Task-parallel versus data-parallel library-based
programming in multicore systems

Diego Andrade, Basilio B. Fraguela James Brodman and David Padua
University of A Corufia, Spain University of lllinois at Urbana-Champaign, USA
{dcanosa,basilig@udc.es {brodman2,padda@uiuc.edu

Abstract—Multicore machines are becoming common. There ZPL [8], X10 [9], and others. The historical experience ie th
are many languages, language extensions and libraries de¢ed attempts to implant new languages with a focus on paratbelis
to improve the programmability and performance of these ., hlad with the large base of existing legacy codes, hagmad

machines. In this paper we compare two libraries, that face he h think that d . |
problem of programming multicores from two different perspec- many researchers thin al macros, and more in general,

tives, task parallelism and data parallelism. The Intel Threading libraries, are a better vehicle to bring parallelism to rsei@am
Building Blocks (TBB) library separates logical task pattens, computing. This way, libraries such as POOMA [10] or

which are easy to understand, from physical threads, and det POET [11] have explored this possibility. More recentlye th
gates the scheduling of the tasks to the system. On the otheaid, Hierarchically Tiled Array (HTA) library [12], [13] faciliates

Hierarchically Tiled Arrays (HTAs) are data structures that th it f dat el i 2bb
facilitate locality and parallelism of array intensive computations 1€ Writing of data-parallel programs, putting a speciapan

with a block-recursive nature following a data-parallel paradigm. ~ Sis on the concept of tiling [14] both to express locality and
Our comparison considers both ease of programming and the parallelism.

performance obtained using both approaches. In our experiece, With the arrival of multicores to all computing systems
HTA programs tend to be smaller or as long as TBB programs, oy embedded ones to supercomputers, the relevance of
while performance of both approaches is very similar. . .
parallel programming for these systems is enormous. As a

result there are large efforts both from industry and acaaem
to improve the productivity in the development of parallel

Processor manufacturers are building systems with an otedes as well as the resulting performance. In this context
creasing number of cores. These cores usually share therhighe have found of interest a comparison between task and data
levels of the memory hierarchy. Many language extensioparallelism. Our aim is to explore in the scope of multicores
and libraries have been developed to ease the programmtimg impact of following either approach on productivity and
of this kind of systems. Some approach the problem from tiperformance, and to which point the additional restriction
point of view of task parallelism. The key notion is that thef data-parallelism may discourage its usage to paradleliz
programmer has to divide the work into several tasks whieh azertain problems. We have chosen as representatives of both
mapped automatically onto physical threads that are s¢ébeéduapproaches the Intel TBB library [2], which enables writing
by the system. Task-parallelism can be implemented usipgpgrams based on task parallelism, and the Hierarchically
libraries such a®0SIX Threads [1] which provide minimal Tiled Array (HTA) library [12], [13], which facilitates the
functionality and for this reason some consider this apgroaimplementation of data parallel programs. As far as we know,
the assembly language of parallelism. Recently, the Intle HTA library is the most up-to-date library specifically
Thread Building Blocks (TBB) library [2] has appeared, whic designed following a data-parallel paradigm with a good
allows expressing parallelism using a higher level of a&gstr support for multicore systems. Among the large variety of
tion. A third task-parallel API iSQpenMP [3] which is mainly approaches that allow task-parallel programming for these
based on simple compiler directives used to guide mostly thgstems, the TBB library is the one that most closely resembl
parallelization of regular loops although the recentlygmeed the HTA in terms of level of abstraction and interface prexdd
extension [4] with a task-enqueuing mechanism extends itsthe programmer, thus enabling a fair comparison of both
scope of application. The task of writing parallel programapproaches. Another reason for choosing TBB is that, simee t
can also be faced from the point of view of data parallelisfHTA library for shared memory is implemented on top of the
where tasks perform the same operation on different pietcesT®B library, performance differences between both liteari
data. Thus, data-based parallelism is a subset of conttakkr can be more clearly attributed to the specific way in which
parallelism, as in task-based parallelism tasks can partbe they lead programmers to write their applications.
same or different operations on the same or different pieces This paper is organized as follows. Sections Il and llI
data. Parallel array computation has been widely used #iece summarize the main features of the HTA and TBB libraries,
appearance of the first array and vector computers [5] , pdayirespectively. In Section IV a high-level description of the
a key role in the expression of parallelism in many languagakyorithms used for the comparison is presented and the
such as High Performance Fortran [6] and its variants [dimplementation both with TBB and HTAs is discussed briefly.

|I. INTRODUCTION

[T 11 [T 1 [T 1] element2] within tile (1). If no tile is selected, thf operator
is used to access the HTA as a conventional array.
Tuple<2>::Seq tiling = (Tuple<1>(4),Tuple<1>(3)) ; HTAs facilitate parallel programming by providing numer-
HTA<int,1> h = HTA<int,1>:alloc(L, tiling, ROW); ous methods that operate in parallel across tiles. The main
constructs are:
« hmap: It applies a function to each element of the HTA
or corresponding elements of two or more conformable

Fig. 1. Creation of a HTA

Section V describes the main differences between the TBB and HTAS. _ o .
HTAs libraries. We will illustrate how data and task parkdi ~ * reduce: It performs a reduction, that is, it applies oper-
face the same problems using different approaches. Se¢tion ~ ations on an HTA to produce an HTA of lesser rank.

compares quantitatively the codes written using both fibea ¢ scan: It computes a prefix operation across all the
and Section VII presents the conclusions. elements of an array. Letp be an associative oper-
ation with left identity element id. The parallel prefix

II. THE HTA LIBRARY of op on a sequencey,z1,...,2,—1 Will be another

.)] . sequenceyo, yi,- - -, Yn—1 Whereyy = id op zy and
The Hierarchically Tiled Array (HTA) [12], [13] is an array Yi = Yi1 oop xlz ! 0 0

data type which can be partitioned into tiles. Each tile can, mapReduce: performs a reduction on the results of a

be either a conventional array or a lower level HTA, thus given operation applied to each element of an statement.
HTA is a recursive data type. HTAs adopt tiling [14] as a |t is a mixture of anhmap and areduce construct
first class construct for array-based computations. Tigeh following the principles of the map-reduce [13]

been used to express data parallelism [8], [6], [15], [16] an The four constructs receive at least one argument, a functio

to improve the locality of the a(l:cgssesd_[ljgj. '_I'hus F(;TAébject (functor) whoseperator() method encapsulates the
€mpower programmers to CO'_“TO ata distribution an ﬂ&%eration to perform on a single tile of the object HTA. In the
granularity of computation explicitly through the speafion .;q¢ ofhmap, the function may accept additional HTAs as

of til_ing. This_ feature makes the library more ver§atile a_mﬂarameters that must be conformable, that is, have the same
provides maximal control to the programmer, allowing tlmlnti“ng structure as the HTA instance on which themp is

the tiling to achieve the best performance, as we will see ifvoked. The functor will handle in this case in each invimat

Section V1. Qf course, the t|||ﬂg_ used for the H_TAS can bﬁ tile from each one of the HTAs involved. In any case, the

actually obtained by an automatic method that tries to d"o%nctor handles a single tile per HTA in itsperator(), SO

the _beSt one; this is out of the_ scope of our work. that the indexing of the elements inside the operation atikel
Figure 1 shows the operations needed to create an he first position of a tile. Also, the operation on eacé id

with 3 tiles of 4 elements each. The variabieéling, defined performed in parallel, at least conceptually. Data-palistn

in line 1, specifies the number of elements or tiles for eagh onorceq by the fact the functors can only write in thestile
dimension and level of the HTA, from the bottom to th

_ _ : o Feceived in each single invocation or the predefined outputs
top of its hierarchy of tiles. Thealloc operation in the ot e gneration, such as in reductions. Thus, global data ou
second line creates the HTA. The number of levels of tiling {§ e gpecific tiles received in the invocation must be #ric
passed as the first parameteriol oc. The tiling structure is read-only. Unfortunately, C++ does not provide mechanisms
specified by the second parameter. The third parametertselgga; ajiow the library to preclude programmers from writing
the data layout, which can be row mayaoy), column major 4 giohal data outside the tiles in the functors that areiagpl
(COLUMN) or TILE, in which the elements within a tile shouldin parallel. If they do so, they are certainly not followirget
be stored by rows and in consecutive memory locations. TBﬁta-paraIIel structured approach promoted by HTAs.
layout across tiles is always row major. The data type and thep, interesting feature of HTAs, calleaverlapped tiling is
number of dimensions are template parameters of the Hdy 4pility to create and manage automatically shadow ostgho
class. N _ B ~ regions around each tile that contain a copy of the elemdnts o

While the tiling structure of an HTA is specified at creationeighboring tiles. This is particularly useful for stencildes,

time, it can be modified dynamically by adding or removingyhich compute new values based on their neighbors, as in the
partition lines the abstract lines that separate the tiles ig,qe ofa(i) = a(i — 1) +a(i + 1).

an HTA. This generates new tiles or merges existing onesrinally, it is interesting to notice that, in contrast to the
respectively, in a process known dgnamic partitioning Intel TBB library, which is restricted to shared memory, HTA

HTA indices are zero-based. Tiles or scglars of HTAs Caflipport shared, distributed and hybrid memory systems.
be selected using—Tuples. In this explanation the—Tuple

notation is substituted by a list of integdts y, . . .). HTAs can IIl. THEINTEL TBB LIBRARY

also be indexed usinganges of the formlow : step : high. The Intel Threading Building Blocks (TBB) [2] library
The list of integers and ranges can be enclosed by(jhewas developed by Intel for the programming of multithreaded
operator, which selects tiles, or by tHe operator, which applications. In this case, it is not necessary to use a @peci
selects scalar elements of the HTA. For exanigle)[2] yields type of data structure. However, the TBB library provides

of special types of containers which can be manipulated; dass avera

public:

concurrently. But this is not the native method to specify Toate PO ekesingocint>- range) cons{
parallelism, like in the HTA case. As mentioned above, thes for(It Jlil'i"??n'pbu??‘ﬂjiﬁipL?[?fi'?n",fu?fiIﬁi)), waon:
TBB library enables the implementation of multithreaded ’
task-parallel programs. It does not base the specificatfon o
parallelism on data operations that are inherently pdralle: constint n - 100000,
which is the HTA approach. Rather, parallelism is achieveds

.. 14 int main(int argc, char argv[]) {
by defining tasks that can be performed concurrently. Thes foa rawinpuin-2], oupuiny

raw_input[0] = O;

task scheduler then maps tasks to available hardware threadr rawinpuin =0

—

. . . 18 float+ paddedinput = raw input + 1;

The task scheduler distributes the tasks between the blaila 10 . & initaiization not showns/
R 20, task schedulerinit init (nThreads);
threads. When there are more threads available than tasks,2y ,
. . . 22 Average avg(paddgthput, output);
can split an existing task in several smaller tasks. 23 parallelfr (blockedsange<int>(0. N, 1000), avg)
. 25 return O;

A. TBB operations 26 }

The element-by-element operation, reduction, and scan
constructs are implemented in the TBB library using the
parallel_for, parallel_reduce andparallel_scan al-

gorithm templatesespectively. The TBB library also includes, o o diversity of parallel computation patterns. Thistise

the algorithm templateparallel do, which SUPPOItS UN- yoscrines them and highlights the key differences betwieen t

structured workloads where the loop limits are not known 8B and HTA implementations using some snippets of code
the beginning of the loop, anglipeline, which is used when '

there is a sequence of stages that can operate in parallel dh dAverage

data stream. This algorithm calculates, for each element in a vector,
The parallel for, parallel reduce and the average of the previous element, the next element and
parallel_scan algorithm templates accept two basiGtself and the result is the stored in an output vector. It can
parameters: aange defining loop limits, and a function pe parallelized by the TBB library using theirallel_for
object representing the body of the parallel loop. This ebjeconstruct. The TBB code that implements this algorithm is
overloads theoperator() method and defines the operatiohown in Figure 2. In this code, the first and the last elements
to be performed on the range assigned. of the array are special cases, since they don't have previou
The range is split recursively into subranges by the tagkd next elements, respectively. This is solved by adding
scheduler and mapped onto physical threads. The TBB libragléments at the beginning and the end of the array which are
provides standard ranges, such Wocked_range, Which filed with zeros as shown in lines 15-18 of the code. In line
expresses a linear range of values in terms of a lower boung, the task scheduler object is created and initializeth wit
an upper bound, and optionally, a grain size. The grain sig&eads. The task scheduler is the engine in charge of mappin
is a guide for the workload size per task. The value @fsks to physical threads and of the thread scheduling. $t mu
granularity affects the performance and load balance of thg injtialized before executing any TBB parallel constsuct
parallel operation. The first argument of thearallel_for in line 23 is a
The TBB library allows creating ad-hoc ranges. That isange which includes the whole vector. A grain sizel660
the user can define new range classes implementing spegiadvised in this case. The second argument is an object
policies to decide when and how to split, how to represept the classAver age which encapsulates the operation to
the range, etc. An example of usage of ad-hoc range will Bg executed by thearallel_for. This class is defined in
shown in Section IV-C. lines 1 thru 9. Theoperator() method in this class defines
Some additional features present in the TBB library affie operation that will be applied on each subrange. The low
a scalable and efficient memory allocator for multithreadeghq high values of the indexes for each subrange are directly
programs, mutual exclusion structures for explicit thregd- extracted from the range parameter using Hegin() and
chronization, support for atomic operations on primitivaal end() methods (see line 5).
types, and thread-aware timing utilities. The HTA implementation of this algorithm is shown in
IV. | MPLEMENTATION OF SOME ALGORITHMS Figur_e 3. The data structures are created in Iines_ 17-20. The
adding values are automatically generated and filled in HTA

The codes used in this comparison were taken from tﬁljgput thanks to overlapped tiling. Line 18 defines an object

chapter 1.1 of [2], whic_h contair_ls examples of parallel irr}hat describes the overlapping of tiles imput. The first
pledmentt)anons of tza:rg];orlt'Fhmsthu5|ng TE’BW? chose dthesei two arguments of the constructor specify that shadow region
codes ec?use ad € '”.‘Ie bl € experiments '\Il'vlglrse Ogeh*}ﬁ{ e size one in both the positive and negative directiors Th
were very few codes available written using » and &Y, nstructor allows a third optional argument to specify thire

1These codes are in public domain and the can be downloaded fr(ghe_ boqndary region bu”_t around the a'jray .is filled Y‘_’ith H';'rol
http://softwarecommunity.intel.com/articles/eng/238m which is default behavior when nothing is specified, or it

Fig. 2. TBB implementation of théveragealgorithm

1 typedef HTA<float,1> HTA_1;

2 #define T1(i) Tuplec1>(i); 1 for(int i=1; i<UH—1; ++) {

3 2 value t = (value)i / UH;

4 struct Average{ 3 Material Type m = SANDSTONE;

5 void operator () (HTAL input, HTA_1 output) const { 4 M[i] = 1.0/8;

6 for(int i = 0; i != input_.shape().size () [0]; ++i) 5 if(t <03f){

7 output [i] = (input_[i —1] + input [i] + input_[i+1]) = (1/3.0f); 6 m = WATER;

8 7 M[i] = 1.0/32;

9} 8 }else if((05<=1)&&(t <=0.7)){

10 9 m = SHALE;

11 const int N = 100000; 10 M[i] = 1.0/2;

12 static int nTiles = 4; 1}

13 12 Material [i] = m;

14 int main(int argc, chas argv[]) { 13

15 Traits::Default::init (argc,argv); i
16 (a) TBB version

17 Seq< Tuple<1> > tiling(T1(N / nTiles), T1(nTiles));
18 Overlap ol(T1(1), T1(1));

19 HTA_1 input = HTA_1::alloc(1, tiling , ol, NULL, ROW); 1 M[L0.3«UH] = 1.0/32;
20 HTA_1 output = HTA 1::alloc(1, tiling , NULL, ROW); 2 Material[1: 0.3<UH] = WATER;
21 ...k Initialization not showns/ 3
22 4 M[0.3%UH+1: 0.5<UH] = 1.0/8;
23 input. hmap(Average(), output); 5 Material[0.3xUH+1: 0.5«UH] = SANDSTONE;
24 6
25 return 0; 7 M[0.5%UH+1: 0.7«UH] = 1.0/2;
26 8 Material[0.5¢UH+1:0.7xUH] = SHALE;
9
10 M[0.7%UH+1:UH—1] = 1.0/8;
11 Material[0.%UH+1:UH—1] = SANDSTONE;

Fig. 3. HTA implementation of théveragealgorithm)
(b) HTA version

_ o)) Fig. 4. Terrain initialization in the Seismic program
is periodic, i.e., it replicates the values of the array oa th

opposite side. In line 19 this overlapping specificationgedi

to create an HTA withN values distributed imTi | es. Line elements. The creation and processing of that HTA is very

20 allocates the HTA where the result will be stored, whicbostly in the current implementation of the library and itlwi

has the same topology as the one used as input but with /e a negative impact on the performance, as we will see in

overlapped regions. the Evaluation, Section VI. The same problem is solved more
The hmap method is invoked in line 23. Its first argumentfficiently in the TBB version by applying the operator using

is the operation to perform on each tile of the HTAs. Thig range of the indexes to be used, which excludes the first and

operation,Aver age, is defined as &truct in lines 4-9. the last point of the dimension. The remaining parts of the

Hmap calls this operation for each tile of the HTA. Th@r code are sequential in both versions.

loop of line 7 iterates on the indexes of the elements in each

tile. C. Parallel Merge

B. Seismic This code merges two sorted sequences into an output sorted

. . - . , sequence. The algorithm operates recursively as follows:
This code performs a simple seismic wave simulation (wave

propagation) which sets the impulse from the source of thel) If the sequences are shorter than a given threshold,

disturbance, does the two most time consuming computations they are merged sequentially. Otherwise, Steps 2-5 are

of update stress and velocity, and finally cleans up the edfges performed.

the simulation. This way, the algorithm has two main patte:t 2) The sequences are swapped if necessary so that the first

initialization and the main loop, which consists of fourpste sequencejbeginl, endl) (the notation[) indicates that

set impulse, update stress, update velocity and clean thesed the first value of the interval is included but not the last
The initialization of the data structures involved in the One), must be at least as long as the second sequence

code is sequential both in the TBB and the HTA versions, [begin2,end2).

but in the HTA version it has been rewritten using array 3) ml is set to the middle point in the first sequence. The

notation, which allows to remove some loops and conditional item at that location is callekey.

statements. Figure 4(a) shows this initialization in theBTB 4) M2 s set to the point whekeeywould fall in the second

version. ArraysMaterial and M contain the characteristics sequence.

and composition of each band of the terrain. This code fills5) Subsequencesibeginl,ml) and [begin2,m2) are

one band of the terrain with WATER, two with SANDSTONE merged to create the first part of the merged se-

and another one with SHALE. The HTA implementation is duence and subsequendesl,endl) and [m2, end2)

shown in Figure 4(b). are merged to create the second part. Both operations
The updates of the stress and the velocity are stencil com- take place in parallel with each other.

putations, implemented usingpazrallel_for for TBB and The TBB implementation of this algorithm is based on

a hmap for HTA. The implementation of both is very similara parallel_for. The subdivision of the sequences is

to the implementation of the Average code in Section IV-Amplemented using an object of the ad-hoc range class

The only difference is that in these computations we havarallelMergeRange whose definition is shown in Fig-

to exclude the first position and the last position of there 5(a). The predicatés_divisible performs the test in

array. This is achieved in the HTA version by applying thetep 1. TheParallelMergeRange class has two constructors.

hmap operation on a new HTA which does not include thos€he first one, shown in lines 7-18, contains the dummy

1 template<typename Iteratgs struct ParallelMergeRangg 1 class SubStringFindef
2 2 ..
3 bool empty() const{return (end1— beginl) + (end2— begin2) == 0} 3 void operator () (const blockethnge<size t>& r) const {
4 bool is divisible () const{ 4 for (sizet i =r.begin(); i !=r.end(); ++i){
5 return std::min(endt- beginl, end2— begin2) > grainsize; 5 sizet max.size = 0, maxpos = 0;
6 } 6 for (sizet j =0; j < str.size(); ++)
7 ParallelMergeRange(ParallelMergeRange& r, split{) 7 it (j!=1i) {
8 if ((r.endl— r.beginl) < (r.end2— r.begin2)) { 8 sizet limit = str.size)0—(i >j?i:j);
9 std::swap (r.beginl, r.begin2); 9 for (sizet k = 0; k < limit; ++k) {
10 std::swap (r.end1, r.end2); 10 if (str[i +Kk]!= str[j +Kk]) break;
11 11 if (k > maxsize) {
12 Iterator m1 = r.beginl + (r.end% r.beginl) / 2; 12 maxsize = k; maxpos = j;
13 Iterator m2 = std::lowebound(r.begin2, r.end2xm1l); 13 3
14 beginl = m1; begin2 = m2; 14
15 endl =r.endl; end2 = r.end2; 15 maxarray[i] = maxsize;
16 out = r.out + (ml— r.beginl) + (m2— r.begin2); 16 posarray[i] = maxpos;
17 r.endl = ml; r.end2 = m2; 17 3}y
18 } 18 ..
19 19 };
20 }; 20 ..
21 .. 21 parallelfor (blockedrange<size t>(0, to_scan.size(), 100),
. 22 SubStringFinder(tescan, max, pos));
(a) TBB version 23
(a) TBB version
1 ..
2 if (inputl_size > GRAINSIZE) {
3 sizel = inputl.shape(). size () [0]; 1 struct SubStringFinderOf
4 size2 = input2.shape(). size () [0]; 2 void operator () (HTA<int,1> max_, HTA<int1> pos) {
5 3
6 if (sizel < size2){ 4 init_i =lower_bound.0;
7 h2=inputl; hl=input2; 5 end.i= init_i +max_.shape(). size () [0];
8 std::swap (sizel,size2); 6
9 }else{ 7 int pos=0;
10 hl=inputl; h2=input2; 8 for (sizet i = init_i; i != end_i; ++i) {
11 9 int max_size = 0, maxpos = 0;
12 10 for (sizet j =0; j < str.size(); j++){
13 int pos = h2.lowetbound(h1[(sizel— 1) / 2]); 11 it (j!=1) {
14 12 int limit = str.size ()—(i > j?2i:j);
15 hl.part((sizel— 1)/2); 13 for (int k = 0; k < limit; ++k) {
16 h2.part(pos); 14 if (str[i +K]!= str[j +k]) break;
17 output.part(pos + (sizel— 1)/2); 15 if (k > maxsize) {
18 16 max size = k; maxpos = j;
19 output.hmap(Merging(), h1, h2, 0); 17 333}
20 .. 18 max [pos] = maxsize;
21 } else { 19 pos[pos] = max pos;
22 .. 20 pos++;
i 21 }}h
(b) HTA version 22 ..
23 max.hmap(SubStringFinderOp(),pos);
24 ..

Fig. 5. Parallel Merge
9 9 (b) HTA version

Fig. 6. Substring Finder

variablesplit. This argument is used by the TBB library to

flag aRange constructor that is used to split an infRénge

in two. The constructor builds a new range that stores ofgduences to merge are smaller than a given threshold, then

of the halves of the originalange and modifies the original step 1 is performed.

Range, received as first parameter, to hold the other half. This

constructor performs the steps described in steps 2-5 of @e

algorithm. The other constructor is a conventional comstu

The basic operation simply performs the merge sequentially|n this code, given a string, for each position in the string,

by means of a&std :: merge. the program finds the length and location of the largest match
The HTA version is based amap. In the function applied ing substring elsewhere in the string. For instance, take th

by hmap, if the sequences are bigger than a given threshokiring flowersflows. Starting the scan at the first character

steps 2-5 are implemented. This part of the algorithm, showh position 0, the largest match &low at position 7 with

in Figure 5(b), is implemented using the dynamic partitigni a length of 4 characters. The position and length of those

feature. Lines 15-17 add new partitions to the two input HTA®atches are stored for each position of the string.

and, the output HTA in the points selected as described i ste The parallelization strategy consists in searching thgelstr

3 of the algorithm. This is performed using thert method, matching string for each position of the scanned string in

which accepts the position in which a new partition line iparallel. The TBB version uses garallel_for, while the

to be added, giving place to two separate tiles. The positi®fTA version uses amap.

Wherekey would fall in the second sequence, mentioned in The codes, shown in Figures G(a) and 6(b) are very similar.

step 4 of the algorithm, is calculated in line 13 using the HTAhe operation performed in parallel is the same in both cases

function lower_bound, which returns the index of the firStthe On|y difference is the indexing of the data structures, a

element of the HTA that is equal or larger than its argument.happened in previous codes. In the HTA version, the
Line 19 callshmap recursively with the repartitioned struc-and pos arrays, where the result will be stored, are divided

tures. In this callhmap applies its functor argument on eaclhin tiles, and thehmap operation is applied separately on each

chunk in parallel. After this, these partitions are remousithg tile, so the indexing will be relative to the start positicftioe

a method calledrmPart. The recursion finishes when thecurrent tile.

Substring Finder

class tbbparallel task

1

2

3

4 .

5 static void setvalues (Matrix source, chak dest)
6

7

8

m_source = source; pguest = dest;

10 }
13 void operator () (const blockethnge<size t>& r) const
{

16 begin=(int)r.begin();
17 end=(int)r.end();
18 Cell cell;

20 for (int i=begin; i<=end; i++)
22 *(m_dest+i) = cell. CalculateState (
23 m_source— >data, msource— >width,

24 m_source— > height,i);

25 }}
27 3

29 for(int counter=1; countet NSTAGES; counter++)

(a) TBB version

1 struct EvolutionOp{
void operator () (HTA<int,2> datasource, HTA<int,2> data dest) {

(‘t"eIIHTA cell;
size=datadest .shape() . size () ;

for(int i=0; i<size[0]; i++) {
for(int j=0; j<size[1]; j++) {
datadest[i][j]=cell . CalculateState (dateource, (i, j));
Hh

©ONO U WN

10
11

12 Overlap<2> = ol= new Overlap< 2> (Tuple<2>(1,1), Tuple<2>(1,1), PERIODIC);
13 data= HTA<Int,2> ::alloc(1, ((SIZEX/NTILESX, SIZEY/NTILESY), (NTILESX,NILESY)), ol, NULL, —

ROW);
14 ..

15 for(int counter=1; countet NSTAGES; counter++)
16 data.hmap(EvolutionOp(), data, 0);

17 .

(b) HTA version

Fig. 7. Game of Life

E. Game of Life

30 paralleLfor (blockedrange<sizet> (begin, end, grainSize), thparalleLtask ());

Arithmetic intensity | Problem size .

Code (Flops) (kB) Parallelism pattern
Average 15 23906 regular
Seismic 330 24584 regular

Parallel merge 1 5859 irregular

Game of life 210 19531 regular

Substring finder 1397 88 regular
TABLE |

CHARACTERISTIC OF THE CODES PARALLELIZED

a parallel_for and ahmap respectively. Both implemen-
tations can be seen in Figures 7(a) and 7(b). Besides the
differences in the implementation betwegirallel_for and
hmap that we have seen in previous examples, in this code,
as the decisions for each cell depend on the state of its eight
neighbors, when we are computing the state of a cell in an
edge of a tile we will need to have a shadow region of size
1, in order to access the state of the neighbors that belong
to another tile. This way in lines 12 and 13 of Figure 7(b),
the HTA which represents the board of cells is created with
a shadow region of size one in both positive and negative
direction of each dimension of the board. The last argument
of the constructor of the overlap region in line 13, PERIODIC
determines which values will contain the shadow cells in the
edge regions of the board. PERIODIC means that they contain
the value located in the other side of the matrix. For example
the upper cell of positio{0, 0) would be (N — 1,0) where

N — 1 is the size of the first dimension.

The need of an overlapped region in the HTA implemen-
tation can be seen as an overhead but it greatly eases the
implementation of another part of the code with respect ¢o th
TBB version. The classell is used to model the behavior of
an isolated cell of the board. Methed1lculateState of this

The "Game of Life” is a problem which opened the mathezjass has to compute the new state for each cell. In the TBB
matical research field afellular automataThe game is played version, most of the time, the state of céll j) depends on
in a two-dimensional orthogonal grid of square cells, each the state of its neighbors located in positiofis: 1, j —1),(i—
which is in one of two possible statebve or dead Every 1 ;) (i—1,j+1),(i,5—1),(i,j+1),(i+1,j—1),(i+1,7) and
cell interacts with its eighheighbors which are the cells that (i4+1,j+1). Butin the edge region, the neighbor values must
touch the cell horizontally, vertically or diagonally. Ivey pe searched in the other side of the matrix. This complicates
step of this evolution, each cell lives, dies, stays emptysor the implementation otalculateState. In the case of the
born based on a simple decision depending on the surroundiiga version, as we have shadow regions around each tile, and
population (number of neighbors). The rules that deterrttiee around the whole matrix filled using the PERIODIC criteria,

evolution of life are:

all the indexing of the neighbors can be always be performed

1) Life persists in any cell where it is also present in twaising standard HTA indexing. This will lead to a much better
or three of their eight neighboring cells and otherwiseverall performance of the HTA version as we will see in

disappears (from loneliness or overcrowding).
2) Life is born in any empty cell for which there is life in
exactly three of the eight neighboring cells.

Section VI.

F. Characteristics of the code

The decisions about each generation are taken based on thEable | summarizes the main characteristics of the codes
state of the cells in the previous generation, so the proldemused in this comparison. The arithmetic intensity column

fully parallel.

contains the ratio of floating point operations (Flops) per

The parallel version decomposes the two-dimnesional spagerd (32 bytes) of data processed. The problem size column
of cells in a number of regions, and the decisions for thmontains the size in kilobytes of the data structures irsglv
next generation are taken in parallel in the different regio in each code. The seismic and game of life codes have very
This is implemented in the TBB and HTA versions usingpigh arithmetic intensity because they perform 100 stades o

| Code | Lines (HTA) [Lines (TBB) [[HTA reduction |

the simulation and evolution respectively. The substrinddr

) . e ; . : Average 28 39 +28.0%
has the highest arithmetic intensity as the inner loop o thi Seismic 304 595 30%
algorithm compares several times the same positions of it$ Parallel merge 70 74 +5.4%
array of strings. The parallelism pattern column is devoted _Game of life 97 309 +69.0%

. . . " i i 0,
to the regularity of the distribution of the parallel work. | L Substring finder 49 49 0.0%

is regular when the parallel work is divided into chunks of TABLE Il

the same size and it is irregular if they use chunks of differenumser oF LINES FOR THE FIVE CODES PARALLELIZED IN THEHTA AND
sizes defined by the algorithm applied. Only the parallelgaer TBB VERSION

code uses an irregular distribution of the work.

V. QUALITATIVE COMPARISON
edge regions of the array, which complicates the programmin

Both Hierarchically Tiled Arrays (HTAs) and ThreadingAn example of this can be seen in Sections IV-A and IV-E.
Building Blocks (TBB) are libraries devoted to facilitagjn ~ Some TBB library primitives are not implemented by any
the expression of parallelism. HTAs are arrays which mayTA construct. Examples of such primitives inclusieftware
be organized into one or more levels of tiles. When guipeling someSTL-like concurrent containers, mutual exclu-
operation is applied to an HTA its tiles can be processeibn structures for explicit thread synchronization, supp
concurrently. An interesting characteristic of the HTAréiy for atomic operations on primitive data types, and thread-
is that its programming model is useful both in serial oaware timing utilities. When needed, TBB can provide those
parallel scenarios. In the serial case, the array notasomlly primitives to programs based on HTAs, since both libraras ¢
improves readability and the tiling structure can be used fbe used in the same program. This is trivially proved by the
locality enhancement. More importantly, HTAs can be used fact that the HTA library implementation for shared memory
both shared and distributed memory environments, althouighbuilt on top of the TBB library. Nothing special is needed
some operations such as dynamic partitioning are moreycostt make any of them aware of the usage of the other one.
in the distributed memory environment. The programmer must only take into account that since the

The approach of TBB, which is restricted to shared memoHTA library initializes the TBB scheduler because it use® it
environments, is to parallelize loops by specifying taskimg Schedule its tasks internally, s/he should not initializagain.
ranges which will be recursively subdivided. Since TBB does One interesting property of TBB which is not available in
not have the notion of tiling like HTA, it must rely on loopthe current implementation of the HTA library is the ability
structure to improve locality, although a partitioner tivaes to subdivide the range to process depending on the number
to promote locality has been added to the newest versiohcores available. If one of the cores finishes very soon, the
of the library. The distribution of the work is performedamount of remaining work in another core can be recursively
automatically by the task scheduler. divided to generate a new subrange assigned to the idle core.

Much parallelism found in programs is data parallel and@his feature can be implemented in the HTA library. In the
can be expressed as an element-by-element operation, ameantime, HTAs can compensate not having this feature by
duction, or a scan, as described in Section Il. The TB&lowing the programmer to subdivide the work in much more
library implements these operations usingaaallel_for, a tasks than threads so that they can used for load balancing.
parallel_reduce, and aparallel_scan operation respec- We evaluate this possibility in the next section, findingttiha
tively. The HTA library uses alternatively amap, areduce, Can indeed improve performance up to 25%.
and ascan operation.

The manipulation of HTAs benefits from array-oriented
notation, which allows expressing some computations in aThe measurement of the impact of a library on the ease
more readable form than using nested loops (see Figure &).programming is quite subjective. There is no formula
This tends to reduce the number of lines of code as discussedcalculate exactly the readability of a program although
in the next section. However, the advantage of array neotatiexperienced programmers can usually easily determinehwhic
goes beyond the lines of code. Array notation is intringycalimplementation and notation is easier for development and
deterministic and should for all practical purposes cotgye maintenance. We have chosen the source lines of code as
avoid the possibility of race conditions. an objective method to compare the implementation of the

One important feature of the TBB library is the ability tcalgorithms using the TBB and HTA libraries. This metric
create ad-hoc ranges which divide the iteration space usigwunts all the source lines in the code ignoring the comments
special rules. This feature is supported in the HTA librayy band empty lines. This metric has been measured in Table I
means of dynamic partitioning as exemplified in IV-C. for both the TBB and HTA version of the codes introduced in

The HTA library can define overlapped regions during th8ection IV. The fourth column stands for the reduction of the
creation of an HTA. However, programs based on the TB&urce number of lines of code obtained in the HTA version
library have to resort to the use of padding regions manageih respect to the TBB one expressed as a percentage of the
by the programmer, or to implement special treatment for tlseurce number of lines of code of the TBB version. As can

VI. EVALUATION

be seen in the table, the HTA codes are either virtually on pdoes not imply a dependence on the number of cores as
or shorter than their TBB equivalents. The Game of Life seéfTAs are objects created at runtime whose tiling structure
significant improvements that can be attributed to overalppis computed dynamically. Thus the number of cores can be
tiling. obtained dynamically and used in a general computation of
Table 11l shows the times in milliseconds for the executiothe desired tiling structure. Parallel computations iasille
of the HTA and the TBB versions of the codes in a system witHTA library are implemented using TBB parallel constructs
two Quad core 2.66 Ghz Xeon processors using gcc 4.2.1 withd consequently make use of TBB's scheduler. The HTA
optimization level three. Several measurements were taliéwary allows these algorithms to be expressed diffeyentl
using 1, 2, 3, 4 and 8 of the cores available in this machirend often more clearly as well as respecting the minimum
The execution times reflected in this table are the minimum te#sk granularity specified by the programmer when s/he chose
10 runs. Table IV shows the results of the same experimettig tile sizes; as opposite to the TBB which can choose the
in an HP Integrity rx7640 server with eight dual-core 1.§ranularity with little or no control of the user. As a result
GHz Itanium Montvale processors with the same compiler artitis possibly changes the number and order of operations. If
optimization flags. Several measurements were taken usingatt HTA and a TBB program performed the same operations in
2,3, 4,8, 12 and 16 cores. Again, each execution time is tthee same order, one would expect no difference in perforemanc
minimum of 10 runs. as the programs would essentially be syntactically as well
Table Ill shows that the HTA versions of each code achiews semantically identical. This is evidenced by the Sutogtri
a performance similar to that of the TBB versions when theéinder example.
maximum number of cores (8) are used in the Quad coreFigures 8 and 9 show the speedup obtained when signifi-
system. However, in Table IV the HTA versions of Averageantly more tiles than threads are used for the HTA version
and Game of Life outperform by a large margin the TBB®f each code in both the two quad-core Xeon server and the
versions when the maximum number of cores are used in tight dual-core Itanium 2 server, respectively. The bassaoh
Itanium-based system (16). In fact the HTA versions of thedar (in black) represents the speedup obtained when just one
two programs scale much better than the TBB ones, as in btite per core is used, for a varying number of cores, which
computers the TBB version of Average and Game of Life is therresponds to the times in the tables Il and Ill. We also run
fastest for one core, while for the maximum number of corékese codes creating up to 10 tiles per thread. The whiterbar o
the HTA is quite better. It is interesting to notice that thestop of the black one marks the highest speedup achieved. The
ones are also the algorithms in which the HTA code had tinember of tiles per thread used to get this best performance i
biggest reduction in number of lines of code with respechto tabove the bar. We observed that the performance of the HTA
TBB version. Both the programmability and the performanaeersion can be improved by a modest increase of the number
improvement are mainly due to the overlapped tiling featire of tiles. The effectivity of the overpartitioning depends ihe
the HTA, thus arising as a very useful property of this ligrar code: some will not improve, while others get great benefits.
With respect to the other three programs, Substring find€he codes that benefit the most from overdecomposition are
scales well for both libraries, tends to be always fasteh@n t Game of Life, Parallel Merge, to a lesser extent, Averagd, an
HTA implementation. Parallel Merge, on the contray, worksporadically, Seismic. Substring finder seems not to get any
reasonably for few cores, but does not scale to a large numbenefit from overdecomposition as the performance with only
of them. Also, we notice that the dynamic partitioning featu one tile is optimal. Additional benefits come from the dynami
of the HTA is somewhat slower than the ad-hoc ranges of TBBistribution of work on the available threads as the palralle
This is not surprising given the need to modify the intern@omputations in the implementation of the HTA library inler
structure of an HTA each time it is repartitioned, and agafnom TBB. This is possible due to the overdecomposition of
when the newly introduced new partition lines are removetle problem, which can compensate for the inexistence in
once the work is completed. Finally, Seismic scales sityilarHTAs of an automatic dynamic partitioning feature of the kvor
for both libraries, the TBB version being systematicallg thas the one available in TBB.
fastest. That is because the HTA version has to perform a
costly operation to extract the first and the last element of
each HTA, as we said in Section IV-B. This problem is solved We have compared Intel TBB and HTAs, two libraries
more efficiently in the TBB version. The differences in thelevoted to facilitating the programming of parallel maehsin
performance obtained in both architectures are attribeiteo following two very different approaches, since their paral
the peculiarities of the Xeon and Itanium 2 architectureses lelism is task and data based, respectively. For this perpos
they differ largely in clock rate, method to exploit ILP, andseveral algorithms were implemented using both librafibés
memory hierarchy structure and size. evaluation shows that the HTA codes are shorter or on par with
In these experiments, one tile per used core was createdhia length of the TBB ones. This is because, array notation of
each tiled HTA, except in the cases of Parallel Merge, wheseme computations simplifies the HTA implementation of the
the HTA was tiled recursively using dynamic partitioningiBB codes with loops and conditional statements, dynamic
until the threshold tile size was reached, and the Game pdrtitioning is easier to use than ad-hoc TBBnges, and
Life, where one tile per core per dimension was used. Thiserlapped regions hide the details of management of shadow

VII. CONCLUSIONS

Code HTA TBB

1] 2] 3] 4] 8] 1] 2] 3] 4] 8
Average 5.2 2.5 2.1 2.2 15 31 2.5 2.2 2.4 2.5
Seismic 8133.8 | 4234.1 | 2937.6 | 2399.8 | 1577.9 || 5975.2| 3117.8 | 2328.4 | 1853.2 | 1458.7

Parallel merge 68.6 36.4 34.0 22.2 21.3 73.0 36.1 26.0 20.7 19.5
Game of life 4957.0 | 2465.0 | 2577.4 | 1745.7 | 1088.1 || 4473.9| 2745.5| 2130.2 | 1813.3 | 1381.3
Substring finder|| 5885.9 | 2992.0 | 2003.7 | 1541.6 | 768.9 || 6380.2 | 3203.8 | 2132.1 1610 | 820.3

TABLE Il
TIMES IN MILLISECONDS, FOR THETBB AND HTA VERSIONS IN THE TWO QUADCOREXEON SERVER USINGL,2,3,4AND 8 CORES RESPECTIVELY

ATA TEB
Code 1] 27 4] 8] 12] 16 1T 2] 4] 8] 2] 16
Average 51| 12| 72| 45| 38| 35| 28| 131| 1L4| 112 1L7] 113
Seismic || 193505 | 112017 | 7503.8 | 4916.8 | 3712.2 | 4120.8 || 15552.0 | 8824.3 | 6124.7 | 4000.6 | 3748.6 | 3215.6
Parallel merge 199.2 128.3 79.6 52.1 44.8 44.5 202.4 | 116.7 66.9 44.3 38.1 35.0
Game of lfe || 19396.7| 9486.7 | 6953.0 | 3478.9 | 2109.4 | 1690.8 || 16483.5| 9623.1 | 6147.6| 4386 | 3654.7 | 3409.9
Substring finder|| 9510.4 | 4895.6 | 2455.3 | 1256.8| 791.5| 689.9 || 10689.4| 5361.9 | 2692.9 | 1366.2| 924.4| 717.0

TABLE IV
TIMES IN MILLISECONDS, FOR THETBB AND HTA VERSIONS IN THE EIGHT DUAL-COREITANIUM 2 SERVER USING1,2,4,8,122ND 16 CORES
RESPECTIVELY

4Xlbase speedup
[overdecomposition speedup|

6Xlbase speedup
[Joverdecomposition speedup)|

4Xlbase speedup

3 4 5 6 3 4 5 6 3 4 5 6
Number of threads Number of threads Number of threads

(a) Average (b) Seismic (c) Parallel merge

10X/@base speedup

Speedup

2 7 8

3 4 5 6 3 4 5 6
Number of threads Number of threads

(d) Game of life (e) Substring finder

Fig. 8. Speedup obtained considering different number &faiths and maximum speedup obtained due to decomposition evbating up to ten tiles per
thread in the two quad-core Xeon server

and padding regions from the programmer. The performanagtomatic way according to the number of idle cores. Thus,

results show that the times obtained for the HTA versions ageabling the automatic repartitioning of HTAs dynamically

comparable to those obtained with the TBB ones. Sometimascording to the number of idle cores in a similar way to

both coding and performance improvements can be obsertled behavior of ranges in the TBB library is an interesting

due to features like overlapped tiling, as in the case of tleatension for this library. Still, we have tested the poiigib

Game of Life and Average programs. that HTAs provide of manually overdecomposing the work do-
The HTA library seems a more natural way to express dat&@ain to facilitate balancing, achieving noticeable parfance

parallelism, which arises frequently in real programs, levhiimprovements in several codes.

TBB offers more flexibility and can be used to solve other

situations for which HTAs may not be suitable. However, ACKNOWLEDGEMENTS

while HTA codes can be run in hybrid and distributed memory This material is based upon work supported by the Na-
systems, TBB codes can only be run in shared memaignal Science Foundation under Awards CCF 0702260 and

environments. CNS 0509432. Diego Andrade and Basilio B. Fraguela were
An interesting property of TBB not yet implemented irpartially supported by the Xunta de Galicia under project
the HTA library is the ability to repartition the work in anINCITEO8PXIB105161PR and the Ministry of Education and

12x|Hbase speedup

ex|lbase speedup
[overdecomposition speedup|

[loverdecomposition speedup|

1 2 3 4 5 6 9

123456 threads

10 11 12 13 14 15 16

7.8
eads Number of

(b) Seismic

7 8 9
Number of thre

(a) Average

10 11 12 13 14 15 16

8Xilbase speedup

12 3 45 6 7 8

Number of

10 11 12 13 14 15 16

9
threads

(c) Parallel merge

1167; Wbase speedup

15X|[Joverdecomposition speedu

1 2 3 4 5 6

10 11 12 13 14 15 16

7.8 9
Number of threads

(d) Game of life

Fig. 9. Speedup obtained considering different number &fatls and maximum
thread in the eight dual-core Itanium 2 server

Science of Spain, FEDER funds of the European Union
(Project TIN2007-67537-C03-02). We also want to acknovaﬂ— :
edge the Centro de Supercomputacion de Galicia (CES Ej
for the usage of its supercomputers for this paper.

[14]

REFERENCES
(1]
[2]
3]

D. R. Butenhof,Programming with POSIX Threads Addison Wesley,
1997.

J. Reinders)ntel Threading Building Blocks: Oultfitting C++ for Multi- [16]
core Processor Parallelismlst ed. O'Reilly, July 2007.

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel programming in OpenMP San Francisco, USA:
Morgan Kaufmann Publishers Inc., 2001.

OpenMP Architecture Review Board, “OpenMP Program fifaiee Ver-
sion 3.0,” May 2008.

G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick, and Rols,
“The ILLIAC IV Computer,” IEEE Trans. on Compwvol. C-17, no. 8,
pp. 746-757, Aug. 1968.

High Performance Fortran Forum, “High Performance Fortlanguage
specification, version 2.0,” Tech. Rep., January 1997.

B. M. Chapman, P. Mehrotra, and H. P. Zima, “Vienna famraa fortran
language extension for distributed memory multiproces5@p. 39-62,
1992.

B. L. Chamberlain, S.-E. Choi, E. C. Lewis, L. Snyder, W. Weath-
ershby, and C. Lin, “The case for high-level parallel prognaimg in
zpl,” IEEE Computational Science and Engineeringl. 05, no. 3, pp.
76-86, 1998.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kials
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an Objecented
Approach to Non-uniform Cluster Computing,” iACM SIGPLAN
conference on Object oriented programming, systems, kEgeg) and
applications New York, USA: ACM, 2005, pp. 519-538.

J. V. W. Reynders, P. J. Hinker, J. C. Cummings, S. R.5Atl Banerjee,
W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M.
Tholburn, “POOMA: A Framework for Scientific Simulations Bfral-
llel Architectures,” inParallel Programming in C++ G. V. Wilson and
P. Lu, Eds. MIT Press, 1996, pp. 547-588.

R. Armstrong, “Poet (parallel object-oriented envinoent and toolkit)
and frameworks for scientific distributed computing,” 39th Hawaii
Int. Conf. on System SciencedVashington, DC, USA: IEEE Computer
Society, 1997, p. 54.

G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fuatp, M. J.
Garzaran, D. Padua, and C. von Praun, “Programming forlelise
and locality with hierarchically tiled arrays,” ifProc. of the ACM

[15]

17
4] [17]
(5]

(6]
(7]

(8]

El

[20]
D

[11]

[12]

17xlbase speedup
%g; [loverdecomposition speedup|

12 3 4 5 6

9 10 11 12 13 14 15 16

7 8
Number of threads

(e) Substring finder

speedup obtained due to decomposition @vkating up to ten tiles per

SIGPLAN Symp. on Principles and Practice of Parallel Pragraing
(PPoPP’06) 2006, pp. 48-57.

G. Bikshandi, J. Guo, C. von Praun, G. Tanase, B. B. FelzguM. J.
Garzaran, D. Padua, and L. Rauchwerger, “Design and Usé¢atib h

a Library for Hierarchically Tiled Arrays,” irProc. of LCPC 2006ser.
LCNS, vol. 4382. Springer-Verlag, Nov 2006.

A. C. McKellar and J. E. G. Coffman, “Organizing matscand matrix
operations for paged memory systemS@gmmun. ACMvol. 12, no. 3,
pp. 153-165, 1969.

R. W. Numrich and J. Reid, “Co-array fortran for parafieogramming,”
SIGPLAN Fortran Forumvol. 17, no. 2, pp. 1-31, 1998.

W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks)caK. Warren,
“Introduction to UPC and language specification,” TechhiBaport
CCS-TR-99-157, IDA Center for Computing Sciences, Techp.Re
January 1999.

M. E. Wolf and M. S. Lam, “A data locality optimizing algithm,” in
PLDI '91: Proc. of the ACM SIGPLAN 1991 conf. on Programming
language design and implementation New York, NY, USA: ACM,
1991, pp. 30—44.

