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Abstract. One of the most important issues related to program per-
formance is the memory hierarchy behavior. Programmers try nowadays
to optimize this behavior intuitively or using costly techniques such as
trace-driven simulations through a trial and error process. A systematic
modeling strategy that allows an automated analysis of the memory hi-
erarchy performance is developed in this work. This approach, besides
requiring much shorter computation times, can be integrated in a com-
piler or an optimizing environment. The models consider caches of an
arbitrary size, line size and associativity, and as we will show, they have
proved a good degree of accuracy and have a wide range of applications.
Loop interchange, loop fusion and optimal block size selection are the
techniques whose successful application has been driven by the models
in this work.

1 Introduction

The increasing gap between processor and main memory cycle times makes more
critical the memory hierarchy performance, in which caches play an essential role.
The traditional approaches to study and try to improve this performance are
based on trial and error processes which give little information about the origins
of this behavior, and do not allow to understand the way different program
transformations influence it. For example, the most widely used approaches,
trace-driven simulations [10] and the use of the hardware built-in counters that
some microprocessor architectures implement [11], only provide the number of
misses generated. Besides, both approaches require large computation times,
especially simulation. On the other hand, built-in counters are limited to the
study of the architectures where these devices exist.

General techniques for analyzing cache performance are required in order
to propose improvements to the cache configuration or the code structure. A
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better approach is that of analytical models that extract some of their input
parameters from address traces [1], [6], although they still need the generation
of the trace each time the program is changed. Finally, there are a few analytical
models based directly on the code [9], [4], and most of them are oriented to
direct mapped caches. The last one has been implemented in an optimizing
environment and later extended to set associative caches in [5]. It is based on
the construction of Cache Miss Equations (CMEs) suitable for regular access
patterns in isolated perfectly nested loops. It does not take into account the
probability of hit in the reuse of data structures referenced in previous loops
and seems to have heavy computing requirements.

In this work we introduce a systematic strategy to develop probabilistic an-
alytical cache models for codes with regular access patterns, considering set
associative caches with LRU replacement policy. Our approach allows the au-
tomated generation of equations that provide the number of misses generated
in each memory reference and loop. An additional feature of these models, that
previous works such as [5] lack, is that they take into account that portions of
data structures accessed in previous loops may be in the cache when they are
accessed by another set of nested loops, although the worst case hit probability
is used. The automatically developed models have been validated using trace-
driven simulations of typical code loops, and have proved to be very accurate in
most of the cases. As an added benefit, the computing times of the model are
very competitive.

The concepts on which our modeling strategy relies are introduced in the
following section. The steps for modeling the accesses in regular nested loops are
explained in Section 3, while Section 4 is devoted to both validation and useful-
ness of our approach in driving optimizations based on standard loop transfor-
mations. Conclusions and future work are discussed in the last section.

2 Basic Concepts

We classify the misses on a given data structure in a K-way associative cache
in two groups: intrinsic misses, those that take place the first time a memory
line is referenced, and interference misses, which take whenever a line has been
already accessed but it has been replaced since its previous access. If a LRU
replacement policy is applied, this means that K or more different lines mapped
to the same cache set have been referenced since the last access to the line. In
this way, the first time a memory line is accessed, a miss is generated. For the
remaining accesses, the miss probability equals the probability that K or more
lines associated to its cache set have been accessed since its previous access.

Our model uses the concept of area vector to handle this probability. Given
a data structure V, SV = SV0

, SV1
, . . . , SVK

is the area vector corresponding to
the accesses to V during a portion of the program execution. The i-th position
of the vector contains the ratio of cache sets that have received K − i lines of
the structure. The first position, SV0

, has a different meaning: it is the ratio of
sets that have received K or more lines. Different expressions have been devel-



oped that estimate the area vectors as a function of the access pattern of the
corresponding data structure [2]. The formulae and algorithms associated to the
sequential access and the access to a number of regions of consecutive memory
words which have a constant distance between the start of two such regions (ac-
cess with a constant stride) may be found in [3]. A mechanism for adding the
area vectors corresponding to the different data structures referenced between
two consecutive accesses to the data structure which is being studied has been
developed too.

3 Automatic Code Modeling

DO IZ=1, NZ, LZ
...

DO I1=1, N1, L1
DO I0=1, N0, L0
A(fA1(IA1), fA2(IA2), ..., fAdA(IAdA))

...

B(fB1(IB1), fB2(IB2), ..., fBdB(IBdB))

...

END DO

...

C(fC1(IC1), fC2(IC2), ..., fCdC(ICdC))

...

END DO

...

END DO

Fig. 1. General perfectly nested DO loops in a dense code.

We will now present a systematic approach to apply automatically this mod-
eling strategy to codes with regular access patterns. Figure 1 shows the type of
code to model. A FORTRAN like notation is used, as this is the language we
consider. The data structures considered are vectors and matrices whose dimen-
sions are indexed by an affine function of the enclosing loop variables. Any of
these variables is not allowed to appear in more than one dimension, so that only
the two types of regular accesses discussed in the previous section take place.
The functions of the indices are of the general form (affine function):

fAx(IAx) = ∆AxIAx + KAx, x = 0, 1, . . . , dA (1)

We obviate the ∆Ax constants in our exposition, as their handling would be
analogous to that of the steps Li of the loops. Their consideration would just
require taking into account that the distance between two consecutive points
accessed in dimension x is ∆AxSAx instead of SAx, that is what we shall consider.



3.1 Modeling Perfectly Nested Loops

We will explain here in detail only the modeling of perfectly nested loops with one
reference per data structure due to space limitations. When several references
are found for the same data structure, the procedure is somewhat different in
order to take into account the data reuses that these references may generate.
Non perfectly nested loops in which only simple blocks are found between the
loops of the nest can be also modeled following this strategy.

Miss equations First, the equations Fi(R, p) are built. They provide the num-
ber of misses on reference R at nesting level i considering a miss probability p
in the first access to a line of the referenced matrix. These equations are cal-
culated examining the loops from the inner one containing R to the outer one,
in such a way that Fi(R, p) depends on Fi−1(R, p) and the value of p for level
i−1 is really calculated during the generation of the the formula for level i. The
following rules are applied in each level:

1. When the loop variable is one of the used in the indices of the reference, but
not the corresponding to the first dimension, the function that provides the
number of misses during the complete execution of the loop of level i as a
function of probability p is:

Fi(R, p) =
Ni

Li

Fi−1(R, p) (2)

This approach is based on the hypothesis that the first dimension of any
matrix is greater or equal to the cache line size. This could not hold for
caches with large line sizes and matrices with small dimensions, but the
conjunction of both factors gives place to very small miss rates in which
the error introduced is small and little advantage can be obtained from the
application of the automated model.

2. If the loop variable is not any of those used in the indices of the reference,
this is a reuse loop for the reference we are studying. In this case the number
of misses in this level is estimated as:

Fi(R, p) = Fi−1(R, p) +

(

Ni

Li

− 1

)

Fi−1(R, S0(A, i, 1)) (3)

where S(Matrix, i, n) is the interference area vector that stands for the lines
that may cause interferences with any of the lines of matrix Matrix after
n iterations of the loop in level i. Function (3) expresses the fact that the
first iteration of the loop does not influence the number of misses on matrix
A, being this value determined by the probability p, which is calculated
externally. Nevertheless, in the following iterations the same regions of the
matrix are accessed, which means that the interference area vector in the
first accesses to each line in this region is composed by the whole set of
elements accessed during one iteration of the reuse loop.



3. If the loop variable is the one used in the indexing of the first dimension and
Li ≥ Ls, where Ls is the line size, we proceed as in case 1, as each reference
will take place on a different line. Otherwise, we have:

Fi(R, p) =
Ni

Ls

Fi−1(R, p) +

(

Ni

Li

−
Ni

Ls

)

Fi−1(R, S0(A, i, 1)) (4)

The miss probability in the first access to each referenced line is given by
the probability p, externally calculated. The remaining accesses take place
on lines referenced in the previous iteration of the loop of level i, so the
interference area vector is the corresponding to one iteration of this loop.

In the first level containing the reference Fi−1(R, p), the number of misses
caused by this reference in the closer lower level, is considered to be p. Once
calculated the formula for the outer loop, the number of misses is calculated as
Fz(R, 1) (see Figure 1), which assumes that there are no portions of the data
structure in the cache when the code execution begins.

Interference area vectors calculation The calculation of the interference
area vectors S(Matrix, i, n) is performed in an automated way by analyzing the
references in such a way that:

– If the variable used in the indexing of one dimension Ih, is such that h < i,
then we assign to this dimension a set of Nh/Lh points with a constant
distance of Lh points between each two of them.

– On the other hand, if h > i, only one point in this dimension is assigned.
– Finally, if h = i, n points with a distance Li are assigned to the dimension.

There is one exception to this rule. It takes place when the variable associated
to the considered dimension Ih belongs to a loop that is a reuse loop for the
reference whose number of misses is to be estimated, and there are no non reuse
loops for that reference between levels i (not included) and h. In that case only
one point of this dimension is considered.

After this analysis, the area of matrix A affected by reference R during an it-
eration of loop i would consist of NRi1 regions of one word in the first dimension,
with a constant stride between each two regions of LRi1 words. In the second
dimension, NRi2 elements would have been accessed, with a constant stride be-
tween each two consecutive ones of LRi2 groups of dA1 words (size of the first
dimension), and so on. This area could be represented as:

RRi = ((NRi1, LRi1), (NRi2, LRi2), . . . , (NRidA
, LRidA

)) (5)

Figure 2 depicts this idea for a bidimensional matrix. This area will typically
have the shape of a sequential access or an access to groups of consecutive
elements separated by a constant stride, which is what happens in case (b) of
the figure (the stride in case (a) is not constant). Both accesses have already been
modeled for the calculation of their corresponding cross or auto-interference area
vectors (see [3]).
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DO J=1, 21, 3

DONE
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. . .

. . .
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DO K=1, 100

A(J,I)=I+J

REAL A(21,20)
. . .

DO I=1, 20, 5 DO I=1, 20, 1

DO J=1, 21, 3

DONE

DONE

. . .

. . .

. . .

. . .
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DO K=1, 100

A(J,I)=I+J

REAL A(21,20)
. . .
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Ri1
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Fig. 2. Areas accessed with strides 5 and 1 for the columns in a bidimensional matrix
A during one iteration of the K loop, in the i-th nesting level.

3.2 Imperfectly Nested Loops and Data Reuse

Real applications consist of many sets of loops which may have in each level
several other loops, this is, sets of imperfectly nested loops. The data structures
are accessed in several of these sets, giving place to a probability of hit in the
reuse of their data.

Our model is based on the generation of a miss equation for each reference
and loop and the calculation of the miss probability in the access to a line
of the considered matrix inside that loop. As we have seen in Section 3.1, when
considering an isolated set of perfectly nested loops, the probability of miss in the
first access to a line of a data structure is 1. The probability of hit due to accesses
in previously completed loops must be considered when imperfectly nested loops
are modeled. Our automatic analyzer uses a pessimistic approach to estimate this
probability in order to optimize modeling times. The whole regions of the vectors
and matrices accessed during the execution of the outer non-reuse loop including
a reference to the studied data structure are used to compute the interference
area vectors. More accurate approaches have been already developed [2].

4 Validation and Applications

A simple automatic analyzer based in our modeling strategy has been built in
order to validate it. Function calls are used to describe the loops, data structures
and references to the analyzer, just as the semantic stage of a code analyzer
could do. Its predictions are compared with the misses measured using a locally
developed simulator whose validity has been checked using dineroIII, a trace-
driven cache simulator belonging to the WARTS toolset [7]. We have applied
both tools to a series of codes where different program transformations may be
applied, being our purpose to validate the automatically developed models and
check if they choose the right approach in the different codes. Attention is also
paid to the times required to make the choices.



DO I=0, N-1

DO J=0, N-1

C(I,J)=C(I,J)+A(I,J)*B(I,J)

ENDDO DO I=0, N-1

ENDDO DO J=0, N-1

C(I,J)=C(I,J)+A(I,J)*B(I,J)

DO I=0, N-1 B(I,J)=B(I,J)+A(I,J)

DO J=0, N-1 ENDDO

B(I,J)=B(I,J)+A(I,J) ENDDO

ENDDO

ENDDO

(a) (b)

Fig. 3. Separate (a) and fused (b) loops

4.1 Loop Fusion

Let us consider the codes in Figure 3, where (b) results from the fusion of the
two loops in (a). Both the model and the trace-driven simulations recommend
the fusion, as Table 1 shows, which also includes the simulation and modeling
times for the separate code ((a) in Figure 3). In this table and the following ones,
Cs stands for the cache size. In this case, although the model always succeeds in
advising the best strategy, important deviations may be observed in the predic-
tions for some combinations of the input parameters. This is due to two facts.
On the one hand, the model follows a pessimistic approach when estimating the
miss probability in the first access to a line of a vector that has been accessed
in a previous loop, as it estimates it as the worst-case probability (the one as-
sociated to the full execution of the previous loop). On the other hand, most of
the accesses in this code are row-wise, which makes very important the relative
positions of the accesses matrices, and the model uses them only to calculate
overlapping coefficients, which do not reflect properly their relation with the
miss probability.

Table 1. Validation and time data for the codes in Figure 3, where loop fusion is
applied

N Cs Ls K

Measured
misses (a)

Trace-driven
simulation time (a)

Predicted
misses (a)

Modeling

time (a)
Measured
misses (b)

Predicted
misses (b)

400 8 8 1 302 0.335 473 0.005 262 324

400 32 8 1 100 0.266 205 0.006 60 138

400 32 8 2 100 0.286 116 0.007 60 76

400 128 8 2 100 0.275 101 0.017 60 61

500 512 16 2 66 0.475 76 0.059 48 48



DO J=0, N-1

DO I=0, N-1

R=0.0

DO K=0, N-1

R=R+A(I,K)*B(K,J)

ENDDO

D(I,J)=R

ENDDO

ENDDO

Fig. 4. Dense matrix-dense matrix
product with JIK nesting.

DO J2=1, N, BJ

DO K2=1, N, BK

DO I=1, N

DO K=K2, K2+BK

RA=A(I,K)

DO J=J2, J2+BJ

D(I,J) = D(I,J) + B(K,J) * RA

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

Fig. 5. Dense matrix-dense matrix product with
blocking

4.2 Loop Interchange

Let us consider the dense matrix-dense matrix product in which we use variables
I, J and K to index the three dimensions of the problem. There are 9 versions
of this algorithm depending on the order in which the loops are nested. As an
example, Figure 4 shows the JIK form, where J is the variable for the outer loop
and K is the one used in the inner loop. The model can be used to choose the
optimal form much faster than any other technique.

In this example we have tried the IJK, JIK, JKI and KJI forms, those in
which more sequential accesses take place. The results for some combinations
of the input parameters are shown in Table 2, where trace-driven simulation
results are compared with those of our model. In the following, misses are in
thousands and times in seconds. Results have been obtained in a SGI Origin
200 with R10000 processors at 180 MHz. In this table and the following ones,
N stands for the matrix size, Cs for the cache size in Kwords, Ls for the line
size in words and K for the set size. The table shows both a very good degree
of accuracy, which allows the model to always choose the best loop ordering,
and very competitive modeling times, even comparing them to execution time
(around 0.53 seconds for compilation and 0.45 for execution).

4.3 Optimal Block Sizes

As a final example, let us consider the code in Figure 5, where blocking has
been applied to the dense matrix-dense matrix product with IKJ ordering. Both
trace-driven simulation and modeling have been used to derive the optimal block
sizes for which the dimensions of the block are multiples of 100 for some cache
configurations and values of N . This has been done by trying the different block
sizes, as the model estimates the number of misses, but not the optimum code
parameters. Table 3 shows them in format BJxBK, the number of misses they



Table 2. Validation and time data for several forms of the dense matrix-dense matrix
product.

Order N Cs Ls K

Measured
misses

Trace-driven
simulation time

Predicted
misses

Modeling
time

IJK 400 32 8 2 8180 36.735 8181 0.004

JIK 400 32 8 2 8040 35.914 8042 0.004

JKI 400 32 8 2 8040 38.050 8040 0.001

KJI 400 32 8 2 8180 36.899 8180 0.004

IJK 400 32 8 1 8988 35.623 9004 0.006

JIK 400 32 8 1 9502 36.771 9559 0.006

JKI 400 32 8 1 8139 37.195 8172 0.001

KJI 400 32 8 1 8279 37.446 8308 0.006

IJK 400 8 8 1 11528 36.499 11473 0.003

JIK 400 8 8 1 14091 38.290 14110 0.003

JKI 400 8 8 1 8638 37.356 8567 0.001

KJI 400 8 8 1 8779 37.566 8693 0.003

Table 3. Real optimal and predicted optimal block sizes with the number of misses
they generate in the trace-driven simulation and time required to derive them.

N Cs Ls K

Optimal
block

Measured
misses

Trace-driven
simulation time

Model-based
optimal block

Measured
misses

Modeling
time

400 8 8 1 100x100 19721 396.07 100x100 19721 0.90

400 32 8 1 100x100 5889 328.72 100x100 5889 0.93

400 128 8 1 100x100 784 306.64 100x100 784 0.73

400 128 8 2 100x100 145 304.03 100x100 145 0.52

200 32 8 2 100x100 70 17.48 100x100 70 0.17

200 128 8 2 200x200 15 16.46 100x100 16 0.24

600 512 16 2 300x600 87 1756.86 300x100 93 2.18

generate in the simulation, and the time required to derive them through simu-
lation and modeling. Although the block recommended by the modeling is not
always the optimum one, the difference in the number of misses is very small,
and the time required by the simulations is dramatically greater than the one
for the modeling. Even the time required to obtain the optimum block by mea-
suring the execution time or the values of the built-in counters is greater. For
example, for N = 400 it took 26.6 seconds of real time, adding compilations and
executions, while the model requires always less than one second.

5 Conclusions and Future Work

A probabilistic analytical modeling strategy has been presented that can be
integrated in a compiler or optimizing environment. It is applicable to caches of
an arbitrary associativity and provides equations for the number of misses each
reference generates in each loop of the program. Hit probability in the reuses



of data accesses in previous loops is also considered using a simplified approach
which allows non perfectly nested loops better analysis. Our automated modeling
approach has been implemented in a simple analyzer in order to validate it. This
tool has proved to be very fast and to provide good hints on the cache behavior
that allow to choose always optimal or almost optimal program transformations,
even when important deviations in the number of predicted misses may raise for
certain input parameter combinations.

In this work only affine indexing schemes have been studied, but much more
ones appear in real scientific problems (indirections, multiple index affine, etc.).
In future we plan to extend the automatization of the modeling process to those
indexing schemes. Formulae that estimate the area vectors associated to indirec-
tions have already introduced in [2].

We also intend to perform the integration of our automated modeling ap-
proach in program optimization frameworks that support it, for example by
providing the analysis needed to extract the input parameters from the code
(Access Region Descriptors [8] could be used as a systematic representation for
the access patterns).
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