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Abstract. This paper introduces a new primitive data type, hierarchi-
cally tiled arrays (HTAs), which could be incorporated into conventional
languages to facilitate parallel programming and programming for lo-
cality. It is argued that HTAs enable a natural representation for many
algorithms with a high degree of locality. Also, the paper shows that,
with HTAs, parallel computations and the associated communication
operations can be expressed as array operations within single threaded
programs. This, is then argued, facilitates reasoning about the resulting
programs and stimulates the development of code that is highly readable
and easy to modify. The new data type is illustrated using examples writ-
ten in an extended version of MATLAB.

1 Introduction

This paper introduces a new primitive data type which could be incor-
porated into conventional languages to facilitate parallel programming
and programming for locality. This new data type facilitates the repre-
sentation and manipulation of arrays that are organized as a hierarchy
of tiles. These hierarchically tiled arrays (HTAs) are a generalization of
the recursively blocked arrays arising in some linear algebra algorithms
with a high degree of locality. Our proposal is to use HTAs to facilitate
the expression of both locality and parallelism. In a nutshell, our idea is
to distribute the outermost tiles of a hierarchically tiled array for paral-
lelism, and used the inner tiles for locality and message aggregation. In
the case of sequential programs all tile levels will be used for locality.
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positions or policies of the Army or Government.



The two main sources of inspiration for this project were the extensive
body of work on blocked linear algebra algorithms [6, 2] and two re-
cently proposed languages, Co-Array Fortran [12] and Unified Parallel C
(UPC) [3]. Our proposal follows these two languages in that it represents
communication explicitly as array assignments. The use of array assign-
ments to represent communication has at least two advantages over the
library-based, approach of MPI [5]. First, thanks to APL [8] and Fortran
90 we have at our disposal a wealth of powerful array operators that
can serve to unify and simplify the many communication and collective
operations of MPI. Second, making the operations part of the language
enables compiler support that simplifies the notation and improves error
detection.
We, however, do not follow Co-Array Fortran and UPC in the use of
the SPMD programming paradigm. Instead, our proposal resembles the
programming model of the old SIMD machines, but instead of limiting
the parallelism to simple arithmetic or logic array operations, we take
advantage of the MIMD nature of todays parallel machines and allow in
the expression of parallelism the use of complex array operations repre-
sented as user-defined functions. Abandoning the SPMD model has the
drawback of removing some control on the parallelism from the program-
mer, but the single thread programming model has the great advantage
of enforcing structure and leading to programs that are more readable
and easier to develop and maintain. Furthermore, we expect that much
of the potential loss of performance can be avoided with relatively simple
compiler and run-time techniques.
Our approach differs from that of the High Performance Fortran [7, 9]
in that it makes all communication and array distribution explicit and
therefore it requires much less from the compiler than High Performance
Fortran. Although making communication explicit complicates program-
ming there is no better alternative at this time given the failure of High
Performance Fortran. Furthermore, languages for parallel programming
with explicit communication will always be necessary much in the same
way that assembly language programming is still necessary today for
conventional programming. The availability of a lower level language is
useful as a fall back position whenever the compiler fails to do the right
thing and as a means to experiment with alternative solutions that can
later be incorporated into a compiler.
Hierarchically tiled arrays can be easily incorporated into several pro-
gramming languages including Fortran 90, APL, and MATLAB. In this
paper we focus on extending MATLAB with hierarchically tiled arrays
for two main reasons. First is that an extended MATLAB system would
make a great tool for prototyping parallel programs. Such a tool is sorely
needed and although many MATLAB programmers may not be inter-
ested in parallelism, we believe that many parallel programmers would
be interested in a good prototyping tool. The second reason is that MAT-
LAB has many features that make it a convenient platform for a first
implementation of our ideas. In the rest of this paper, we describe hierar-
chically tiled arrays (Section 2), present mechanism for their representa-
tion in memory (Section 3) and then illustrate their use in programming
for locality (Section 4) and parallelism (Section 5).
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Fig. 1. Two tiled arrays. Fig. 2. A partitioned array.

2 Hierarchically tiled arrays

In this section we define hierarchically tiled arrays (Section 2.1), and
discuss how to build them (Section 2.2), access their components (Sec-
tion 2.3), and how they can be used in expressions and values assigned
to them (Section 2.4).

2.1 Definition of hierarchically tiled array

We define a tiled array as an array that is partitioned into subarrays in

such a way that adjacent subarrays have the same size along the dimen-

sion of adjacency. Although the literature usually assumes that array
tiles have the same shape (Fig. 1(a)), we do not require this in our
definition because there are important cases where using tiles of differ-
ent sizes (Fig. 1(b)) is advantageous. Notice that our definition implies
that m-dimensional arrays are partitioned by (m−1)-dimensional hyper
planes that are perpendicular to one of the dimensions. Furthermore,
”randomly” partitioned arrays such as that shown in Fig. 2 do not fall
under our definition of tiled arrays.
We define hierarchically tiled arrays (HTAs) as tiled arrays where

each tile is either an unpartitioned array or a hierarchically tiled array.
Although this definition allows different tiles to be partitioned in different
ways, most often HTAs will be homogeneous, that is adjacent submatrices
at each level will not only have the same size as their neighbors along
the dimension of adjacency, but they will also agree in the number and
position of the partitions along that dimension.
A two-level hierarchy where neighboring tiles are partitioned differently,
and therefore depicts a non-homogeneous HTA, is shown in Fig. 3(a).
In this figure, the outer tiles are separated by the dashed lines and the
inner tiles by the dotted lines. There are three mismatches in Fig. 3(a).
One is between outermost tile {1,2}, which is not partitioned at all, and
tile {1,1} which is partitioned into two parts along the vertical dimen-
sion which is the dimension of adjacency between these two tiles. The
other two mismatches are between outermost tiles {1,1} and {2,1} and
between tiles {2,1}, and {2,2}. Fig. 3(b) is an example of homogeneous
HTA where the number of tiles and the sizes of all tiles match along the
dimensions of adjacency.
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Fig. 3. Two level tiled arrays.

Fig. 4. Bottom up tiling.

2.2 Construction of HTAs

A simple way to obtain homogeneous HTAs is to tile the matrix at the
lowest level of the hierarchy first and then proceed recursively by tiling
the resulting array of tiles. This bottom–up process, illustrated in Fig. 4,
always generates homogeneous HTAs.
We can alternatively start from the top and successively refine each par-
tition. The top down approach is more flexible than the bottom up ap-
proach in that it enables the generation of both homogeneous and non-
homogeneous HTAs.
In an interactive array language such as MATLAB, HTAs can be built
following either approach if the appropriate functions are available. For
the bottom up approach we define the function tile that accepts as pa-
rameters an m-dimensional HTA or unpartitioned array and m vectors,
p1, p2, . . . , pm, (one for each dimension of the HTA) and returns an HTA
partitioned by the hyperplanes defined by pi(k), 1 ≤ i ≤ m, 1 ≤ k ≤
size(pi). These partition dimension i of the array right after element
pi(k). For example, given a 10× 12 matrix D, the statements

C = tile(D,[2,4,6,8],[3,6,9]);

B = tile(C,[3],[1,2,3]); (2.1)
A = tile(B,[1],[1]);

will generate the three HTAs shown in Fig. 4.
For the top down approach we define the function hta which accepts m

natural numbers as parameters, d1, d2, ..., dm, and returns a d1×...dm ar-
ray whose elements are empty tiles that can hold HTAs or unpartitioned
arrays. Before presenting an example of top down creation of HTAs, we
need to describe how to address the tiles in an HTA. The outermost tiles
of an HTA can be addressed using subscripts enclosed by curly brackets.



An additional set of subscript should be added for each level of the HTA
that needs to be addressed. Thus, the tile containing element E(5,4) if
E is partitioned as shown in Fig. 1(a) would be accessed as E{3,2}. Also,
the inner tile containing element F(5,4) in an array F with the shape
shown in Fig. 3(b), would be addressed as F{2,1}{1,2}.
We can now illustrate the top down creation of HTAs. The top two
levels of an array E with the shape shown in Fig. 3(a) could be created
as follows:

G = hta(2,2);

G{1,1} = hta(2,2); (2.2)
G{2,1} = hta(2,3);

G{2,2} = hta(3);

and the elements of the upper left quadrant could be filled with two-
dimensional arrays of normally distributed random number as follows:

G{1,1}{1,1} = randn(2,3); G{1,1}{1,2} = randn(2,6);

G{1,1}{2,1} = randn(2,3); G{1,1}{2,2} = randn(2,6);
(2.3)

A drawback of the bottom up approach as illustrated in (2.1) is that
it creates intermediate HTAs which are in most cases unnecessary. A
reasonable compiler could have these temporary HTAs deleted after their
only use in the creation sequence or could avoid their creation altogether
by, for example, reversing the creation process into a top down form. As
can be seen in the foregoing example, the top down approach does not
suffer of this problem.

2.3 Addressing the scalar elements of an HTA

We discuss next how to address the scalar elements of an HTA. The
simplest way to address an element is to ignore all tiling and address the
elements using conventional subscripting. For example, element (4,5) of
an array, H, that has been tiled as shown in Fig. 1(b) can be addressed
as H(4,5). To use tiling for addressing a scalar element, we can use the
curly bracket notation introduced above followed by conventional sub-
scripts enclosed within parenthesis. The conventional subscripts specify
the location of the element within the innermost tile in the hierarchy.
Thus, element H(4,5) can also be addressed as H{2,2}(2,3). We call
flattening the mechanism that allows addressing an array ignoring the
tile structure. Thus, we say that flattening enables the use of H(4,5)
to access element (4,5) of array H. Flattening can also be applied at
an intermediate level of the hierarchy. For example element (5,7) of an
array A tiled a shown in Fig. 4 could be referenced as A(5,7), or as
A{1,2}{2}{3}(1,1) if all the levels of the tiling hierarchy are taken into
account. We could also flatten the last level of the hierarchy and address
the same element as A{1,2}{2}(5,1) or flatten the second level to get
A{1,2}(5,4).

2.4 Assignments and expressions involving HTAs

The last topic to be discussed in this section is the meaning of assignment
statements and expressions involving HTAs. Our objective is to gener-



alize the notion of conformable arrays of Fortran 90 and the semantics
of assignments to undefined variables of MATLAB. Let us first present
four definitions that we will need in this section.

– We call leaf elements the elements of an HTA that do not have
any components. The leaf elements could be empty containers or
arrays of scalars. In the spirit of MATLAB, scalars cannot appear
in isolation within HTAs and will be represented as 1× 1 arrays.

– We say that an HTA is complete when all of its leaf elements are ar-
rays of scalars. Otherwise, when some of the leaf elements are empty
containers, the HTA is said to be incomplete. For example, arrays
A, B, and C in the sequence (2.1) are complete. On the other hand,
array A right after the sequence (2.2) is incomplete and will remain
incomplete after the statements in (2.3) are executed, because these
statements do not fill the containers A{1,2}, A{2,1} and A{2,2}.

– In Fortran 90, two arrays with the same shape (that is, the same
number of dimensions and the same size in each dimension) are con-
formable. Also, scalars (and 1×1 arrays in our case) are conformable
to arrays of any shape. Scalar binary operations such as add and
multiply are extended in Fortran 90 to work on conformable objects.
When both operands are arrays with the same shape, the operation is
performed on corresponding pairs of scalars. When one of the objects
is a scalar and the other an array, the scalar is operated with each
of the elements of the array. Thus, c(1:10, 1:20:3)+d(1:10,1:7)

is a valid Fortran 90 operation since the operands are both 10 × 7
arrays. Here, corresponding elements of the operands are added to
each other to produce an array that is conformable to the operands.
The expression e(:,:)+5 is also valid and will add the scalar 5 to
each element of array e producing an array with the shape of e.

– Two complete HTAs have the same topology if their outermost array
of tiles have the same shape and corresponding outermost tiles are
HTAs with the same topology or contain arrays of scalars that are
conformable. This means that two HTAs will have the same topology
if the only difference between them is on the leaves where the arrays
have to be conformable, but do not have to have identical shapes.

We now proceed by discussing conformability, expressions, and assign-
ment operations.
Conformability. Two complete HTAs are conformable if they have

the same topology or one of them is conformable to all elements at the

top level of the other. Notice that the second part of the definition is
recursive. That is, if the smaller HTA does not have the same topology
to one of the top level elements, then it must have the same topology
of all components of this top level element, and so on. Informally, this
definition means that two HTAs of different sizes will be conformable if
the smaller one has the same topology of all elements of the other that
are a certain level above the leaf elements. Notice also that our definition
implies that a scalar is conformable to any complete HTA.
Expressions involving HTAs. Following Fortran 90 the meaning of
scalar operations is extended so that when the operands are both HTAs
with the same topology the operation will be performed between corre-
sponding scalar elements and will return an HTA with the topology of
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Fig. 5. Operating on a section of an HTA.

the operands. When the operands have different topologies, the smaller
one is operated with all matching objects at the bottom of the hierarchy
of the larger one. For example, adding a 2×3 array M is to HTA A result-
ing from sequence (2.1) is a valid operation that would result in M being
added to all 2×3 arrays of scalars that are at the bottom of the hierarchy
of A. Similarly, A + 3 is valid and will add 3 to each scalar element in
A. Notice that flattening changes the topology of an HTA. Thus, while
the term B by itself represents the HTA computed in sequence (2.1) and
therefore has two levels of tiling, the term B{:,:}(:,:) represents an
HTA with a single level of tiling.

It is also possible to operate on a section of an HTA. Thus, B{1,:}{2:3}+1
will operate on only one section of the HTA and will return an HTA with
the shape of the section as illustrated in Fig. 5.

Also following Fortran 90, scalar intrinsic functions are extended to op-
erate on complete HTAs. These functions will operate on each scalar
separately and will return an HTA with the topology of the operand.
For example, sin(A) will return an HTA with the topology of A, but
with each scalar replaced by its sine. Similarly, intrinsic array operations
involving a single array will be extended in the natural way. For example,
max(A) will return an HTA that will have the topology of A, except that
every array of scalars will be replaced by a single scalar (which is a 1× 1
array, as stated above) that contains the maximum value of the array it
replaces.

Assignments. Next, we generalize the semantics of assignment oper-
ations. In MATLAB, when the name of an array X appears in an ex-
pression, it refers to the whole array, but on the left hand side of an
assignment statement X refers to the variable name as a container. Thus,
in MATLAB if X is the one-dimensional array [1 2], the expressions X+1
and X(1:2)+1 have the same meaning, adding one to each element. On
the other hand, while X(1:2)=3 will change X into [3 3], X=3 will change
X into the scalar 3. We extend this semantics to HTAs by assuming that
references to containers that appear in expressions represent their con-
tent while on the left hand side of an assignment statement they represent
the containers themselves. Thus, B=5, where B is the HTA constructed
in (2.1) will replace B with the scalar 5. However, B{:,:}{:,:}=5 will
replace each of the 2 × 3 arrays inside B by a 1 × 1 array containing 5
and B{:,:}{:,:}(:,:)=0 will replace each of the 2 × 3 arrays inside B

with a 2× 3 array of zeros.



3 Mapping HTAs onto Memory

To specify how an HTA is to be mapped onto the memory of a machine,
we could add a parameter to the functions for building HTAs introduced
in the foregoing section or create a function variant for each type of
mapping. We will follow the second approach in this paper.

We consider two classes of mappings. First, we discuss the mapping onto
the main memory of a conventional uniprocessor or a shared memory
multiprocessor. This mapping associates a unique memory location to
each subscript value. Most programming languages assume a linear map-
ping, whose main advantage is that computation of the memory location
is simple and successive elements of an array along any dimension can
be computed by addition without the need for multiplication. Compilers
take advantage of this property via the strength reduction optimization.

Linear mapping can be done at any particular level of an HTA by lay-
ing out the tiles at this level in consecutive memory locations following
a row major order or a column major order. We will assume that the
functions tile and hta allocate objects in a row major order. To ob-
tain column major order we would have to define new functions such
as tileColumMajor or htaColumMajor. Other layout functions that are
advantageous for some classes of algorithms such as C-order, U-order,
Hilbert order, and Z or Morton order can be attained similarly by creat-
ing the appropriate functions (e.g. tileCOrder) and extending the com-
piler to generate the corresponding address expressions.

Next, we discuss mapping onto the different nodes of a multicomputer
or distributed-memory multiprocessor. To this end, we will assume that
the nodes of the target machine form an n-dimensional mesh. The mesh
(virtual) organization is by far the most frequently assumed topology in
parallel programming. In our extension to MATLAB, we will use descrip-
tors of node arrangement that is created by the nodes function and could
be assigned to a variable. The invocation nodes(d1, d2, . . . , dn) returns a
descriptor of a d1 × d2 × . . .× dn mesh of nodes.

For parallel programming, the top level of an HTA can be distributed
across the nodes of a distributed memory machine using functions htaD
and tileD. In the simplest case, when the top level of that HTA has the
same shape as the node mesh, the meaning of the distribution operation
is the obvious one: Each tile at the topmost level of the HTA is allocated
to a different node. For example, to distribute HTA A created in (2.1)
across a 2× 2 node mesh we could modify the sequence as follows:

P = nodes(2,2);

C = tile(D,[2,4,6,8],[3,6,9]);

B = tile(C,[3],[1,2,3]);

A = tileD(P, B,[1],[1]);

Here, tile A{i,j} is allocated to node (i,j), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2.
Similarly, to distribute the top level of HTA G created in (2.2), one tile
per node, we could modify sequence (2.2) as shown next. Here, again tile
G{i,j} is allocated to node (i,j), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 :



P = nodes(2,2);

G = htaD(P,2,2);

G{1,2} = hta(2,2);

G{2,1} = hta(2,3);

G{2,2} = hta(3);

If the top level of the HTA has the same number of dimensions, but
fewer components than the mesh of nodes where it is to be distributed,
allocation will take place on consecutive processors starting at node 1 on
each dimension. If the top level of the HTA has fewer dimensions than the
mesh, then the top level HTA is extended with additional dimensions of
size one to match the number of dimensions of the mesh. It is invalid for
the top level of the HTA to have more dimensions than the mesh where
it is to be distributed. If the top level of the HTA has more elements
along one of the dimensions than the number of processors along that
dimension, we assume a cyclical distribution.

4 Programming for Locality with HTAs

Following the pioneering work of McKellar and Coffman [10], linear al-
gebra computations are today usually organized to access arrays one tile
at a time [2, 6, 13]. The same approach has been studied as a compiler
optimization technique where loops are automatically restructured so
that arrays are accessed by tiles rather than in the more natural but less
efficient row or column order [1, 14, 11]. Although in some cases these
algorithms require that the arrays to be manipulated be stored by tiles,
in many cases this is not necessary and the reorganization of the com-
putation usually suffices to significantly improve the memory hierarchy
performance of the algorithms. Nevertheless, for large arrays, storage by
tiles is desirable when the unit of transfer (page or cache line) is large
[10] or to avoid cache collisions [13].
The HTA notation of this paper should produce significantly more read-
able code when programming for locality. At the same time, our notation
enables the layout of arrays in block order which should help performance
for large arrays as was just mentioned. We now illustrate the benefit of
HTA when programming for locality using the simple case of matrix
multiplication. The typical matrix multiplication algorithm with tiling
in the three dimensions has the following form:

for I=1:q:n

for J=1:q:n

for K=1:q:n

for i=I:I+q-1

for j=J:J+q-1

for k=K:K+q-1

c(i,j) = c(i,j) + a(i,k) * b(k,j);

end

...

end

Here and in the following examples, we assume that c is initially all zeros.
This loop is clearly much more complex than the version that does not



use tiles, and would be even more complex had we not assumed that
the size of the matrix, n, is a multiple of the block size, q. In contrast,
the algorithm implemented on a tiled array stored as a single level HTA
would have the following form:

for I=1:m

for J=1:m

for K=1:m

c{I,J} = c{I,J} + a{I,K} * b{K,J} (4.1)
end

end

end

This is a much simpler and easier to read form of the same algorithm. One
reason for the simplicity is the use of the HTA notation. It also helps that
in MATLAB * stands for the matrix-matrix multiply operator. Notice
that, for the algorithm to work not all tiles have to have the same size
nor be square. Clearly, before code (4.1) executes, a, b and c must be
created using functions such as hta or tile.
Several levels of blocking can be useful in dealing with several levels of
the memory hierarchy. A simple way to extend (4.1) to handle several
levels of blocking is to replace a{I,K}*b{K,J} with an invocation to a
user written function that uses recursion by calling itself to multiply the
tiles of its operands when they are HTAs, and which stops the recursion
when its parameters are arrays of scalars.

5 Parallel Programming with HTAs

The only construct we use to express parallelism are array or collective
operations on distributed HTAs. We assume that the main thread of
our parallel programs will execute on a client sequential machine that
could be a workstation. All variables, except distributed HTAs, will be
assumed to reside in the memory of this client. The distributed HTAs on
the other hand will be contained in the memory of a parallel server. All
operations on elements of a distributed HTA will take place in the server
as dictated by a simple version of the owner-computes rule: the operations
that compute values to be stored in an object must be performed in the

node containing the object. We assume that the compiler will take care
of generating the code that is executed in the server and of inserting
message-passing primitives so that the needed values are moved to the
location before they are needed for the computation.
For example, assume that HTAs A and B have the topology of Fig. 1(a)
and that their tiles are distributed across a two-dimensional array of
nodes or processors. Consider then the statement

A{:,:} = A{:,:} .* B{:,:};

This statement means that for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 4, tile A{i,j} and
tile B{i,j} should be multiplied element by element (.* is the element-
by-element multiplication operator in MATLAB) and the result should
replace tile A{i,j}. Since the result of multiplying A{i,j} by B{i,j} is
to be stored in A{i,j}, the multiplication must take place in the node



containing A{i,j}. Also, these multiplications can proceed in parallel
with each other since the operation appears in an array statement. Notice
that in this case no communication is necessary to execute the statement.
On the other hand, the statement

A{1:4,:} = A{1:4,:} .* B{2:5,:};

requires communication. Therefore, the compiler must generate the ap-
propriate message-passing primitives so that for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4
tile B{i+1,j} be copied to a temporary in the node containing A{i,j}
before the operation can take place.
Consider finally the statement

A{:,:} = A{:,:} .* X;

where X is a variable residing in the client. In this case the compiler will
have to generate a broadcast operation to send the value of X to all nodes
before the operation can take place.
Before proceeding with the examples, we need to make an additional
extension to MATLAB. As mentioned above, in MATLAB when the
operands are arrays, the * operator represents matrix multiplication and
.* represents element by element multiplication. With the introduction
of tiled arrays, we introduce additional level in the data hierarchy and
the meaning of * and .* must be extended. We will assume that * be-
tween to HTAs with the topology of Fig. 1(a) will produce the effect
of matrix multiplication at the tile level. Thus, we will assume that
c{:,:}=a{:,:}*b{:,:} or simply c=a*b will have the same effect as loop
(4.1). If we just wanted to multiply corresponding submatrices, we will
write c{:,:}=a{:,:}.*b{:,:} or c=c.*b. This will be equivalent to:

for I=1:m

for J=1:m

c{I,J} = a{I,J} * b{I,J};

end

end

Notice that in the loop the operands of * are matrices and therefore the
operator stands for matrix multiplication, the same meaning it has in
MATLAB. Finally, if we just want to multiply corresponding scalars in
two-level HTAs, we would write c=a..*b.
Next, we present two examples of parallel programs using HTAs. The
first is a dense matrix-matrix multiply and the second is a matrix vector
multiply where both the matrix and the vector are sparse.
For our first example, we will implement the SUMMA algorithm. The
algorithm has a very simple representation using HTAs. To explain the
algorithm, consider first the matrix multiplication loop (4.1) with the
innermost loop (loop K) moved to the outermost location:

for K=1:m

for I=1:m

for J=1:m

c{I,J} = c{I,J} + a{I,K} * b{K,J};

end

end

end



The inner two loops increment the array c{:,:} so that for 1 ≤ I ≤ m and
1 ≤ J ≤ m tile c{I,J} is incremented by a{I,K}*b{K,J} on each iteration
of the outermost loop. Notice that for each I, J, and K, the tiles a{I,K}
and b{K,J} are each used in the computation of m different tiles of c. Also,
the inner two loops are a parallel operation on the two-dimensional array
of tiles c which can be easily represented in array form if a and b are
appropriately replicated. The introduction of the replication operations,
leads directly to the SUMMA algorithm.

In our notation, we can achieve the replication extending the MATLAB
repmat function to HTAs. The first parameter of the MATLAB repmat

function is the matrix to replicate, the second parameter is the number of
copies to make in the first dimension, the third parameter is the number
of copies in the second dimension, and so on. Our repmat is an overloaded
version that has the same semantics as the original one except that it
operates on distributed arrays of tiles instead of on arrays of scalars.

for K=1:m

t1{:,:} = repmat(a{:,K}, 1, m);

t2{:,:} = repmat(b{K,:}, m, 1);

c{:,:} = c{:,:} + t1{:,:} .* t2{:,:};

end

The repmat function when applied to distributed HTAs could be imple-
mented in many different ways depending on the characteristics of the
target machine and the mapping of the source HTA onto the parallel
machine.

The previous loop can be written in a simpler form:

for K=1:m

c{:,:} = c{:,:} + a{:,K} * b{K,:};

end

This representation leaves the decision of how to implement the broad-
casting of a and b to the compiler, while in the previous loop the pro-
grammer exercises some control by choosing the appropriate routine.

The second example will be a matrix vector multiplication where both
the vector and the matrix are sparse. Coding is significantly simplified by
the way MATLAB handles sparse computations. In fact, sparse matrices
are operated in MATLAB using the same syntax used for dense compu-
tations. The MATLAB interpreter automatically selects the appropriate
procedure to handle sparse data.

Let us assume first that the data is originally in matrix a and vector
b, both located in the client. Array a will be distributed by blocks of
rows across the nodes of the target machine. To this end, a is assigned to
HTA c that is just a distributed linear arrangement of containers. Also,
vector b will be distributed by blocks of elements using HTA v. There
is a vector dista in the client that specifies which rows of a are to be
assigned to c{I}. These are rows dista(I) to dista(I+1)-1. Similarly,
array distb specifies which elements of b will be assigned to v{I}. The
first step of the code would, therefore, contain the following statements:



Step 1: P = node(n);

c = htaD(P,n);

v = htaD(P,n);

for I=1:n

c{I} = a(dista(I):dista(I+1)-1,:);

v{I}(distb(I):distb(I+1)-1) = b(distb(I):distb(I+1)-1);

end

If matrix a or vector b are too large to fit the client, the previous loop
could be easily replaced by an I/O function that will read the data di-
rectly to the components of c and v.

The matrix vector multiplication will be performed in chunks. In fact,
each node, I, will compute a chunk of the vector by multiplying c{I}
by v. However, only the elements of the vector corresponding to nonzero
columns of c{I} are needed. If we provide to each node a copy of vector
distb, by analyzing c{I} and correlating the result with distb the node
can easily determine, for each J, which elements of v{J} will be needed to
perform the c{I}*v operation. The result of this analysis will be stored
in HTA w. Node I will assign to each w{I}{J} a vector containing the
indices of the elements needed from v{J}. We assume the existence of
a function need that computes w{I}. This function should be asy to
write by a programmer familiar with MATLAB. The second step of our
algorithms is then to call the function need as follows:

Step 2: forall I=1:n

w{I} = need(c{I}, distb);

end

Here, we have used the forall construct with the same meaning it has
in Fortran 90. MATLAB does not have such a construct, but we have
found it necessary in many cases to implement parallel algorithms.

The next step in the algorithm is to send the data in w{I}{J} (contained
in node I) to node J for all I and J. In this way, node J will know which
elements of its vector block, v{J}, are needed by node I. We will store
this information in HTA x so that x{I}{J} will contain a vector of the
indices of the elements needed by node J from node I. Clearly, x is the
transpose of w, therefore step 3 of the computation will just be:

Step 3: x = tileTranspose(w);

In the next step each node, I, gathers, for all J, into y{I}{J} the elements
of v{I} needed by node J. Then this data is sent to the appropriate node
using another transpose operation:

Step 4: forall I=1:n

for j=1:n

y{I}{J} = v{I}(x{I}{J}(:));

end

end

z = tileTranspose(y);

Finally, each local vector is extended with the data that just arrived into
z and the matrix vector multiplication can be performed:



Step 5: forall I=1:n

v{I}(w{I}(:)) = z{I}(:);

end

v{:} = c{:} * v{:};

6 Conclusions

The parallel programming approaches that have attracted most atten-
tion in the recent past fall at the two extremes of the range of possible
designs. On one hand there is the SPMD, message-passing programming
model. MPI is by far the most popular implementation of this model,
but not the only one. Two parallel programming languages, Co-Array
Fortran and UPC, are other examples of this model. The incorporation
of communication primitives into programming languages like Co-Array
Fortran and UPC significantly reduces the amount of detail that must be
specified for each communication operation in the library-based approach
of MPI. However, in our opinion, Co-Array Fortran and UPC do not go
far enough due to their adoption of the SPMD model which can easily
lead to unstructured code. This lack of structure could be the result of
communication taking place between widely separated sections of code
with the additional complication that a given communication statement
could interact with several different statements during the execution of
a program. In theory at least, the lack of structure possible with SPMD
programs could be much worse than anything possible with the use of
goto statements in conventional programming. In other, perhaps more
colorful, words what we are saying is that the use of the SPMD program-
ming model could lead to four-dimensional spagetti code.
The other class of parallel programming models on the spotlight mostly
follows a single-threaded model. Languages in this class include the
OpenMP directives [4] and High Performance Fortran. One difficulty
with OpenMP is that it assumes a shared memory support that is not
always available in the hardware of todays machine.The shared-memory
model could be implemented in software, but that often leads to highly
inefficient parallel programs. A second, and much more serious, limitation
of OpenMP is that the directives do not explicitly represent the notion of
locality. This is a very important notion for parallel programming since
distributed memory is a physical necessity in large-scale multiprocessors.
It could be said that the compiler could take care of rearranging the code
and distributing data to take care of locality, but a proven compiler tech-
nology for this purpose is not at hand today. High-Performance Fortran
is based on sequential source code complemented with directives mainly
for specifying how data is to be distributed. It is the task of the compiler
to transform the sequential code into SPMD form and generate all the
necessary communication primitives. Unfortunately, from the poor recep-
tion given to HPF it seems that automatically producing highly efficient
code from HPF source is beyond the capabilities of todays technology.
Our proposal lies somewhere between these two extremes. The program-
ming model is single-threaded, but communication and distribution is
explicit. Therefore, the requirements from the compiler should be more



modest that those of HPF. Our experience in the programming of both
dense and sparse kernels is that the use of array notation and the incor-
poration of tiling in a native data type significantly improve readability
when programming for locality and parallelism. This is clearly due to
the importance of tiling for parallel programming and for locality, a fact
that has become increasingly evident in the recent past.
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