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Abstract—Multicore machines are becoming common. There
are many languages, language extensions and libraries devoted
to improve the programmability and performance of these
machines. In this paper we compare two libraries, that face the
problem of programming multicores from two different perspec-
tives, task parallelism and data parallelism. The Intel Threading
Building Blocks (TBB) library separates logical task patterns,
which are easy to understand, from physical threads, and dele-
gates the scheduling of the tasks to the system. On the other hand,
Hierarchically Tiled Arrays (HTAs) are data structures tha t
facilitate locality and parallelism of array intensive computations
with a block-recursive nature following a data-parallel paradigm.
Our comparison considers both ease of programming and the
performance obtained using both approaches. In our experience,
HTA programs tend to be smaller or as long as TBB programs,
while performance of both approaches is very similar.

I. I NTRODUCTION

Processor manufacturers are building systems with an in-
creasing number of cores. These cores usually share the higher
levels of the memory hierarchy. Many language extensions
and libraries have been developed to ease the programming
of this kind of systems. Some approach the problem from the
point of view of task parallelism. The key notion is that the
programmer has to divide the work into several tasks which are
mapped automatically onto physical threads that are scheduled
by the system. Task-parallelism can be implemented using
libraries such asPOSIX Threads [1] which provide minimal
functionality and for this reason some consider this approach
the assembly language of parallelism. Recently, the Intel
Thread Building Blocks (TBB) library [2] has appeared, which
allows expressing parallelism using a higher level of abstrac-
tion. A third task-parallel API isOpenMP [3] which is mainly
based on simple compiler directives used to guide mostly the
parallelization of regular loops although the recently proposed
extension [4] with a task-enqueuing mechanism extends its
scope of application. The task of writing parallel programs
can also be faced from the point of view of data parallelism,
where tasks perform the same operation on different pieces of
data. Thus, data-based parallelism is a subset of control ortask
parallelism, as in task-based parallelism tasks can perform the
same or different operations on the same or different piecesor
data. Parallel array computation has been widely used sincethe
appearance of the first array and vector computers [5] , playing
a key role in the expression of parallelism in many languages
such as High Performance Fortran [6] and its variants [7],

ZPL [8], X10 [9], and others. The historical experience in the
attempts to implant new languages with a focus on parallelism,
coupled with the large base of existing legacy codes, has made
many researchers think that macros, and more in general,
libraries, are a better vehicle to bring parallelism to mainstream
computing. This way, libraries such as POOMA [10] or
POET [11] have explored this possibility. More recently, the
Hierarchically Tiled Array (HTA) library [12], [13] facilitates
the writing of data-parallel programs, putting a special empha-
sis on the concept of tiling [14] both to express locality and
parallelism.

With the arrival of multicores to all computing systems
from embedded ones to supercomputers, the relevance of
parallel programming for these systems is enormous. As a
result there are large efforts both from industry and academia
to improve the productivity in the development of parallel
codes as well as the resulting performance. In this context
we have found of interest a comparison between task and data
parallelism. Our aim is to explore in the scope of multicores
the impact of following either approach on productivity and
performance, and to which point the additional restrictions
of data-parallelism may discourage its usage to parallelize
certain problems. We have chosen as representatives of both
approaches the Intel TBB library [2], which enables writing
programs based on task parallelism, and the Hierarchically
Tiled Array (HTA) library [12], [13], which facilitates the
implementation of data parallel programs. As far as we know,
the HTA library is the most up-to-date library specifically
designed following a data-parallel paradigm with a good
support for multicore systems. Among the large variety of
approaches that allow task-parallel programming for these
systems, the TBB library is the one that most closely resembles
the HTA in terms of level of abstraction and interface provided
to the programmer, thus enabling a fair comparison of both
approaches. Another reason for choosing TBB is that, since the
HTA library for shared memory is implemented on top of the
TBB library, performance differences between both libraries
can be more clearly attributed to the specific way in which
they lead programmers to write their applications.

This paper is organized as follows. Sections II and III
summarize the main features of the HTA and TBB libraries,
respectively. In Section IV a high-level description of the
algorithms used for the comparison is presented and the
implementation both with TBB and HTAs is discussed briefly.



Fig. 1. Creation of a HTA

Section V describes the main differences between the TBB and
HTAs libraries. We will illustrate how data and task parallelism
face the same problems using different approaches. SectionVI
compares quantitatively the codes written using both libraries,
and Section VII presents the conclusions.

II. T HE HTA LIBRARY

The Hierarchically Tiled Array (HTA) [12], [13] is an array
data type which can be partitioned into tiles. Each tile can
be either a conventional array or a lower level HTA, thus
HTA is a recursive data type. HTAs adopt tiling [14] as a
first class construct for array-based computations. Tiles have
been used to express data parallelism [8], [6], [15], [16] and
to improve the locality of the accesses [17]. Thus HTAs
empower programmers to control data distribution and the
granularity of computation explicitly through the specification
of tiling. This feature makes the library more versatile and
provides maximal control to the programmer, allowing tuning
the tiling to achieve the best performance, as we will see in
Section VI. Of course, the tiling used for the HTAs can be
actually obtained by an automatic method that tries to choose
the best one; this is out of the scope of our work.

Figure 1 shows the operations needed to create an HTA
with 3 tiles of 4 elements each. The variabletiling, defined
in line 1, specifies the number of elements or tiles for each
dimension and level of the HTA, from the bottom to the
top of its hierarchy of tiles. Thealloc operation in the
second line creates the HTA. The number of levels of tiling is
passed as the first parameter toalloc. The tiling structure is
specified by the second parameter. The third parameter selects
the data layout, which can be row mayor (ROW), column major
(COLUMN) or TILE, in which the elements within a tile should
be stored by rows and in consecutive memory locations. The
layout across tiles is always row major. The data type and the
number of dimensions are template parameters of the HTA
class.

While the tiling structure of an HTA is specified at creation
time, it can be modified dynamically by adding or removing
partition lines, the abstract lines that separate the tiles in
an HTA. This generates new tiles or merges existing ones,
respectively, in a process known asdynamic partitioning.

HTA indices are zero-based. Tiles or scalars of HTAs can
be selected usingn−Tuples. In this explanation then−Tuple
notation is substituted by a list of integers(x, y, . . .). HTAs can
also be indexed usingRanges of the formlow : step : high.
The list of integers and ranges can be enclosed by the()
operator, which selects tiles, or by the[] operator, which
selects scalar elements of the HTA. For exampleh(1)[2] yields

element[2] within tile (1). If no tile is selected, the[] operator
is used to access the HTA as a conventional array.

HTAs facilitate parallel programming by providing numer-
ous methods that operate in parallel across tiles. The main
constructs are:

• hmap: It applies a function to each element of the HTA
or corresponding elements of two or more conformable
HTAs.

• reduce: It performs a reduction, that is, it applies oper-
ations on an HTA to produce an HTA of lesser rank.

• scan: It computes a prefix operation across all the
elements of an array. Letop be an associative oper-
ation with left identity element id. The parallel prefix
of op on a sequencex0, x1, . . . , xn−1 will be another
sequencey0, y1, . . . , yn−1 where y0 = id op x0 and
yi = yi−1 op xi.

• mapReduce: performs a reduction on the results of a
given operation applied to each element of an statement.
It is a mixture of anhmap and areduce construct
following the principles of the map-reduce [13]

The four constructs receive at least one argument, a function
object (functor) whoseoperator() method encapsulates the
operation to perform on a single tile of the object HTA. In the
case ofhmap, the function may accept additional HTAs as
parameters that must be conformable, that is, have the same
tiling structure as the HTA instance on which thehmap is
invoked. The functor will handle in this case in each invocation
a tile from each one of the HTAs involved. In any case, the
functor handles a single tile per HTA in itsoperator(), so
that the indexing of the elements inside the operation is relative
to the first position of a tile. Also, the operation on each tile is
performed in parallel, at least conceptually. Data-parallelism
is enforced by the fact the functors can only write in the tiles
received in each single invocation or the predefined outputs
of the operation, such as in reductions. Thus, global data out
of the specific tiles received in the invocation must be strictly
read-only. Unfortunately, C++ does not provide mechanisms
that allow the library to preclude programmers from writing
to global data outside the tiles in the functors that are applied
in parallel. If they do so, they are certainly not following the
data-parallel structured approach promoted by HTAs.

An interesting feature of HTAs, calledoverlapped tiling, is
the ability to create and manage automatically shadow or ghost
regions around each tile that contain a copy of the elements of
neighboring tiles. This is particularly useful for stencilcodes,
which compute new values based on their neighbors, as in the
case ofa(i) = a(i− 1) + a(i + 1).

Finally, it is interesting to notice that, in contrast to the
Intel TBB library, which is restricted to shared memory, HTAs
support shared, distributed and hybrid memory systems.

III. T HE INTEL TBB LIBRARY

The Intel Threading Building Blocks (TBB) [2] library
was developed by Intel for the programming of multithreaded
applications. In this case, it is not necessary to use a special
type of data structure. However, the TBB library provides



of special types of containers which can be manipulated
concurrently. But this is not the native method to specify
parallelism, like in the HTA case. As mentioned above, the
TBB library enables the implementation of multithreaded
task-parallel programs. It does not base the specification of
parallelism on data operations that are inherently parallel,
which is the HTA approach. Rather, parallelism is achieved
by defining tasks that can be performed concurrently. The
task scheduler then maps tasks to available hardware threads.
The task scheduler distributes the tasks between the available
threads. When there are more threads available than tasks, it
can split an existing task in several smaller tasks.

A. TBB operations

The element-by-element operation, reduction, and scan
constructs are implemented in the TBB library using the
parallel for, parallel reduce andparallel scan al-
gorithm templatesrespectively. The TBB library also includes
the algorithm templatesparallel do, which supports un-
structured workloads where the loop limits are not known at
the beginning of the loop, andpipeline, which is used when
there is a sequence of stages that can operate in parallel on a
data stream.

The parallel for, parallel reduce and
parallel scan algorithm templates accept two basic
parameters: arange defining loop limits, and a function
object representing the body of the parallel loop. This object
overloads theoperator() method and defines the operation
to be performed on the range assigned.

The range is split recursively into subranges by the task
scheduler and mapped onto physical threads. The TBB library
provides standard ranges, such asblocked range, which
expresses a linear range of values in terms of a lower bound,
an upper bound, and optionally, a grain size. The grain size
is a guide for the workload size per task. The value of
granularity affects the performance and load balance of the
parallel operation.

The TBB library allows creating ad-hoc ranges. That is,
the user can define new range classes implementing specific
policies to decide when and how to split, how to represent
the range, etc. An example of usage of ad-hoc range will be
shown in Section IV-C.

Some additional features present in the TBB library are
a scalable and efficient memory allocator for multithreaded
programs, mutual exclusion structures for explicit threadsyn-
chronization, support for atomic operations on primitive data
types, and thread-aware timing utilities.

IV. I MPLEMENTATION OF SOME ALGORITHMS

The codes used in this comparison were taken from the
chapter 11 of [2], which contains examples of parallel im-
plementations of algorithms using TBB1. We chose these
codes because at the time the experiments were done there
were very few codes available written using TBB, and they

1These codes are in public domain and the can be downloaded from
http://softwarecommunity.intel.com/articles/eng/1359.htm

1 class Average{
2 public:
3 float∗ input, output ;
4 void operator () ( const blockedrange<int>& range ) const{
5 for ( int i = range.begin () ; i != range.end() ; ++i )
6 output [ i ] = ( input [ i−1] + input[i] + input [ i +1]) ∗ (1/3.0 f) ;
7 }
8 ...
9 };

10
11 const int N = 100000;
12 static int nThreads = 4;
13
14 int main( int argc , char∗ argv[] ) {
15 float raw input[N+2], output[N];
16 raw input[0] = 0;
17 raw input[N+1] = 0;
18 float∗ paddedinput = raw input + 1;
19 ... /∗ Initialization not shown∗/
20 task schedulerinit init (nThreads);
21
22 Average avg(paddedinput, output) ;
23 parallel for ( blocked range<int>( 0, N, 1000 ), avg );
24
25 return 0;
26 }

Fig. 2. TBB implementation of theAveragealgorithm

cover a diversity of parallel computation patterns. This section
describes them and highlights the key differences between the
TBB and HTA implementations using some snippets of code.

A. Average

This algorithm calculates, for each element in a vector,
the average of the previous element, the next element and
itself and the result is the stored in an output vector. It can
be parallelized by the TBB library using theparallel for

construct. The TBB code that implements this algorithm is
shown in Figure 2. In this code, the first and the last elements
of the array are special cases, since they don’t have previous
and next elements, respectively. This is solved by adding
elements at the beginning and the end of the array which are
filled with zeros as shown in lines 15-18 of the code. In line
20, the task scheduler object is created and initialized with 4
threads. The task scheduler is the engine in charge of mapping
tasks to physical threads and of the thread scheduling. It must
be initialized before executing any TBB parallel constructs.

The first argument of theparallel for in line 23 is a
range which includes the whole vector. A grain size of1000
is advised in this case. The second argument is an object
of the classAverage which encapsulates the operation to
be executed by theparallel for. This class is defined in
lines 1 thru 9. Theoperator() method in this class defines
the operation that will be applied on each subrange. The low
and high values of the indexes for each subrange are directly
extracted from the range parameter using thebegin() and
end() methods (see line 5).

The HTA implementation of this algorithm is shown in
Figure 3. The data structures are created in lines 17-20. The
padding values are automatically generated and filled in HTA
input thanks to overlapped tiling. Line 18 defines an object
that describes the overlapping of tiles ininput. The first
two arguments of the constructor specify that shadow regions
have size one in both the positive and negative direction. This
constructor allows a third optional argument to specify whether
the boundary region built around the array is filled with zeros,
which is default behavior when nothing is specified, or it



1 typedef HTA<float,1> HTA 1;
2 #define T1(i) Tuple<1>(i);
3
4 struct Average{
5 void operator () (HTA1 input , HTA 1 output ) const{
6 for ( int i = 0; i != input .shape() . size () [0]; ++i )
7 output [ i ] = ( input [ i−1] + input [i] + input [ i +1]) ∗ (1/3.0 f) ;
8 }
9 };

10
11 const int N = 100000;
12 static int nTiles = 4;
13
14 int main( int argc , char∗ argv[] ) {
15 Traits::Default::init (argc ,argv) ;
16
17 Seq< Tuple<1> > tiling( T1(N / nTiles), T1(nTiles) );
18 Overlap ol ( T1(1), T1(1) ) ;
19 HTA 1 input = HTA 1::alloc(1, tiling , ol , NULL, ROW);
20 HTA 1 output = HTA 1::alloc(1, tiling , NULL, ROW);
21 ... /∗ Initialization not shown∗/
22
23 input .hmap(Average(), output) ;
24
25 return 0;
26 }

Fig. 3. HTA implementation of theAveragealgorithm

is periodic, i.e., it replicates the values of the array on the
opposite side. In line 19 this overlapping specification is used
to create an HTA withN values distributed innTiles. Line
20 allocates the HTA where the result will be stored, which
has the same topology as the one used as input but with no
overlapped regions.

The hmap method is invoked in line 23. Its first argument
is the operation to perform on each tile of the HTAs. This
operation,Average, is defined as astruct in lines 4-9.
Hmap calls this operation for each tile of the HTA. Thefor
loop of line 7 iterates on the indexes of the elements in each
tile.

B. Seismic

This code performs a simple seismic wave simulation (wave
propagation) which sets the impulse from the source of the
disturbance, does the two most time consuming computations
of update stress and velocity, and finally cleans up the edgesof
the simulation. This way, the algorithm has two main parts: the
initialization and the main loop, which consists of four steps:
set impulse, update stress, update velocity and clean the edges.

The initialization of the data structures involved in the
code is sequential both in the TBB and the HTA versions,
but in the HTA version it has been rewritten using array
notation, which allows to remove some loops and conditional
statements. Figure 4(a) shows this initialization in the TBB
version. ArraysMaterial and M contain the characteristics
and composition of each band of the terrain. This code fills
one band of the terrain with WATER, two with SANDSTONE
and another one with SHALE. The HTA implementation is
shown in Figure 4(b).

The updates of the stress and the velocity are stencil com-
putations, implemented using aparallel for for TBB and
a hmap for HTA. The implementation of both is very similar
to the implementation of the Average code in Section IV-A.
The only difference is that in these computations we have
to exclude the first position and the last position of the
array. This is achieved in the HTA version by applying the
hmap operation on a new HTA which does not include those

1 for ( int i=1; i<UH−1; ++i ) {
2 value t = (value) i / UH;
3 Material Type m = SANDSTONE;
4 M[i] = 1.0/8;
5 if ( t < 0.3f ) {
6 m = WATER;
7 M[i] = 1.0/32;
8 } else if ( (0.5 <= t) && (t <= 0.7) ){
9 m = SHALE;

10 M[i] = 1.0/2;
11 }
12 Material [ i ] = m;
13 }

(a) TBB version

1 M[1:0.3∗UH] = 1.0/32;
2 Material [1 : 0.3∗UH] = WATER;
3
4 M[0.3∗UH+1: 0.5∗UH] = 1.0/8;
5 Material [0.3∗UH+1: 0.5∗UH] = SANDSTONE;
6
7 M[0.5∗UH+1: 0.7∗UH] = 1.0/2;
8 Material [0.5∗UH+1:0.7∗UH] = SHALE;
9

10 M[0.7∗UH+1:UH−1] = 1.0/8;
11 Material [0.7∗UH+1:UH−1] = SANDSTONE;

(b) HTA version

Fig. 4. Terrain initialization in the Seismic program

elements. The creation and processing of that HTA is very
costly in the current implementation of the library and it will
have a negative impact on the performance, as we will see in
the Evaluation, Section VI. The same problem is solved more
efficiently in the TBB version by applying the operator using
a range of the indexes to be used, which excludes the first and
the last point of the dimension. The remaining parts of the
code are sequential in both versions.

C. Parallel Merge

This code merges two sorted sequences into an output sorted
sequence. The algorithm operates recursively as follows:

1) If the sequences are shorter than a given threshold,
they are merged sequentially. Otherwise, Steps 2-5 are
performed.

2) The sequences are swapped if necessary so that the first
sequence,[begin1, end1) (the notation[) indicates that
the first value of the interval is included but not the last
one), must be at least as long as the second sequence
[begin2, end2).

3) m1 is set to the middle point in the first sequence. The
item at that location is calledkey.

4) m2 is set to the point wherekeywould fall in the second
sequence.

5) Subsequences[begin1, m1) and [begin2, m2) are
merged to create the first part of the merged se-
quence and subsequences[m1, end1) and [m2, end2)
are merged to create the second part. Both operations
take place in parallel with each other.

The TBB implementation of this algorithm is based on
a parallel for. The subdivision of the sequences is
implemented using an object of the ad-hoc range class
ParallelMergeRange whose definition is shown in Fig-
ure 5(a). The predicateis divisible performs the test in
step 1. TheParallelMergeRange class has two constructors.
The first one, shown in lines 7-18, contains the dummy



1 template<typename Iterator> struct ParallelMergeRange{
2 ...
3 bool empty() const{return (end1− begin1) + (end2− begin2) == 0;}
4 bool is divisible () const{
5 return std::min ( end1− begin1, end2− begin2 )> grainsize;
6 }
7 ParallelMergeRange( ParallelMergeRange& r, split ){
8 if ( ( r .end1− r.begin1)< (r.end2− r.begin2) ){
9 std::swap (r .begin1, r .begin2) ;

10 std::swap (r .end1, r .end2);
11 }
12 Iterator m1 = r.begin1 + (r .end1− r.begin1) / 2;
13 Iterator m2 = std::lowerbound( r .begin2, r .end2,∗m1 );
14 begin1 = m1; begin2 = m2;
15 end1 = r .end1; end2 = r .end2;
16 out = r .out + (m1− r.begin1) + (m2− r.begin2);
17 r .end1 = m1; r.end2 = m2;
18 }
19 ...
20 };
21 ...

(a) TBB version

1 ...
2 if ( input1 size > GRAINSIZE) {
3 size1 = input1.shape() . size () [0];
4 size2 = input2.shape() . size () [0];
5
6 if ( size1 < size2 ){
7 h2=input1 ; h1=input2 ;
8 std::swap ( size1 , size2 ) ;
9 } else{

10 h1=input1; h2=input2 ;
11 }
12
13 int pos = h2.lowerbound(h1[(size1− 1) / 2]) ;
14
15 h1. part ( ( size1− 1) / 2 );
16 h2. part ( pos ) ;
17 output . part ( pos + ( size1− 1) / 2 ) ;
18
19 output .hmap(Merging(), h1, h2, 0) ;
20 ...
21 } else {
22 ...

(b) HTA version

Fig. 5. Parallel Merge

variablesplit. This argument is used by the TBB library to
flag aRange constructor that is used to split an inputRange

in two. The constructor builds a new range that stores one
of the halves of the originalRange and modifies the original
Range, received as first parameter, to hold the other half. This
constructor performs the steps described in steps 2-5 of the
algorithm. The other constructor is a conventional constructor.
The basic operation simply performs the merge sequentially
by means of astd :: merge.

The HTA version is based onhmap. In the function applied
by hmap, if the sequences are bigger than a given threshold,
steps 2-5 are implemented. This part of the algorithm, shown
in Figure 5(b), is implemented using the dynamic partitioning
feature. Lines 15-17 add new partitions to the two input HTAs
and, the output HTA in the points selected as described in step
3 of the algorithm. This is performed using thepart method,
which accepts the position in which a new partition line is
to be added, giving place to two separate tiles. The position
wherekey would fall in the second sequence, mentioned in
step 4 of the algorithm, is calculated in line 13 using the HTA
function lower bound, which returns the index of the first
element of the HTA that is equal or larger than its argument.

Line 19 callshmap recursively with the repartitioned struc-
tures. In this call,hmap applies its functor argument on each
chunk in parallel. After this, these partitions are removedusing
a method calledrmPart. The recursion finishes when the

1 class SubStringFinder{
2 ...
3 void operator () ( const blockedrange<size t>& r ) const{
4 for ( size t i = r .begin () ; i != r .end() ; ++i ){
5 size t max size = 0, maxpos = 0;
6 for ( size t j = 0; j < str. size () ; ++j)
7 if ( j != i ) {
8 size t limit = str . size ()−( i > j ? i : j ) ;
9 for ( size t k = 0; k < limit; ++k) {

10 if ( str [ i + k] != str [ j + k]) break;
11 if (k > max size){
12 max size = k; maxpos = j;
13 }}}
14
15 max array[i ] = max size;
16 pos array[ i ] = max pos;
17 }}
18 ...
19 };
20 ...
21 parallel for (blocked range<size t>(0, to scan.size() , 100),
22 SubStringFinder( toscan , max, pos ) ) ;
23 ...

(a) TBB version

1 struct SubStringFinderOp{
2 void operator () (HTA<int,1> max , HTA<int,1> pos ) {
3 ...
4 init i =lower bound 0;
5 end i= init i +max .shape(). size () [0];
6
7 int pos=0;
8 for ( size t i = init i ; i != end i ; ++i) {
9 int max size = 0, maxpos = 0;

10 for ( size t j = 0; j < str. size () ; j++){
11 if ( j != i ) {
12 int limit = str . size ()−( i > j ? i : j ) ;
13 for ( int k = 0; k < limit; ++k) {
14 if ( str [ i + k] != str [ j + k]) break;
15 if (k > max size){
16 max size = k; maxpos = j;
17 }}}}
18 max [pos] = max size;
19 pos [pos] = max pos;
20 pos++;
21 }}};
22 ...
23 max.hmap(SubStringFinderOp(),pos);
24 ...

(b) HTA version

Fig. 6. Substring Finder

sequences to merge are smaller than a given threshold, then
step 1 is performed.

D. Substring Finder

In this code, given a string, for each position in the string,
the program finds the length and location of the largest match-
ing substring elsewhere in the string. For instance, take the
string flowersflows. Starting the scan at the first character
at position 0, the largest match isflow at position 7 with
a length of 4 characters. The position and length of those
matches are stored for each position of the string.

The parallelization strategy consists in searching the largest
matching string for each position of the scanned string in
parallel. The TBB version uses aparallel for, while the
HTA version uses ahmap.

The codes, shown in Figures 6(a) and 6(b) are very similar.
The operation performed in parallel is the same in both cases,
the only difference is the indexing of the data structures, as
it happened in previous codes. In the HTA version, themax

and pos arrays, where the result will be stored, are divided
in tiles, and thehmap operation is applied separately on each
tile, so the indexing will be relative to the start position of the
current tile.



1 ...
2 class tbbparallel task
3 {
4 ...
5 static void setvalues (Matrix∗ source, char∗ dest)
6 {
7 ...
8 m source = source; mdest = dest ;
9 ...

10 }
11
12 ...
13 void operator () ( const blockedrange<size t>& r ) const
14 {
15 ....
16 begin=( int ) r .begin () ;
17 end=( int ) r .end() ;
18 Cell cell ;
19
20 for ( int i=begin; i<=end; i++)
21 {
22 ∗(m dest+i) = cell . CalculateState (
23 m source−>data, msource−>width,
24 m source−>height,i);
25 }}
26 ...
27 };
28 ...
29 for ( int counter=1; counter<NSTAGES; counter++)
30 parallel for (blocked range<size t> (begin, end, grainSize) , tbbparallel task () ) ;
31 ...

(a) TBB version

1 struct EvolutionOp{
2 void operator () (HTA<int,2> data source, HTA<int,2> data dest){
3 ...
4 CellHTA cell;
5 size=datadest .shape() . size () ;
6
7 for ( int i=0; i<size[0]; i++) {
8 for ( int j=0; j<size[1]; j++) {
9 data dest [ i ][ j ]= cell . CalculateState ( datasource , ( i , j ) ) ;

10 }}}};
11 ...
12 Overlap<2> ∗ ol= new Overlap<2>(Tuple<2>(1,1), Tuple<2>(1,1), PERIODIC);
13 data= HTA<int,2>::alloc(1, ((SIZEX/NTILESX, SIZEY/NTILESY), (NTILESX,NTILESY)), ol, NULL, —

ROW);
14 ...
15 for ( int counter=1; counter<NSTAGES; counter++)
16 data .hmap(EvolutionOp(), data , 0) ;
17 ...

(b) HTA version

Fig. 7. Game of Life

E. Game of Life

The ”Game of Life” is a problem which opened the mathe-
matical research field ofcellular automata. The game is played
in a two-dimensional orthogonal grid of square cells, each of
which is in one of two possible states:live or dead. Every
cell interacts with its eightneighbors, which are the cells that
touch the cell horizontally, vertically or diagonally. In every
step of this evolution, each cell lives, dies, stays empty oris
born based on a simple decision depending on the surrounding
population (number of neighbors). The rules that determinethe
evolution of life are:

1) Life persists in any cell where it is also present in two
or three of their eight neighboring cells and otherwise
disappears (from loneliness or overcrowding).

2) Life is born in any empty cell for which there is life in
exactly three of the eight neighboring cells.

The decisions about each generation are taken based on the
state of the cells in the previous generation, so the problemis
fully parallel.

The parallel version decomposes the two-dimnesional space
of cells in a number of regions, and the decisions for the
next generation are taken in parallel in the different regions.
This is implemented in the TBB and HTA versions using

Code Arithmetic intensity Problem size Parallelism pattern(Flops) (kB)

Average 1.5 23906 regular
Seismic 330 24584 regular

Parallel merge 1 5859 irregular
Game of life 210 19531 regular

Substring finder 1397 88 regular

TABLE I
CHARACTERISTIC OF THE CODES PARALLELIZED

a parallel for and ahmap respectively. Both implemen-
tations can be seen in Figures 7(a) and 7(b). Besides the
differences in the implementation betweenparallel for and
hmap that we have seen in previous examples, in this code,
as the decisions for each cell depend on the state of its eight
neighbors, when we are computing the state of a cell in an
edge of a tile we will need to have a shadow region of size
1, in order to access the state of the neighbors that belong
to another tile. This way in lines 12 and 13 of Figure 7(b),
the HTA which represents the board of cells is created with
a shadow region of size one in both positive and negative
direction of each dimension of the board. The last argument
of the constructor of the overlap region in line 13, PERIODIC,
determines which values will contain the shadow cells in the
edge regions of the board. PERIODIC means that they contain
the value located in the other side of the matrix. For example,
the upper cell of position(0, 0) would be (N − 1, 0) where
N − 1 is the size of the first dimension.

The need of an overlapped region in the HTA implemen-
tation can be seen as an overhead but it greatly eases the
implementation of another part of the code with respect to the
TBB version. The classCell is used to model the behavior of
an isolated cell of the board. MethodcalculateState of this
class has to compute the new state for each cell. In the TBB
version, most of the time, the state of cell(i, j) depends on
the state of its neighbors located in positions:(i−1, j−1),(i−
1, j),(i−1, j+1),(i, j−1),(i, j+1),(i+1, j−1),(i+1, j) and
(i+1, j+1). But in the edge region, the neighbor values must
be searched in the other side of the matrix. This complicates
the implementation ofcalculateState. In the case of the
HTA version, as we have shadow regions around each tile, and
around the whole matrix filled using the PERIODIC criteria,
all the indexing of the neighbors can be always be performed
using standard HTA indexing. This will lead to a much better
overall performance of the HTA version as we will see in
Section VI.

F. Characteristics of the code

Table I summarizes the main characteristics of the codes
used in this comparison. The arithmetic intensity column
contains the ratio of floating point operations (Flops) per
word (32 bytes) of data processed. The problem size column
contains the size in kilobytes of the data structures involved
in each code. The seismic and game of life codes have very
high arithmetic intensity because they perform 100 stages of



the simulation and evolution respectively. The substring finder
has the highest arithmetic intensity as the inner loop of this
algorithm compares several times the same positions of its
array of strings. The parallelism pattern column is devoted
to the regularity of the distribution of the parallel work. It
is regular when the parallel work is divided into chunks of
the same size and it is irregular if they use chunks of different
sizes defined by the algorithm applied. Only the parallel merge
code uses an irregular distribution of the work.

V. QUALITATIVE COMPARISON

Both Hierarchically Tiled Arrays (HTAs) and Threading
Building Blocks (TBB) are libraries devoted to facilitating
the expression of parallelism. HTAs are arrays which may
be organized into one or more levels of tiles. When an
operation is applied to an HTA its tiles can be processed
concurrently. An interesting characteristic of the HTA library
is that its programming model is useful both in serial or
parallel scenarios. In the serial case, the array notation usually
improves readability and the tiling structure can be used for
locality enhancement. More importantly, HTAs can be used in
both shared and distributed memory environments, although
some operations such as dynamic partitioning are more costly
in the distributed memory environment.

The approach of TBB, which is restricted to shared memory
environments, is to parallelize loops by specifying tasks using
ranges which will be recursively subdivided. Since TBB does
not have the notion of tiling like HTA, it must rely on loop
structure to improve locality, although a partitioner thattries
to promote locality has been added to the newest version
of the library. The distribution of the work is performed
automatically by the task scheduler.

Much parallelism found in programs is data parallel and
can be expressed as an element-by-element operation, a re-
duction, or a scan, as described in Section II. The TBB
library implements these operations using aparallel for, a
parallel reduce, and aparallel scan operation respec-
tively. The HTA library uses alternatively anhmap, a reduce,
and ascan operation.

The manipulation of HTAs benefits from array-oriented
notation, which allows expressing some computations in a
more readable form than using nested loops (see Figure 4).
This tends to reduce the number of lines of code as discussed
in the next section. However, the advantage of array notation
goes beyond the lines of code. Array notation is intrinsically
deterministic and should for all practical purposes completely
avoid the possibility of race conditions.

One important feature of the TBB library is the ability to
create ad-hoc ranges which divide the iteration space using
special rules. This feature is supported in the HTA library by
means of dynamic partitioning as exemplified in IV-C.

The HTA library can define overlapped regions during the
creation of an HTA. However, programs based on the TBB
library have to resort to the use of padding regions managed
by the programmer, or to implement special treatment for the

Code Lines (HTA) Lines (TBB) HTA reduction

Average 28 39 +28.0%
Seismic 304 295 -3.0%

Parallel merge 70 74 +5.4%
Game of life 97 309 +69.0%

Substring finder 49 49 0.0%

TABLE II
NUMBER OF LINES FOR THE FIVE CODES PARALLELIZED IN THEHTA AND

TBB VERSION

edge regions of the array, which complicates the programming.
An example of this can be seen in Sections IV-A and IV-E.

Some TBB library primitives are not implemented by any
HTA construct. Examples of such primitives includesoftware
pipeline, someSTL-like concurrent containers, mutual exclu-
sion structures for explicit thread synchronization, support
for atomic operations on primitive data types, and thread-
aware timing utilities. When needed, TBB can provide those
primitives to programs based on HTAs, since both libraries can
be used in the same program. This is trivially proved by the
fact that the HTA library implementation for shared memory
is built on top of the TBB library. Nothing special is needed
to make any of them aware of the usage of the other one.
The programmer must only take into account that since the
HTA library initializes the TBB scheduler because it uses itto
schedule its tasks internally, s/he should not initialize it again.

One interesting property of TBB which is not available in
the current implementation of the HTA library is the ability
to subdivide the range to process depending on the number
of cores available. If one of the cores finishes very soon, the
amount of remaining work in another core can be recursively
divided to generate a new subrange assigned to the idle core.
This feature can be implemented in the HTA library. In the
meantime, HTAs can compensate not having this feature by
allowing the programmer to subdivide the work in much more
tasks than threads so that they can used for load balancing.
We evaluate this possibility in the next section, finding that it
can indeed improve performance up to 25%.

VI. EVALUATION

The measurement of the impact of a library on the ease
of programming is quite subjective. There is no formula
to calculate exactly the readability of a program although
experienced programmers can usually easily determine which
implementation and notation is easier for development and
maintenance. We have chosen the source lines of code as
an objective method to compare the implementation of the
algorithms using the TBB and HTA libraries. This metric
counts all the source lines in the code ignoring the comments
and empty lines. This metric has been measured in Table II
for both the TBB and HTA version of the codes introduced in
Section IV. The fourth column stands for the reduction of the
source number of lines of code obtained in the HTA version
with respect to the TBB one expressed as a percentage of the
source number of lines of code of the TBB version. As can



be seen in the table, the HTA codes are either virtually on par
or shorter than their TBB equivalents. The Game of Life sees
significant improvements that can be attributed to overlapped
tiling.

Table III shows the times in milliseconds for the execution
of the HTA and the TBB versions of the codes in a system with
two Quad core 2.66 Ghz Xeon processors using gcc 4.2.1 with
optimization level three. Several measurements were taken
using 1, 2, 3, 4 and 8 of the cores available in this machine.
The execution times reflected in this table are the minimum of
10 runs. Table IV shows the results of the same experiments
in an HP Integrity rx7640 server with eight dual-core 1.6
GHz Itanium Montvale processors with the same compiler and
optimization flags. Several measurements were taken using 1,
2, 3, 4, 8, 12 and 16 cores. Again, each execution time is the
minimum of 10 runs.

Table III shows that the HTA versions of each code achieve
a performance similar to that of the TBB versions when the
maximum number of cores (8) are used in the Quad core
system. However, in Table IV the HTA versions of Average
and Game of Life outperform by a large margin the TBB
versions when the maximum number of cores are used in the
Itanium-based system (16). In fact the HTA versions of these
two programs scale much better than the TBB ones, as in both
computers the TBB version of Average and Game of Life is the
fastest for one core, while for the maximum number of cores
the HTA is quite better. It is interesting to notice that these
ones are also the algorithms in which the HTA code had the
biggest reduction in number of lines of code with respect to the
TBB version. Both the programmability and the performance
improvement are mainly due to the overlapped tiling featureof
the HTA, thus arising as a very useful property of this library.
With respect to the other three programs, Substring finder
scales well for both libraries, tends to be always faster in the
HTA implementation. Parallel Merge, on the contray, works
reasonably for few cores, but does not scale to a large number
of them. Also, we notice that the dynamic partitioning feature
of the HTA is somewhat slower than the ad-hoc ranges of TBB.
This is not surprising given the need to modify the internal
structure of an HTA each time it is repartitioned, and again
when the newly introduced new partition lines are removed
once the work is completed. Finally, Seismic scales similarly
for both libraries, the TBB version being systematically the
fastest. That is because the HTA version has to perform a
costly operation to extract the first and the last element of
each HTA, as we said in Section IV-B. This problem is solved
more efficiently in the TBB version. The differences in the
performance obtained in both architectures are attributable to
the peculiarities of the Xeon and Itanium 2 architectures, since
they differ largely in clock rate, method to exploit ILP, and
memory hierarchy structure and size.

In these experiments, one tile per used core was created in
each tiled HTA, except in the cases of Parallel Merge, where
the HTA was tiled recursively using dynamic partitioning
until the threshold tile size was reached, and the Game of
Life, where one tile per core per dimension was used. This

does not imply a dependence on the number of cores as
HTAs are objects created at runtime whose tiling structure
is computed dynamically. Thus the number of cores can be
obtained dynamically and used in a general computation of
the desired tiling structure. Parallel computations inside the
HTA library are implemented using TBB parallel constructs
and consequently make use of TBB’s scheduler. The HTA
library allows these algorithms to be expressed differently
and often more clearly as well as respecting the minimum
task granularity specified by the programmer when s/he chose
the tile sizes; as opposite to the TBB which can choose the
granularity with little or no control of the user. As a result,
this possibly changes the number and order of operations. If
an HTA and a TBB program performed the same operations in
the same order, one would expect no difference in performance
as the programs would essentially be syntactically as well
as semantically identical. This is evidenced by the Substring
Finder example.

Figures 8 and 9 show the speedup obtained when signifi-
cantly more tiles than threads are used for the HTA version
of each code in both the two quad-core Xeon server and the
eight dual-core Itanium 2 server, respectively. The base ofeach
bar (in black) represents the speedup obtained when just one
tile per core is used, for a varying number of cores, which
corresponds to the times in the tables II and III. We also run
these codes creating up to 10 tiles per thread. The white bar on
top of the black one marks the highest speedup achieved. The
number of tiles per thread used to get this best performance is
above the bar. We observed that the performance of the HTA
version can be improved by a modest increase of the number
of tiles. The effectivity of the overpartitioning depends on the
code: some will not improve, while others get great benefits.
The codes that benefit the most from overdecomposition are
Game of Life, Parallel Merge, to a lesser extent, Average, and
sporadically, Seismic. Substring finder seems not to get any
benefit from overdecomposition as the performance with only
one tile is optimal. Additional benefits come from the dynamic
distribution of work on the available threads as the parallel
computations in the implementation of the HTA library inherit
from TBB. This is possible due to the overdecomposition of
the problem, which can compensate for the inexistence in
HTAs of an automatic dynamic partitioning feature of the work
as the one available in TBB.

VII. C ONCLUSIONS

We have compared Intel TBB and HTAs, two libraries
devoted to facilitating the programming of parallel machines
following two very different approaches, since their paral-
lelism is task and data based, respectively. For this purpose
several algorithms were implemented using both libraries.The
evaluation shows that the HTA codes are shorter or on par with
the length of the TBB ones. This is because, array notation of
some computations simplifies the HTA implementation of the
TBB codes with loops and conditional statements, dynamic
partitioning is easier to use than ad-hoc TBBRanges, and
overlapped regions hide the details of management of shadow



Code HTA TBB
1 2 3 4 8 1 2 3 4 8

Average 5.2 2.5 2.1 2.2 1.5 3.1 2.5 2.2 2.4 2.5
Seismic 8133.8 4234.1 2937.6 2399.8 1577.9 5975.2 3117.8 2328.4 1853.2 1458.7

Parallel merge 68.6 36.4 34.0 22.2 21.3 73.0 36.1 26.0 20.7 19.5
Game of life 4957.0 2465.0 2577.4 1745.7 1088.1 4473.9 2745.5 2130.2 1813.3 1381.3

Substring finder 5885.9 2992.0 2003.7 1541.6 768.9 6380.2 3203.8 2132.1 1610 820.3

TABLE III
T IMES IN MILLISECONDS, FOR THETBB AND HTA VERSIONS IN THE TWO QUAD-COREXEON SERVER USING1,2,3,4AND 8 CORES RESPECTIVELY

Code HTA TBB
1 2 4 8 12 16 1 2 4 8 12 16

Average 25.1 11.2 7.2 4.5 3.8 3.5 23.8 13.1 11.4 11.2 11.7 11.3
Seismic 19359.5 11201.7 7503.8 4916.8 3712.2 4129.8 15552.0 8824.3 6124.7 4000.6 3748.6 3215.6

Parallel merge 199.2 128.3 79.6 52.1 44.8 44.5 202.4 116.7 66.9 44.3 38.1 35.0
Game of life 19396.7 9486.7 6953.0 3478.9 2109.4 1690.8 16483.5 9623.1 6147.6 4386 3654.7 3409.9

Substring finder 9510.4 4895.6 2455.3 1256.8 791.5 689.9 10689.4 5361.9 2692.9 1366.2 924.4 717.0

TABLE IV
T IMES IN MILLISECONDS, FOR THETBB AND HTA VERSIONS IN THE EIGHT DUAL-COREITANIUM 2 SERVER USING1,2,4,8,12AND 16 CORES

RESPECTIVELY
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Fig. 8. Speedup obtained considering different number of threads and maximum speedup obtained due to decomposition when creating up to ten tiles per
thread in the two quad-core Xeon server

and padding regions from the programmer. The performance
results show that the times obtained for the HTA versions are
comparable to those obtained with the TBB ones. Sometimes
both coding and performance improvements can be observed
due to features like overlapped tiling, as in the case of the
Game of Life and Average programs.

The HTA library seems a more natural way to express data-
parallelism, which arises frequently in real programs, while
TBB offers more flexibility and can be used to solve other
situations for which HTAs may not be suitable. However,
while HTA codes can be run in hybrid and distributed memory
systems, TBB codes can only be run in shared memory
environments.

An interesting property of TBB not yet implemented in
the HTA library is the ability to repartition the work in an

automatic way according to the number of idle cores. Thus,
enabling the automatic repartitioning of HTAs dynamically
according to the number of idle cores in a similar way to
the behavior of ranges in the TBB library is an interesting
extension for this library. Still, we have tested the possibility
that HTAs provide of manually overdecomposing the work do-
main to facilitate balancing, achieving noticeable performance
improvements in several codes.
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Fig. 9. Speedup obtained considering different number of threads and maximum speedup obtained due to decomposition when creating up to ten tiles per
thread in the eight dual-core Itanium 2 server
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