
Cache Probabilistic Modeling for Basic Sparse Algebra Kernels involving
Matrices with a Non Uniform Distribution �

Ramón Doallo, Basilio B. Fraguela
Dept. de Electrónica e Sistemas

Universidade da Coruña
15071 A Coruña (SPAIN)fdoallo,basiliog@udc.es

Emilio L. Zapata
Dept. de Arquitectura de Computadores

Universidad de Málaga
29080 Málaga (SPAIN)

ezapata@ac.uma.es

Abstract

A probabilistic model to estimate the number of misses
on a set associative cache with an LRU replacement algo-
rithm is introduced. Such type of modeling has been done
by our group in previous works for sparse matrices with an
uniform distribution of the non zero elements. In this paper
we present new results focusing in different types of distribu-
tions that usually appear in some well-known real matrices
suites, such as Harwell-Boeing or NEP.

1. Introduction

A large number of scientific applications work with
sparse matrices, this is to say, matrices with a very low per-
centage of non zero elements or entries. These matrices
are stored in compressed formats [2] in order to reduce the
operations and memory needed. These formats generate ir-
regular patterns of references to memory due to the indirect
addressing, thus reducing the performance of the memory
hierarchy and making hard to analyze the cache behaviour.

In this paper a general model to study cache behaviour
under such kind of workloads, presented in [6] for sparse
matrices with a completely uniform distribution of the en-
tries, is applied to a classic algebra kernel such as sparse
matrix-vector product using real matrices from the Harwell-
Boeing [4] and NEP [1] collections. Trace driven simula-
tions are a common method for the estimation of code per-
formance. Another usual approach is the use of models that
derive their input parameters from traces [3], [7], [9]. Prob-
abilistic models reduce estimation times and provide more
flexibility for the parametric study of the cache. There are
few previous works on this type of modeling of cache per-�This work was supported by the Comisión Interministerial de Ciencia
y Tecnoloǵia (CICYT) under project TIC96-1125, Xunta de Galicia under
Project XUGA20605B96

p ppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp ppppppppppppppppppppp ppp ppp pppppppp pp ppppp ppppp pppp ppppp ppppp pppp ppppp pp ppp pp pp ppp p pp ppp pp pp ppp pp pp ppp p pp ppp pp pp ppp pp pp ppp p pp ppp pp pp ppp pp pp ppp p pp ppp pp pp ppp pp pp ppp p pp ppp pp pp pp ppp pp pp pp ppp pp ppp pp pp pp ppp pp ppp
Figure 1. CRY10000 matrix, belonging to the
NEP collection, and detail of the band

formance for sparse codes and their results are quite limited.
For example, [10] models the self interference misses on the
indirectly accessed vector of the sparse matrix-vector prod-
uct on a direct-mapped cache, and only for a completely
uniform distribution of the entries. Our approach consid-
ers caches with an arbitrary size, line size and associativity
using a LRU replacement algorithm and takes into account
all the kinds of misses on all of the data structures. The
set of matrices we consider in this work are banded square
matrices where the entries are uniformly and indepently dis-
tributed along the diagonals of the band, there being differ-
ent densities of entries in the diagonals. An example of the
type of matrices we are talking about is shown in Figure 1.

Basic model concepts and expressions are introduced in
the next section. The modeling of the sparse matrix-vector
product is developed in Section 3, and its extension to sev-
eral loop orderings in the sparse matrix-dense matrix prod-
uct is further explained in Section 4. The validation of the
model is carried out by means of simulations on real matri-
ces in Section 5. Finally, Section 6 concludes the paper.

2. Model basics

In our model there are two kinds of misses: intrinsic
misses, which are those that take place the first time a mem-
ory block corresponding to a cache line is accessed, and in-
terference misses, which are misses on lines that have been
replaced from the cache due to the interferences generated
by the accesses to other lines. When these lines belong to
the same program vector as the considered one, they pro-
duce a self interference, while when they belong to another
vectors, cross interferences are generated.

On the other hand, in order to produce an interference
miss on a given line in aK-way asssociative cache with
an LRU replacement algorithm, which is the one our model
considers, at leastK different lines mapped to the cache
set where this line resides must be accessed between two
consecutive accesses to it. Notice that whenK = 1 the
behavior is that of direct mapped caches.

This means that the number of misses on any vector can
be estimated by knowing for each line of this vector the
number of different lines mapped to its cache set that are
referenced between consecutive accesses to this line. We
formalize this idea by means of the area vector. Given a
vectorV, we define the area vectorSV = SV0SV1 : : : SVK ,
whereSV0 is the ratio of sets that have receivedK or more
lines of vectorV, whileSVi; 0 < i � K, is the ratio of sets
that have receivedK � i lines. This means thatSVi is the
ratio of cache sets that require accesses toi new different
lines to replace all the lines they contained when the access
to V started.

General expressions may be developed to calculate the
area vector corresponding to a given access pattern. For
example, the area vectorSs(n) for a sequential access ton
consecutive memory words isSs(K�blc)(n) = 1� (l � blc)Ss(K�blc�1)(n) = l� blcSsi(n) = 0 0 � i < K � blc � 1;K � blc < i � K (1)

wherel = (n + Ls � 1)=(LsNK) is the average number
of lines that are mapped to each set. Ifl � K thenSs0 =1; Ssi = 0; 0 < i � K, as all of the sets receive an average
of K or more lines. The termLs + 1 added ton stands for
the average extra words brought to the cache in the first and
last lines of the access.

The area vectors corresponding to all of the vectors
accessed between consecutive references to a line of a
given vector must be composed to get the miss probabil-
ity for these references. Given two area vectorsSU =SU0SU1 : : : SUK andSV = SV0SV1 : : : SVK corresponding
to the accesses to vectorsU andV, we define the union area
vectorSU [SV, which includes the lines belonging to both

Cs Cache size in wordsLs Line size in wordsK AssociativityNK Number of cache sets(Cs=(Ls �K))Nnz Number of entries of the sparse matrixN Dimension of the sparse matrixW BandwitdhH Number of columns of the dense matrixdi Probability that a position in diagonali of
the sparse matrix contains an entry

Table 1. Notation used

DO I=1, N
REG = 0
DO J=R(I), R(I+1)-1
REG = REG + A(J) * X(C(J))

ENDDO
D(I) = REG

ENDDO

Figure 2. Sparse matrix-vector product

vectors, as(SU [SV)0 =PKj=0 �SUjPK�ji=0 SVi�(SU [SV)i =PKj=i SUjSV(K+i�j) 0 < i � K (2)

From now on the symbol[will be used to denote the
vector union operation. This method makes no assumptions
on the relative positions of the program vectors in memory,
as it is based in the addition as independent probabilities of
the area ratios.

Table 1 summarizes the input parameters for the model.

3. Modeling the Sparse Matrix-Vector Product

The code for this algebra kernel is shown in Figure 2.
The sparse matrix is stored in Compressed Row Storage
(CRS) format [2]: A contains the matrix entries,C stores
the column of each entry, andR points the location inA and
C where a new row of the sparse matrix starts. These three
vectors andD, the destination vector of the product, exhibit
flawless locality due to their sequential access. There are no
self interferences and very few misses due to cross interfer-
ences, as only a few memory positions are referenced be-
tween consecutive accesses to any of these vectors. There-
fore it is a good approach to consider that there are only in-
trinsic misses on them. Anyway, our model considers these
cross interferences, although their calculation will not be
included here due to space limitations.

p=d +d -d d
2p=d +d -d d
3
4p=d
5

1

d4d3d2d1

1p=d
1
2
3
4

2
3
4

p=d +d -d d2
3
4

1
2
3

Figure 3. Probabilities that there is at least
one entry in each of the W + Ls � 1 rows of
the band that cross Ls = 2 given consecutive
columns, being W = 4
On the other hand, vectorX is indirectly addressed

trough arrayC, giving place to an irregular access pattern.
The number of misses on this vector is estimated calculating
the average miss probability for each line accessed during
the dot product of a row of the sparse matrix by this vector.
The model only takes into account the first access to each
line in each dot product, as the remaining accesses have a
very low probability of resulting in a miss, because they
refer to lines that have been accessed in the previous iter-
ation of the inner loop. The access probabilities to a line
of vectorX corresponding to theW + Ls � 1 rows of the
matrix that contain entries whose column correspond to this
line are calculated from the densities of the diagonals that
cross each row in a set ofLs consecutive columns. Figure 3
shows the case for a band withW = 4 and a line size of two
words. These probabilities are calledp1; p2; : : : pW+Ls�1,
in increasing order of the row they are associated to.

The hit probability in the first access to a given line of
vectorX during the dot product of thej-th row within the
band of the sparse matrix with the mentioned vector is cal-
culated as:Phit X(j) = j�1Xi=1 pi j�1Yk=i+1(1� pk) (1� Pintf X0(i; j)) (3)

beingPintf X (i; j) the area vector corresponding to the inter-
ferences generated during the process between rowsi andj, which is calculated asPintf X (i; j) = Pself X(i; j) [Pcross X(j � i) (4)

wherePcross X(i) is the area vector corresponding to the
cross interferences generated duringi dot products. Is is
calculated as the union of the area vectors correponding to
the sequential accesses toi elements of vectorsR andD and

i �Nnz=N elements of vectorsA andC (see general expres-
sions in Section 2). On the other handPself X(i; j) is the area
vector corresponding to the self interferences vectorX gen-
erated during the process between rowsi andj. In order to
calculate this vector it must be taken into account that there
areNR(j) = b j�2NKLs

c lines of vectorX to the right of the
one considered that are mapped to the same cache set and
may be accessed during the process of the rows betweeni
andj, being their access probabilitiesPRlNK (i; j) = 1�j�lNKLs�1Yk=maxf1;i�lNKLsg(1� pk); l = 1; : : : ; NR(j) (5)

and otherNL(i) = bW+Ls�2�iNKLs
c lines to the left whose ac-

cess probabilitiesPLlNK (i; j) can be calculated in a similar
way to expression (5).

As theNR(j)+NL(i) lines that are mapped to the consid-
ered cache set have different access probabilities, we cannot
apply the binomial distribution to calculate the associated
area vector, as it was the case in a band with an uniform
distribution of the non zero elements [6]. We have followed
the approach of calculating the average number of lines to
be accessedL(i; j), which is equal to the sum of the access
probabilities of the considered lines:L(i; j) = NR(j)Xl=1 PRlNK (i; j) + NL(i)Xl=1 PLlNK (i; j) (6)

From this average value the corresponding area vectorPself X(i; j) is calculated asSs(L(i; j)LsNK). The final ex-
pression of the number of misses on vectorX isMX = NLs

W+Ls�1Xj=1 pj(1� Phit X(j)) (7)

4 Modeling the Sparse Matrix-Dense Matrix
Product

This product has three possible orderings considering a
CRS storage scheme. IfI is the variable that designates the
rows of the sparse and product matrices,J is associated to
the columns of the product and the dense matrices andK
refers to the dimension common to the sparse and the dense
matrices, the three possibilities areJIK, IKJ andIJK, be-
ing the first variable the one corresponding to the outer loop.

Once the sparse matrix-vector product has been intro-
duced in the previous section, the modeling extension to the
JIK ordering is direct, as it consists in making a product
of this type for each column in the dense matrix. The only
difference is that the first access to a line of vectorsA, C and
R during the process of each column but the first one does
not result in a sure miss. Then we must consider separate

Matrix Order Nnz W K � Dev.

bcsstk03 112 640 15 1 30.49 -2.40
bcsstk03 112 640 15 2 1.15 -0.16
bcsstk03 112 640 15 4 0.00 -0.12
bcsstk06 420 7860 93 1 3.09 1.48
bcsstk06 420 7860 93 2 0.77 1.03
bcsstk06 420 7860 93 4 0.20 1.01
bcsstk10 1086 22070 75 1 3.90 0.83
bcsstk10 1086 22070 75 2 1.31 -0.44
bcsstk10 1086 22070 75 4 0.55 -0.48
cry10000 10000 49699 201 1 4.11 1.45
cry10000 10000 49699 201 2 0.69 -0.01
cry10000 10000 49699 201 4 0.68 -0.01

Table 2. Deviation of the model for the sparse
matrix-vector product of some example ma-
trices on a 1Kw cache with Ls = 4

hit probabilities for this three vectors. Due to space limita-
tions we do not explain here the modeling for theIKJ and
IJK orderings (see [5] for a more detailed explanation and
validation results).

5. Validation of the model

The code for this kernel was rewritten replacing the ac-
cesses to memory by functions that write the referenced ad-
dress to a trace file which is later processed by dineroIII, one
of the WARTS tools [8]. Table 2 shows the average errors
of the model using some matrices of the Harwell-Boeing
and NEP collections with an approximate uniform distri-
bution of the entries within each diagonal of their bands.Cs is expressed in Kwords andLs in words. For each ma-
trix and cache 50 simulations were performed changing the
initial addresses of the involved data structures. The� col-
umn gives the average deviation of the number of measured
misses in the simulations as a percentage of the average
number of measured misses, while the Dev column gives
the deviation of the model prediction with respect to this
average measured value.

The table shows that the model is not so sensitive to the
variation in the starting addresses of the vectors and matri-
ces as the simulations, and although there is a certain devia-
tion with respect to the real number of misses, we think that
it is acceptable.

6. Conclusions

Cache behavior estimation by means of a probabilistic
modeling has been done for a significant set of real matrices.
The validation has shown both a reasonable accuracy of the

model and an advantage over the simulations, consisting in
its independence of the initial address of the data structures.

On the other hand the model has several other advantages
over the use of traces such as giving the number of misses
for each vector and matrix or requiring much shorter CPU
times. Besides the processing time and the space in disk
of the trace grow linearly with the number of accesses so
it is proportional toNnz, while the model execution time is
rather independent of the input parameters.

We think the type of modeling we are introducing can be
applied in two different directions for improving cache per-
formance: introduction of possible architectural cache pa-
rameters modifications, and a framework to be inserted in
future compilation tools dealing with irregular access pat-
terns.

References

[1] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix
collection for non-Hermitian eigenvalue problems, release
1.0, Sep 1996.

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der
Vorst. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM Press, 1994.

[3] D. Buck and M. Singhal. An analytic study of caching in
computer systems.J. of Parallel and Distributed Computing,
32(2):205–214, Feb 1996.

[4] I. S. Duff, R. G. Grimes, and J. G. Lewis. User’s guide
for the harwell-boeing sparse matrix collection. Technical
report, CERFACS, Oct 1992.

[5] B. B. Fraguela. Cache miss prediction in sparse matrix com-
putations. Technical report, Departamento de Electrónica e
Sistemas da Univerdade da Coruña, April 1997.

[6] B. B. Fraguela, R. Doallo, and E. L. Zapata. Modeling set
associative caches behaviour for irregular computations.In
Proc. ACM SIGMETRICS, June 1998. to appear.

[7] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N.
Mudge. An analytical model for designing memory hier-
archies. IEEE Transactions on Computers, 45(10):1180–
1194, Oct 1996.

[8] A. R. Lebeck and D. A. Wood. Cache profiling and the spec
benchmarks: A case study.IEEE Computer, 27(10):15–26,
Oct 1994.

[9] R. W. Quong. Expected i-cache miss rates via the gap model.
In Proc. 21st Int’l. Symp. on Computer Architecture (IS-
CA’94), pages 372–383, April 1994.

[10] O. Temam and W. Jalby. Characterizing the behaviour of
sparse algorithms on caches. InProc. IEEE Int’l. Conf. on
Supercomputing (ICS’92), pages 578–587, Nov 1992.

