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Abstract—The programming of heterogeneous clusters is in-
herently complex, as these architectures require programmers to
manage both distributed memory and computational units with
a very different nature. Fortunately, there has been extensive
research on the development of frameworks that raise the level
of abstraction of cluster-based applications, thus enabling the
use of programming models that are much more convenient
that the traditional one based on message-passing. One of
such proposals is the Hierarchically Tiled Array (HTA), a data
type that represents globally distributed arrays on which it is
possible to perform a wide range of data-parallel operations.
In this paper we explore for the first time the development of
heterogeneous applications for clusters using HTAs. In order
to use a high level API also for the heterogenous parts of
the application, we developed them using the Heterogeneous
Programming Library (HPL), which operates on top of OpenCL
but providing much better programmability. Our experiments
show that this approach is a very attractive alternative, as
it obtains large programmability benefits with respect to a
traditional implementation based on MPI and OpenCL, while
presenting average performance overheads just around 2%.
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I. INTRODUCTION

Beyond the issues inherently related to parallelism, hetero-
geneous clusters are notoriously difficult to program for two
reasons. First, every cluster has a distributed memory nature
that requires to use several independent processes, at least one
per node, that must communicate by means of messages. These
messages can be explicitly exposed to the programmer, as in
the case of MPI, which the most widely used framework for
distributed memory computing, or implicitly, as in the case of
PGAS (Partitioned Global Address Space) approaches [1], [2],
[3], [4]. Even in the last situation the user must follow a SPMD
programming style with its characteristic conditional control
flows, which can be quite complex, and also be aware of the
distribution of the data, as the cost of ignoring it is enormous.
Second, the heterogeneity of these architectures requires the
user to use special frameworks to exploit it and manage much
more concepts that CPU-only applications such as blocks of
threads, different kinds of memory in the device, device and
host-side buffers, etc.

Both kinds of problems have received considerable atten-
tion. This way, PGAS are just one of the solutions proposed
to reduce the programming cost of clusters with respect to the

mainstream MPI-based approach, there being also proposals
based on compiler directives [5], [6] and libraries that offer a
higher level of abstraction [7]. An interesting thing is that, as
far as we know, there have been few attempts to extend the
existing cluster programming tools to support heterogeneous
clusters [8]. Rather, these architectures have been mostly
targeted by means of extensions of the tools oriented to het-
erogeneous computing (mostly CUDA and OpenCL) that try
to support more or less transparently the access to accelerators
located in different cluster nodes [9], [10], [11], [12], [13].

In this paper we evaluate for the first time the development
of applications for heterogeneous clusters based on a library-
based data parallel type originally targeted to homogeneous
clusters. The proposal chosen is the Hierarchically Tiled Array
(HTA) [7], a datatype implemented in C++ that represents an
array partitioned into tiles that are distributed on the nodes of
a cluster, thus providing a global view of the structure. The
operations on a HTA take place implicitly in parallel across its
tiles exploiting data parallelism. As a result, HTA programs do
not follow an SPMD programming style. On the contrary, there
is a single high-level thread of execution, the parallelism being
transparently exploited in the HTA operations that involve
several tiles in the same step. HTAs have been compared to
optimized MPI-based codes in traditional multi-core clusters
achieving large programmability improvements at the cost
of reasonable overheads [14]. OpenCL was chosen for the
development of the heterogeneous parts of the applications
in order to maximize their portability. Rather than using its
somewhat verbose host API [15], we used the Heterogeneous
Programming Library (HPL) [16], [17], a C++ library that
offers a very concise and high-level API for the development
of OpenCL-based applications.

The rest of this paper is organized as follows. First, the
HTA data type will be described. Then, Section III explains
our strategy to develop applications for heterogeneous clusters
using HTAs. This is followed by an evaluation on terms
of performance and programmability in Section IV and a
discussion on related work in Section V. Finally, Section VI
concludes the paper with our conclusions and future work.

II. HIERARCHICALLY TILED ARRAYS

This data type, proposed in [7] and available at
http://polaris.cs.uiuc.edu/hta, represents an array



BlockCyclicDistribution<2> dist({2, 1}, {1, 4});
auto h = HTA<double, 2>::alloc({ {4, 5}, {2, 4} }, dist);
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Fig. 1. HTA creation
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Fig. 2. HTA indexing

that can be partitioned into tiles. These tiles can be low
level (i.e., unpartitioned) arrays or they can be also internally
partitioned, giving place to the hierarchical nature of this
class. HTAs can specify a distribution of their tiles (cyclic,
block cyclic, etc.) on a mesh of processors, which allows the
representation of distributed arrays. The recursive tiling can be
used to express locality as well as lower levels of distribution
and parallelism. For example one could use the topmost level
of tiling to distribute the array between the nodes in a cluster
and the following level to distribute the tile assigned to a multi-
core node between its CPU cores. However, the most common
practice is to express the partitioning in a single level. Figure 1
illustrates the C++ notation used to build an HTA of 2 × 4
top level tiles, each one of them composed by 4 × 5 double
precision floating point elements that is distributed on a mesh
of 1×4 processors so that each processor gets a block of 2×1
tiles.

A very interesting feature of HTAs is the enormous flex-
ibility they provide for their indexing due to the support of
two indexing operators, one for tiles (parenthesis) and another
one for scalars (brackets). In addition, both indexings can
be combined, as Fig. 2 shows, where the Triplet objects
allow to express inclusive ranges, so that Triplet(i,j) is
the range of indices between i and j, both included. As we
can see, the scalar indexing disregards the tiled nature of an
HTA, and when it is applied within a tile or set of selected
tiles, it is relative to the beginning of each one of those tiles.

HTAs support a wide range of array-based expressions that
can express computations, data movements or both. All the
HTA expressions take place in parallel on their tiles, thus

1 void mxmul(HTA<float,2> a, HTA<float,2> b,
2 HTA<float,2> c, HTA<float,1> alpha)
3 {
4 int rows = a.shape().size()[0];
5 int cols = a.shape().size()[1];
6 int commonbc = b.shape().size()[1];
7
8 for(int i = 0; i < rows; i++)
9 for(int j = 0; j < cols; j++)

10 for(int k = 0; k < commonbc; k++)
11 a[{i,j}] += alpha[0] ∗ b[{i,k}] ∗ c[{k, j}];
12 }
13 ...
14 hmap(mxmul, a, b, c, alpha);

Fig. 3. HTA hmap example

providing implicit parallelism and communications. When two
HTAs are operated jointly, they must be conformable, that
is, they must have the same structure and the corresponding
tiles that will be operated together will be required to have
sizes that allow to operate them. The exceptions are the
operations with scalars, which are conformable to any HTA
by replication, and untiled arrays, under the condition that
such array is conformable to all the leaf tiles of the HTA it
is operated with. This way, the conformability rules of HTAs
are a generalization of those of Fortran 90.

When the corresponding tiles used in an HTA operation
(including assignments) are located in different cluster nodes,
communications are automatically performed to complete the
operation. This way, for example, if we had two HTAs a

and b built with the structure and distribution of the example
in Fig. 1, and assuming that each processor is located in a
different node, the expression
a(Tuple(0,1), Tuple(0,1)) = b(Tuple(0,1), Tuple(2,3))

would imply that processor 2 would send its tiles of b to
processor 0, while processor 3 would send its tiles to processor
1, both communications taking place in parallel. The other
mechanism to perform communications is the invocation of
HTA methods that implement array-based typical operations
that imply movement of data within the array, examples being
transpositions, circular shifts, permutations, etc.

Computations can be directly performed using the standard
arithmetic operators (e.g. a=b+c, where all the operands are
HTAs) thanks to C++ operator overloading. There are also
methods that allow to express more complex computations as
well as higher-order operators that support the application of
user-defined computations. The most widely used operator of
this kind is hmap, which applies a user function in parallel to
the tiles of one or more HTAs. When hmap receives more than
one argument HTA, the corresponding tiles of these HTAs are
operated together. For this reason all the argument HTAs to an
hmap invocation must have the same top level structure and
distribution. Figure 3 illustrates the application of this function
to four HTAs in order to compute a=a+alpha×b×c by tiles
so that in each tile-level operation a, b and c provide matrices
with the appropriate sizes to be operated and alpha provides



a scalar.
As we can see, HTAs provide high-level semantics that

largely increase the degree of abstraction with respect to the
traditional message-passing approach used in clusters. They
have in common with PGAS solutions that they provide
a unified view of globally distributed arrays coupled with
information on their distribution so that users can make their
accesses as efficiently as possible. Nevertheless, HTAs avoid
the SPMD programming style typical of the other approaches
and provide rich array-based operations, indexing possibilities,
and tile-based manipulations, which further simplify the tasks
of cluster programmers.

III. HETEROGENEOUS APPLICATIONS BASED ON HTAS

While most applications that rely on accelerators are written
using either CUDA or OpenCL, since our aim is to explore
the programming of heterogenous clusters using high level
approaches, we had to choose a tool that offers richer ab-
stractions. We preferred one based on OpenCL for portability
reasons, as there are several families of accelerators that are
becoming increasingly important in HPC clusters. Also, we
wanted the solution chosen to be as general as possible,
i.e., to impose minimum restrictions on the kernels, and to
provide performance similar to the one provide by native
OpenCL. Finally, since it had to work jointly with HTAs, the
approach chosen should integrate nicely in C++. Although
there is a proposal of a specification to facilitate the use
of OpenCL in C++ [18], to this date there are no public
implementations of it that can run on accelerators. Thus, given
the discussions in [17], [19], the Heterogeneous Programming
Library (HPL) [16] was chosen as the best option that fulfilled
the desired conditions. This section now briefly introduces
HPL, and then explains our strategy to develop applications
for heterogeneous clusters using HTAs and HPL.

A. Heterogeneous Programming Library

This project consists of a C++ library, distributed under
GPL license from http://hpl.des.udc.es, which allows
to develop OpenCL-based applications using two mechanisms
that can be combined. The first one, introduced in [16], is a
language embedded in C++ that expresses the heterogeneous
kernels to execute in the accelerators (also the CPU, if it
supports OpenCL) by means of a number of macros, prede-
fined variables and data types provided by HPL. Since it is
embedded in C++, this naturally gives place to single-source
applications with very interesting properties such as the use of
C++ variables inside the kernels. Its most powerful property is,
however, that the kernels written with this language are built
at runtime, exploiting runtime code generation. This allows
to write kernels that self-adapt at runtime to the underlying
hardware or the inputs, as illustrated in [20]. The second
mechanism enables the use of traditional string or separate
file-based OpenCL C kernels [17] using the same simple host
API as the HPL embedded language, which will be described
later.

1 void mxmul(Array<float,2> a, Array<float,2> b,
2 Array<float,2> c, Int commonbc, Float alpha)
3 { Int k;
4
5 for (k = 0, k < commonbc, k++)
6 a[idx][idy] += alpha ∗ b[idx][k] ∗ c[k][idy];
7 }
8 ...
9 Array<float, 2> a(N, N), b(N, N), c(N, N);

10
11 eval(mxmul)(a, b, c, N, alpha);

Fig. 4. HPL example

HPL follows the same semantics as OpenCL regarding the
execution of a host-side application that can execute kernels,
expressed as functions, in the different devices attached to
the host. Also, the kernels are executed in parallel by a
number of threads that is defined by a space of indices of
between one and three dimensions that is called global space
in HPL. Another similarity is that the threads can be organized
in teams (work-groups in OpenCL; thread groups in HPL)
that can synchronize by means of barriers and share a fast
scratchpad called local memory. The size and dimensions of
these teams are specified by an index space of the same
number of dimensions as the global space and that must divide
it in every dimension that is called local space in HPL.

Contrary to OpenCL, however, HPL raises the level of
abstraction by avoiding both the definition of separate buffers
in the different memories involved in this process and the
transfers related to the management of these buffers. Rather,
HPL users have an unified view of their memory objects,
the underlying details being transparently taken care of by
the library runtime. All the HPL memory objects belong
to the Array<type,N> data type, which expresses an N -
dimensional array (0 for scalars) of elements of the type type.
The objects of this kind can be defined in the host side of the
application and they are used by the kernels that are executed
in the devices when they appear as arguments to those kernels.
Since all the accesses to these objects take place by their
member functions, HPL knows when they are read or written,
which allows it to know the state of their copies and provide
a coherent view of the object to the user across the different
memories involved. The runtime is optimized so that transfers
are only performed when they are strictly necessary.

Figure 4 illustrates the implementation of a simple dense
matrix product similar to the one in Fig. 3 using the HPL
embedded language. The analogous implementation based on
native OpenCL C code is not explained here for brevity, but
it requires very simple steps explained in [17]. The kernel,
expressed as a regular C++ function in lines 1-7, computes
a single element of the destination array a. Namely, this
kernel is written to be executed in a two-dimensional space
of X × Y threads where X and Y are the number of rows
and columns of the destination matrix, respectively. The HPL
predefined variables idx and idy provide the global identifier



of the thread executing the kernel in the global space of
threads in the first and the second dimension of this space,
respectively. As a result, thread (idx,idy) is in charge of
computing a[idx][idy]. The kernel receives as arguments
the three matrices involved in the product, and number of
elements of the dimension that is common to the two matrices
to be multiplied, and the constant alpha. Following our
explanation above the type of these two latter elements should
be Array<int,0> and Array<float,0>, and in fact this is
the case, because Int and Float are just alias provided for
conveniency. The host side code starts after line 8. There we
can see the definition of the arrays to use in the heterogeneous
computations in line 9 and the syntax used to request the
execution of a kernel in line 11. It deserves to be mentioned
that the scalars used in the list of kernel arguments in the host
side can belong to the regular C++ data types.

Kernel invocations use by default a global space of threads
defined by the number of dimensions and elements per
dimension of the first argument of the kernel, which suits
our example. Also, users are not required to specify the local
space, letting the underlying OpenCL runtime choose it. HPL
allows however to define these spaces as well as the device
to use in the execution by means of specifications inserted
between the eval and its list of arguments. For example,
eval(f).global(10,20).local(5,2).device(GPU,3)

(...) runs f using a global space of 10 × 20 threads
subdivided in teams of 5 × 2 threads in the GPU number
3 using the provided arguments. Although not explained
here, HPL also provides a rich API to explore the devices
available and their properties, profiling facilities and efficient
multi-device execution in a single node.

B. HTA-HPL joint usage

As we can see, HTA and HPL serve very different purposes.
While HTAs are well suited to express the top-level data
distribution, communication and parallelism across cluster
nodes, HPL largely simplifies the use of the heterogeneous
computing resources available in a node. Their joint usage in
one application requires solving two problems that we discuss
in turn in this section followed by a small example.

1) Data type integration: These frameworks require differ-
ent data types to store the data they can manipulate. Once
we are forced to handle these two types (HTAs and HPL
Arrays), and since the top-level distribution of data of the
HTAs is made at tile level, the best approach would be to
build an Array associated to each (local) tile that will be
used in heterogeneous computations. The situation would be
ideal if we managed to use the same host memory region
for the storage of the local HTA tile data and the host-side
version of its associated HPL Array, as this would avoid the
need for copies between both storages. Fortunately, the API
of these datatypes is very rich, which enables programmers
to achieve this using a relatively simple strategy illustrated in
Fig. 5. First, HTAs provide several methods to identify the tiles
that are local to each process. In most situations, however, the
identification is extremely simple, as the most widely pattern

1 const int N = Traits::Default::nPlaces();
2 auto h = HTA<float, 2>({100, 100}, {N, 1});
3
4 const int MYID = Traits::Default::myPlace();
5 Array<float, 2> local array(100, 100, h({MYID, 1}).raw());

Fig. 5. Joint usage of HTAs and HPL

for the usage of HTAs is to make the distribution of the HTA
along a single dimension, defining one tile per process. This
is the case in our example, where line 1 gets the number of
processes in variable N using the API of the HTA framework
and line 2 builds a distributed HTA that places a 100 × 100
tile in each process, so that all the tiles together conform a
(100×N) × 100 HTA that is distributed by chunks of rows.
Line 4 obtains the id MYID of the current process, so that
choosing h(MYID, 1) will return the tile that is local to
this process. Once this tile is identified, obtaining its storage
is trivial, as HTAs provide a method raw() that returns a
pointer to it. The final step involves making sure that the
associated HPL Array uses the memory region that begins
at that memory position for storing its host-side version of the
array it handles. This is very easy to achieve in HPL, as the
Array constructors admit a last optional argument to provide
this storage. This way, the Array can be built using the syntax
shown in line 5. From this point, any change on the local tile
of HTA h will be automatically reflected in the host-side copy
of the Array local_array and viceversa.

2) Coherency management: While HPL can automatically
manage the coherency of its Arrays across all their usages
in HPL, the changes that are due to HTA activities must be
explicitly communicated to HPL. Again, this did not require
any extension to the existing HPL API, as HPL Arrays have
a method data that allows to do this. The original purpose
of this method was to obtain a pointer to the host-side copy
of an Array so that programmers could access its data at
high speed through this pointer, rather than by the usual
indexing operators of the Array. The reason is that these
operators check and maintain the coherency of the Array in
every single access, thus having a considerable overhead with
respect to the usage of a native pointer. The data method
supports an optional argument that informs HPL of whether
the pointer will be used for reading, writing or both, which is
the default assumption when no specification is made. This is
all the information HPL needs to ensure that the users will get
coherent data from the pointer, and the devices will access a
coherent view of the Array when it is used in the subsequent
kernel invocations. Thus this simple mechanism also suffices
to make sure that HTAs have a coherent view of the Arrays
that have been modified by heterogeneous computations as
well as to guarantee that HPL pushes to the heterogeneous
devices fresh copies of those Arrays whose host-side copy
has just been modified by an HTA operation.

3) Example: Our ongoing matrix product example is used
in Fig. 6 to illustrate the joint usage of HTA and HPL. Here



1 // N is the number of processes and MY ID the local id
2
3 auto hta A = HTA<float,2>::alloc({{(HA/N), WA}, {N, 1}});
4 Array<float,2> hpl A((HA/N), WA, hta A({MY ID}).raw());
5
6 auto hta B = HTA<float,2>::alloc({{(HB/N), WB}, {N, 1}});
7 Array<float,2> hpl B((HB/N), WB, hta B({MY ID}).raw());
8
9 auto hta C = HTA<float,2>::alloc({{HC, WC}, {N, 1}});

10 Array<float,2> hpl C(HC, WC, hta C({MY ID}).raw());
11
12 hta A = 0.f;
13 eval(fillinB)(hpl B);
14 hmap(fillinC, hta C);
15 eval(mxmul)(hpl A, hpl B, hpl C, HC, alpha);
16
17 hpl A.data(HPL RD); // Brings A data to the host
18 auto result = hpl A.reduce(plus<double>());

Fig. 6. HTA-HPL example code

the distributed result HTA hta_A and the left HTA of the
product hta_B are allocated by chunks of rows, while the
right HTA hta_C replicates the whole matrix in each process.
The example assumes for simplicity that the number of rows
of hta_A and hta_B is divisible by the number of processes
N. Next to each HTA is built the Array that allows to use the
local tile for heterogeneous computing. Lines 12, 13 and 14 fill
in the local portion of the A, B and C matrices, respectively.
They illustrate how both accelerators under HPL, in the case of
B, as well as the CPU under the HTA, in the case of A and C,
can be used following this strategy. The matrix product itself
happens in line 15 using the kernel shown in Fig. 4. Notice
how the usage of hpl_A and hpl_C as arguments allows the
kernel to automatically use the data of the local tile of hta_A
and hta_C, respectively, both initialized by the CPU.

Until this point it has not been necessary to invoke the data
method on any Array because of the default assumption that
Arrays are initially only valid in the CPU together with the
automated management of their coherency for the execution
of accelerator kernels in the eval invocations by HPL. In
order to exemplify its use, our example assumes that as last
step we want to reduce all the values of the distributed HTA
hta_A by means of a global addition. This can be achieved
by means of the HTA method reduce, which will take care
of both the communications and the computations required.
However, if reduce is invoked right after the matrix product
in the accelerator, the result will be wrong. The reasons are
that (1) the HTA library only has access to the host side copy
of the tiles, as it is the only one it knows, and (2) this copy of
hta_A is outdated, because the result of the matrix product is
in the accelerator, as HPL only moves data when it is strictly
required. The data invocation in line 17 informs HPL that
the host-side version of hpl_A, which is exactly located in the
same host memory as the local tile of hta_A, is going to be
read. This updates the host side, allowing the HTA reduction
to operate successfully.

IV. EVALUATION

We will evaluate the development of applications for het-
erogeneous clusters by means of the HTA and HPL high level
approaches using five benchmarks. The first two benchmarks
are two of the OpenCL codes developed in [21], namely EP
and FT. The first one gets its name from being embarrassingly
parallel, although it requires inter-node communications for
reductions that happen at the end of the main computation.
The second one repetitively performs Fourier Transforms on
each one of the dimensions of a 3D array. This requires fully
rotating the array in each main iteration of the algorithm,
which implies an all-to-all communication between the cluster
nodes. The third problem, Matmul, is a distributed single
precision dense matrix product in which each node computes
a block of rows of the result matrix. The fourth benchmark
is a simulation on time of the evolution of a pollutant on the
surface of the sea depending on the tides, oceanic currents,
etc. called ShWa and parallelized for a cluster with distributed
GPUs in [22]. The simulation partitions the sea surface in
a matrix of cells that interact through their borders. Thus in
every time step each cell needs to communicate its state to
its neighbors, which implies communications when they are
assigned to different nodes. The distributed arrays are extended
with additional rows of cells to keep this information from the
neighbor cells in other nodes, following the well known ghost
or shadow region technique. The fifth application is Canny, an
algorithm that finds edges in images by following a series of
four steps, each one implemented in a different kernel. The
parallelization comes from the processing or different regions
of the kernel in parallel. Communications between neighboring
regions of arrays used in the computations are required for
some of the kernels. This gives place to the application of the
already mentioned shadow region technique, which replicates
portions of the borders of the distributed arrays which need
to be updated when the actual owner of the replicated portion
(rows, in the case of this algorithm) modifies it.

The fact that most applications for heterogeneous clusters
use MPI for their communications led us to use this tool in
our baseline for this purpose. Regarding the heterogeneous
computations, since HPL is a C++ library based on OpenCL,
and most OpenCL-based codes rely on its standard API, our
baselines are written using OpenCL with the C++ API. Given
that the main aim of using tools that provide a higher level
of abstraction is the improvement of the programmability and
reduction of the programming cost of heterogeneous clusters,
this will be the first aspect we will evaluate. The final part of
this section will demonstrate that the performance overhead of
these tools is negligible.

A. Programmability evaluation

Comparing the ease of use of two approaches is extremely
complex. The ideal situation would be to measure the devel-
opment time and collect the impressions of teams of program-
mers with a similar level of experience [23]. Unfortunately this
is seldom available, so another widely used alternative is to
rely on objective metrics extracted from the source code. Our
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Fig. 7. Reduction of programming complexity metrics of HTA+HPL
programs with respect to versions based on MPI+OpenCL.

programmability comparison will be based on three metrics of
this kind. The first one is the well-known source lines of code
excluding comments and empty lines (SLOCs). The second
one is the cyclomatic number [24] V = P + 1, where P is
the number of predicates (conditionals) found in the program.
The foundation of this metric is that the more complex the
control flow and the larger the number of execution paths in a
program, the more difficult its development and maintenance
are. The last metric is the programming effort, proposed in [25]
as a function of the total number of operands (constants and
identifiers) and operators (symbols that affect the value or
ordering of the operands) and the number of unique operands
and unique operators.

As we explained, the baselines are also written in C++
and use the OpenCL C++ API. Another decision taken to
make the comparison as fair as possible was to encapsulate
in our baselines the relatively burdensome initialization of
OpenCL in reusable routines and perform this initialization
just invoking these routines, so that it is not part of the
programmability evaluation. As a result the baselines have the
minimum amount of code required to write these applications
using MPI and the OpenCL host C++ API.

Figure 7 shows the percentage of reduction of the metrics
we have just described when the applications are written using
HTA and HPL instead of MPI and OpenCL. The comparison
only considers the host-side of the application, because kernels
are identical in both cases. We can see that the high level
approaches have systematically reduced the programming cost
for all the metrics, and even simple codes like Matmul
achieve reductions of over 20% for the SLOCs and 30%
for the programming effort, which is always the metric that
experiences the largest improvement. This latter observation
is particularly positive, as since this metric considers every
single operand and operator used in the program, it seems
a much better indication of complexity than SLOCs, which
do not take into account that source lines of code can vastly
vary in terms of complexity. On average, the comprehensive
high level approach requires 28.3% fewer SLOCs, 19.2% less
conditionals, and a 45.2% smaller programming effort than

the versions based on MPI and the OpenCL API. These results
largely support the combined usage of HTA and HPL, provided
that it does not involve important performance overheads.

B. Performance evaluation

Two clusters were used for the performance comparisons.
Fermi is a cluster of 4 nodes with a QDR InfiniBand network.
Each node has an Intel Xeon X5650 with 6 cores, 12 GB of
memory and two Nvidia M2050 GPUs with 3GB per GPU.
The K20 cluster has 8 nodes connected by a FDR InfiniBand.
Each node has two Intel Xeon E5-2660 8-core CPUs, 64 GB
of RAM and a K20m GPU with 5 GB. The compiler used in
both systems is g++ 4.7.2 with optimization level O3 and the
MPI implementation is the OpenMPI 1.6.4. The problem sizes
used for EP and FT were the classes D and B, respectively.
Matmul multiplied matrices of 8192 × 8192 elements, ShWa
simulates the evolution of a mesh of 1000 × 1000 volumes
and Canny processes an image of 9600 × 9600 pixels.

Figures 8 to 12 show, for each benchmark, the speedup
of the executions using multiple devices with respect to an
execution using a single device for the MPI+OpenCL baseline
and the HTA+HPL version. The executions in Fermi were
performed using the minimum number of nodes, that is, the
experiments using 2, 4 and 8 GPUs involved one, two and
four nodes, respectively. The execution using a single device
is based on an OpenCL code targeted to a single device, that
is, without any MPI or HTA invocations. The most important
conclusion from these plots is that the high level approach has
very small overheads with respect to the low level one, which
is what we wanted to prove. In fact, the average performance
difference between both versions is just 2% in the Fermi clus-
ter and 1.8% in the K20 cluster. Not surprisingly, the overhead
is more apparent the more intensively HTAs are used, which is
the case of FT (around 5%) and ShWa (around 3%), where the
communication between nodes happens in a repetitive loop.
In FT in addition the HTA takes care of a very complex all-
to-all communication pattern with data transpositions. This is
also the reason why this was the application with the largest
programming effort reduction overall (58.5%) and very strong
reductions of the SLOCs (30.4%) and cyclomatic number
(35.1%).

V. RELATED WORK

The programmability of heterogeneous clusters has been
explored by most researchers by means of expansions of the
CUDA and OpenCL paradigm, which are well suited for the
management of multiple accelerators in a node, by means of
tools that enable the access to accelerators located in other
nodes [9], [10], [11], [12], [13], [26]. As a result, The level
of abstraction of these tools is analogous to that of CUDA or
OpenCL, which force programmers to manage numerous low
level details. Some approaches like [27] avoid some of these
tasks with their related boilerplate code, but they still keep
many others such as the explicit kernel creation, allocation
of buffers associated to devices, event-based synchronizations,
etc. thus resulting in a much lower level, and therefore worse
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Fig. 10. Performance for Matmul
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Fig. 12. Performance for Canny

programmability, than the HTA/HPL combination proposed in
this paper. A common problem of these approaches is that
since they are based on the extension of the CUDA/OpenCL
model to access heterogeneous resources across a cluster,
contrary to our proposal, they do not provide a solution to
the efficient exploitation of the CPUs in the cluster and the
communication of the data to be used only in the CPUs. In the
OpenCL-based approaches, this could be addressed by writing
the CPU codes as OpenCL kernels that are run in those CPUs
considering them as OpenCL devices. This clearly requires
much more effort than directly using those resources by means
of C/C++ functions that work on the tiles of a distributed HTA.

An elegant higher level solution, [28], extends node-level
skeletons for heterogeneous programming to clusters. Its main
limitation is that it can only support applications in which
all the computational patterns are covered by the skeletons.
Another project that started considering the computational
units in a single node and was later extended to support clus-
ters is SkePU, which developed alternatives based on explicit
messages [29] and a task-based model [30] where a single
thread of execution enqueues tasks that can be executed in the
different accelerators in a cluster respecting the dependencies
marked by the user. The data-parallel semantics of HTAs,
which provide both predefined common array operations and
higher-order functions such as hmap, automating the parallel
computations and/or complex communications required by
many of these operations (e.g. matrix permutations), offer a

much more convenient notation thanks to the higher level of
abstraction involved. This important advantage also holds with
respect the rest of the alternatives discussed in this section.

OmpSs deserves a separate mention, as it targeted traditional
clusters [6] before being extended to support heterogeneous
ones [8], which enables it to exploit all the parallelism across
these systems. OmpSs, however, requires users to indicate
which are the inputs and outputs of each parallel task. Worse, it
lacks distributed structures, forcing programmers to manually
partition in chunks, similar to the HTA tiles, the program
arrays and to individually specify the computation to perform
with each chunk.

A proposal that combines a language for the programming
of clusters [31] with OpenACC [32], which facilitates the
programming of accelerators, is [33]. Its main drawbacks are
the current reduced portability of OpenACC [34] compared
to OpenCL, on which HPL is based, and the dependence on
the quality of the compiler of OpenACC, which often reaches
much less performance than manually developed kernels [35].

Also related to this work, although to a lesser point, are
the efforts for enhancing the integration between MPI and the
accelerators [36], [37] and the large body of improvements
to facilitate the usage of accelerators in a single node. This
includes both native features such as the CUDA-unified ad-
dress space available since CUDA 6 and the large number of
research proposals in this field, many of which are discussed
in [16], [17], [19].



VI. CONCLUSIONS

Accelerators are becoming increasingly important for large-
scale scientific and engineering applications, which has led
to their increasing adoption in HPC clusters. As a result,
developers have to cope simultaneously with the traditional
problems derived from the distributed-memory nature of these
systems and the added complexity inherent to heterogeneous
computing. Most approaches to deal with this situation have
simply enabled to access remote accelerators, making little
to raise the level of abstraction of the tools provided to the
programmer. In this paper we explore the development of
applications for heterogeneous clusters based on two high
levels tools. The first one, Hierarchically Tiled Arrays (HTAs),
provides arrays distributed by tiles that can be manipulated
using data-parallel semantics. HTA applications have a global
view of the distributed data and a single thread of con-
trol, which splits to operate on parallel on different tiles
using high level operators. Some of these operators express
global HTA changes, such as permutations and rotations,
while assignments between tiles located in different nodes
imply data communications, reinforcing the power of the HTA
notation for the programming of clusters. The second tool is
the Heterogeneous Programming Library (HPL), a framework
that allows to develop heterogeneous applications on top of
OpenCL avoiding its verbose host API and all all its low
level details such as buffers, compilation processes, transfers,
synchronizations, etc.

We have shown that these tools can be combined in order to
develop programs targeted to heterogeneous clusters following
relatively simple strategies. An evaluation based on bench-
marks with very different nature has shown that comparing
with a baseline written using MPI and OpenCL, the strategy
proposed achieves remarkable average programmability metric
improvements between 19% and 45%, with a peak of 58%.
Also, both tools had already shown very small overheads
with respect to low-level versions, and this was reflected in
our tests, in which their combination was on average just
around 2% slower than the baselines. This way the high-
level approach they constitute considerably raises the degree
of abstraction of the applications without implying noticeable
performance penalties, thus being a very attractive alternative
for the programming of heterogenous clusters.

Our future work is to effectively integrate both tools into a
single one so that the notation and semantics are more natural
and compact and operations such as the explicit synchroniza-
tions or the definion of both HTAs and HPL arrays in each
node are avoided. This should also expose opportunities for
optimizing the runtime, and thus reducing the overheads of
the resulting approach.
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