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Abstract

A probabilistic model to estimate the number of misses
on a set associative cache with an LRU replacement algo-
rithmisintroduced. Such type of modeling has been done
by our group in previous works for sparse matrices with an
uniform distribution of the non zero elements. In this paper
we present new resultsfocusing in different types of distribu-
tiqnsthat usually appear in_somewell-known real matrices Figure 1. CRY10000 matrix, belonging to the
suites, such as Harwell-Boeing or NEP. NEP collection, and detail of the band

1. Introduction

A large number of scientific applications work with

igﬁ{;g em(z)aftr:lcoe: ztg:z Izlfr::zésmgt”ecnizx_th .?hV:SrZ I%V;tfiire_formance for sparse codes and thgir results are quite limited.
are stored in compressed formats [2] in order to reduce the].ctor. example, [10] models the self mterferencg misses on the

. -indirectly accessed vector of the sparse matrix-vector prod-
operations and memory needed. These formats generate Irl]ct on a direct-mapped cache, and only for a completel
r%%ular patterrr:s of rzfergnccer]s o m;emorydue ;O rt]he indiremuniform distribution of the entri'es Our Z\pproach consid-y
addressing, thus reducing the performance of the memory : . o ) L
hierarchy and making hard to analyze the cache behaviour.ﬁrssin(;a;hl_e;dv :tahp?anc:rrr?tlat;?;ylggrihIr::ir?(ljzteaﬁgs ii?cs)(;(zig\ljlrtl)t/

In this paper a general model to study cache behaviour

. ) all the kinds of misses on all of the data structures. The
under such kind of workloads, presented in [6] for sparse : S
i ; : e set of matrices we consider in this work are banded square
matrices with a completely uniform distribution of the en-

. . . g matrices where the entries are uniformly and indepently dis-
tries, is applied to a classic algebra kernel such as sparse . : . .
. ; . ributed along the diagonals of the band, there being differ-
matrix-vector product using real matrices from the Harwell- " A .
. . : . ent densities of entries in the diagonals. An example of the
Boeing [4] and NEP [1] collections. Trace driven simula- . : . oL
X C type of matrices we are talking about is shown in Figure 1.
tions are a common method for the estimation of code per-

formance. Another usual approach is the use of models that
derive their input parameters from traces [3], [7], [9]. Prob-  Basic model concepts and expressions are introduced in
abilistic models reduce estimation times and provide morethe next section. The modeling of the sparse matrix-vector
flexibility for the parametric study of the cache. There are product is developed in Section 3, and its extension to sev-
few previous works on this type of modeling of cache per- eral loop orderings in the sparse matrix-dense matrix prod-
*This work was supported by the Comision InterministerialQiencia uctis fgrther-explalned In Section 4 Th? validation of the.
y Tecnologa (CICYT) under project TIC96-1125, Xunta de Galicia under mOd_el IS Ca.med out by means of simulations on real matri-
Project XUGA20605B96 ces in Section 5. Finally, Section 6 concludes the paper.




2. Modd basics Cs | Cache size in words

Ls | Line size in words

K | Associativity

Ng | Number of cache set€s/(Ls - K))

Npz | Number of entries of the sparse matrix
N | Dimension of the sparse matrix

In our model there are two kinds of misses: intrinsic
misses, which are those that take place the first time a mem-
ory block corresponding to a cache line is accessed, and in-
terference misses, which are misses on lines that have been .
replaced from the cache due to the interferences generated W_ | Bandwitdh :
by the accesses to other lines. When these lines belong to |1 | Number of columns of the dense marix
the same program vector as the considered one, they pro- | @i | Probability thata position in diagonabf
duce a self interference, while when they belong to another the sparse matrix contains an entry
vectors, cross interferences are generated.

On the other hand, in order to produce an interference

Table 1. Notation used

miss on a given line in & -way asssociative cache with
an LRU replacement algorithm, which is the one our model DO =1, N
considers, at leask” different lines mapped to the cache REG = 0
set where this line resides must be accessed between two DO J=R(1), R(1+1)-1
consecutive accesses to it. Notice that wién= 1 the REG = REG + A(J) * X(C(J))
behavior is that of direct mapped caches. ENDDO
This means that the number of misses on any vector can () = REG
be estimated by knowing for each line of this vector the ENDDO
number of different lines mapped to its cache set that are

referenced between consecutive accesses to this line. We

formalize this idea by means of the area vector. Given a Figure 2. Sparse matrix-vector product
vectorV, we define the area vectdf = SvyySvi ... Svi,

whereSyy is the ratio of sets that have receiv&Bdor more

lines of vecto, while Sy;, 0 < i < K, is the ratio of sets ~ VECtors, as

that have received& — i lines. This means thaly; is the K K—j

ratio of cache sets that require accessesrtew different (Sul Sv)o = 2 (Suj 2o’ SW) )
lines to replace all the lines they contained when the access (SuuSy); = Z;{:, SuiSvik+i-j) 0<i<K

toV started.

General expressions may be developed to calculate thgle
area vector corresponding to a given access pattern. For
example, the area vectSg(n) for a sequential access o
consecutive memory words is

From now on the symbal will be used to denote the
ctor union operation. This method makes no assumptions
on the relative positions of the program vectors in memory,
as it is based in the addition as independent probabilities of
the area ratios.

Sy (n) = Table 1 summarizes the input parameters for the model.
Sek—11)-1)(n
Ssi(n) =00

(l = 1)

) - () 3. Modeling the Sparse Matrix-Vector Product
<i<K-|l|] -1,K—-|l]<i<K
The code for this algebra kernel is shown in Figure 2.

wherel = (n + Ls — 1)/(LsNk) is the average number The sparse matrix is stored in Compressed Row Storage
of lines that are mapped to each setl It K thenSg, = (CRS) format [2]: A contains the matrix entrie€; stores
1,S8s = 0,0 <i < K, as all of the sets receive an average the column of each entry, amRipoints the location if\ and
of K or more lines. The terniis + 1 added ton stands for ~ Cwhere a new row of the sparse matrix starts. These three
the average extra words brought to the cache in the first andsectors and, the destination vector of the product, exhibit
last lines of the access. flawless locality due to their sequential access. There are no

The area vectors corresponding to all of the vectors self interferences and very few misses due to cross interfer-
accessed between consecutive references to a line of &nces, as only a few memory positions are referenced be-
given vector must be composed to get the miss probabil-tween consecutive accesses to any of these vectors. There-
ity for these references. Given two area vectSis = fore it is a good approach to consider that there are only in-
SwSut ---Sux andSy = SwSwvi -..Svi corresponding  trinsic misses on them. Anyway, our model considers these
to the accesses to vectddandV, we define the union area  cross interferences, although their calculation will not be
vectorSy U Sy, which includes the lines belonging to both included here due to space limitations.



d4d3dpdy i - Nnz/N elements of vector8 andC (see general expres-
sions in Section 2). On the other haRgx (4, 7) is the area
vector corresponding to the self interferences vextgen-
erated during the process between révasd;. In order to
calculate this vector it must be taken into account that there
are Nr(j) = |{—%] lines of vectorX to the right of the

one considered that are mapped to the same cache set and
may be accessed during the process of the rows betiveen
andj, being their access probabilities

j—INgLs—1
Figure 3. Probabilities that there is at least Pang (i,7) =1 [ 01— ps),1=1,... ,Nr(j) (5)
one entry in each of the W + Lg— 1 rows of k=max{1,i—INx Ls}

the band that cross Ls = 2 given consecutive

columns, being W — 4 and otherV (i) = [¥4z=2= | lines to the left whose ac-

cess probabilitie®, ;. (7, ) can be calculated in a similar
way to expression (5).
As theNg(j)+N_(¢) lines that are mapped to the consid-
On the other hand, vectaX is indirectly addressed ered cache set have different access probabilities, we cannot
trough arrayC, giving place to an irregular access pattern. apply the binomial distribution to calculate the associated
The number of misses on this vector is estimated calculatingarea vector, as it was the case in a band with an uniform
the average miss probability for each line accessed duringdistribution of the non zero elements [6]. We have followed
the dot product of a row of the sparse matrix by this vector. the approach of calculating the average number of lines to
The model only takes into account the first access to eachbe accessed(i, j), which is equal to the sum of the access
line in each dot product, as the remaining accesses have @robabilities of the considered lines:
very low probability of resulting in a miss, because they
refer to lines that have been accessed in the previous iter- _ Ne(s) )
ation of the inner loop. The access probabilities to a line L(i,5) = Y Pane(i,5) + Y, Puni(i,j)  (6)
of vectorX corresponding to th& + Ls — 1 rows of the =1 =1
matrix that contain entries whose column correspond to this  From this average value the corresponding area vector
line are calculated from the densities of the diagonals thatPsenx(i,j) is calculated as's(L (i, j) LsNk). The final ex-
cross each row in a set & consecutive columns. Figure 3 pression of the number of misses on vectds
shows the case for a band withh = 4 and a line size of two

N (i

words. These probabilities are called ps, . ..pwir1, N Wikst '
in increasing order of the row they are associated to. My = . > pi(l = Pix(4)) (7)
The hit probability in the first access to a given line of i=1

vectorX during the dot product of thg-th row within the ) ) )
band of the sparse matrix with the mentioned vector is cal-4 Modeling the Sparse Matrix-Dense Matrix
culated as: Product

j—1  j-1
. o This product has three possible orderings considering a
Pitx(7) =Y pi [] (1= px) (1~ Puix,(i,5)) (3) CRS stoprage scheme.llfis tl?’le variable that?alesignates thg
rows of the sparse and product matricgéss associated to
being Py x (i, ) the area vector corresponding to the inter- the columns of the product and the dense matriceskand
ferences genera‘[ed during the process between rand refers to the dimension common to the sparse and the dense
7, which is calculated as matrices, the three possibilities areK, | KJ andl JK, be-
ing the first variable the one corresponding to the outer loop.
Once the sparse matrix-vector product has been intro-
Prisx (1,7) = Pseitx(i,7) U Peross (7 — 1) 4) duced in the previous section, the modeling extension to the
J1 K ordering is direct, as it consists in making a product
where Pgoss x(2) IS the area vector corresponding to the of this type for each column in the dense matrix. The only
cross interferences generated durindot products. Is is  difference is that the first access to a line of vecfgr€ and
calculated as the union of the area vectors correponding taR during the process of each column but the first one does
the sequential accesses ®lements of vectol®andDand not result in a sure miss. Then we must consider separate

i=1 k=i+1



[ Matrix [ Order[ N, | W [K | o [ Dev. | model and an advantage over the simulations, consisting in
bcsstk03 112 640 15| 1 30.49]| -2.40 its independence of the initial address of the data structures.
bcsstk03 112 640 | 15| 2| 1.15| -0.16 On the other hand the model has several other advantages
bcsstk03 112 640 15| 4| 0.00] -0.12 over the use of traces such as giving the number of misses
bcsstkO6 | 420 | 7860| 93| 1| 3.09| 1.48 for each vector and matrix or requiring much shorter CPU
besstk06 | 420 | 7860 93| 2| 0.77) 1.03 times. Besides the processing time and the space in disk
besstk06 | 420 | 7860 93| 4| 0.20) 101 of the trace grow linearly with the number of accesses so
besstk10 | 1086 | 22070| 75| 1] 3.90| 0.83 it is proportional toN,,;, while the model execution time is
Egii:'ﬁg 1822 258;8 ;g i (1)2513 '8'32’ rather independent of the input parameters.

- — We think the type of modeling we are introducing can be
ggigggg 18888 jgggg ;81 ; g:éé _é;gi applied in two differe_nt direction; for improving cache per-
cry10000 | 10000 | 49699 | 201 | 4 | 0.68 | -0.01 formance: introduction of possible architectural cache pa-

rameters modifications, and a framework to be inserted in

Table 2. Deviation of the model for the sparse future compilation tools dealing with irregular access pat-

matrix-vector product of some example ma- terns.
trices on a 1Kw cache with Lg=4
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