in two subsets by running the func-
tion partition. For each processor, the tiles of the HTA
l contain the elements that are smaller than or equal to
the pivot; while the tiles of the HTA u contains the greater
ones.

In the third stage, the tiles of HTAs l and u are exchanged
within each half of each set of 2i consecutive processors.
The processors in the first half of each set send their u

tiles to the processors in the second half, which, in return,
will send their l tiles. The swapping of tiles is achieved
by means of assignments, after calculating the correct in-
dexes for the operation. Notice that once the exchange
completes, all the data in the tiles of both l and u in the
first 2i−1 processors of each set is smaller than (or equal
to) the pivot used for the sorting of the set; while the data

in the tiles of the processors of the second half of the set
is bigger than the pivot.

The fourth and final stage of the algorithm takes care of
fusing the tile of l and the tile of u that reside in each
processor and sorting locally the result. This is achieved
by applying in parallel the function cat sort to the HTAs
l and u. The result is a regenerated HTA h.

4. IMPLEMENTATION
HTAs can be added to almost any object-based or object-
oriented language. We chose the MATLABTM environ-
ment as the host for our implementation for a number of
reasons:

• MATLABTM is a linear algebra language with a large
base of users who write scientific code. HTAs allow
these users to harness the power of a cluster of work-
stations instead of a single machine.

• MATLABTM is polymorphic, allowing HTAs to sub-
stitute regular arrays almost without changing the
rest of the code, thereby adding parallelism painlessly.

• MATLABTM is designed to be extensible. Third
party developers can provide so-called toolboxes of
functions for specialized purposes. MATLABTM also
provides a native method interface called MEX, which
allows functions to be implemented in languages like
C and Fortran.

In the MATLABTM environment, HTAs are implemented
as a new type of object and they are built through the
constructors described in Section 2.5. The bulk of the
HTA implementation is actually written in C and inter-
faces with MATLABTM through MEX. In general, meth-
ods that do not involve communications, such as those that
test the legality of operations, were written in MATLABTM

to simplify their development. Small methods used very
frequently were written in C for performance reasons. Both
client and servers have a copy of matlab and HTA system
on top of it. Communications between the client and the
servers are implemented using the MPI [9] library, thus
methods that involve communication were written in C in
order to use the message-passing library.

Our implementation supports both dense and sparse ma-
trices with double precision data, which can be real or com-
plex. Any number of levels of tiling is allowed in the HTAs,
although every tile must have the same number of levels
of decomposition in order to simplify the legality tests. In
practice this is not an important restriction, since an HTA
can consist of a single tile that holds another HTA or a ma-
trix. Also, the current implementation requires the HTAs
to be either full (every tile has some content) or empty
(every tile is empty).

4.1 Internal Structure
The architecture of our MATLABTM implementation is
shown in Fig. 10. MATLABTM is used both in the client,
where the code is executed following a single thread, and
in the servers, where it is used as a computational en-
gine for the distributed operations on the HTAs. All the

�������

MATLAB

�	
�������

�
	�
�	��

���������

��� �������

��������� ��� ���

������ �������

MATLAB

�	
�

������

�
	�
�	��

���������

��� �������

���������

User

Figure 10: HTA implementation in MATLABTM

communications are done through MPI; the lower layers
of the HTA toolbox take care of the communication re-
quirements, while the higher layers implement the syntax
expected by MATLABTM users.

HTA programs have a single thread that is interpreted
and executed by the MATLABTM’s client. The HTAs
are just objects within the environment of the interpreter,
that when referenced generate calls to the methods of their
class. When an HTA is local, that is, when it is not dis-
tributed on the array of servers, the client HTA keeps both
the structure and the content of the HTA. When it is dis-
tributed, the HTA in the client holds the structure of the
HTA at all its levels, although it does not contain its con-
tent. It also keeps the information of the mapping of the
top level tiles of the HTA on the mesh of servers. In this
way, for any operation, regardless whether the HTA is local
or distributed, the client is able to locally:

• test the legality of the operation

• calculate the structure and mapping of the output
HTA(s)

• send the messages that encode the command and its
arguments to the servers.

Usually the legality check involves no communication, and
the client is able to generate locally the output HTAs of
the distributed operations. An advantage of this approach
is once the client broadcasts the commands, it is free to
continue and execute the next statement/operation. On
the other hand, doing all checking in the client creates a
bottleneck in the client, thus serializing part of the execu-
tion.

A source of inefficiency in our current implementation is
that the client uses point to point communication rather
than broadcasting. This was done so that servers would
know that every message a server receives corresponds to
an operation in which it participates. This saves the tests
that would be required if the messages were broadcasted.
This strategy reduced the development time for the tool-
box, but it is slower than using the broadcast, particularly
as the number of servers increases.

The servers have the structure and data of the top level
HTA tiles that are mapped to them, but they also know
the structure of the HTAs that are not mapped to them.
So, when a HTA is not mapped to a server, the server
knows the number of dimensions of the HTA, the number
of tiles per dimension at the top level, and the size of each
top level tile in each dimension in terms of elements, as well
as which servers owns each tile. In practice, this allows the
servers very often to calculate which server(s) must be the
destination or the source of their messages when they need
to exchange data.

4.2 MATLAB TMSpecific Implementation Is-
sues

A difficulty we found is the lack of destructor in the MATLABTM

classes. This hindered our ability to destroy distributed
HTAs because the HTA subsystem is not notified when an
HTA instance is destroyed by the MATLABTM.

Our solution to this problem is to apply a garbage col-
lection mechanism based on a pattern of changes that we
have detected in the internal structure of an HTA when
MATLABTM destroys it. Whenever a distributed HTA
is built, a record of its internal structure is created in
the client. The constructor checks for changes in other
distributed HTA structures. If any changes are detected,
we know that the corresponding HTA has been destroyed
and we ask the servers to destroy their components of the
deleted HTAs.

Our implementation follows the copy-on-write behavior of
MATLABTM. In a MATLABTM assignment, the RHS is
not actually copied, but rather a reference is created from
the LHS of the assignment to the old value. A copy is
only made when the user attempts to modify the data re-
ferred to. Since our HTAs are implemented with the same
variables that MATLABTM uses, an HTA can have mul-
tiple references to it. Private copies of distributed HTAs
are made only when they have several handles/names in
the program and some of them modify the contents of the
HTA.

5. EVALUATION

5.1 Environmental Setup

Our toolbox has been implemented and tested in an IBM
SP system, an HP HPC320 server with alpha processors
and True64 OS, and in a small cluster of PCs with Linux.
We present experimental results for the IBM SP system.
Most of our measurements were done on in IBM SP system
because of its higher availability, larger number of proces-
sors and more MATLABTM licenses available to us.

Our IBM SP system consists of two nodes. Each node has
8 Power3 processors that run at 375 MHz and 8 GB of
memory. Two configurations have been used in the exper-
iments: one with 2× 2 mesh of 4 servers, and another one
with 3×3 mesh of 9 servers. Each node contributes half of
the servers. There is an additional processor that executes
the main thread of the program, thus acting as the client
or master of the system.

The computational engine and interpreter for our HTA
toolbox was implemented using MATLABTM R13 (Sec-
tion 4). The C files of the toolbox were compiled with the
VisualAge C xlc compiler for AIX, version 5.0, with the
O3 flag. The MPI library used was the one provided by
the IBM parallel Environment for AIX, version 3.1. Se-
rial and parallel MATLABTMbenchmarks were executed
in this framework.

Two series of benchmarks were used to evaluate the HTA
toolbox. The first one consists of five simple kernels: smv
implements the sparse matrix vector product shown in
Fig. 4 and described in Section 3.1; cannon is an imple-
mentation of Cannon’s matrix multiplication algorithm [4],
whose main loop is depicted in Fig. 5; jacobi is the Jacobi
relaxation code shown in Fig. 6; summa represents the
SUMMA [7] matrix multiplication algorithm; and finally
lu is an implementation of the LU factorization algorithm.
Our second set of benchmarks consists of the well-known
ep, mg, ft and cg NAS benchmark, version 3.1 [1].

Four versions of each benchmark were written: two se-
rial programs, one in MATLABTM and the other one in
C/Fortran, and two parallel versions, one implemented us-
ing HTAs and the other one using MPI+C/Fortran. In the
MPI implementation of the benchmarks the blocks were
mapped to the mesh of processors in the same way the
HTAs do.

The computational engine and interpreter for our HTA
toolbox was implemented using MATLABTM R13 (Sec-
tion 4). The C files of the toolbox were compiled with the
VisualAge C xlc compiler for AIX, version 5.0, with the
O3 flag. The MPI library used was the one provided by
the IBM parallel Environment for AIX, version 3.1. Paral-
lel MATLABTMbenchmarks were executed in this frame-
work. Serial benchmarks were executed using the plain
MATLABTM R13.

The serial C and MPI implementations for cannon, summa
and lu were implemented using the IBM ESSL library,
while the corresponding MATLABTMHTA codes use the
MATLABTM libraries, which are less optimized. The C
codes were compiled with the xlc compiler with the O3

flag. The fortran codes (serial and MPI versions of NAS
benchmarks) were compiled using the xlf compiler from
IBM also with the O3 flag. The MPI library used was MPI
IBM Parallel Environment for AIX, version 3.1.

smv cannon jacobi summa lu
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Benchmarks

S
p

ee
d

u
p

HTA
MPI+C/Fortran

Figure 11: Speedup for HTA and MPI+C/Fortran
on 4 servers for the simple kernels

smv cannon jacobi summa lu
0

1

2

3

4

5

6

7

8

9

Benchmarks

S
p

ee
d

u
p

HTA
MPI+C/Fortran

Figure 12: Speedup for HTA and MPI+C/Fortran
on 9 servers for the simple kernels

Finally, notice that although the main focus of our work
is the achievement of parallelism, HTAs can also be used
to express locality. In fact, we have run experiments that
show that when multiplying matrices of sizes larger than
2000 × 2000, an implementation based on HTAs, but exe-
cuted serially, can run 8% faster than the native MATLABTM

matrix product routine.

In the next Sections we evaluate the performance and the
ease of programming of the MPI and the HTA approach
to write parallel programs.

5.2 Performance Analysis
5.2.1 Simple benchmarks
Figs. 11 and 12 show the speedup obtained by the simple
kernels for the HTA and MPI+C/Fortran when running on
4 and 9 servers, respectively. The speedup of the HTA par-
allel versions is computed from the parallel MATLABTM

HTA execution time and the corresponding execution time
of the serial MATLABTM . Likewise, the speedup of the
MPI approach is computed using the execution time of the
sequential C/Fortran and the MPI+C/Fortran programs.
For both configurations, 4 and 9 servers, all the bench-
marks are evaluated using matrices of size 4800 × 4800.
The input sparse matrix of smv has a density of 20%.

The figures show that the speedups of cannon and summa
using HTAs are similar or even better than those of the
MPI+C/Fortran programs. However, for smv, jacobi and
lu the speedups of the MPI+C/Fortran versions is better
than the speedups of the HTA ones, except the speedup of
lu using 4 processors is similar in both cases.

The low speedups of the HTA codes are due to extra over-
heads built into our implementation. One cause of ex-
tra overhead is the broadcast of HTA commands to the
servers: all HTA operations need to be broadcast from the
client, who executes the main thread, to the servers, before
they get executed. This approach simplifies implementa-
tion and implicitly synchronizes the processors, which in
turn eases programming; but if the HTA operation handles
relatively small amounts of raw data, broadcast overhead
dominates execution time. By comparison, in an MPI pro-
gram this broadcast is unnecessary because program exe-
cution is governed locally.

Another source of overhead is due to the limitations of the
MATLABTM extension interface. Whenever a subset of
positions of a tile is to be modified in an HTA method, a
copy of the whole tile must be done. Copying an HTA in
every assignment is another source of overhead. This ef-
fect is particularly visible in the speedups of lu and jacobi
because they require the modification of portions of tiles
rather than whole tiles. The reason for this copy is that
in MATLABTM every parameter is passed to user-defined
functions and methods by value. MATLABTM itself does
not suffer from this overhead, because the indexed assign-
ment operation is a built-in function to which arguments
are passed by reference.

As we see, the current sources of overheads are mostly
due to implementation issues and not inherent limitations
of the HTA approach. The overhead due to the broad-
cast of the HTA commands can be mitigated by sending
pre-compiled snippets of code to the servers for execution
(although this implies the existence of a compiler). By
re-implementing the indexed assignment method in C in-
stead of MATLABTM we can mitigate the overhead caused
by excessive copying of HTAs.

Finally, notice that the absolute execution time of the par-
allel MATLABTM programs based on HTAs is at most a
factor of two slower than their MPI counterparts. This
shows that the overhead introduced by MATLABTM in
these codes is not very high and therefore the speedups
obtained are mainly the result of parallelizing useful com-
putation and not due to parallelization of the overhead.

5.2.2 NAS benchmarks
Figures 13 to 16 show the absolute execution time and the
speedup obtained using 4 and 8 servers (processors) for
both MPI and HTA programs for the NAS benchmarks,

ep mg ft_1d ft_2d cg
0

50

100

150

200

250

T
im

e
(S

ec
o

n
d

s)

HTA
MPI

Figure 13: Execution time for HTA and
MPI+C/Fortran on 4 servers for the NAS bench-
marks

ep mg ft_1d ft_2d cg
0

20

40

60

80

100

120
T

im
e

(S
ec

o
n

d
s)

HTA
MPI

Figure 14: Execution time for HTA and
MPI+C/Fortran on 8 servers for the NAS bench-
marks

which must be run using a number of servers that is a
power of two. The labels ft 1d and ft 2d correspond to ft
with 1-D and 2-D decomposition respectively. That is the
3-D array whose forward and inverse FFT are calculated in
the benchmark is partitioned either along only one (ft 1d or
two ft 2d of its dimensions. We use the inputs of the class A
of the NAS benchmarks. So, the size of the input for mg is a
256×256×256 array, while for ft it is 256×256×128. For
the kernel ep 536870912 random numbers are generated;
finally, the input for cg is a 14000 × 14000 sparse matrix
with 1853104 nonzeros and a vector of size 14000.

Figures 13 and 14 show that the parallel execution time of
the HTA implementation takes longer than the MPI one.
However, remember that our HTA system is built on top
of MATLABTM which is a slow interpreted environment.
However, Figures 15 and 16 show that the speedup of each
benchmark is significant.

ep mg ft_1d ft_2d cg
0

1

2

3

4

5

6

7

8

9

S
p

ee
d

u
p

HTA
MPI

Figure 15: Speedup for HTA and MPI+C/Fortran
on 4 servers for the NAS benchmarks

ep mg ft_1d ft_2d cg
0

5

10

15

S
p

ee
d

u
p

HTA
MPI

Figure 16: Speedup for HTA and MPI+C/Fortran
on 8 servers for the NAS benchmarks

The embarrassing parallelism of the kernel ep allows it to
achieve a perfect speedup, since there is no communica-
tion overhead apart from the initial distribution and final
reduction. The kernel ft has a super-linear speedup for the
HTA implementation. In ft the timing also includes the
initialization of the complex array with random entries.
This takes a long time in a serial MATLABTM program,
which we believe is due to cache and/or TLB misses. The
speedup of the HTA version of the kernel mg is slightly
smaller than that of its MPI version. Finally, the kernel cg
does much better in MPI than with HTAs; mainly due to
the high optimization of the somewhat irregular patterns
of communication in the MPI version. The reasons for the
additional overheads discovered in these programs are the
same as the ones commented before for the simple kernels.
The readers should also note that the NAS benchmark ker-
nels are highly optimized, while our current HTA versions
are not that optimized.

5.3 Ease of programming

Table 1 shows the lines of code used by each benchmark
with each of the 4 different implementations: MATLABTM,
HTA, C/Fortran, and MPI. Unsurprisingly, MATLABTM

and HTA based programs take fewer lines of code than C,
Fortran and MPI programs. In the case of smv, cannon,
jacobi, summa and lu the difference is of an order of mag-
nitude. For the NAS benchmarks, the HTA programs are
between 30% and 70% of the MPI program.

If we compare the implementation of HTA and MPI with
their corresponding serial versions MATLABTM and C/Fortran,
respectively, the results in Table 1 show that the code sizes
of smv, cannon, summa and lu increase substantially when
going from serial to parallel. The reason is that one-line
invocation of the matrix multiply in the serial program is
replaced by a whole parallel algorithm. In jacobi, ep, mg
and cg the same algorithm is implemented in both the se-
rial and parallel version, so the code size doesn’t change
significantly. Finally, ft grows more than other benchmarks
when going from serial to parallel, particularly in its MPI
version. This increase is because ft contains two parallel
versions of the same problem: a 1-D version, that parti-
tions along only one dimension of the tridimensional array
whose forward and inverse FFT are calculated; and a 2-D
version that partitions the array along two dimensions.

It is also worth noting that the time we spent implementing
the HTA versions of the programs was much shorter than
the time required for implementing the MPI+C/Fortran
versions. HTA programs are much easier to write than
MPI programs. A functional HTA programs can be ob-
tained trivially by changing array initializations into HTA
initializations; performance tuning is mostly accomplished
by rearranging indexing in the code in an incremental fash-
ion. Writing an MPI based algorithm requires much more
work in planning and thinking, in order to avoid data races,
deadlock situations and to get good performance.

6. RELATED WORK
Languages for Parallel Programming have been an object
of research for a very long time. Several experimental lan-
guages and compilers have been developed so far. Promi-
nent among them is High Performance Fortran [2]. HPF is
an extension to FORTRAN that provides new constructs
to define the type of data distribution and mapping of
data chunks into processors. However, a key drawback
in HPF is the inability to operate on a tile (chunk) as a
whole. The programmer must explicitly compute the tile
sizes and their indexes for each distributed array for each
processor. The second drawback is the lack of transparency
in communication of data elements across processors. For
instance, the main loop in the matrix multiplication pro-
gram using cannon’s algorithm implemented with HPF is
shown in Fig. 17. The code in the figure assumes block
distribution along both the dimensions of the matrices.

A more closely related work to ours is ZPL [6]. ZPL de-
fines a region of a specified shape and size that can be
distributed using any specified distribution on any spec-
ified grid. Using the indexed sequential arrays, one
can build a structure similar to HTA, with operations on
tiles as a whole. However, ZPL is still not transparent to
the programmer and it is of higher level than HTA. For
instance, in ZPL the programmer never knows where and

Table 1: Lines of code in 4 different implementations of each benchmark

Benchmark smv cannon jacobi summa lu ep mg ft cg

MATLAB 6 1 31 1 1 136 1202 114 192
HTA 9 18 41 24 24 168 1500 157 203

C/FORTRAN 100 14 48 14 33 205 1542 261 263
MPI 176 189 364 261 342 242 2443 491 612

for i= 1, nprow
blocksize = n/nprow
FORALL (j=1:nprow, k=1:npcol)

j_b = (j-1)*blocksize + 1
j_e = j_b + blocksize - 1
k_b = (k-1)*blocksize + 1
k_e = k_b + blocksize - 1
c(j_b:j_e, k_b:k_e) = c(j_b:j_e, k_b:k_e) + &

matmul(a(j_b:j_e, k_b:k_e), b(j_b:j_e, k_b:k_e))
ENDFORALL
a = cshift(a, blocksize, 2)
b = cshift(b, blocksize, 1)

enddo

Figure 17: HPF - Main loop in Cannon’s algo-
rithm.

region R = [1..n, 1..n];
direction north = [-1, 0]; south = [1, 0];

east = [0, 1]; west = [0,-1];
[R] repeat

Temp := (A@north+A@east+A@west+A@south) / 4.0;
err := max<< abs(A-Temp);
A := Temp;

until err < tolerance;
end;

Figure 18: ZPL - Main loop in Jacobi.

how the exchange of data occurs, in a case like jacobi. Lack
of such a transparency might lead to programs that are
difficult to debug. Fig. 18 shows the main part of jacobi
implementation in ZPL.

7. CONCLUSIONS
In this paper we have presented a novel approach to write
parallel programs in object-oriented languages using a class
called Hierarchically Tiled Arrays (HTAs). The objects
of this class are arrays divided into tiles which may be
distributed on a mesh of processors. HTAs allow the ex-
pression of parallel computation and data movement by
means of indexed assignment and computation operators
that overload those of the host language.

We have implemented our new data type as a MATLABTM

toolbox and we have written a number of benchmarks using
it. As expected, the benchmarks are easy to read, under-
stand and maintain, particularly when compared to code
written using the SPMD programming model. This way,
we consider the HTA toolbox to be a powerful tool for the
prototyping and design of parallel algorithms that we plan
to make publicly available soon.

For many of our benchmarks the performance of HTA code
is competitive with that of traditional SPMD codes us-
ing MPI; for other benchmarks the HTA code suffers from

overhead problems and falls behind in performance. Still,
such overheads are related to details of our current imple-
mentation and they are not inherent to the HTA approach.

In the current implementation, a client executes the main
thread of the program and broadcasts the HTA commands
to the servers where the tile resides. Our future work
includes improving the scalability of the implementation,
possibly using a compiler, and making experiments with
more processors. We also want to provide more flexible
mapping policies, including the possibility of describing
machines with a hierarchical organization of processors
onto which to map the tiles. Finally, we plan to replace
MATLABTM in the servers by some freely available open-
source software in order to reduce implementation cost.

8. REFERENCES
[1] Nas Parallel Benchmarks. Website.

http://www.nas.nasa.gov/Software/NPB/.

[2] High Performance Fortran Forum. High Performance
Fortran Specification Version 2.0, January 1997.

[3] G. Almasi, L. D. Rose, B. Fraguela, J. Moreira, and
D. Padua. Programming for Locality and Parallelism
with Hierarchically Tiled Arrays. In Proc. of the 16th
International Workshop on Languages and Compilers
for Parallel Computing, LCPC 2003, volume 2958 of
Lecture Notes in Computer Science, pages 162–176,
College Station, Texas, Oct 2003. Springer-Verlag.

[4] L. Cannon. A Cellular Computer to Implement the
Kalman Filter Algorithm. PhD thesis, Montana
State University, 1969.

[5] W. Carlson, J. Draper, D. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and
Language Specification. Technical Report
CCS-TR-99-157, IDA Center for Computing
Sciences, 1999.

[6] B. Chamberlain, S.Choi, E. Lewis, C. Lin, L. Synder,
and W. Weathersby. The Case for High Level Parallel
Programming in ZPL. IEEE Computational Science
and Engineering, 5(3):76–86, July–September 1998.

[7] R. A. V. D. Geijn and J. Watts. SUMMA: Scalable
Universal Matrix Multiplication Algorithm.
9(4):255–274, Apr. 1997.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. S. Sunderam. PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel Computing. MIT Press,
Cambridge, MA, USA, 1994.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI
(2nd ed.): Portable Parallel Programming with the
Message-Passing Interface”. MIT Press, 1999.

[10] S. Hiranandani, K. Kennedy, and C.-W. Tseng.
Compiling Fortran D for MIMD Distributed-memory
Machines. Commun. ACM, 35(8):66–80, 1992.

[11] C. Koelbel and P. Mehrotra. An Overview of High
Performance Fortran. SIGPLAN Fortran Forum,
11(4):9–16, 1992.

[12] R. W. Numrich and J. Reid. Co-array Fortran for
Parallel Programming. SIGPLAN Fortran Forum,
17(2):1–31, 1998.

[13] B. Wager. Hyperquicksort: A Fast Algorithm for
Hypercubes. In Hypercube Multiporcessors, pages
292–299, Philadelphia, PA, 1987. SIAM.

