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Abstract. Understanding and improving the memory hierarchy behav-
ior is one of the most important challenges in current architectures. Ana-
lytical models are a good approach for this, but they have been tradition-
ally limited by either their restricted scope of application or their lack of
accuracy. Most models can only predict the cache behavior of codes that
generate regular access patterns. The Probabilistic Miss Equation(PME)
model is able nevertheless to model accurately the cache behavior for
codes with irregular access patterns due to data-dependent conditionals
or indirections. Its main limitation is that it only considers irregular ac-
cess patterns that exhibit an uniform distribution of the accesses. In this
work, we extend the PME model to enable to analyze more realistic and
complex irregular accesses. Namely, we consider indirections due to the
compressed storage of most real banded matrices.

1 Introduction

Memory hierarchies are essential in current architectures, since they cushion the
gap between memory and processor speed. Understanding and improving the
usage of caches is therefore absolutely necessary for obtaining good performance
both in sequential and parallel computers. There are several methods to study
the cache behavior. For example, trace-driven simulations [1] provide accurate
estimations of the cache behavior but the required simulations have a high com-
putational cost. Hardware counters [2] yield also accurate estimations but the
execution of the real code is needed and their use is limited to the architectures
where such registers exist. Both techniques provide a summarized characteri-
zation of the cache behavior and little insight about the observed behavior is
obtained. As a result, it is difficult to benefit from the information generated in
order to improve the cache performance.
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Analytical models of the source code [3, 4] are the best suited approach to
enable compilers to extract the behavior of the memory hierarchy and guide opti-
mizations based in this understanding. Models can obtain an accurate prediction
of the cache behavior based in the analysis of the source code to execute. Their
main drawback is their limited scope of application. Most of them are restricted
to codes with regular access patterns. There have been few attempts to model
irregular codes but they are either non-automatable [5] or quite imprecise [6].
The Probabilistic Miss Equation (PME) model is nevertheless able to analyze
automatically codes with irregular access patterns originated by data-dependent
conditionals [7] or indirections [8] with a reasonable accuracy. In the case of ir-
regular codes due to indirections, some knowledge about the distribution of the
values contained in the structure that produces the indirection is required in
order to achieve certain precision in the predictions. Until now the PME model
could only model with a reasonable accuracy indirect accesses that follow an
uniform distribution, that is, access patterns in which every position of the di-
mension affected by the indirection has the same probability of being accessed.
This model extension was fully automated and integrated in a compiler in [9].
In the present work the PME model is extended to be able to model automati-
cally and precisely an important class of non-uniform irregular access patterns.
Namely, we consider the indirections generated by the compressed storage of re-
alistic banded matrices, a very common distribution in sparse matrices [10]. Most
banded matrices are composed of a series of diagonals with different densities of
nonzeros. This way, we have developed a more general model that considers this
kind of distribution. The accuracy of this new extension will be evaluated using
well-known matrix collections.

The rest of the paper is organized as follows. Section 2 introduces the basics
of the PME model. Then, Section 3 discusses the extended scope of the model
and the problems that the modeling of non-uniformly distributed irregular ac-
cesses implies. The extension of the model to cover indirections using realistic
banded matrices is described in Section 4. Section 5 is devoted to the experi-
mental results. Section 6 briefly reviews the related work. Finally, in Section 7
the conclusions of our work are established.

2 Introduction to the Probabilistic Miss Equations
(PME) Model

Our model estimates the number of misses generated by a code studying the
behavior of each static reference R separately. Its strategy lies in detecting the
accesses of R that cannot exploit reuse in the cache, and the potential reuse
distances for those that can. The reuse distance is the interval in the execution
between two consecutive accesses to a same line. During the reuse distance other
data structures of the program can be accessed that can interfere in the cache
with the studied data structure. These reuse distances are measured in terms of
iterations of the loops that enclose the reference, and they generate interference
miss probabilities that depend on the cache footprint of the regions accessed



during their execution. The estimation of the number of misses generated by the
reference is thus a summatory of its first-time accesses to lines (cold misses) and
the number of potential reuses it gives place to, multiplied by the interference
miss probability associated to their reuse distance (capacity and conflict misses).
This summatory is what we call a Probabilistic Miss Equation (PME), and it is
built analyzing the behavior of the reference in each nesting level i that encloses
it, beginning in the innermost one and proceeding outwards. In each level the
model builds a partial PME FRi that captures the information on the reuses
with reuse distances associated to this loop. Namely, the model calculates the
number of different sets of lines (SOLs) that the reference may access during the
execution of the loop, the potential reuses for those SOLs, with their correspond-
ing reuse distance, and also the probability those reuses actually take place. A
SOL is the set of lines that R can access during one iteration of the loop. In the
innermost loop that contains R, each SOL consists of one line. In outer loops,
it consists of the set of lines that R can access during a whole execution of the
immediately inner loop. Obviously, the first-time accesses to each SOL during
the execution of the loop i cannot exploit the reuse within the loop that FRi

captures, but this does not necessarily turn them into misses. These accesses
could enjoy reuses with reuse distances associated to outer loops, or to previous
loops, when non-perfectly nested loops are considered. As a result, every PME
FRi needs as input for its evaluation a representation Reg of the memory region
accessed since the immediately previous access to any of the SOLs that R refer-
ences in loop i. Notice that given this reasoning, the number of misses generated
by each first access to a SOL found in nesting level i is given by the evalua-
tion of FR(i+1), the PME for the immediately inner level, providing as input the
memory region Reg. Similarly, the number of misses generated by the attempts
to reuse SOLs in level i will be given by the evaluation of FR(i+1) providing as
input the memory region for the reuse distance that FRi estimates. This way,
FRi is built recursively in terms of FR(i+1).

The calculation of the memory regions accessed during a reuse distance is
not covered in this paper due to space limitations (see [8] for more information).
Still, it is worth to comment that the PME model maps the regions into a
mathematical representation consisting of a vector V of k+1 probabilities, where
k is the associativity of the cache, called area vector. The first element of this
vector, V0 is the probability a cache set has received k or more lines from the
region. Each element Vs of the remaining k − 1 elements of the area vector
contains the probability a given cache set has received exactly k− s lines. In the
calculation of this area vector the total cache size Cs, line size Ls and degree of
associativity K of the cache are taken into account.

In the innermost loop that contains a reference, the recurrence of PMEs fin-
ishes defining FR(i+1)(Reg) as the first component of the area vector associated
to Reg. The reason is that in the innermost loop containing R, Reg is the set of
regions accessed since the latest access to the line, and if the cache has a LRU
replacement policy, the condition for the attempt of reuse to fail is that k or



DO I0 =1, N0
DO I1 =1, N1
...

DO IZ =1, NZ
...

A(fA1(IA1), ..., fAj(B(fB1(IB1))), ...)

...

END DO

...

END DO

END DO

Fig. 1. Nested loops with structures accessed using indirections.

more different lines have been mapped to the set during the reuse distance. This
is exactly the probability represented by the first element of the area vector.

On the other hand, the PME for the outermost loop is evaluated using an
area vector such that its component 0 is one. The reason is that this vector will
only affect those accesses that cannot exploit any reuse within the code, which
means that they are the cold misses. Using an area vector V with V0 = 1 for
them ensures that the model will predict these accesses result in misses.

3 Scope of Application of the PME Model

Figure 1 shows the kind of codes covered by the PME model extended to cope
with irregular access patterns due to indirections [8]. It is a set of perfectly or
non-perfectly nested loops in which the number of iterations of the loops must
be known at compile-time and the indexing of the data structures must be done
using either affine functions of the loop indexes or across indirections. In [8] the
values generated by the indirection had to follow an uniform distribution, that is,
every position along the indexed dimension had to have the same probability of
being accessed. Unfortunately this situation is not very common. In this work we
relax this restriction for an important class of codes, namely those that operate
with sparse banded matrices, by means of new PMEs.

As for the hardware, the PME model is oriented to caches with LRU replace-
ment policy, allowing arbitrary sizes, block sizes and associativities.

3.1 Complexity of PMEs for Irregular Access Patterns

The equations for references with regular access patterns are relatively simple
because all the accesses that can result in a cold miss have an unique interference
probability, and a different unique interference probability is applied for the
accesses that can result in an interference miss, as all the reuses have the same
constant reuse distance.



DO I=1,M

REG=0

DO J=R(I), R(I+1) - 1

REG = REG + A(J) * X(C(J))

ENDDO

D(I)=REG

ENDDO

Fig. 2. Sparse matrix-vector product Fig. 3. Banded sparse matrix

In an irregular pattern, every access has a set of different possible reuse
distances, each with an associated interference probability. PMEs weight the
prediction of misses for each potential reuse distance with the probability that
the considered reuse attempt happens. If the distribution of the accesses is uni-
form, the same set of interference regions can be used for all the accessed lines
and they all have the same probability of reuse associated to each reuse distance.
When this is not the case, that is, when different lines have different probabilities
of being accessed, a different set of interference regions must be calculated for
each accessed line, and different lines will have different probabilities of reuse for
the same reuse distance.

We will illustrate these ideas with the code in Figure 2, which performs the
product between a sparse matrix stored in CRS format [11] and a vector, and
which is part of SPARSKIT [12]. The CRS (compressed row storage) format
stores sparse matrices by rows in a compressed way using three vectors. One
vector stores the nonzeros of the sparse matrix ordered by rows, another vector
stores the column indexes of the corresponding nonzeros, and finally another
vector stores the position in the other two vectors in which the data of the
nonzeros of each row begins. In our codes we always call these vector A, C and R

respectively. The innermost loop of the code in Figure 2 performs the product
between vector X and row I of the sparse matrix. In this code reference X(C(J))
performs an irregular access on vector X only in the positions in which the matrix
row contains nonzeros. Let us suppose that the sparse matrix that is being
multiplied is a banded matrix like the one shown in Figure 3, in which the W = 5
diagonals that constitute its band have been labeled. During the processing of
each row of the sparse matrix, a maximum of W different elements of X will
be accessed. Each one of these W elements has a different probability of being
accessed that depends on the density of the corresponding diagonal in the banded
matrix. The set of elements eligible for access is displaced one position in the
processing of each new row. Also, each element of X will be accessed a maximum
of W times during the execution of the code, as a maximum of W rows may have
nonzeros in the corresponding column. Interestingly, the probability of access is
not uniform along those W rows. For example, every first potential access during
the processing of this matrix in this code will take place for sure, while every
second potential access to an element of X will happen with a probability of 30%.



This is because all the positions in the fifth diagonal (d5) keep nonzeros, while
in the fourth diagonal (d4) of the band 3 out of its 9 positions keep nonzeros,
which is a density of nonzeros of 30%

The situation depicted in our example is clearly more common than the one
modeled in our previous work [8], in which we only considered irregular ac-
cess patterns which had an uniform probability of access for each element of
the dereferenced data structure, and in which such probability did not change
during the execution of the code. It is very usual that the diagonals of banded
matrices have different densities, with the distribution of the nonzeros within
each diagonal being relatively uniform. As a result, we have extended our model
to cope with this important class of matrices, which enables to model automati-
cally and accurately the cache behavior of codes with irregular access patterns in
the presence of a large number of real sparse matrices, as the evaluation proves.
We will characterize the distribution of nonzeros in these matrices by a vector ~d
of W probabilities where di contains the density of the i − th diagonal, that is,
the probability a position belonging to the i − th diagonal of the band contains
a nonzero. This extension can be automated using a compiler framework that
satisfies its information requirements, such as the one used in [9]. The vector
~d of diagonal densities is the only additional information we need in this work
with respect to [9]. These values are obtained from an analysis of the input data
that can be provided by the user, or obtained by means of runtime profiling.

4 PME Model Extension for Non-Uniform Banded
Matrices

As explained in Section 2, the PME model derives an equation FRi that calcu-
lates the number of misses for each reference R and nesting level i. This PME
is a function of input memory regions calculated in outer or preceding loops
that are associated to the reuses of the sets of lines (SOLs) accessed by R in
loop i whose immediately preceding access took place before the loop began its
execution. The uniformity of the accesses in all our previous works allowed to
use a single region Reg for this purpose, that is, all the SOLs had the same reuse
distance whenever a loop began. This happened because all the considered lines
had uniform probabilities of access, and thus they also enjoyed equal average
reuse distances and miss probabilities. The lack of uniformity of the accesses
makes it necessary to consider a separate region of interference for each SOL.
Thus we extend the PMEs to receive as input a vector ~Reg of memory regions.
The element Regl of this vector is the memory region accessed during the reuse
distance for what in this level of the nest happen to be first access to the l-th
SOL that R can access. Another way to express it is that Regl is the set of
memory regions that could generate interferences with an attempt to reuse the
l-th SOL right when the loop begins its execution. This way, ~Reg has as many
elements as SOLs defines R during the execution of the considered loop.

The shape of PME FRi depends on the access pattern followed by R in loop
i. The PME formulas for references following a regular access pattern and ref-



erences following irregular access patterns due to indirections with a uniform
distribution have been presented in [8]. A simple extension was also proposed
in [8] to support accesses generated by the processing of banded matrices with
an uniform distribution of the entries inside the band by applying small modifi-
cations to the formulas of indirections with uniform distributions. This section
contains a description of the formulas we have developed for references with ir-
regular access patterns generated by indirections due to the compressed storage
of banded matrices in which the distribution of non-zeros within the band is
not uniform. In the remaining, the array accessed using an indirection will be
known as the base array while the array that is used to generate the values of
the index of the indirection will be known as the index array. A different formula
will be applied depending on whether the values read from the index array are
known to be monotonic or not. They are monotonic when, given two iterations
of the current loop i and j and being f(i) and f(j) the values generated by the
index array in these iterations, for all i ≤ j then f(i) ≤ f(j) or for all i ≤ j
then f(i) ≥ f(j). When the index values are known to be monotonic a more
accurate estimation can be obtained because we known that if our reference R
reuses a SOL of the base array in a given iteration, this SOL is necessarily the
one accessed in the previous iteration of the loop.

4.1 PME for irregular monotonic access with non-uniform band

distribution

If we assume that the nonzeros within each row have been stored ordered by their
column index in our sparse matrix in CRS format, reference X(C(J)) generates
a monotonic irregular access on the base array X during the execution of the
innermost loop in Figure 2. Let us remember that the index array C stores the
column indexes of the nonzeros of the row of the sparse matrix that is being
multiplied by X in this loop.

The general formula that estimates the number of misses generated by a
reference R in nesting level i that exhibits an irregular monotonic access with a
non-uniform band distribution is

FRi( ~Reg) =

(

LRi−1
∑

l=0

pi(lGRi)FR(i+1)(Regl)

)

+

(

W
∑

l=1

dl −

LRi−1
∑

l=0

pi(lGRi)

)

FR(i+1)(IntRegRi(1))

(1)

The interference region from the outer level is different for each set of lines (SOL)

accessed and it is represented as a vector ~Reg of LRi different components, where
LRi is the total number of different SOLs of the base array A that R can access
in this nesting level. LRi is calculated as ⌈W/GRi⌉ being W the band size and
GRi is the average number of positions in the band that give place to accesses
of R to a same SOL of the base array A. This value is calculated as ⌈Ls/SRi⌉,
being SRi = αRj ·dAj where j is the dimension whose index depends on the loop



variable Ii through the indirection; Ls is the cache line size; αRj is the scalar
that multiplies the index array in the indexing of A, and dAj is the cumulative
size1 of the j-th dimension of the array A referenced by R.

If we consider reference X(C(J)) in Figure 2, while processing the matrix in
Figure 3, with a cache line size Ls = 2, in the innermost level dA1 = 1 and
αR1 = 1. Each GRi = 2 consecutive positions in the band give place to accesses
to the same SOL of X. Consequently, since W = 5, the number of different SOLs
of X accessed would be LRi = ⌈5/2⌉ = 3.

The vector of probabilities ~pi has W positions. Position s of this vector keeps
the probability that at least one of the diagonals s to s+GRi − 1 has a nonzero,
that is, it is the probability they generate at least one access to the SOL of the
base array that would be accessed if there were nonzeros in any of these GRi

diagonals. Each component of this vector is computed as :

pis = 1 −

min(W,s+GRi−1)
∏

l=s

(1 − dl) (2)

Let us remember that ~d is a vector of W probabilities, ds being the density of
the s − th diagonal in the band as it is reflected in Figure 3.

In Formula 1 each SOL l of the base array that R can access in nesting level i
has a probability pi(lGRi) of being accessed, where lGRi is the first band that can
generate accesses to the l−th SOL. The miss probability in the first access to each
SOL l depends on the interference region from the outer level associated to that
SOL Regl. The remaining accesses are non-first accesses during the execution of
the loop, and because the access is monotonic, their reuse distance is necessarily
on iteration of the loop. As a result, the interference region will be IntRegRi(1),
the memory region accessed during one iteration of loop i that can interfere
with the reuses of R. The number of potential reuses of SOLs by R in the loop
is calculated as

∑W

l=1 dl −
∑LRi−1

l=0 pi(lGRi), where the first term estimates the
number of different accesses generated by R during the processing of a row or a
column of a band while the second term is the average number of different SOLs
that R accesses during this processing.

4.2 PME for irregular non-monotonic access with non-uniform

band distribution

A data structure stored in a compressed format, such as CRS [11], is typically
accessed using an offset and length construction [13]. In this situation, very
common in sparse matrix computations, the knowledge that the values accessed
across the indirection follow a banded distribution can be used to increase the
accuracy of the prediction using a specific formula. For example, in the code of
Figure 2 the reference X(C(J)) accesses the structure X using an offset and length
construction. The values generated by the index array C in the innermost loop

1 Let A be an N-dimensional array of size DA1 ×DA2 × . . . DAN , we define the cumu-
lative size for its j-th dimension as dAj =

Qj−1

i=1
DAi



are monotonic but the values read across different iterations of the outermost
loop are non-monotonic because a different row is processed in each iteration of
this loop. When this situation is detected and we are in the presence of a banded
matrix, the behavior of the reference in the outer loop can be estimated as

FRi(RegIn) = NiFR(i+1)( ~Reg(RegIn)) (3)

In this formula the Ni iterations in the current nesting level are considered to
repeat the same behavior. Although the W − 1 first and last iterations have a
different behavior than the others as for example their band is not W positions
wide, we have checked experimentally that the lost of accuracy incurred when
not considering this is not significant. This is expected, as usually the band size
W is much smaller than Ni, which is the number of rows or columns of the
sparse matrix.

An average interference region for each one of the LRi SOLs accessed in the
inner level must be calculated. This average interference region takes account of
all the possible reuses that can take place with respect to a previous iteration
of the current loop depending on the different possible combinations of accesses
to the studied base array. The interference region associated with each possible
reuse distance must be weighted with the probability an attempt of reuse with
this reuse distance happens before being added in the computation of the average
interference region. The expression that estimates the average interference region
associated to the l − th SOL that R can access in this loop is,

Regl(RegIn) =

W
∏

z=lGRi+1

(1 − piz)(RegIn ∪ IntRegRi(W − lGRi − 1)+

W
∑

s=lGRi+1

pis

(

s−1
∏

z=lGRi+1

(1 − piz)

)

IntRegRi(s − lGRi)

(4)

In the previous section we saw that lGRi is the first diagonal that could generate
an access to the l-th SOL in a given iteration and pi(lGRi) the probability of
accessing that SOL during the processing of a row or column of the matrix. As
the band is shifted one position to the right every row, in general, the probability
that the same SOL of the base array is accessed by R m iterations before the
current iteration is pi(lGRi+m). As a result,

∏W

z=lGRi+1(1 − piz) calculates the
probability that the l − th SOL has not been accessed in any previous iteration
of this loop. In this case the interference region is equal to the union of the
input region from the outer level and the region associated to the accesses that
take place in the W − lGRi − 1 previous iterations. The union of two regions is
performed as the union of their associated area vectors. The addition of a region
to the average region weighted by its corresponding probability is performed
adding the area vector of the region weighted by the corresponding probability
to the vector that represents the average region. Regarding the reuses within loop
i, the probability that the last access to a SOL took place exactly m iterations
ago is calculated multiplying the probability of being accessed in that iteration



DO I= 1,M

DO K= R(I), R(I+1) - 1

REG0=A(K)

REG1=C(K)

DO J= 1,H

D(I,J)=D(I,J)+REG0*B(REG1,J)

ENDDO

ENDDO

ENDDO

Fig. 4. Sparse Matrix - Dense Matrix (IKJ)

pi(lGRi+m) by the product of the probabilities of not being accessed in any of the

iterations between that iteration and the current iteration
∏lGRi+m−1

z=lGRi+1 (1 − piz).
The interference region associated to this attempt of reuse will be the region
covered by the accesses that take place in those m iterations of the current loop.
In this equation LRi = LRj , GRi = GRj and the vector ~pi = ~pj , being j the
innermost nesting level of the offset and length construction.

5 Experimental Results

The validation was done applying by hand the PME model to 5 kernels of increas-
ing complexity : an sparse-matrix vector product, see Figure 2, an sparse-matrix
dense-matrix product with IKJ (see Figure 4), IJK and JIK order, and a sparse-
matrix transposition (omitted due to space limitations). The three sparse-matrix
dense-matrix products contain an access to a bidimensional array that contains
an indirection in the first dimension, thus they illustrate the correctness of our
model when conflicts between columns appear. The sparse-matrix transposition
code exhibits particularly complex access patterns, as it has several loop nests
with several nesting levels, and it involves references with up to 4 levels of indi-
rection.

The model was validated comparing its predictions with the results of trace-
driven simulations. The input data set were the 177 matrices from the Harwell-
Boeing [14] and the NEP [15] sets that we found to be banded or mostly banded
(a few nonzeros could be outside the band). These matrices represent 52% of the
total number of matrices contained in these collections.

The matrices tested are a heterogeneous test set of input data. Some matrices
have all their entries uniformly spread along a band, like the AF23560 matrix in
Figure 5(a). The LNSP3937 matrix shown in Figure 5(b), has all its values spread
along a band of the matrix but not uniformly. Finally, there are some matrices
like CURTIS54, shown in Figure 5(c), where not all the values are spread along
a band but a significant percentage of them are limited to this area.

Table 1 summarizes data giving an idea of the accuracy of the model. The
results were obtained for the benchmarks performing 1770 tests considering 10
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(b) lnsp3937 M=N=3937
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(c) CURTIS54 M=N=54
nnz=291 W=43

Fig. 5. Examples of matrices in the Harwell-Boeing set, M and N stands for the matrix
dimension, nnz is the number of nonzeros and W is the band size.

Code MRSim σSim

Uniform Bands Model Non-Uniform Bands Model

MRMod ∆MR MRMod ∆MR

SPMXV 14.00% 0.08% 15.57% 1.80% 14.45% 0.70%

SPMXDMIKJ 27.66% 2.02% 45.62% 26.81% 28.85% 4.19%

SPMXDMIJK 8.62% 0.29% 27.48% 17.23% 10.91% 3.10%

SPMXDMJIK 7.87% 0.43% 10.63% 3.23% 8.36% 0.78%

TRANSPOSE 10.31% 0.33% 11.38% 3.55% 9.52% 3.23%

Table 1. Average measured (MRSim) miss rate, average typical deviation (σSim) of
the measured miss rate, average predicted (MRMod) miss rate and the average value
∆MR of the absolute difference between the predicted and the measured miss rate in
each experiment.

different cache configurations of each one of the 177 matrices of the Harwell-
Boeing and the NEP sets. For each matrix and cache configuration 10 different
simulations were performed changing the base address of the data structures
involved in each code. In the case of the three orderings of the sparse-matrix
dense-matrix product the number of columns of the dense matrix is always a
half of its number of rows. The cache configurations have cache sizes (Cs) from
16 KBytes to 2 MBytes, line sizes (Ls) from 16 to 64 bytes and associativity
degrees (K) 1, 2, 4 and 8. Column MRSim contains the average value of the
miss rate simulated in the set of experiments. Column σSim is the average typi-
cal deviation of the miss rate obtained in the 10 simulations performed changing
the base address of the data structures. The table compares the precision of
the predictions achieved using the simple model for banded matrices assuming
an uniform distribution of nonzeros introduced in [8] and the improved model
presented in this paper. The table shows for each model, MRMod the average
value of the miss rated predicted, and ∆MR the average value of the absolute
value ∆MR of the difference between the predicted and the measured miss rates
for each experiment. We use absolute values, so that negative errors are not



(a) Simulation and modeling for a typical level 1 cache configuration

(b) Simulation and modeling for a typical level 2 cache configuration

Fig. 6. Comparison of the miss rates obtained by the simulation, the uniform bands
model and the non-uniform bands model during the execution of the sparse matrix-
dense matrix product with IJK ordering for several real matrices.

compensated with positive errors. These results show that the improved model
is much mode accurate in the presence of real heterogeneous input banded ma-
trices than the original model. The small values of σSim point out that the base
addresses of the data structures play a minor role in the cache behavior.

Figure 6 contains a comparison of the miss rate obtained in the simulation,
the miss rate obtained by the uniform bands model and the miss rate obtained
by the non-uniform bands model during the execution of the sparse matrix-dense
matrix product with IJK ordering using some matrices from the Harwell-Boeing
and the NEP collections. The number of columns of the dense matrix used
in the multiplication was always one half of the number of rows of the sparse
matrix. Figure 6(a) shows the results obtained using a typical level 1 cache
configuration, while a typical level 2 cache configuration is used in Figure 6(b).
The cache configuration parameters are: Cs the total cache size, Ls the line size
and K the associativity degree. The non-uniform bands model almost always



Architecture
L1 Parameters L2 Parameters L3 Parameters

(Cs1 , Ls1 , K1, Cost1) (Cs2 , Ls2 , K2, Cost2) (Cs3 , Ls3 , K3, Cost3)

Itanium 2 (16K,64,4,8) (256K,128,8,24) (6MB,128,24,120)

PowerPC 7447A (32K,32,8,9) (512K,64,8,150) -

Table 2. Memory hierarchy parameters in the architectures used (sizes in Bytes)

estimates more accurately the miss rate. The difference is bigger in the level
2 cache configuration. The reason for the poor estimations obtained using the
uniform bands model is that in matrices with wide bands but in which most
of the values are concentrated in a few diagonals, there is a lot of reuse that
is not captured by the uniform bands model, as it assumes that the entries are
uniformly spread along all the diagonals in the band.

The accuracy of the model and its low computational cost, always less than
1 second in a 2GHz Athlon, makes it very suitable for driving compiler opti-
mizations. As a simple experiment aimed to prove its ability to help optimize
codes with irregular access patterns due to indirections, we used its predictions
to choose the best loop ordering for the sparse matrix-dense matrix product in
terms of the lowest number of CPU detention cycles caused by misses in the
memory hierarchy. The prediction is based on a cost function consisting of the
addition of the number of misses predicted in each cache level of a real system,
weighted by the miss latency for that level. Two very different systems were
used for this experiment: an Itanium 2 at 1.5GHz and a PowerPC 7447A at
1.5GHz. Table 2 contains the configurations of the different cache levels in the
considered architectures, using the notation (Cs, Ls, K) presented in Figure 6.
A new parameter, Costi the cost in CPU cycles of a miss in the level i, is also
taken into account. Notice that the first level cache of the Itanium 2 does not
store floating point data; so it is only used for the study of the behavior of the
references to arrays of integers. Also, the PowerPC does not have a third level
cache.

Our model always chose the JIK order (see Table 1) in both architectures. The
tests were performed using all the banded matrices from the Harwell-Boeing and
the NEP collections, in multiplications with dense matrices with 1500 columns.
These tests agreed with the predictions of the model: the JIK version was the
fastest one in 95.9% and 99.7% of the experiments in both architectures. The
codes were compiled using g77 3.4.3 with -O3 optimization level.

6 Related Work

Most of the analytical models found in the bibliography are limited to codes
with regular access patterns [4, 3, 16].

The modeling of codes with irregular access patterns has been developed
ad-hoc for specific pieces of code. For example, Fraguela et al. [5] proposed a
model that obtained a very accurate estimation with a low computation cost
but the proposed model was not automatable. In [17], an ad-hoc approach was



proposed but it was limited to direct mapped caches and it did not consider the
interaction between different interleaved access patterns.

Some approaches tried to model this kind of codes automatically. Cascaval’s
indirect accesses model [6] is integrated in a compiler framework, but it is a
simple heuristic that estimates the number of cache lines accessed rather than
the real number of misses. For example, it does not take into account the dis-
tribution of the irregular accesses and it does not account for conflict misses,
since it assumes a fully-associative cache. As a result it suffers from limited ac-
curacy in many situations. The modal model of memory [18] requires not only
static analysis but also runtime experimentation (potentially thousands of ex-
periments) in order to generate performance formulas. Such formulas can guide
code transformation decisions by means of relative performance predictions, but
they cannot predict code performance in terms of miss rates or execution time.
The validation uses two very simple codes and no information is given on how
long it takes to generate the corresponding predictions.

7 Conclusions

We have proposed an automatable extension for the modeling of indirect accesses
due to the compressed storage of banded matrices. The model has been validated
using codes of increasing complexity and real matrices from the NEP [15] and the
Harwell-Boeing [14] collections. Our experiments show that the model reflects
correctly the cache behavior of the codes with irregular access patterns due
to the operation on banded matrices found in these collections. Such matrices
account for 52% of the matrices that these collections contain. This extension
achieves higher degrees of accuracy than a previous model of the authors which
considered only banded matrices with an uniform distribution of nonzero entries.
Besides, the time required to apply the model was less than 1 second in all the
performed experiments.

It has been shown that our model can be used as a powerful tool for guiding
optimization processes, performing successful experiments in two very different
architectures, an EPIC processor Itanium 2 and a superscalar PowerPC 7447A.
As future work, we plan to apply the model automatically over a wider range of
different codes and to use the model as a guide in more optimization processes.
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