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Abstract—Real-time systems are subject to temporal con-
straints and require a schedulability analysis to ensure that
task execution finishes within lower and upper specified bounds.
Worst-case memory performance (WCMP) plays a key role in the
calculation of the upper bound of the execution time. Data caches
complicate the calculation of the WCMP, since their behavior is
highly dependent on the sequence of memory addresses accessed,
which is often not available. For example, the address of a data
structure may not be available at compile-time, and it may change
between different executions of the program. We present an
analytical model that provides fast, safe and tight estimations
of the worst-case memory performance (WCMP) component of
the worst-case execution time, using no information about the
data base addresses. The address-independent absolute WCMP
for codes with references that follow the same access pattern
can be very high with respect to the average behavior because
those references may be aligned with respect to the cache, thus
generating systematic interferences among them. Our modelcan
also provide a tighter and safe estimation for the WCMP for
these codes when the user avoids these alignments.

Index Terms—Cache memories, Worst-case analysis, Perfor-
mance Analysis and Design Aids

I. I NTRODUCTION

PROGRAMS with real-time constraints are subject to a
schedulability analysis that requires tight and safe cal-

culations of the upper termination bound [1], which is the
worst-case execution time (WCET). The WCET guarantees a
termination time for a given task to avoid blocking between
tasks. The calculation of the WCET is particularly difficult
in the presence of data caches [2] because its memory per-
formance component, the worst-case memory performance
(WCMP), is highly dependent on the exact sequence of
memory addresses accessed by the program. This sequence
may not be determinable at compile-time due to the presence
of irregular access patterns and/or to the absence of the base
address information of one or more data structures. In a static
analysis of the cache behavior there are several reasons why
the base addresses of the data structures may not be available,
such as program modules and libraries compiled separately,
stack variables, and dynamically allocated memory. Moreover,
base addresses can vary between different executions of the
same program, and the number of cache misses can be highly
dependent of these base addresses.

As far as we know, [3] was the first analytical model to
tackle the prediction of the WCMP in the presence of data
caches without requiring the base addresses of the data struc-
tures. This model is based on the Probabilistic Miss Equations
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(PME) model [4] and is applicable to codes with regular
computations. It provides fast and precise estimations, which
are not absolute maxima for any base address combination,
but which reflect realistic WCMP in practice. Thus it is
particularly valuable for soft RTS [5] and non-RTS designers
interested in knowing a probable WCMP of regular codes
when data addresses are unknown at compile time. According
to [3], the main reason why it sometimes fails to give a
valid WCMP prediction is because it does not consider base
addresses combinations that produce alignments with respect
to the cache of references that follow the same access pattern.
Such alignments, called full alignments in [3], lead these
references to collide systematically in the same cache sets,
which increases sharply the cache miss rate. They account
for a very small percentage of the possible base addresses
combinations, and they should be avoided using padding or
extra buffering.

This paper improves over [3] in five ways. First, it identifies
the source of the unsafeness of the predictions of [3] and
provides a general model for it in Section V-B4, thus enabling
a totally safe WCMP prediction. In short, the underpredictions
stemmed from not considering the worst-case overlapping (i.e.
mapping to the same cache sets) between the data to be reused
and the data that can interfere with those reuses. The problem
of the full alignments discussed in [3] is a specific instanceof
this more general and probable one, which we call worst-case
overlapping. The second contribution is the identificationand
modular modeling of this difference in a separate modeling
stage, which allows to provide two kinds of WCMP prediction:
the absolute and the conditioned one. The absolute WCMP
predicted is always safe, and it is tight with respect to the
actual WCMP observed. Now, the potential absolute WCMP
for codes with references that follow the same access pattern
and caches with small associativity can be very high. The
reason is that for some combinations of base addresses those
references could be aligned with respect to the cache (full
alignment), thus colliding systematically in the same cache
sets. The conditioned WCMP prediction of the model is a
safe and tighter upper bound of the memory performance
when the user has taken steps to avoid full alignments.
The third and fourth contributions are the description of the
modeling of worst-case reuses among different references,and
the modeling of strided accesses. A last contribution is a more
extensive validation than the one in [3] using more codes and
considering more alignments of the data structures; in fact, all
the alignments for most codes.

This paper is organized as follows. Section II describes the
scope of application of the model presented in this paper. Sec-
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tion III introduces the PME model. Sections IV and V describe
the two main tasks of the model, namely, the construction of
formulas with worst-case reuse distances, and the estimation of
the worst-case miss rate associated to a reuse distance, respec-
tively. Section VI shows the experimental results, SectionVII
is devoted to the related work and Section VIII summarizes
the conclusions.

II. SCOPE OFAPPLICATION

The inputs of the model are the cache configuration and
the source code to analyze. It supports any associative cache
with a Least Recently Used (LRU) replacement policy. As
for codes, their loops can be nested in any arbitrary way,
and the references to memory can be found in any nesting
level. References must follow regular access patterns defined
by affine functions of the loop indexes. Also, the number
of iterations of each loop, or at least an upper bound, must
be known to perform the analysis. This number of iterations
must be constant and the same in each execution of the loop.
If this information cannot be inferred from the code even
after applying standard compiler techniques such as inlining
and constant propagation, it can be provided by the user,
for example through compiler directives, or obtained through
profiling. All the loops are normalized to have step 1 before
the analysis, and they are numbered according to their nesting
level, 0 being the outermost one.

The only conditionals allowed inside the portions of code
analyzed in this paper are those that only guard accesses
to registers or to the latest data item accessed before the
branch, so that the data-dependent flow cannot modify the
cache behavior. These restrictions are common in the compile-
time analytical models of the data cache behavior [8][9][10],
and they still allow the modeling of complete real world
benchmarks or at least their most time consuming routines,
as seen in [4]. Inlining, either symbolic or actual, allowed
the PME model in which ours is based to model inter-routine
cache effects in [4] and can be applied in the same way to the
extensions proposed here.

Applications that exhibit irregular access patterns, suchas
those arising from the usage of pointers, indirections or more
complex conditional statements, can be made analyzable for
the model by locking the cache before such patterns arise
and unlocking it after them. This technique is commonly
used to enable cache predictability, particularly for enabling
a tight computation of the WCET [10]. Another popular
technique equally complementary of this model is software
cache partitioning [11], which divides the cache into disjoint
partitions, which are assigned to different concurrent tasks.
This facilitates the model of multitasking environments, since
the model can analyze the behavior of the program executed by
each task independently considering only its cache partition.

III. T HE PROBABILISTIC M ISS EQUATIONS MODEL

Contrary to other models, the Probabilistic Miss Equations
(PME) model [4] estimates separately the number of misses
generated by each static referenceR in the code. This is a
very interesting property, as this allows to identify hot spots

and references. To achieve this, the behavior of each reference
is studied in each loop that encloses it, beginning in the
innermost one and proceeding outwards. In each loop the
model builds a formula for each reference called Probabilistic
Miss Equation (PME). Definitions of new or frequently used
terms such as this one will be introduced throughout the paper.

Definition III.1. A Probabilistic Miss Equation FRi is an
estimator of the number of misses that a static referenceR
generates during an execution of the loop at nesting leveli
that enclosesR.

The estimator simply counts the number of accesses gen-
erated by the reference during an isolated execution of the
loop, and multiplies each one of them by an estimation of
the probability it results in a miss. The accesses generatedby
a reference during the execution of a loop can be classified
in two groups: first-time and non first-time accesses to a line
during the execution of the loop. Non-first accesses to a line
can result in cache hits if the lines brought to the cache since
the immediately previous access to their line have not evicted it
from the cache. Thus non-first accesses are potential successful
reuses of a line in the cache. The probability these reuse
attempts result in misses depend on the cache footprint of
the memory regions accessed during their reuse distance.

Definition III.2. The reuse distanceof a reuse attempt on
a line is the portion of code executed since the immediately
previous access to that line.

Definition III.3. A memory region is the set of memory
positions accessed by a reference during a reuse distance.

Definition III.4. Thecache footprint of a memory region is
the distribution on the cache of the lines that comprise the
memory region.

Definition III.5. Themiss probability associated to a reuse
distance is the probability that the cache footprint of the mem-
ory regions accessed during this distance have evicted from
the cache the line whose potential reuse is being analyzed.
This is the probability the reuse attempt results in a miss.

Therefore the number of misses generated by these non-
first accesses within the loop is given by a summation with
one term per reuse distance found. Each term is the product
of the number of reuse attempts that have that reuse distance
by the corresponding miss probability. As for the first-time
accesses, they need not be misses necessarily. An access that
is the first one to a line during one execution of a loop cannot
exploit a reuse distance within that loop, but it could have a
reuse distance associated to outer or preceding loops. For this
reason a PMEFRi is always written as a function of the reuse
distance RD that the first-time accesses ofR in the loop could
exploit. This reuse distance is found when outer or preceding
loops are analyzed, as we will see in the following sections.
Altogether, the general form of a PME is

FRi(RD) = FirstTimeAccs· MissP (RD)+

NRD
∑

j=1

NumAccsj · MissP (RDj)
(1)
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where FirstTimeAccs is the number of first-time accesses of
R within loop i, MissP (RD) the miss probability for reuse
distanceRD, NRD is the number of different reuse distances
and NumAccsj the number of accesses that can enjoy the reuse
distanceRDj within the loop.

The PME model [4] seeks to estimate the average number
of misses generated by a code during its execution. Thus it
relies on probabilities and its estimations are also averages
in general. In order to compute a safe upper limit of the
number of misses the model must be modified to (1) compute
worst-case reuse distances, i.e., ensure the actual distance for
a reuse will be shorter than or equal to the one used in the
estimation; and (2) compute worst-case miss rates instead of
miss probabilities for each reuse distance. The first task is
accomplished during the construction of the PMEs, explained
in Section IV and Appendix A. Section V is devoted to the
second task.

IV. WORST-CASE PME CONSTRUCTION

As the preceding Section explains, the model builds a PME
FRi for each referenceR and loop at nesting leveli that
encloses it. The PMEs are built beginning with the one for
the innermost loop that containsR and proceeding outwards
up to the outermost loop. The PME for each nesting level
captures all the reuse distances within that level. In particular,
the construction ofFRi discovers the reuse distances that are
specifically associated to this loop. The PME is written in
terms of the PMEFR(i+1) for the immediately inner level,
which carries the reuse distances within the inner loops.

Before building FRi, the model verifies whetherR can
exploit a reuse with respect to other references whose reuse
distance is associated to this loop. The procedure is described
in Appendix A-A, including a brief description of the construc-
tion of the worst-case PME to model reuse among different
references. If there is no such reuse, the PMEFRi is built
taking into account the potential reuses ofR with respect
to its own accesses. The procedure is described in detail in
Section IV-A. OnceFRi has been built, the model verifies
whether there are preceding loop nests at nesting leveli where
there are references from whichR could exploit reuse. If this is
the case,FRi is modified to account for such reuses. The steps
to model the reuse among different loop nests are explained
in Appendix A-B.

A. Worst-case PME without reuse from other references

A key component required to derive this PMEFRi is the
stride of referenceR with respect to loopi.

Definition IV.1. The stride of a reference with respect to a
loop is the distance between the positions accessed by the
reference in two consecutive iterations of the loop.

Let us recall that loops are normalized to have step 1.
Consider loopi hasNi iterations and its control variable isIi.
Also, since affine functionsαRjIj +δRj are used for indexing
each dimensionj in R, the reference has a constant strideSRi

with respect to any enclosing loopi which is computed as

SRi =

{

0 if Ii does not indexR
|αRj | · Daj if Ii indexes dimensionj of R

(2)

TABLE I
NOTATION USED.

AV Area vector
AVs AV associated to aRegs(M) region
AVr AV associated to a

Regr(groups, size, stride) region
AVReg AV associated to regionReg
αRj Constant that multiplies a loop variable in

the index of dimensionj of referenceR
Cs Cache size
Csk Size of a cache way (Cs/k)
daj Size of thej-th dimension of arraya
Daj Cumulative size of thej-th dimension of

the arraya
δRj Constant added in the index of dimension

j of referenceR
FRi PME for referenceR at nesting leveli
Iteri(n) A reuse distance ofn iterations of the loop

at nesting leveli
k Associativity of the cache
LRi # of lines that an iteration point of refer-

enceR at level i + 1 accesses during the
whole execution of the loop at leveli

Ls Line size
Ni # of iterations of loop at nesting leveli
Regs(M) Memory region derived from the access to

M consecutive elements
Regr(groups, size, stride) Memory region derived from the access to

groups sets ofsize consecutive elements
each, separated by a distancestride

S Number of cache sets
SRi Stride of referenceR with respect to the

loop at leveli
Z Nesting level of the innermost loop that

contains a reference

where a is the data structure referenced byR and Daj is
the cumulative size of dimensionj of array a. If a is a n-
dimensional array of sizeda1×da2×· · ·×dan with row-major
layout (as in the C language),Daj =

∏n
i=j+1 dai. Notice

that SRi is non-negative because the absolute value ofαRj is
used to compute it. This simplifies the treatment for negative
strides. Table I depicts these parameters and others that will be
referenced during the explanation of the model. For simplicity,
in all the terms and formulas, sizes and strides are expressed
in elements of the array whose access is being analyzed rather
than in bytes.

Definition IV.2. An iteration vector of n loops is a vector of
n components where each component is a concrete value of
the control variable of each loop.

Definition IV.3. An iteration point of a referenceR at leveli
is an iteration vector of the loopsi and theZ− i loops nested
inside it that enclose referenceR.

There are
∏Z

j=i Nj iteration points at leveli. Each one of
them defines a different access ofR during one execution of
the loop at nesting leveli. R can access the same element in
different iteration points.

In any loop i that enclosesR, the reference has a stride
SRi with respect to the loop duringNi iterations. In each one
of these iterations,R performs

∏Z
j=i+1 Nj accesses; one per

iteration point at leveli+1. Let Addr be the arbitrary memory
address thatR accesses in one of those iteration points in
the first iteration of loopi. In the subsequent iterations of
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loop i that iteration point will access positionsAddr + SRi,
Addr + 2SRi, . . . , Addr + (Ni − 1)SRi. If Ls is the size of
a cache line in elements of the considered access, then in the
worst case, this iteration point accesses

LRi = min

{

Ni,

⌈

SRi(Ni − 1) + Ls

Ls

⌉ }

(3)

different lines during the execution of this loop. The actual
exact number depends on the alignment of the initial address
Addr with a cache line. Expression (3) assumes that always
Addr mod Ls = Ls − 1, that is, the first point is the last one
in a line. This is the situation that gives place to the accessto
more different lines, and thus to fewer reuses within loopi. If
LRi < Ni, then there areNi−LRi iterations of loopi in which
the iteration point is accessing the same line it was accessing
in the previous iteration of this loop. It is necessarily thesame
line, since there is a constant strideSRi between the addresses
accessed by the iteration point in consecutive iterations.

These reasonings hold for every iteration point ofR at level
i+1. Thus there are two kinds of iterations of loopi for every
iteration point at leveli + 1:

• In LRi iterations a new line is accessed, giving place
to first-time accesses in this loop. T the potential reuse
distance RD for such accesses is unknown in this nesting
level. This RD may be found in outer levels or even do not
exist, which would turn those accesses into compulsory
misses.

• In the otherNi −LRi iterations every iteration point can
enjoy a reuse distance of one iteration of loopi, which
we denote byIteri(1).

As a result, the worst-case PME forR at nesting leveli,
FRi(RD), can be written as

FRi(RD) =











LRi · MissR(RD)+
(Ni − LRi) · MissR(Iteri(1)) if i = Z

LRi · FR(i+1)(RD)+
(Ni − LRi) · FR(i+1)(Iteri(1)) if i < Z

(4)

whereMissR yields the wort-case miss rate associated to a
reuse distance RD. Section V explains how to compute it.

Expression (4) is very intuitive in the innermost loop that
containsR (nesting leveli = Z). TheNi −LRi accesses that
can enjoy a reuse distanceIteri(1) generate at worst(Ni −
LRi) · MissR(Iteri(1)) misses, while the reuse distance RD
is yet to be found for the otherLRi accesses. The equation
models the worst case situation because (a) the RD for the
LRi first-time accesses to lines in the loop has a miss rate
necessarily larger than that ofIteri(1), and (b) the expression
uses the largest possible value forLRi, computed according
to Eq. (3).

As for the validity of Eq. (4) for the outer loop levels (i <
Z), let us remember thatFR(i+1)(RD) is the number of misses
generated byR during the execution of the loop at leveli+1,
that is, one iteration of loopi. The estimator is a function of
the reuse distance RD for the first-time accesses of an isolated
execution of loopi + 1. Following the reasonings developed
above, each iteration point ofR within an execution of loop
i + 1 accesses a new line inLRi iterations of loopi, while it
accesses again the line it accessed in the previous iteration in

for(j=0; j<4; j++) // Level 0
for(i=0; i<4; i++) // Level 1

a[j][i] = b[i][j]

Fig. 1. Tranposition of a4 × 4 matrix

the otherNi − LRi iterations. Thus in Eq. (4)FR(i+1)(RD)
is multiplied by LRi to account forLRi iterations in which
there is no reuse in this nesting level, and which give place to
haveLRi times more first-time accesses. Regarding the other
Ni − LRi iterations, the number of misses generated byR
in each iteration isFR(i+1)(Iteri(1)) because each first-time
access within loopi+1 reuses a line with a RD of one iteration
of loop i.

It may be also interesting to unfold Eq. (4) to see how the
PME captures all the reuses of the reference within loopi and
the ones it contains:

FRi(RD) =

(

Z
∏

j=i

LRj

)

· MissR(RD)+

Z
∑

j=i

(

j−1
∏

l=i

Nl · (Nj − LRj) ·

Z
∏

l=j+1

LRj · MissR(Iterj(1))

) (5)

The first term relates to the iteration points at leveli that
cannot exploit reuse within loopi or the loops it contains. They
are the product ofLRj , i ≤ j ≤ Z, and their reuse distance is
unknown at this point, so their miss rate depends on the input
reuse distance RD to this PME. The second term gathers the
other

∏Z
j=i Nj −

∏Z
j=i LRj iteration points at leveli that can

exploit reuse within that loop, multiplied by the miss rate that
corresponds to their reuse distance. As a result, the second
term is a constant. So when in Eq. (4) the PMEFR(i+1) is
evaluated with different reuse distances in the two terms, this
does not affect the iteration points that captured their reuse
distance inside loopi + 1: in the end they are just multiplied
by Ni. Only the

∏Z
j=i+1 LRj iteration points who have not

found their reuse distance inside loopi + 1 are affected. The
outcome for them is that inNi−LRi iterations they can enjoy
a reuse distance of one iteration of loopi, while in the other
LRi iterations their reuse distance is yet unknown.

Example IV.1. Let us analyze the behavior of referenceR =
b[i][j] in the matrix transposition of a4×4 matrix in Fig. 1. A
line size ofLs = 2 elements is assumed. If matrices are stored
by rows, the cumulative sizes of their dimensions areDa1 =
Db1 = 4 and Da2 = Db2 = 1 array elements according to
the computation ofDaj under Eq. (2).

First, the PMEFR1 for the innermost loop is derived. The
loop variable (i) indexes the first dimension of arrayb in this
reference, the affine function for the indexing being1 · i + 0.
Thus applying Eq. (2),SR1 = |αR1| · Db1 = 1 · 4 = 4. If we
replace this value,Ls = 2, and the number of iterations of
this loopN1 = 4 in Eq. (3) we getLR1 = 4. Finally, applying
Eq. (4) for the casei = Z (because this is the innermost loop,
Z = 1, that contains the reference), we get

FR1(RD) = 4 · MissR(RD) + 0 · MissR(Iter1(1))

This means that the reference accesses different lines in the
four iterations of this loop. Let us now derive the PMEFR0 for
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the outermost loop. This loop indexes the second dimension
of array b with the function1 · j + 0. This way, the stride of
the reference with respect to this loop isSR0 = |αR2| ·Db2 =
1 ·1 = 1 according to Eq. (2). With this value,Ls andN0 = 4
iterations, Eq. (3) yieldsLR0 = 3. Eq. (4) for nesting level
i < Z can then be written as

FR0(RD) = 3 · FR1(RD) + 1 · FR1(Iter0(1))

that is, in the worst case, each iteration point ofR at level
1 access 3 different lines during the whole execution of the
outermost loop. When the equations are composed, the final
number of misses for referenceb[i][j] can be calculated as

FR0(RD) = 12 · MissR(RD) + 4 · MissR(Iter0(1))

The equation indicates that 12 of the accesses ofb[i][j] cannot
exploit reuses within the loop. Thus their reuse distance RD
depends on previous loop nests. The other 4 accesses try to
reuse the line accessed in the previous iteration of loop 0.
Thus their miss rate depends on the footprint on the cache of
the data accessed during an iterationIter0(1) �

V. ESTIMATION OF THE WORST-CASE MISS RATE FOR A

REUSE DISTANCE

The second modification the model needs to make safe
WCMP predictions is to ensure it provides an upper bound
of the miss rate associated to each reuse distance (RD). The
miss rate of a group of cache lines that can enjoy a RD is
the ratio of these lines that are evicted from the cache by
the data accessed during such RD. Let us recall that in [4],
miss probabilities were used instead of miss rates. Probabilities
are suitable to estimate the average performance but not the
WCMP. A key observation on which the PME model is based
is that in ak-way associative cache with LRU replacement
policy, a line is evicted during its RD if and only ifk or more
different lines are placed on its cache set during that RD.
Thus, the strategy followed by the model is to compute the
distribution of the number of lines placed per cache set by the
accesses that take place during the RD. The associated miss
rate is then estimated as the worst-case rate of lines to reuse
that are mapped to a cache set in whichk or more interfering
lines have been placed during the RD. Our model follows three
steps to calculate the worst-case miss rate associated to a RD:
access pattern identification, cache impact estimation andarea
vectors union. They are discussed now in turn.

A. Access pattern identification

The access patterns followed by the references in a RD
are inferred from the indexing functions of these references
and the shape of the loops that enclose them. This task is
accomplished in three steps:

1) For each reference, the number of points it accesses
during the RD in each dimension of the data structure
it refers to, and the stride between each two consecutive
accesses is computed. The restriction to affine indexing
functions in the references considered by the model
simplifies this task. This uniquely identifies the memory
region accessed by each reference. The access pattern

followed by each reference can be derived immediately
from this information.

2) When there are several references to the same data
structure, the regions they access often overlap. The
model tries to merge regions that overlap in order to
avoid considering the overlaps several times as source
of interference. Concretely, the model only merges the
regions accessed by uniformly generated references, that
is, references with the same stride for every loop that
encloses them, the only difference between them being
their initial offset. The algorithm is very simple and it
ensures the resulting region is a superset of the actual
region accessed, so that the safeness of the process is
ensured. It is not described here due to space reasons.
Notice that if regions that overlap are not merged, the
model overpredicts the interference generated in the
reuse distance. As a result, not merging regions that
overlap does not endanger safeness, it reduces tightness.

3) From the shape of each resulting memory region, an
associated access pattern is inferred. From now on we
will use indistinctively the terms memory region and
access pattern: the shape of a memory region defines
an access pattern, and an access pattern defines the
memory region comprised by the elements it accesses.
The PME model represents access patterns as functions
whose output is a mathematical representation of the
footprint of the access on the cache calledarea vector.

Definition V.1. An area vector is a mathematical rep-
resentation of the cache footprint of a memory region

This representation will be described in Section V-B.
Two patterns have been found in the codes considered
in [4] and in this paper: the sequential access toM ele-
ments, denoted asRegs(M), and the access togroups
sets ofsize consecutive elements each, separated by a
constant stridestride, Regr(groups, size, stride).

This first step of the miss rate estimation process, described
in detail in [6], needs no changes for the WCMP prediction.

Example V.1. The final PME obtained in Example IV.1 re-
quiresMissR(Iter0(1)), the worst-case miss rate associated
to a reuse distance of one iteration of the outermost loop in
Fig. 1. The first step to compute it is to identify the access
patterns found in that reuse distance. During one iteration
of loop j the referencea[j][i] performs 4 accesses in four
consecutive memory positions. The reason is that matrices
are stored by rows and during this reuse distance there are
4 iterations of the innermost loop, which indexes the columns
of the matrix. This way, this access isRegs(4), the access to
M =4 consecutive elements. The innermost loop indexes the
row index inb[i][j], which gives place to a strideSR1 = 4
of this reference with respect to the iterations of this loop, as
Example IV.1 explains. Thusb[i][j] accesses 4 groups (one
per iteration) of a single element each (size = 1) with a
stride = SR1 = 4 between each two consecutive groups. This
way, the resulting access pattern isRegr(4, 1, 4) �
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B. Cache impact quantification

The PME model in [4] analyzes the accesses performed
during a reuse distance to estimate the probability they evict
from the cache the lines whose reuse is being studied. This
happens when these accesses placek or more lines in the
cache sets of the lines to reuse,k being the associativity of the
cache. To compute this probability, the cache footprint of each
access pattern is characterized by a vectorV of k+1 elements
calledarea vector(AV). Each component of an AV is a ratio
or probability of interference, that is, it is the probability a line
to be reused conflicts in its cache set with a given number of
lines from the access pattern that the AV characterizes. This
second step of the miss probability estimation process obtains
the AV associated to each access pattern found in the reuse
distance. The model considers two kinds of area vectors:

• A Cross interference area vectors (Cross-AVs)is an AV
that represents the impact on the cache of the considered
access pattern as viewed by lines not involved in it. In
these vectors, the first component,V0, is the ratio of cache
sets where no additional lines are needed to fill the set.
That is, it is the ratio of sets where the access pattern has
placedk or more lines that compete with the attempts
of reuse.V1 is the ratio of sets which will be filled if
just one additional line is placed in the set, i.e., the sets
that have receivedk − 1 lines. The enumeration would
finish with Vk, the ratio of cache sets in which the access
pattern placed no lines that compete with the potential
reuse.

• A Self interference area vectors (Self-AVs)is an AV that
represents the impact of the footprint on the probability
of reuse for the lines it involves. In these vectors,V0 is
the ratio of lines of the footprint that compete in their
cache set with otherk or more lines of the footprint. For
i > 0, Vi is the ratio of lines of the footprint that share
their cache set with otherk − i lines of the access.

Example V.2. Let us consider a 2-way associative cache with
4 sets and a reference that has accessed 7 consecutive lines.
As a result, three of the four sets contain two of the lines
referenced, while the other set contains just one line. The
Cross-AV for this access is(3/4, 1/4, 0), as 3 out of the 4 sets
have received two or more lines from the access; only one set
received a single line, and no sets received zero lines. These
ratios are conversely the probabilities a randomly chosen set
has two or more, one, or zero lines in it, respectively.

The Self-AV for this access is(0, 6/7, 1/7). The first com-
ponent is zero, as none of the lines involved in the access
has to compete for its cache set with other two or more lines
from the footprint. The second component is the ratio of lines
of the footprint that share their cache set with exactly one
line (6 out of 7). Finally, according to the third component,
only one of the seven lines of the footprint does not share
its set with any other line of the footprint. These ratios are
conversely the probabilities a randomly chosen line of the
footprint has to compete in its set with two or more, one,
or no lines, respectively �

1) Ensuring safeness moving from probabilities to rates:
At this point, a discussion on why the model predicts safe
bounds may be in order. This discussion is also useful to
explain which are the changes this part of the model in [4]
requires and why. The PME model uses the ratios in the AVs as
probabilities of interference with each line to be reused. This
approach is straightforward in the case of Self-AVs, since if
P% of the lines to reuse fulfill a given property, then there is
a P% probability a given line of this set fulfills this property.
Regarding Cross-AVs, the model uses the ratio ofall the sets
in the cache that receiveY lines from that access pattern as
probability of interference withY lines of that access pattern.
It would be more accurate to use the ratio of the lines to
reuse that experience that competition. Unfortunately, since
the base addresses of the data structures are not an input
to the model, the relative position in the cache of the lines
accessed in different data structures is unknown. As a result,
it is impossible to match the mappings of lines from different
data structures to sets, and a probabilistic approach has to
be followed. Thus, ifX of the S cache sets receiveY lines
during a reuse distance, the PME model estimates that there is
a probabilityX/S a line to reuse has to compete withY lines.
Now, this probability corresponds to a rate that is computed
following a deterministic process and which is defined on a
finite number of setsS. As a result, if theS sets of the cache
are taken into account in the analysis, which the model does,
it is certain thatS · (X/S) = X sets will be found that fulfill
the property, there being no possible deviation from this value.
A similar reasoning can be done for self-interference AVs.

The mapping of access patterns to AVs of the original PME
model is not valid for a safe WCMP prediction because it
provides average, not worst-case, values for the AVs. The
reason is that the access pattern representation of this model
does not inform on the relative offset in a line of the element
where the access pattern begins, and the AV can vary with
this offset. Let us consider for example the access to two
consecutive elements: they might be in the same line or in
two different lines, depending on the relative offset in a line
of the first one. The PME model in [4] provides AVs that are
an average of the ones an access pattern would generate with
all the line offsets that the first element accessed may have.
For the WCMP prediction, only the worst one of these AVs
will be considered.

Another important observation is that in the original PME
model, the ratios of the AVs of the interfering regions were
used as average probabilities of interference with the lines to
be reused. That is, not only they were used as probabilities
a randomly chosen set receives a numberY of lines, as we
have just said: they were also used as probabilities a line tobe
reused has to compete in its set with thoseY lines. The reason
for this is the lack of information on the addresses of the data
structures. The model cannot know the relative mapping of the
lines whose reuse is analyzing with respect to the lines that
come from other access patterns. Thus, it takes a probabilistic
approach estimating that ifX out of S sets receivedY lines
from that access pattern Reg, then, a line whose reuse is being
studied has to compete withY lines from pattern Reg in its
set with probabilityX/S.
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In this paper, and this is a novelty also with respect to [3],
this probabilistic approach is dropped in favor of a worst-
case deterministic one. Now the worst-case overlapping of
the lines to be reused and the interfering lines is computed.
This is the mapping that places the largest possible number
of lines to reuse in the sets that receive the largest number of
lines from the considered interfering access pattern. Then, the
ratio of lines of the reuse region that have to compete with
a given number of interfering lines in their set in this worst
case overlapping is used as component of the modified AV. So,
for example, component 0 of the modified AV is the ratio of
lines to be reused that are mapped, in the very worst case, to
sets that receivedk or more lines from the interfering access
pattern considered. Since the components of the modified AVs
are actually (maximal) rates of elements that fulfill a given
property out of a finite set (the lines whose reuse is being
analyzed) and all the lines are used in the study, the outcome
is safe.

Altogether, the algorithms applied in this process remove
any uncertainty in the safeness of the prediction. As we
have just discussed, every probabilistic approach followed in
the original PME model has been replaced by an algorithm
that yields safe worst-case rates. This is also backed by the
exhaustive evaluation in Section VI.

The modifications to the original model in [4] for the
calculation of the cache impact quantification step are now
explained in turn. The algorithms to compute the worst-case
AV for the sequential and the strided accesses are describedin
Sections V-B2 and V-B3, respectively. Section V-B4 is devoted
to the algorithm to derive the worst-case overlapping between
the lines involved in a reuse and the sets affected by each
access pattern. The tightly related issue of references that can
be aligned with respect to the cache, giving place to systematic
conflicts among them, is treated in Section V-B5.

2) Worst-case cache impact estimation for the sequential
access:Section V-A explained that one of the access patterns
found in regular codes is the access toM consecutive ele-
ments,Regs(M). Its worst-case AV is the one that corresponds
to the placement of theseM consecutive elements that brings
more lines to the cache. This happens, as in the case of theLRi

value calculated using Equation 3 introduced in Section IV-A,
when the first element of the access pattern is the last element
of a line. In this situation,1+⌈(M −1)/Ls⌉ lines are brought
to the cache. Since a set can hold a maximum ofk lines
(the associativity), if there areS sets, the average number
of lines placed in each set for this worst-case alignment is1

l = min
{

k, 1+⌈(M−1)/Ls⌉
S

}

. Based on it, the worst-case area

vectorAVs(M) for this access pattern can be computed as

AVs(k−⌊l⌋)
(M) = 1 − (l − ⌊l⌋)

AVs(k−⌊l⌋−1)
(M) = l − ⌊l⌋

AVsi
(M) = 0, 0 ≤ i < k − ⌊l⌋ − 1, k − ⌊l⌋ < i ≤ k

(6)

3) Worst-case cache impact estimation for the strided
access: The second access pattern identified in Sec-
tion V-A was the access togroups sets of size consecu-
tive elements each, separated by a constant stridestride,

1max was wrongfully used instead of min in Eq. (14) in [4]

Regr(groups, size, stride). Again, the actual AV for the
access depends on the relative mapping in a line of its first
access. Let us calculateAVq

r , 0 ≤ q < Ls, the AV if the first
element has relative offsetq in a line. In the first step, the
positionsBi and Ei corresponding to the beginning and the
end of each region ofsize consecutive elements in a cache
way are calculated:

B0 = q
Bi = (Bi−1 + stride) mod Csk, 0 < i ≤ groups
Ei = (Bi + size− 1) mod Csk, 0 ≤ i ≤ groups

(7)

whereCs is the cache size,k the degree of associativity, and
Csk = Cs/k is the size of a cache way. In two vectors BV and
EV of sizeCsk, initialized to zero, we add one unit for each
position associated with aBi or anEi, respectively. They are
then analyzed calculating the number of lines of the access
corresponding to each group ofLs consecutive positions in
these vectors, which correspond to a line of a cache set. For
this, we know that the elements in positionssLs to (s+1)Ls−1
of a cache way are associated to thes-th cache set. The number
of lines mapped to sets is calculated as

Liness =

⌊

size− 1

Csk

⌋

groups +

(s+1)Ls−1
∑

i=sLs

BV (i) + LG(sLs)

(8)
where the first term corresponds to the⌊(size−1)/Csk⌋ lines
that fall in every cache set for sure from all thegroups regions
if size ≥ Csk; the second term adds one line for each one of
the BV(i) regions that start in theLs positions of the set;
andLG(sLs) are the lines, that come from regions that start
before the first position in the cache way associated with this
set (sLs), whose end has not been reached. Its value can be
computed as

LG(0) =
∑Csk−1

j=Csk−(size−1) mod Csk
BV (j)

LG(i) = LG(i − 1) + BV (i − 1) − EV (i − 1), 0 < i < Csk

(9)
OnceLiness is computed for theS sets in the cache, the area
vector for this offsetq is given by

AVq
r0 (groups, size, stride) = #{Liness, 0 ≤ s < S/Liness ≥ k}/S

AVq
ri

(groups, size, stride) = #{Liness, 0 ≤ s < S/Liness = k − i}/S,
0 < i ≤ k

(10)

where # is the cardinality of a set. Thus, as the definition
of AV implies, component 0 is (AVq

r0) the ratio of sets that
receivek or more lines, and any other component (AVq

ri
) is

the ratio of lines that receivek − i lines.
There remains the issue of choosing theAVq

r , 0 ≤ q < Ls

that will give place to the worst case cache behavior. The
answer is that, contrary to the situation of the sequential
access, where it is clear that the worst mapping is the one
in which more consecutive lines are accessed, for the strided
access pattern no a priori approach can be taken. If this were
the only access pattern found in a reuse distance, the AV with
the largest component 0 would be the worst one. When more
patterns appear, which is the usual case, AVs with a smaller
component 0 can give place to final higher miss ratios because
they may help fill more sets not completely filled by other
access patterns when the AVs from all the access patterns are
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REUSED REGION  ON CACHE (Reg)

 MAPPING 1

MAPPING 2

THREE POSSIBLE MAPPINGS OF 

THE  INTERFERENCE REGION  

(Reg') ON THE CACHE MAPPING 3

(0, 1)

(0.5, 0.5)

(1, 0)

Reg' ACTUAL AV

WITH  RESPECT

TO Reg

{

CACHE

Fig. 2. Miss rate depending on the relative positions of the reused and the
interfering memory regions

merged (see Section V-C). Thus theLs area vectorsAVq
r are

passed and tried in the next stages, and the one that gives place
to the highest miss rate is chosen in the end. This also implies
that if n patterns of this kind appear in a reuse distance,(Ls)

n

merges corresponding to all the combinations of offsets, must
be tried. Fortunately the area vector union algorithm presented
in Section V-C is extremely fast, as all the other ones of this
model, so the actual performance penalty is negligible.

4) Worst-case overlapping between reuse and interfering
regions: The cache impact quantification stage provides an
AV for each interfering memory regionReg’ found in a
reuse distance. Its components are ratios of cache sets that
receive a given numberY of lines from this region. The
original PME model uses directly these ratios as the ratios
of lines of the region whose reuse we are studying, which
we will call reuse regionReg in what follows, that compete
in their cache set withY lines from Reg’. This is a fair
average estimation, as the relative placement in the cache of
the lines from different memory regions is unknown to the
model. Nevertheless, the actual ratios of interference between
Reg andReg’ can be much higher depending on the actual
placement, and corresponding overlapping, of both sets of lines
on the cache.

Example V.3. Figure 2 represents the mapping on a one
way (direct mapped) cache with four cache sets of a reuse
region Reg and three possible mappings of an interference
regionReg’. SinceReg’ fills two of the four cache sets and
leaves empty the other two, its AV is (0.5, 0.5). This suggests
an average 50% probability of conflict. However, the actual
interference with the lines ofReg depends on the relative
mapping of both sets of lines in the cache and is represented
by the AV placed on the right side of each mapping in the
figure. In this AV, component 0 is the ratio of lines ofReg
that collide with Reg’ for this mapping, and component 1
is the ratio of lines that do not collide. This way, the first
mapping does not interfere with the reuse ofReg, the second
mapping only interferes with the reuse of one of its lines, and
the third one avoids both reuses, which leads to 0, 50 and
100% miss rate, respectively�

As we see in the previous example, the AVs must be
modified to provide worst-case conflict rates. These are ratios
of lines of the reuse regionReg that collide in their set
with a given number of lines fromReg’, for the worst-case
overlapping of both regions in the cache. This overlapping is
the one in which the largest possible number of lines from
regionReg compete with the largest possible number of lines
from Reg’ in their cache set. That is, it is the situation in
which the largest possible number of lines fromReg are

function worstAV (sim[n], AVReg′[k+1]) {

interfSetsi = AVReg′i ∗ S, 0 ≤ i ≤ k

lines =
∑

n−1

i=0
simi.nsets ∗ simi.nlines

i=j=0

while (i < k and j < n) {

tmp = min(interfSetsi, simj .nsets)

AV wc
Reg′

i

= AV wc
Reg′

i

+ (tmp ∗ simj .nlines)/lines

interfSetsi = interfSetsi − tmp

simj .nsets = simj .nsets − tmp

if simj .nsets = 0 then j = j + 1

if interfSetsi = 0 then i = i + 1

}

AV wc
Reg′

k

= 1 −
∑

k−1

i=0
AV wc

Reg′
i

return AV wcReg′

}

Fig. 3. Calculation of worst-case AV

mapped to theAVReg′
0
· S sets that receivek or more lines

from Reg’, whereAVReg′ is the AV for Reg’ andS is the
number of sets in the cache. Component 0 ofAV wcReg′ , the
AV for Reg’ considering this worst-case alignment, will be
then the ratio of lines ofReg mapped to these full sets and
which thus have to compete withk or more lines fromReg’.
Once those full sets are exhausted, then the largest possible
number of lines fromReg are mapped to theAVReg′

1
· S sets

that receivek−1 lines fromReg’, and their ratio on the total
number of lines ofReg will be AV wcReg′

1
, and so on. As we

see this algorithm requiresAVReg′ as well as the distribution
of lines ofReg per set in order to match them with the lines
from Reg’. UnfortunatelyAVReg does not suffice for this
because its component 0 does not provide the exact number
of lines per set, just that there arek or more lines, which is
not enough to estimate the ratios. If for example in Fig. 2
regionReg had occupied three sets with a single line each,
its AV would have been(0.75, 0.25), and since two of them
would have collided in the worst case withReg’, AV wcReg′

would have been(0.66, 0.33). Now, if Reg had mapped two
lines to set 0, another two to set 1 and another line to set 2, its
AV would have also been(0.75, 0.25), but since 4 out of its
5 lines could collide withReg’ in the worst case,AV wcReg′

would have been(0.8, 0.2). Thus the calculation ofAV wcReg′

requires a simulation of the distribution of the lines ofReg
on the cache whose output is a vector of pairssim. Each
elementsimi of this vector has two componentssimi.nsets
andsimi.nlines, such thatnsets cache sets receivednlines
cache lines from regionReg. The elements of the vector are
sorted in decreasing order ofsimi.nlines.

The algorithmworstAV in Fig. 3 calculatesAV wcReg′

from vector sim and AVReg′ following the procedure ex-
plained. In this function, array indexing is 0-based and the
input vectors are subindexed with their size. This way,n is
the size of vectorsim while k stands for the associativity of
the cache,k+1 being the size of the input AV. The algorithm
matches the cache sets that receive the maximum number of
lines of the reuse region, assim is processed rightwards,
with the cache sets that receive the maximum number of
lines from the interference region, asAVReg′ is also processed
rightwards. Each component of the resulting AV,AV wcReg′ ,
represents the ratio of lines ofReg that are mapped to a cache
set that receives a certain number of lines from regionReg’.
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loop j
loop h{
{

Reuse region (Reg)

associated to arr[2*j+i]

Interference region (Reg')

associated to arr2[i]

Cache

for(j=0; j <2; j++)
   for(h=0; h < 2; h++) 
      for(i=0; i < 2; i++) {   
         ... arr[2*j+i] ... 
         ... arr2[i] ...
      }

loop j

loop h

Fig. 4. Mapping of the reuse and the interference region in different nesting
levels

a) Tightening the worst-case AV calculation:The output
of theworstAV algorithm is a safe upper bound of the inter-
ference AV, but its tightness can be improved. The algorithm
overlaps in the worst possible way the footprint of the reuse
regionReg with that of the interfering regionReg’. But it can
be very difficult, or even impossible thatReg’ always overlaps
in the worst possible way withReg in every occurrence of the
reuse distance considered.

Example V.4. Figure 4 shows a (Cs = 8, Ls = 1, k = 1)
cache, and a code in which we study the reuse of regionReg
associated to referenceR = arr[2 ∗ j + i] in a looph, nested
inside an outer loopj. In a single iteration of looph, two
consecutive lines ofReg and another two consecutive lines
of the regionReg’ associated to referenceR′ = arr2[i]
are accessed. Thus the AV for both of them is(0.25, 0.75).
Following the algorithmworstAV in Fig. 3, the worst-case
alignment for their accesses would be the one that puts these
lines in the same sets. This yieldsAV wcReg′ = (1, 0) , since
with this alignment the lines fromReg are always replaced
by a line fromReg’ before their reuse. Now,arr[2 ∗ j + i]
accesses a different pair of cache sets in each one of the two
iterations of loopj, while arr2[i] accesses the same pair
of cache sets. Thus, if there is full interference during one
of the iterations of loopj, then there can be no interference
during the other one. As a result, the maximum interference
rate between both regions across all the executions of the loops
in this example is actually 50%.�

Our example points out that if the reuse regionReg changes
its relative position in the cache in different iterations of outer
loops, it may be impossible that the worst-case overlapping
takes place in all the iterations of those loops. An analogous
example could be done based on the interfering region, if it
were the one to change its position with the iterations of outer
loops. Thus tightness can be improved taking into account the
freedom of placement ofReg andReg’ due to the change
of their relative position in the cache in different iterations of
outer loops. When both references have the same stride with
respect to the cache in a given loopi, the relative position of
their footprints does not change across the iterations of that
loop. This happens whenSRi mod Csk = SR′i mod Csk,
SRi being the stride of the referenceR associated to region
Reg with respect to loopi as defined in Eq. (2), and
Csk = Cs/k the size of a cache way. Thus, the outermost
loop where this condition does not hold, which we call loop
zero, is the one that gives us the largest freedom of relative
placement of the regions. In this loop, the minimum portion of
the cache affected by the footprint of eitherR or R′ accesses
is rzero = max{1 − AVRegzerok

, 1 − AVRegzero′
k
}, where

Regzero andRegzero’ are the regions accessed byR and
R′ during the whole execution of loopzero, respectively.
This expression is based on the fact1 − AVRegzerok

is the
ratio of cache sets that receive lines from regionRegzero in
the loop. Now, in the loop where the reuse is being studied,
the minimum portion of the cache affected by the accesses to
eitherReg or Reg’ is r = max{1−AVRegk

, 1−AVReg′
k
}. We

are interested in the minimum portion of the cache which is
affected by any of the regions because when they overlap in the
worst possible way, their footprints have the largest possible
number of cache sets in common. Thus the ratio of cache
sets that receive lines from at least of the two footprints is
minimized. The relation betweenr andrzero gives the freedom
of movement of the regions we are considering in loopi inside
the minimum area of the cache on which they can be spread
due to the iterations in loopzero. The appropriate way to take
this fact into account is to reduce proportionally byr/rzero

all the elements ofAVReg′ except thek-th component. Thus
tightness is improved by using as input toworstAV in Fig. 3
AV ′

Reg′ instead ofAVReg′ , which is calculated as

AV ′
Reg′

i

= AVReg′
i
· r/rzero 0 ≤ i < k

AV ′
Reg′

k

= 1 −
∑k−1

i=0 AVReg′
i
· r/rzero

(11)

5) Treatment of full alignments:The method presented in
the previous section estimates safely and tightly the maximum
overlapping between the reuse and the interference region.
However, its predictions can be very far from the average
overlapping observed in codes with references whose accesses
may collide systematically in the same cache sets, a situation
we call full alignment.

Definition V.2. Two referencesR andR’ are potentially fully
alignedwhenSRi mod Csk = SR′i mod Csk, ∀ 0 ≤ i ≤ Z,
whereSRi is the stride of referenceR with respect to loopi
as defined for Eq. (4),Csk = Cs/k and Z is the innermost
loop containing both references.

The full alignment actually takes place when the addresses
accessed by the references are aligned with respect to the
cache, i.e., mapped to the same cache sets. Fully aligned
references collide cyclically in the same cache sets. In the
worst case they will be mapped to the same cache set in every
iteration, in the best case in one out ofLs iterations. The
corresponding accesses will result in misses when the number
of lines involved per set is larger than the associativity.

a) Disabling the modeling of full alignments:The mod-
ular nature of our model allows to disable selectively the
modeling of full alignments when desired. This is achieved
by disabling the worst-case overlapping adjustments described
in the preceding section only for the potentially fully aligned
references in the innermost loop containing them. The user
may wish to do this for two reasons. One is that s/he may
have applied techniques such as padding or buffering to avoid
the full alignments. In this situation the prediction will still
be safe, but it will be much tighter. The other reason is to
get an unsafe, but much more probable and tighter WCMP
prediction, as the percentage of base address combinations
that lead to full alignments is fortunately very small. This
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would be very interesting for non-RTS and soft RTS [5]. Also,
the probability there are full alignments in this second case
can be quantified statistically. For example, in the benchmarks
used in Section VI full alignments can only appear between
references that follow a sequential access pattern, the most
widely used access pattern. When two references follow this
pattern they can collide systematically in the cache when
the starting address for their accesses is within a distanceof
Ls − 1 positions in a cache way in one direction orLs − 2
in the other, whereLs is the line size. This totals2Ls − 2
conflicting positions out of theCsk = Cs/k in a cache way.
If a loop presentsn sequential references, the probability full
alignments take place is equal to the probability that more than
k of them are aligned with respect to the cache, ask or fewer
would fit in the set. This probability is Csk

2Ls−2 · P (x > k),
wherex is the number of references aligned, which belongs
to a binomial ofn elements with probability2Ls−2

Csk
.

C. Worst-case area vectors union

Only if k or more interfering lines are mapped to the cache
set of a line whose reuse is being analyzed during its reuse
distance, will the reuse attempt of the line fail. Despite this,
area vectors (AV) keep ratios of interference with less than
k lines. We must remember that each AV built at this point
of the modeling only represents the cache footprint of one
of the memory regions found within a reuse distance. Lines
from different memory regions, thus represented in different
AVs, can be mapped to the same set. Their combination can
then yield thek or more lines that preclude reuses in that set.
This last stage of the worst-case miss rate estimation process
combines the AVs from all the individual memory regions
found in the reuse distance into a global one that represents
their joint impact on the cache.

Example V.5. Let us consider a 2-way cache and a reuse
distance in which two interfering memory regions (Reg and
Reg’) appear. The AVs for both regions areAVReg =
AVReg′ = (0, 0.5, 0.5). This means that in the worst-case
each region can interfere with half of the lines whose reuse
is being analyzed by putting a single interfering line in their
cache set. Since the cache has two ways per set,Reg or Reg’
alone cannot evict any of the lines to reuse. Now, if the lines
from both regions are always mapped to the same cache sets,
then they can place two interfering lines per set, generating
misses in the reuse attempts in those sets. Since each region
can, in the worst case, place one line in the sets of half of
the reuse attempts, their worst-case combination can place
two interfering lines in those sets. The AV that represents
this worst-case joint effect is (0.5, 0, 0.5), since half of the
reuse attempts miss (first component), while the other half
experience no interference at all.�

The union of the AVs of the memory regions found in the
reuse distance is done in the original model [4] using the ratios
of cache sets of the AVs as probabilities of independent events.
The approach is adequate, since the ignorance of the base
address of the data structures makes it impossible to know
the relative mappings to sets of lines accessed in different

TABLE II
CHARACTERISTICS OF THE CACHES USED IN THE EXPERIMENTS. Cs IS

THE CACHE SIZE, Ls IS THE LINE SIZE, k IS THE ASSOCIATIVITY, AND HIT
AND M ISS ARE THE HIT AND MISS TIME IN CYCLES.

System Cs Ls k Hit Miss

MicroSPARC II-ep 8KB 16B 1 1 10
PowerPC 604e 16KB 32B 4 1 38
MIPS R4000 16KB 16B 1 1 40
IDT79RC64574 32KB 32B 2 1 16

structures. The outcome of that situation is that the events
that a set receivesX lines from a data structure, and that it
receivesY lines from another one, are independent. Since [4]
tries to estimate average miss rates, the union of the AVs it
performs does not consider the worst-case combinations of the
input AVs, but an average one that generates a probable global
AV. That method is thus inadequate to compute the worst-case
joint effect of the AVs computed, which is the one that gives
place to the largest possible miss rate. This miss rate is the
component 0 of the global AV built.

In the computation of the WCMP, the algorithm in [4] is
replaced with a deterministic algorithm calledmaxUnionAV
which was introduced and explained in detail in [3]. This
algorithm combines the ratios of interference of the AVs found
in the reuse distance in the worst possible way. This way is
the one that gives place to the largest possible component 0
for the global resulting AV, which is the worst-case miss rate
for the reuse distance, as we have just explained. The details
of this algorithm are not included in this paper due to space
limitations.

VI. EXPERIMENTAL RESULTS

We have validated our model using trace-driven simulations.
The model, which is integrated in a compiler framework and
provides its predictions always in less than one second, was
applied automatically to ten codes: the average, sum and
difference of the values stored in two arrays (ST); a 1D stencil
calculation (STENCIL); the sum of all the values in a matrix
(CNT); a matrix transposition (TRANS); the calculation of
the first N fibonacci numbers (FIBONACCI) and five codes
from the DSPStone benchmark suite [13]: convolution, fir, lms,
matrix1 and nreal updates. Pointer-based memory accesses
were replaced with equivalent array accesses and functions
were inlined. These codes have been gathered from similar
works in the bibliography [3], [14], [10], [15].

The experiments were performed for each code considering
a data size of 500 elements per dimension. The complexity of
the matrix1 code, and thus its simulation time, is O(n3), so a
smaller number of elements per dimension (200) was used in
this case. Each code was tested using the cache configurations
present in a MicroSPARC II-ep [16], a PowerPC 604e [17],
a MIPS R4000 [18] and a IDT79RC64574 [19], which have
been used in [3] and [10] too. Table II summarizes the main
characteristics of these caches, including the cache hit and
miss times.

The main contribution of this model is the estimation of a
base address-independent WCMP. Thus its validation is based
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TABLE III
MP, ∆WCMP% AND ∆

WMP%
FOR FOUR DIFFERENT CACHE CONFIGURATIONS.

Code
MicroSPARC II-ep PowerPC 604e MIPS R4000 IDT79RC64574

MP ∆WCMP%∆
WMP%

MP ∆WCMP%∆
WMP%

MP ∆WCMP%∆
WMP%

MP ∆WCMP%∆
WMP%

ST∗ 8256 0.00 202.80 14155 0.00 571.14 27159 0.00 268.19 7225 0.00 453.58
STENCIL 4286 0.00 183.11 6699 0.00 0.55 11867 0.00 286.90 3905 0.38 0.77
CNT 812500 0.96 0.96 1406250 1.97 1.97 2687500 0.99 0.99 718750 1.57 1.57
TRANS 2045300 0.12 0.57 6151565 17.64 17.74 6292982 0.03 0.91 1762070 17.37 17.83
FIBONACCI 1625 0.55 0.55 2794 2.65 2.65 5375 0.73 0.73 1430 2.10 2.10
convolution 3276 0.00 205.19 5689 0.00 0.81 10836 0.00 269.11 2901 0.51 1.16
fir 4276 0.00 183.52 6689 0.00 0.69 11836 0.00 287.56 3901 0.38 0.87
lms 8244 0.00 203.22 14386 0.76 1.74 27280 0.00 266.56 7318 0.00 446.54
matrix1 44290990 2.11 4.07 61416512 2.42 2.42 107316817 2.83 7.03 39195460 2.69 5.64
n real updates∗ 6618 0.00 202.20 11365 4.53 5.17 22045 0.00 262.88 5799 0.00 451.77

TABLE IV
MP, ∆WCMP% , ∆

WMP%
AND As(At) FOR FOUR DIFFERENT CACHE CONFIGURATIONS WHEN EXCLUDING FULL ALIGNMENTS .

Code
MicroSPARC II-ep PowerPC 604e

MP ∆WCMP% ∆
WMP%

As(At) MP ∆WCMP% ∆
WMP%

As(At)

ST∗ 8125 0.98 2.55 1.93(2.91) 14155 1.49 6.80 0.0(0.0)
STENCIL 4268 0.21 0.42 0.29(0.29) 6691 0.00 0.66 0.0(0.0)

convolution 3262 0.55 0.72 0.29(0.29) 5680 0.00 0.98 0.0(0.0)
fir 4264 0.42 0.51 0.29(0.29) 6691 0.00 0.66 0.0(0.0)

lms 8190 0.74 0.99 0.48(0.87) 14432 0.76 1.41 0.0(0.0)
n real updates∗ 6500 2.08 2.08 1.16(1.75) 11324 4.53 5.55 0.0(0.0)

Code
MIPS R4000 IDT79RC64574

MP ∆WCMP% ∆
WMP%

As(At) MP ∆WCMP% ∆
WMP%

As(At)

ST∗ 26875 0.14 2.03 0.97(1.46) 7225 1.63 3.74 0.003(0.01)
STENCIL 11828 0.00 0.33 0.19(0.14) 3905 0.38 0.77 0.0(0.0)

convolution 10804 0.36 0.58 0.14(0.14) 2900 0.51 1.19 0.0(0.0)
fir 11812 0.33 0.46 0.14(0.14) 3908 0.38 0.69 0.0(0.0)

lms 27148 0.29 0.58 0.24(0.43) 7225 1.64 2.70 0.0(0.0)
n real updates∗ 21500 1.63 1.63 0.58(0.87) 5780 3.37 3.37 0.0015(0.004)

in simulating each code in each cache configuration using all
the possible combinations of relative positions with respect to
the cache of its data structures. Our simulation environment
facilitates this, as it allows to specify the base addressesof the
data structures and it is highly optimized. The variations in the
cache behavior in the simulations are due exclusively to the
changes in the base addresses of the data structures, since the
data-dependent conditionals modeled cannot modify the cache
behavior, as Section II explains. The number of combinations
of relative cache offsets of the data structures in a code is
very large (for example, in a direct mapped cache of 16 KB,
each vector of elements for 4 bytes can present 16 KB/4=4096
different offsets) and it grows exponentially with the number
of data structures. Thus two kinds of validations have been
performed. For the codes with up to three data structures,all
the relative address combinations were simulated systemati-
cally. For ST and nreal updates, the only codes with more
data structures, simulations using random offset combinations
were run for 3200 hours (≈4 and 1/2 months) in a 1.6 GHz
Itanium Montvale processor. For this reason these two codes
appear in the validation tables with an asterisk.

Table III contains for each code and cache configuration, the
average memory performance observed along the simulations
expressed in cycles,MP. The memory performance in each
simulation is calculated asNM · mt + (ACCS − NM) · ht,
NM being the numer of misses,ACCS the number of
accesses, andht and mt the hit time and miss time of

the studied cache, extracted from Table II.∆WCMP% is the
difference between the WCMP predicted by the model and
the actual WCMP observed along the simulations, expressed
as a percentage of this latter value. The non-negativity of the
∆WCMP% column shows the safeness of the prediction, while
its small value shows its tightness for most codes.∆WMP% is
the difference between the WCMP predicted by the model
and the average memory performance observed along the
simulations,MP, expressed as a percentage of this latter value.
The large value of∆WMP% for ST, STENCIL, convolution,
fir, lms and n real updates indicates that for these codes the
WCMP predicted (and also the actual WCMP measured, which
is very near according to∆WCMP%) is far from the average
value observed in the simulations. Sometimes it is up to 7
times larger. The reason for this large difference between the
average and the worst-case memory performance for these
codes, is the existence of full alignments of more thank (the
associativity of the cache) references, which causes systematic
cache misses. In the TRANS code the predictions of the
WCMP are not very tight in two of the caches. The reason is
that the overlapping adjustments described in Section V-B4
consider worst-case overlappings that do not actually take
place for the data sizes and cache configurations used in our
experiments.
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A. Impact of disabling full-alignments modeling

A WCMP prediction closer to the average behavior for
the codes where full alignments may appear can be obtained
by disabling the modeling of the wort-case overlapping. The
prediction would be still safe if the programmer avoids ex-
plicitly full alignments by using buffering or extra padding,
for example. The results obtained using this new prediction
of the WCMP are summarized in Table IV. This table only
contains thus the codes where full alignments may appear, and
its statistics are referred only to the simulated cases where
full alignments did not finally occur. This way,MP is the
average memory performance (expressed in cycles) observed
in these simulations, and∆WCMP% and ∆WMP% are cal-
culated considering only simulations without full alignments.
The values of∆WCMP% are similar to those in Table III and
the values of∆WMP% are fairly smaller, which indicates that
the WCMP is now closer to the average value observed. The
table includes a column As(At), where As is the percentage
of all the simulations where full alignments appeared, and At

is the estimation of the probability of full aligments predicted
as described in Section V-B5. The large correlation between
As and At indicates that the percentage of full alignments
observed in the simulations is very close to the one predicted
analytically. Only in the STENCIL code when using the MIPS
R4000 cache, the percentage observed in the simulations is
larger that the one predicted. The reason is that in this code
one of the data structures presents two sequential references
to two consecutive elements instead of just one. This increases
slightly the probability of a systematic collision with theother
data structure involved in the code because there is one more
position in the cache where full alignments can appear.

VII. R ELATED WORK

There are many works focused in the calculation of the
WCET in the presence of data caches. Several of them
have used analytical methods to calculate the WCMP in the
presence of caches. The modeling of instruction-caches [20],
[21] has had a lot of success, even recently in multicore
systems with shared L2 instruction caches [22]. There are
also many works devoted to the study of data caches. White
et al. [15] bounds, using an static analysis, the worst-case
performance of set-associative instruction caches and direct-
mapped data-caches. The analysis of data caches needs to
determine the base addresses of the involved data structures.
Relative address information is used in conjunction with
control-flow information by an address calculator to obtain
this information. The analysis classifies the accesses in one of
four categories: always miss, always hit, first miss and first
hit. The validation is performed considering only one cache
configuration.

Lundqvist and Stenström [23] distinguish between data
structures that exhibit a predictable cache behavior, which
is automatically and accurately determined, and those with
an unpredictable cache behavior, which bypass the cache.
Only memory references, whose address reference can be
determined statically, are considered to be predictable. The
predictability of a reference is determined considering the

TABLE V
BCMP, WCMPAND MP OF THE TRANS AND THE MATRIX 1

BENCHMARKS FOR20× 20 MATRICES IN THE M ICROSPARC II-EP CACHE

Code BCMP WCMP MP

TRANS 2600 3158 2663
matrix1 27100 41554 28162

storage type (global, stack or heap) and the access type (scalar,
regular, irregular or input data dependent). Nevertheless, they
do not present an experimental results section.

Ramaprasad and Mueller [14] use the cache miss equations
(CMEs) [8], which need the data addresses for their predic-
tions, as a basis for the WCMP estimation. Non-perfectly
nested and non-rectangular loops are covered using loop
transformations like the forced loop fusion which involves
the insertion of loop index-dependent conditionals in the
code. Loop index-dependent conditionals are modeled using
an extra analysis stage. The validation shows almost perfect
predictions of the WCMP but only two (direct-mapped) cache
configurations are considered.

Vera et al. [10] use also the data address-dependent cache
miss equations (CMEs) to predict the WCMP in a multitasking
environment. Their work combines the static analysis, pro-
vided by the CMEs, with cache partitioning for eliminating
intertask interferences, and cache locking to make predictable
the cache behavior of those pieces of code outside the scope
of application of the CMEs. Good predictions of the WCMP
are achieved for codes that use the cache locking in order to
improve the WCMP predictability.

Our model is the only one to our knowledge that does not
require the base addresses of the data structures. As a result,
it is difficult to compare it with the previous works in the
bibliography. The other models can only predict the WCMP
for one specific possible combination of the base addresses
of the data structures out of the millions that are possible.
The WCMP for a given base-address combination can be very
far from the one obtained with other combinations. This is
indicated by the large values observed in the∆MP% column
in Table III for the codes with potential full alignments. Codes
without full alignments can also experience wide variations of
the cache behavior. For example, Table V shows the Best-
Case (BCMP), Worst-Case (WCMP) and average-case (MP)
memory performance for the TRANS and matrix1 codes used
in Section VI, which have no full alignments, working on
20×20 matrices in the MicroSPARC II-ep cache. The memory
performance is 21% worse in the WCMP than in the BCMP
for TRANS and a 53% for matrix1. A single execution of
our model, which takes less tan one second, provides a base-
address independent prediction of the WCMP. However, such
a prediction can only be provided by the other models by
making the individual predictions for all the possible base-
address combinations. In this case, assuming the predictions of
those models are safe, the∆WCMP% parameter in Tables III
and IV is an upper bound of the difference between those
predictions and the one of our model.

VIII. C ONCLUSIONS

This paper presents a model to predict a safe and tight upper
bound of the cache performance whose main novelty is that
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it is the only one that requires no information about the base
addresses of the data structures. This property is very interest-
ing, since base addresses are sometimes unavailable at compile
time, and they can change between different executions. The
model can provide two kinds of WCMP predictions. The
absolute prediction is safe and tight with respect to the actual
WCMP for any possible combination of base addresses of the
data structures. The conditioned prediction is safe provided
the programmer has avoided systematic collision of different
references. In this case, the conditioned prediction will be
besides much tighter. This prediction is also useful to know
a very probable WCMP for soft-RTS and non RTS, as full
alignments usually appear in a fairly small percentage of the
base address combinations.

An extensive validation using trace driven simulations that
required more than 30000 hours of CPU time shows that this
approach yields safe and tight values of the WCMP.

In the future, we intend to extend our model to consider
irregular access patterns and caches shared by several cores.
Finally, we will consider using as input the base addresses of
those data structures that are available in order to tightenthe
predictions.

APPENDIX A
REUSE AMONG DIFFERENT REFERENCES

Equation (4) in Sect. IV-A uses safe upper bounds of the
reuse distances of the accesses of a reference with respect to
its own previous accesses. Relying only in this equation to
estimate the WCMP in a code is safe, but the predictions can
lose tightness in codes with references that carry reuse between
them, as the equation ignores those reuses. The PME model
distinguishes the modeling of reuse among references found
in the same loop nest and in different loop nests. We propose
here modifications to the modeling of both kinds of reuse
that improve the tightness of the WCMP prediction without
compromising its safeness.

A. Reuse among references in the same loop nest

The model in [4] considers reuse among references in
the same loop nest provided they are uniformly generated.
This means that they have the same affine indexing functions
αRjIj + δRj in every dimensionj, except possibly in the
δRj constants. This is the most common kind of reuse among
references in a loop nest by far, and it sufficed in [4] to model
accurately many real codes. Let us also remember that if the
references do not hold this condition, the lack of modeling
of their reuse may worsen the tightness of the prediction, but
it does not compromise its safeness. In order to model the
reuse, the references are first sorted in descending order of
the iteration of the loop nest in which they can access a line.
This can be done building a vector

−→
δR of n elements for each

referenceR in a loop nest of depthn such that

−→
δRi =







δRj if Ii indexes dimensionj of R andαRj > 0
−δRj if Ii indexes dimensionj of R andαRj < 0
0 otherwise (Ii does not indexR)

Given two referencesR andR′ in a loop nest of depthn, R

can access a line beforeR′ in the loop nest only if
−→
δR ≻

−→
δR′ ,

which is defined as
−→
δR ≻

−→
δR′ ⇐⇒ ∃i, 0 ≤ i < n / (∀j, 0 ≤ j < i,

−→
δRj =

−−→
δR′j) ∧

(
−→
δRi >

−−→
δR′i)

The first reference in the ordering is the first one to access
any line in the loop nest, so its PMEs are derived following
the method and equations previously described in Sect. IV-A.
For each one of the following references, the PMEs for all
the loops are also built with Eq. (4) except possibly the
one for the loop associated with the longest reuse distance
the reference can enjoy. This loop is the outermost one
for which

−→
δRi 6=

−−→
δR′i. Concretely, its nesting level is the

smallesti for which
−→
δRi 6=

−−→
δR′i. If there are other positions

j, j 6= i/
−→
δRj 6=

−−→
δR′j , the loop is also modeled using the

method in Sect. IV-A. Otherwise the PME for uniformly
generated references derived in [4] is used to modelR in this
loop level i, with two changes to ensure the safeness of the
WCMP prediction that we describe now.

The equation that models the reuse among uniformly gener-
ated references in [4] considers all the possible reuse distances,
and it computes the average number of reuses for each
reuse distance. The actual number of reuses depends on the
alignment of the references with respect to a cache line at
the beginning of the iterations of the loop nest, very much
like the value ofLRi that was maximized with Eq. (3). The
transformation of this PME into a worst-case one is thus also
achieved calculating the number of reuses for each possible
reuse distance using theLs possible initial alignments, and
taking the largest one of the values computed. This approach
is original in that, rather than maximizing the reuse distance
for each access, it maximizes the number of accesses per reuse
distance. As a result more accesses than the ones that will
actually take place may be modeled, but the safeness of the
WCMP prediction is ensured. The second change is that the
numberG of groups of lines used in the equation, which is
an average in [4], is rounded up to the nearest largest integer.

B. Reuse among references in different nests

Let us consider two loop nests X and Y (X preceding Y)
at a nesting leveli which reference a data structures, there
being no intermediate loop nests between them that access this
structure. The memory regions ofs affected by the references
in both loops are compared to determine the numbern of
lines they have in common. The first-time accesses to those
lines in loop Y can enjoy a potential reuse with respect to the
accesses in loop X. As Eq. (5) shows, a PMEFRi(RD) is
always a expression of the kinda ·MissR(RD) + b, wherea
is the number of first-time accesses to lines in the execution
of the loop, i.e., the number of different lines accessed, and
b is the number of misses in the reuses within the loop. As
a result, if n out of thesea lines are known to have been
accessed in a preceding loop nest,FRi(RD) can be rewritten
as(a−n) ·MissR(RD)+ n ·MissR(RD from X to Y) + b.
Let us notice that the number of linesn in common between
the regions accessed in the two loops may vary with theLs
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possible initial alignments of the data structures. Thus the
model calculates the values ofn for theLs possible alignments
and takes the smallest one. This is the worst case because the
a − n lines that cannot experience reuse in this nesting level
will have necessarily longer reuse distances in outer loops, or
even no reuse distance if they are cold misses.

There remains the problem of estimating the worst-case
reuse distance between the loops X and Y used in the second
term of this expression. A simple answer is to use the whole
execution of both loops as well as the code between them as
reuse distance. Most times the actual reuse distance will be
of course shorter, but in worst-case situations this could be
indeed the reuse distance: consider a loop that accesses the
elements of a vector in increasing order, followed by a loop
that accesses them in decreasing order. The reuse distance for
the access to the first element of the vector in the second loop
includes the whole execution of both loops.
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