
Cache Misses Prediction for High Performance

Sparse Algorithms?

Basilio B. Fraguela1, Ramón Doallo1, and Emilio L. Zapata2

1 Dept. Electrónica e Sistemas. Univ. da Coruña,
Campus de Elviña s/n, A Coruña, 15071 Spain

{basilio,doallo}@udc.es
2 Dept. de Arquitectura de Computadores. Univ. de Málaga, Complejo Tecnológico

Campus de Teatinos, Málaga, 29080 Spain
ezapata@ac.uma.es

Abstract. Many scientific applications handle compressed sparse ma-
trices. Cache behavior during the execution of codes with irregular access
patterns, such as those generated by this type of matrices, has not been
widely studied. In this work a probabilistic model for the prediction of the
number of misses on a direct mapped cache memory considering sparse
matrices with an uniform distribution is presented. As an example of the
potential usability of such types of models, and taking into account the
state of the art with respect to high performance superscalar and/or su-
perpipelined CPUs with a multilevel memory hierarchy, we have modeled
the cache behavior of an optimized sparse matrix-dense matrix product
algorithm including blocking at the memory and register levels.

1 Introduction

Nowadays superscalar and/or superpipelined CPUs provide high speed process-
ing, but global performances are constrained due to memory latencies even de-
spite the fact that a multilevel memory organization is usual. Performances are
further reduced in many numerical applications due to the indirect accesses that
arise in the processing of sparse matrices, because of their compressed storage
format [1].

Several software techniques for improving memory performance have been
proposed, such as blocking, loop unrolling, loop interchanging or software pipelin-
ing. Navarro et al. [5] have studied some of these techniques for the sparse matrix-
dense matrix product algorithm. They have proposed an optimized version of
this algorithm as a result of a series of simulations on a DEC Alpha processor.
The traditional approach for cache performance evaluation has been the software
simulation of the cache effect for every memory access [7]. Different approaches
consist in providing performance monitoring tools (built-in counters in current
microprocessors), or the design of analytical models.

? This work was supported by the Ministry of Education and Science (CICYT) of Spain
under project TIC96-1125-C03, Xunta de Galicia under Project XUGA20605B96,
and E.U. Brite-Euram Project BE95-1564

This paper chooses this last approach and addresses the problem of the esti-
mation of the total number of misses produced in a direct-mapped cache using
a probabilistic model. In a previous work, Temam and Jalby [6] model the cache
behavior for the sparse matrix-vector product of uniform banded sparse matrices,
although they do not consider cross interferences. Simpler sparse linear algebra
kernels than the one this paper is devoted to have been also modeled in [2], being
the purpose of this work to demonstrate that it is feasible to extend this type of
models to more complex algorithms, such as the one mentioned above. This fact
can make possible further improvements for these codes by making easier the
study of the effect of these techniques on the memory hierarchy. An extension
of the proposed model for K-way associative caches has been introduced in [3].

The remainder of the paper is organized as follows: Section 2 describes the
algorithm to be modeled. Basic model aparameters and concepts are introduced
in Sect. 3 together with a brief explanation, due to space limitations, of the
modeling process. In Sect. 4 the model is validated and used to study the cache
behavior of the algorithm as a function of the block dimensions and the cache
main parameters. Section 5 concludes the paper.

2 Modeled Algorithm

The optimized sparse matrix-dense matrix product code proposed in [5] is shown
in Fig. 1. The sparse matrix is stored using the Compressed Row Storage (CRS)
format [1]. This format uses three vectors: vector A contains the sparse matrix
entries, vector C stores the column of each entry, and vector R indicates in which
point of A and C a new row of the sparse matrix starts and permits knowing
the number of entries per row. As a result the sparse matrix must be accessed
row-wise. The dense matrix is stored in B, while D is the product matrix.

The loops are built so that variable I always refers to the rows of the sparse
matrix and matrix D, J refers to the columns of matrices B and D, and K traverses
the dimension common to the sparse matrix and the dense matrix. Our code is
based on a IKJ order of the loops (from the outermost to the innermost loop).

This code uses one level blocking at the cache level selecting a block of matrix
B with BK rows and BJ columns. The accesses to the block in the inner loop are
row-wise, so a copy by rows to a temporal storage WB is desired in order to avoid
self interferences and achieve a good exploitation of the spatial locality.

The performance has been further improved by applying blocking at the reg-
ister level. This code transformation consists in the application of strip mining
to one or more loops, loop interchanging, full loop unrolling and the elimination
of redundant load and store operations. In our case, inner loop J has been com-
pletely unrolled and the load and stores for D have been taken out of loop K. This
modification requires the existence of BJ registers (d1, d2, . . . , dbj in the figure)
to store these values, as Fig. 1 shows. The resulting algorithm has a bidimen-
sional blocking for registers, resulting in fewer loads and stores per arithmetic
operation. Besides the number of independent floating point operations in the
loop body is increased.

1 DO J2=1, H, BJ
2 LIMJ=J2+MIN(BJ, H-J2+1)-1

3 DO I=1, M+1
4 R2(I)=R(I)

5 ENDDO

6 DO K2=1, N, BK
7 LIMK=K2+MIN(BK, N-K2+1)

8 DO J=1, LIMJ-J2+1
9 DO K=1, LIMK-K2

10 WB(J,K)=B(K2+K-1,J2+J-1)
11 ENDDO
12 ENDDO

13 DO I=1, M
14 K=R2(I)

15 LK=R(I+1)

16 d1=D(I,J2)

17 d2=D(I,J2+1)
...

18 dbj=D(I,J2+BJ-1)

↪→

19 DO WHILE (K<LK AND C(K)<LIMK)
20 a=A(K)

21 ind=C(K)
22 d1=d1+a*WB(1,ind-j2+1)

23 d2=d2+a*WB(2,ind-j2+1)
...

24 dbj=dbj+a*WB(BJ, ind-j2+1)

25 K=K+1
26 ENDDO

27 D(I,J2)=d1
28 D(I,J2+1)=d2

...

29 D(I,J2+BJ-1)=dbj

30 R2(I)=K

31 ENDDO
32 ENDDO
33 ENDDO

Fig. 1. Sparse matrix-dense matrix product with IKJ ordering and blocking at
the memory and register levels

3 Probabilistic Model

We call intrinsic miss the one that takes place the first time a given memory
block is accessed. The accesses to the block from that moment on result in hits
unless the block is replaced. This happens in a direct mapped cache if and only
if another memory block mapped to the same cache line is accessed. If this block
belongs to the same vector as the replaced line it is called a self interference,
whereas if it belongs to another vector it is called a cross-interference.

The replacement probability grows with the cache area (number of lines)
affected by the accesses between two consecutive references to the considered
block. This area depends on the memory location of the vectors to be accessed.

In most cases, two consecutive references to a given block are separated by
accesses to several vectors that cover different areas which are measured as ra-
tios, as they correspond to line replacement probabilities. The total area covered
by these accesses in the cache is calculated adding these areas as independent
probabilities1, operation that we express with symbol ∪. This way our proba-
bilistic model does not make any assumptions on the relative location of these
vectors in memory.

The main parameters our model employs are depicted in Table 1. By word
we mean the logical access unit, this is to say, the size of a real or an integer.
We have chosen the size of a real, but the model is totally scalable. Integers are
considered through the use of parameter r.

1 Given the independent probabilities p1 and p2 of events A1 and A2 respectively, the
probability of A1 or A2 is obtained as p1 ∪ p2 = p1 + p2 − p1p2

Table 1. Notation used

Cs Cache size in words

Ls Line size in words

Nc Number of cache lines (Cs/Ls)

M Number of rows of the sparse matrix

N Number of columns of the sparse matrix

H Number of columns of the dense matrix

BJ Block size in the J dimension

BK Block size in the K dimension

NBJ Number of blocks in the J dimension (H/BJ)

NBK Number of blocks in the K dimension (N/BK)

Nnz Number of entries of the sparse matrix

pn Probability that a position in the sparse
matrix contains an entry

`

Nnz

M·N

´

r size of an integer

size of a real

A main issue of the proposed model we want to point out is the way the
cache area affected by the accesses to a given vector is calculated. This area
depends on the vector access pattern and the cache parameters. For example, a
sequential access to x words loads (x + Ls − 1)/Ls lines on average. The cache
area they cover is

Ss(x) = min{1, (x + Ls − 1)/Cs} (1)

In a similar way different expressions or iterative methods have been devel-
oped to estimate the average cache area affected by the different types of accesses
to a given vector. Combinig these expressions and adding the areas covered by
the accesses to the different vectors the average cross interference probability is
estimated. Also the self interference probability may be calculated as a function
of the vector size, the cache parameters, and the vector access pattern. Miss rate
calculation is directly obtained from the previous probabilities. These are the
access patterns found in this code:

1. Sequential accesseses on vectors A and C within groups of entries (not posi-
tions) located in the same row in a set of BK consecutive columns in lines
19-21. There is a hit in reuse probability in the four loops (with index vari-
ables K, I, K2 and J2 from the inner to the outer) with decreasing weight.
These accesses are slightly irregular because of the different number of en-
tries in each considered subrow and the offset inside the vectors between the
data corresponding to entries in consecutive subrows. The difference between
these vectors is that C is always accessed at least once in each iteration of
loop 13-31 in line 19, and it is always accessed once more than vector A, as
it is used to detect the end of the subrow.

2. Access to matrix B in groups of BJ consecutive subcolumns of BK elements
each in line 10. Recall that the access is by columns, and FORTRAN stores

matrices by columns, so it is completely sequential in each subcolumn. There
is only a real reuse probability in loop 9-10, as each element is only accessed
once.

3. Subrows of BJ consecutive positions of matrix D read in lines 16-80 and
written in lines 27-29. The read operation has a hit in reuse probability in
the loop indexed by I, and when the cache is large, also in the loop on K2.
The write operations will result in hits providing they are not affected by
the self interferences in the accesses to a row and the cross interferences due
to the accesses in lines 19-26.

4. Vectors R and R2 have almost the same access pattern: they both are sequen-
tially accessed in loop 3-5 and also inside the loop indexed by I (lines 14, 15
and 30: this last line gives the difference between these vectors). In the first
case, only an access to the other vector takes place between two consecutive
accesses to the same line, while in the second the cross interference proba-
bility is much higher. There is a hit in reuse probability in the first access to
each line in the two loops when the cache is large with respect to the block
size.

5. Matrix WB, which will be studied below, is accessed by rows in loops 8-11
to be filled with the values of the block to process, and by columns -thus,
sequentially- in the inner loop, being the column chosen as a function of the
column of the considered entry. This last fact makes the selection irregular.
When this matrix fits in the cache, there is some hit in reuse probability
in the first access to each line due to the previous access in loops 8-11.
Conversely, the accesses in line 10 have a hit in reuse probability derived
from the accesses in lines 22-24.

As an example, and due to space limitations, we shall only explain the way
the number of misses on matrix WB has been modeled, as it is usually responsible
for most of the misses and it has the more complex access pattern. This matrix
contains a transposed copy of the block of matrix B that is being processed, so
it has BJ rows and BK columns. We calculate first the number of misses for WB
in the inner loop and then the number of misses during the copying process of
the block of matrix B.

3.1 Misses on Matrix WB in the Inner Loop

The hit probability for a given line of matrix WB during the processing of the
j-th row is calculated as

Phit WB(j) =
∑j−1

i=1 P (1 − P)i−1(1 − P)i·nl(1 − Pcross WB(i))
+(1 − P)j−1(1 − P)j·nl(1 − Pcross WB(j))Psurv WB

(2)

where nl = max{0, Ss(BJ · BK) − 1} is the average number of lines of WB

that compete with another line of this matrix for a given cache line and P =
1 − (1 − pn)Av is the probability that a line of matrix WB is accessed during the
processing of a subrow of the sparse matrix, being Av the average of different
columns of the matrix that have elements in the same line.

In this way, P (1−P)i−1 is the probability that the last access to the consid-
ered line has taken place i iterations before of the loop on variable I. Function
Pcross WB(j) gives the cross interference probability generated by the accesses
to other matrices and vectors during the processing of j subrows of the sparse
matrix. The value is calculated as

Pcross WB(j) = SD(j) ∪ SA(j) ∪ SC(j) ∪ Ss(j · r) ∪ Ss(j · r) (3)

where the last two terms stand for the area covered by the accesses to R and R2.
The areas corresponding to the references to matrix D and vectors A and C are
calculated using a deterministic algorithm further developed in [2].

The last addend in expression (2) stands for the probability of the reuse of a
line that has not been referenced yet in loop I (probability (1−P)j−1) but that
has remained in the cache since the copying process. This probability of hit in the
reuse means excluding both self (probability (1−P)j·nl) and cross interferences
(1 − Pcross WB(j)) as well as being in cache when the copying has just finished
(Psurv WB, whose calculation is not included here due to space limitations).

The number of misses on matrix WB in the inner loop is calculated multiplying
the average miss probability by the number of accesses to the first element of a
line in this loop, as only in the access to the beginning of a line can a miss take
place:

Finner WB =
(

1 −
Pm

j=1
Phit WB(j)

M

)(

BJ+Ls−1
Ls

)

(

Nnz·BK
N

)

NBJ · NBK

(4)

3.2 Misses on Matrix WB in the Copying

The number of misses during the copying is obtained multiplying the average
number of misses per copy process by the number of blocks, NBJNBK . This
value is estimated as

Fcopy WB =

BJ
∑

j=1

BJ·BK
Ls
∑

i=1

A · Ss(1) +

(

Ls

BJ
− A

)

Pmiss first(i, j) (5)

where A = max{0, Ls

BJ
− 1} is the average number of accesses after the first one

to a given line of matrix WB during an iteration of the loop on line 8. As the
equation shows, the miss probability for these accesses is the associated to an
access to a line of B. As for Pmiss first(i, j), it is the probability of a miss for the
first access to line i during iteration j of the loop, which is calculated as

Pmiss first(i, j) = Pacc(j − 1)(Sself(BJ, BK) ∪ Ss(BK))
+(1 − Pacc(j − 1))((1 − Phit WB(M)) ∪ Pexp WB(i, j))

(6)

where Pacc(j) if the probability of the line having been accessed in the j previous
iterations, which is min{1, (Ls + j − 2)/BJ} but for j = 0, for which the proba-
bility is null. The first access to a line results in a miss if it is not in the cache

when the copying begins (probability 1−Phit WB(M)) or if it has been replaced
during the copy of the elements previously accessed, which is Pexp WB(i, j). On
the other hand, if the line has been accessed in the previous iteration, only
the accesses to BK elements of matrix B located in two consecutive columns
(whose area we approach by a completely sequential access) and the accesses to
a row of matrix WB can have replaced the considered line. This last probability
is calculated using the deterministic algorithm we have mentioned above.

4 Cache Behavior of the Algorithm

The model was validated with simulations on synthetic matrices made by re-
placing the references to memory by functions that calculate the position to be
accessed and feed it to the dineroIII cache simulator, belonging to the WARTS
tools [4]. Table 2 shows the model accuracy for some combinations of the input
parameters using synthetic matrices. The average error obtained in the trial set
was under 5%.

Table 2. Predicted and measured misses and deviation of model for optimized sparse
matrix-dense matrix product with an uniform entries distribution. Order (M = N),
Nnz and H in thousands, Cs in Kwords and number of misses in millions

Order Nnz pn H BJ BK Cs Ls

predicted
misses

measured
misses Dev.

2 20 0.005 0.2 25 500 8 4 1.524 1.516 -0.55%

2 20 0.005 0.2 25 500 16 4 1.162 1.163 0.10%

2 20 0.005 0.2 25 500 32 4 0.962 0.972 1.08%

2 20 0.005 0.2 25 500 8 8 0.887 0.872 -1.70%

2 20 0.005 0.2 25 500 16 8 0.667 0.660 -0.99%

2 20 0.005 0.2 25 500 32 8 0.552 0.553 0.17%

10 100 0.001 10 20 1000 8 4 646 672 4.05%

10 100 0.001 10 20 1000 16 4 608 612 0.72%

10 100 0.001 10 20 1000 32 4 549 546 -0.45%

10 100 0.001 10 20 1000 64 4 490 492 0.41%

10 100 0.001 10 20 1000 8 8 401 419 4.40%

10 100 0.001 10 20 1000 16 8 373 378 1.35%

10 100 0.001 10 20 1000 32 8 321 323 0.65%

10 100 0.001 10 20 1000 64 8 287 290 0.86%

As a first result of our modeling, a linear increase of the number of misses
with respect to N and M due to blocking technique is shown. The exception are
the accesses to matrix D, as they have an access stride M , which makes them
increase noticeably when M is a divisor or multiple of Cs. Figure 2 illustrates
the evolution of the number of misses with respect to the block size for a given
matrix. We have supposed a value of BJ between 8 and 30, this is, that there

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

2

4

6

8

10

12

x 10
6

Bk

Bj

M

is
se

s

Fig. 2. Number of misses on a 16Kw
cache with Ls = 8 for a M = N =
5000 sparse matrix with pn = 0.02 and
H = 100 as a function of the block size
(BK in hundreds)

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

1

2

3

4

5

6

7

8

9

x 10
6

Bk

Bj

M

is
se

s

Fig. 3. Number of misses on a 16Kw
cache with Ls = 8 for a M = N = 5000
sparse matrix with pn = 0.002 and
H = 100 as a function of the block size
(BK in hundreds)

are up to 30 registers available for the blocking at the register level. The number
of misses grows in the two directions of the axis tending asymptotically to a
maximum when BJ ×BK > Cs. The minimum number of misses is obtained in
a case in which the block fits completely in the cache (BJ = 22, BK = 700).
Besides, among all of the possible block sizes the best has been the one with
the greatest value of BJ that multiplied by a multiple of 100 (the variation of
the BK value in the figure is 100 and that of BJ is 2) gives the greatest value
under Cs. The reason is that the greater BJ is, lesser blocks there are in the J
direction, reducing the number of accesses. In addition, accesses to matrix WB in
the inner loop take place sequentially in the J direction, whose components are
stored in consecutive memory positions. As a result exploitation of the spatial
locality is improved with the block size increase in this direction. Simulations
showed that the actual optimum block was (BJ = 20, BK = 800), with 5.6%
less misses, which is a slight difference due to the small errors of the model.

Although the evolution of the number of misses usually follows the previous
structure, we can obtain important variations depending on several factors. For
example, Fig. 3 shows a similar plot for a matrix with lesser pn. Here the optimum
block size is (BJ = 24, BK = 2000), which is much greater than Cs (almost three
times). This is because pn is much smaller in this matrix, reducing remarkably
the replacement probability due to self and cross interferences. In this way much
greater blocks may be used, reducing the number of accesses and misses. On the
other hand, although there are little variations, the number of misses is stabilized
when the block size is similar to or greater than Cs because the interference
increase is balanced with the lesser number of blocks to be used. The optimum
block size was checked with simulations which indicated the same value for BJ
and a value of 2100 for BK, with 0.04% less misses.

Finally, in Fig. 4 we study the cache behavior as a function of the cache
parameters. Log Cs axis stands for the logarithm base two of Cs measured in
Kw. There is an increase of the number of misses when the block size is greater

0

2

4

6

8

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

x 10
7

Log Cs

Log Ls

M

is
se

s
Fig. 4. Number of misses for a M = N = 5000 sparse matrix with pn = 0.02 and
H = 100 using a block BJ = 22, BK = 700 as a function of Cs and Ls

than Cs. Besides this value is always much greater for small line sizes (Ls ≤ 8
words). The optimum line size turns out to be 32 when the cache size is greater
than or similar to that of the block. This means a balance between the spatial
locality exploitation in the access to WB in the inner loop of the algorithm and
the self interference probability. As Cs grows, so does the optimum line size due
to the reduction in the self and cross interference probabilities.

5 Conclusions

The proposed model may be parameterized and considers matrices with an uni-
form distribution. It significantly extends the previous models in the literature
as it incorporates the three possible types of misses (intrinsic misses, self and
cross interferences) in the cache and it takes into account the propagation of
data between successive loops of the code (reusability). Besides the modeled
code size is noticeably greater than those used in most previous works and their
predictions are highly reliable. An effort has been done to structure the model
in algorithms and formulae related to typical access patterns so that they can
be reused when studying other codes.

The time required by our probabilistic model to get the miss predictions
is much smaller than that of the simulations, being this difference larger the
larger the dimensions and/or sparsity degree of the considered sparse matrix. For
example, the time required to generate the trace corresponding to the product
of a matrix with M = N = 1500 and 125K entries with a block size (BJ = 10,
BK = 500) by a matrix of the same size (almost 246M references) and process it
with dineroIII simulating a 16Kw cache with a line size of 8 words was around 20
minutes on a 433 MHz DEC Alpha processor, while our model required between
0.1 and 0.2 seconds.

As for the time required to obtain the best block size for a given matrix and
cache, the time required to do one simulation for each possible pair (BJ, BK)

in Fig. 2 would be around 54.5 hours on this machine. Anyway, as different
locations of the vectors in memory generate different numbers of misses, some
other simulations would be needed to get an average for each pair. On the other
hand our model required only 350.5 seconds.

As shown in Sect. 4, it is possible to analyze the behavior of the number of
misses with respect to the basic characteristics of the cache (its size and its line
size), the block dimensions and the features of the matrix. Besides the behavior
of each vector may be studied in a separate manner.

References

1. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., H. van der Vorst, H.: Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods. SIAM Press (1994).

2. Fraguela, B.B.: Cache Misses Prediction in Sparse Matrices Computations. Tech-
nical Report UDC-DES-1997/1. Departamento de Electrónica e Sistemas da Uni-
verdade da Coruña (1997).

3. Fraguela, B.B, Doallo, R., Zapata, E.L.: Modeling Set Associative Caches Behav-
ior for Irregular Computations. To appear in Proc. ACM Sigmetrics/Performance
Joint Int’l. Conf. on Measurement and Modeling of Computer Systems, Madison,
Wisconsin, (1998).

4. Lebeck, A.R., Wood, D.A.: Cache Profiling and the SPEC Benchmarks: A Case
Study. IEEE Computer, 27(10) (1994) 15–26.

5. Navarro, J.J., Garćıa, E., Larriba-Pey, J.L., Juan, T.: Block Algorithms for Sparse
Matrix Computations on High Performance Workstations. Proc. ACM Int’l. Conf.
on Supercomputing (ICS’96) (1996) 301–309.

6. Temam, O., Jalby, W.: Characterizing the Behaviour of Sparse Algorithms on
Caches. Proc. IEEE Int’l. Conf. on Supercomputing (ICS’92) (1992) 578–587.

7. Uhlig, R.A, Mudge, T.N.: Trace-Driven Memory Simulation: A Survey. ACM Com-
puting Surveys 29 (1997) 128–170.

