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Abstract

One of the most important factors that hinder the exploitation of heterogeneous
devices is their programming cost, which is much higher than that of traditional CPUs.
This is particularly true when we consider the OpenCL standard, which trades com-
plexity in the host part of the application for program portability. The Heterogeneous
Programming Library (HPL) is a proposal to reduce the effort to develop applications
that can use heterogeneous systems by means of a language embedded in C++ and a
runtime that takes care of most of the the management of OpenCL applications. In this
paper we describe for the first time the programming of multiple heterogeneous devices
on top of HPL. An evaluation in multi-GPU systems shows that it achieves important
programmability improvements over OpenCL with minimum overhead.
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1 Introduction

In the past few years there has been an enormous increase in the use of heterogeneous devices
to perform general-purpose computations. This is due to the large advantages in terms of
performance and power consumption they can achieve with respect to traditional single and
even multicore CPUs for certain kinds of computations. The biggest difficulty in the usage
of these kind of devices is their programming cost, as they require the specification and the
management of much more details than regular computers. Another important problem is

©CMMSE Page 1280 of 1485 ISBN: 978-84-616-9216-3



EXPLOTING MULTI-GPU SYSTEMS USING THE HETEROGENEOUS PROGRAMMING LIBRARY

that they have been traditionally programmed with vendor-specific or even device-specific
tools [7, 10], resulting in non-portable applications. While the proposal of the OpenCL
standard [8] alleviates this situation, it incurs in even more programming overheads than
the preceding non-portable approaches due to its effort to support a wide range of devices.

As a result of this situation there have been many proposals to reduce the programming
cost of applications on heterogeneous systems, many of which are based on libraries [1, 5, 13]
due to the advantages they present for their deployment. A particularly interesting one is the
Heterogeneous Programming Library (HPL) [14], which operates on top of OpenCL so that
it provides the same level of code portability. HPL provides a language embedded in C++
in which the kernels can be written, and a runtime that handles most of the complexity
associated to the development of OpenCL applications. HPL applications present much
better programmability cost metrics than regular OpenCL ones while achieving virtually
the same performance.

While the publications that introduced HPL worked with a single accelerator, this paper
presents the first experiences with the implementation of applications on top of HPL that
use more than one accelerator. This requires a slightly more complex programming style in
which the underlying host arrays are partitioned in several HPL arrays to allow the parallel
operation of the devices, as we will see. An evaluation in multi-GPU systems shows that
HPL provides substantial programmability improvement with respect to a baseline OpenCL
implementation, the performance overhead being however negligible.

The rest of this paper is organized as follows. Section 2 introduces the basics of HPL
programming. The existing support for using multiple devices and the associated program-
ming style are explained in Section 3. An evaluation on multi-GPU systems is performed
in Section 4, followed by a brief discussion on related work and our conclusions.

2 The Heterogeneous Programming Library library

The Heterogeneous Programming Library (HPL), available at http://hpl.des.udc.es,
improves the programmability of heterogeneous systems while providing portability through
an approach where the computational kernels that exploit heterogeneous parallelism are
written in a language embedded in C++ that the library translates into OpenCL. This way
HPL can target any device supported by OpenCL.

The HPL programming model is similar to that of CUDA and OpenCL. It considers
a host with an standard CPU and memory, with a number of attached heterogeneous
computing devices. The sequential portions of the code are executed in the host, while the
parallel parts run in the devices. Each device, has processors that execute SPMD parallel
code on data present in the memory of their device. The threads that run a kernel in a
device can be grouped in sets that can be synchronized through barriers and share a small
scratchpad memory.
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Kernels can only work on data available in the devices, whose memories are separated
from the host. The implied data transfers between the host and the devices are auto-
matically handled by the library runtime. Kernels written in HPL can use three kinds of
memories in the devices: (a) the global memory, which is read/write and shared by all
the processors, (b) the local memory, which is a read/write scratchpad shared by all the
processors in a group, and (c) the constant memory, which is a read-only memory for the
device processors and can be set up by the host.

Similar to CUDA or OpenCL, HPL kernels are run in a space or domain of between
one and three dimensions of integers, so that each each point in this space corresponds to a
thread that runs in parallel the kernel. Optionally, a space to define the size of the groups
of threads that can be synchronized and share local memory can also be defined. HPL
provides predefined variables that allow to retrieve from the kernel code the unique global
and local identifiers, as well as the sizes of both spaces.

The API of the library has three main components. The first one is the Array template
class, which allows to define all the variables used in the kernels, including those that must
be transferred from or to the host. This way, kernel variables must have type Array<type,
ndim [, memoryFlag]>, which represents an n-dimensional array of elements of a C++
type, or a scalar for ndim=0. Scalars and vectors can also be defined with special data
types like Int, Float, Int4, Float8, etc. The Array optional memoryFlag either specifies
one of the kinds of memory supported (Global, Local or Constant) or is Private by
default, which specifies that the variable is private to the kernel. The elements that compose
an array may be any of the usual C++ arithmetic types or a struct. The arrays passed as
parameters to the kernels must be declared in the host using the same type. These variables
are initially stored in the host memory, but when they are used as kernel parameters they are
automatically transferred to the device. Similarly, the outputs are automatically transferred
to the host when needed.

The second API component are predefined functions and macros that allow to write
the code of the HPL kernels, including the control constructs and basic functions, together
with the predefined variables mentioned before. Specifically, the embedded language uses
the same constructs as C+-+ but their name finishes with an underscore (if_, for_, ...)
and the arguments to for loops are separated by commas instead of semicolons. Regarding
the predefined variables, for example idx provides the global id of the first dimension, while
szx provides the global size of that dimension. If we add the 1 prefix to this keywords we
obtain their local counterparts and if we replace the letter x with y or z, we obtain the same
values for the second and the third dimensions respectively.

Kernels are written as regular C++ functions or functors that use these elements and
whose parameters are passed by value if they are scalars, and by reference otherwise. The
saxpy routine in Figure 1 constitutes an HPL kernel that implements the SAXPY (Single-
precision real Alpha X Plus Y) vector BLAS routine, which computes Y =ax X +Y. In
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1 #include "hpl.h”

using namespace HPL;

ylidx] = a * x[idx] + y[idx];

}

2
3
4
5 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
6
7
8
9

int main(int argc, char *argv) {
10 Float a;
11  Array<float, 1> x(1000), y(1000);
12 //z, y and a are filled in with data (not shown)
13 eval(saxpy).global(1000).local(10)(y, x, a);
14}

Figure 1: SAXPY HPL code

this kernel, each thread idx computes a different position of the result y[idx].

Finally, there is a host-side API to inspect the devices available and to order the exe-
cution of the kernels. Its most important component is the function eval, which requests
the execution of a kernel f with the syntax eval(f) (argl, arg2, ...). By default, the
global domain of the execution is given by the dimensions and size of the first argument,
while the local domain is automatically chosen by the library. However, these and other pa-
rameters can be detailed by inserting specifications, in the form of methods, between eval
and the argument list. For example, the global and the local domains can be specified using
methods called global and local respectively. This way, if a global domain 100 x 500 and
a local domain 4 x 5 are desired, function eval must be invoked as eval(f).global (100,
500) .1local(4, 5)(a, b). The main function in Figure 1 contains an example host code
for the saxpy routine, where a global domain of 1000 elements and a local domain of 10
elements are chosen for the kernel execution.

3 Exploiting multiple heterogeneous devices

As mentioned in Section 2, HPL provides an API to find the devices available in a system.
This API allows to choose specific kinds of devices, such as CPUs, GPUS or generic accel-
erators, as well as each individual devices within each kind, in case there are several devices
of the same kind in the system. For example, Device d(GPU,0) would build a handle d of
type Device that refers to the first GPU in the system. The number of devices of each kind
can be obtained with the function getDeviceNumber (type). A Device handle can be used
to obtain the relevant properties of the device (memory sizes, number of processors, etc.)
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by means of the the method getProperties, which fills in a predefined structure of type
DeviceProperties with a field for each one of these properties. This way the interface
is similar to that of CUDA’s cudaGetDeviceProperties [10]. A device handle d is also
needed to request the execution of a kernel on that specific device by means of the device
modifier to an eval invocation using the syntax eval(f).device(d) (...).

Kernel runs are asynchronous in HPL so that after requesting them, the host program
continues the execution of the main thread in parallel with the kernel executions. As a
result, a series of evals on different devices give place to parallel executions of the associated
kernels in the requested devices.

The HPL synchronization mechanism that allows to wait for a kernel execution to finish
and then retrieve its results is based on the host accesses to the Arrays used as arguments to
the kernel executions. This way, when the host code tries to read an array that was written
by a previously launched kernel, the HPL runtime waits for the kernel to finish and copies
the resulting array to the host memory, after which the execution of the main thread in the
host is allowed to continue. Subsequent host accesses to the array are immediately satisfied
from the host-side copy until new kernel executions that write to the array are requested.
Similarly, an array used as input in a kernel execution is copied to the device only in the
first usage of the array in the device or if the host has written to the array in its memory
after the most recent usage of the array in the device.

These mechanisms were originally designed only to support single-device executions
in [14]. However, they also allow to run kernels in parallel on multiple devices when the
kernels of each device operate on different Arrays, which is the most common situation.
The reason is that if each Array is only used either in the host or in a single device, it
has exactly the same coherency requirements as the execution in a single device, since in
that case there is no need to move data or keep the coherency of the Array across different
devices.

Interestingly, with the aforementioned implementation it is also possible to implement
applications in which the very same array is shared by multiple devices, provided it is only
read in the devices. It just suffices to define a different Array to use for each one of the
devices, but with all the Arrays pointing to the same memory location in the host. Our
library allows this because, although not detailed in its short description in Section 2, the
host-side constructors for Arrays support a last optional argument that provides a pointer
to the location in the host memory where the underlying Array data resides in the host.
As a result, several Arrays that point to the same host data can be defined. This simple
technique further extends the scope of application of our current HPL runtime to exploit
multiple heterogeneous devices.

Just as in the case of single-device executions, in multi-device environments HPL also
automatically takes care of all the transfers while minimizing them. For the reason that
in these environments there are more transfers and buffers, the advantages for the users in
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float x[N], y[NJ;
Float a;
Array<float,2> #xvx, **xvy;

int nGPUs = getDeviceNumber(GPU);
vx = new Array<float, 1> x [nGPUs];
vy = new Array<float, 1> * [nGPUs];

© 00 N O Ot i W N

for(i = 0; 1 < nGPUs; i++) {

10  vx[i] = new Array<float, 1>(N/nGPUs, x + i%(N/nGPUs));
11  vy[i] = new Array<float, 1>(N/nGPUs, y + ix(N/nGPUs));
12 }

13

14 for(i=0; i< nGPUs; i++)

15  eval(mxProduct).device(Device(GPU, 1)) (xvyli], *vx[i], a);

Figure 2: SAXPY HPL code parallelized on multiple GPUs

terms of programming effort reductions are proportionally larger.

Since the Array is the unit of consistency and each Array can only be used in a single
device, when a user wants to run in parallel kernels that compute the values of different
portions of a problem array, he or she must use a separate HPL Array for each portion
to use in a different device. Building several HPL Arrays associated to different portions
of the same C/C++ underlying array is facilitated by the already mentioned fact that the
constructor of these objects allows a final optional argument to specify the location in host
memory of the data managed by the Array. This way, different Arrays can start in different
positions within the same C array.

The resulting programming style is exemplified in Figure 2 with a multi-GPU imple-
mentation of SAXPY that uses the kernel shown in Figure 1, so that only the host-side code
is shown. To allow maximum flexibility, the code allocates at runtime arrays of pointers
to Arrays (vx and vy in this example) with one entry per available GPU, as provided by
getDeviceNumber (GPU). In order to simplify the example code we assume that the length
N of the arrays is divisible by the number of available devices, stored in nGPUs. This
way, the loop in lines 9-12 allocates the Arrays for the i-th GPU to start in the position
i * (N/nGPUs) within the underlying host vectors = and y defined in line 1, with a fixed
length of N/nGPUs elements. Finally, the loop in lines 14-15 requests the execution of the
kernel in the i-th GPU using its associated Arrays. It deserves to be mentioned that since x
is a read-only input to SAXPY, its partition in multiple Arrays is not required to effectively
parallelize its execution on multiple GPUs. Instead, we could have simply defined multiple
non-partitioned Arrays copies that point to the same underlying host memory array, each
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Table 1: Benchmarks and programmability evaluation.

Benchmark || SLOCs host | SLOCs kernel | SLOCs host | SLOCS kernel | Reduction | Reduction

OpenCL OpenCL HPL HPL host (%) total (%)
EP 325 115 269 115 17.2 12.7
Matmul 220 23 181 22 17.7 16.5
Coulombic 178 17 118 17 33.7 30.8
Spmv 263 23 172 22 34.6 32.2

one of them being used in a different device. Nevertheless it is better to use partitioned
Arrays of x for two reasons. First, this allows to copy to each GPU only the portion of
the vector that it needs for its computations, rather than the whole vector. The second
reason is that this allows to use the same indexing for the vectors y and x within each kernel
execution, as they both begin in the same relative position within the corresponding global
vector.

4 Evaluation

We now evaluate the implementation of multi-GPU applications on top of our HPL run-
time both in terms of programmability and performance using as baseline the corresponding
OpenCL codes. We wrote the baseline using the OpenCL C++ API, which exploits the
advantages of this language, such as object oriented programming, so that the base lan-
guage characteristics do not impact the comparison. The codes used in the evaluation
are the EP benchmark from the SNU NPB suite [12], a dense matrix-matrix product that
splits the work in chunks of rows between the GPUs (Matmul), the Coulombic potential
application delivered with SkePU [5], and the sparse matrix-vector kernel from the SHOC
Benchmarks [4] (spmv), which although not discussed in [4], was added later to the suite.
All the benchmarks run kernels that write on different Arrays on different devices, that is,
no Array is modified in more than one device. Also, all the benchmarks but EP have one
array that is read by all the devices, which allows to test the sharing of host read-only data
by multiple devices.

Table 1 compares the programming effort of OpenCL and HPL for the codes used in
the evaluation using an objective metric derived from the source code. Namely, we have
applied the well-known metric of the SLOCs, which counts the number of source lines of
code excluding comments and empty lines. The measurements consider separately the host
side and the kernel side of the applications because the kernel code is virtually the same for
OpenCL and HPL. In fact we can see that HPL kernels have the same length or are slightly
shorter than OpenCL kernels. In addition, the kernels remain mostly unaffected when the
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Figure 3: EP speedups using 2 GPUs of Figure 4: Matmul speedups using 2 GPUs of
OpenCL and HPL with respect to OpenCL  QpenCL and HPL with respect to OpenCL
on one GPU for several problem class sizes  on one GPU for several matrix sizes

applications change to support multiple devices, with at most one or a few offsets being
added to the arguments of the kernels for the multi-device version. Finally, these small
changes are identical in OpenCL and HPL. Regarding the host code, it is important to
underline that the lengthy initialization of OpenCL (platform and device selection, creation
of context and command queue, loading and compilation of kernels) was removed from the
baseline code because it is easy to encapsulate it in common routines that can be reused
across most applications. This way, our baseline replaces these costly operations with calls
to a predefined library, so that our baseline corresponds to the minimum amount of code that
a user has to write when using the OpenCL host C++ API. Despite this fact, the OpenCL
host code is substantially longer than its HPL counterpart, as we have observed reductions
of the measured programming cost between 17.2% and 34.6% when migrating from OpenCL
to HPL as Table 1 shows. The variability depends on multiple factors including the length
of the host code needed to initialize the data and process the results, which is the same
in OpenCL and HPL, and the number of arguments to the kernels, playing a much more
important role buffers than scalars.

The performance evaluation took place in an NVIDIA Tesla Fermi 2050 with 3GB
whose host has an Intel Xeon X5650 (6 cores) at 2,67GHz and 12GB RAM. The compiler
was g++ 4.7.2 with optimization level -03. Figures 3 to 6 show the speedups that the
OpenCL and HPL versions achieve when running on two GPUs with respect to the baseline
OpenCL implementation executed on a single GPU for three problem sizes for each one
of our four benchmarks. It deserves to be mentioned that EP, Matmul and Coulombic
work with double-precision data, while Spmv operates on single-precision floating point
values. Also, Spmv only has a 1% of non zeros in its matrix, therefore it presents a very
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Figure 5: Coulombic speedups using 2 GPUs Figure 6: Spmv speedups using 2 GPUs of
of OpenCL and HPL with respect to OpenCL OpenCL and HPL with respect to OpenCL
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sparse access pattern, which together with the small proportion of computations in relation
to the number of data items accessed gives place to smaller speedups than in the other
kernels. In fact we can see that for the smallest problem size, two GPUs are slower than
a single one. This run is also the shortest one measured, as it accounts for just 2.23 ms.
in a single GPU, which becomes 2.62 when using two GPUs under OpenCL and 2.64 when
using HPL. This is an overhead of 0.76% of HPL with respect to OpenCL, which is in fact
the maximum overhead measured in our tests. This way, the most important conclusion
from the performance measurements is that the overhead of HPL with respect to OpenCL
is totally negligible, as the speedups are almost identical in all the situations.

5 Related work

There are multiple proposals that try to improve the programmability of heterogeneous
devices with respect to the most widely used tools [10, 8]. This way, some approaches an-
notate sequential code with directives that guide the creation of the device kernels and the
related data and synchronization management by the compiler [9, 6, 11]. Compiler direc-
tives usually require little programming effort, but their expressiveness is seldom enough
to specify all the details needed to attain the maximum performance our of the heteroge-
neous devices, which offer a much larger number of knobs to tune than regular CPUs and
whose performance is very sensitive to the implementation decisions taken. These facts,
together with the lack of a clear performance model and the sometimes suboptimal quality
of the code generated, which are matters traditionally associated to tools that rely on com-
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piler transformations, together with the requirement of specific compilers, has precluded
the widespread usage of this approach. Embedded languages [3] share basically the same
restrictions, with the additional cost that codes must be rewritten in the new language.

As aresult, most approaches have relied on the usage of libraries that naturally integrate
into existing widespread languages. Each library presents its own focus and restrictions.
For example, [2] only works on CPUs and Nvidia GPUs, and it only allows to work with
unidimensional arrays in one-to-one computations in which the user cannot request to use
local or constant memory or specify the number of threads to use. A more general solution is
provided by libraries [5, 13] that provide classes for arrays similar to HPL Arrays and higher
order functions that implement typical computational patterns, also known as skeletons.
These functions can be parameterized with user-defined kernels in the form of strings or
member functions, thus facilitating the exploitation of the heterogeneous devices for those
calculations with a high level structure that fits one of the predefined available skeletons.

The Heterogeneous Programming Library (HPL) belongs to the family of library-based
proposals to improve the programmability of heterogeneous systems. It provides the unique
feature of building its kernels at runtime from the language embedded in C++ described in
Section 2. Although not discussed in this paper, this largely facilitates the use of run-time
code generation (RTCG) [14], which is a valuable tool to adapt kernels to the features of the
specific device to use. This coupled with the usage of OpenCL as backend turns HPL into a
valuable resource to implement heterogeneous applications with good levels of performance
portability. Contrary to previously discussed libraries, HPL is not restricted to particular
patterns of computation, thus it can be applied in all situations.

6 Conclusions

While heterogeneous devices offer many advantages in comparison with traditional general-
purpose CPUs, their programming, which requires the specification of many details, also
requires much more user effort. The situation is even worse in the case of the OpenCL
standard, as the effort to make it portable has given place to a highly generic API that
requires many steps and the management of many elements. When multiple heterogeneous
devices rather than a single one are used in a program, this complexity is even larger, as
each device has unique data structures and must be managed separately. In this paper we
have described for the first time the programming of multiple heterogeneous devices in the
same application on top of the Heterogeneous Programming Library (HPL), a project to
facilitate the programming of heterogeneous devices. While the implementation is restricted
to allowing modifications on each portion of an array only by a single device, this still suffices
to parallelize a large class of algorithms. A comparison with baseline OpenCL versions of
several codes reveals that HPL reduces the SLOCs of the host code between 17% and 34%
while achieving virtually the same performance in multi-GPU applications. In fact the
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overhead of HPL with respect to the baseline never exceeded 0.76% even for very short
executions of a few milliseconds. As a result, we think that HPL is a very promising
approach to develop applications that exploit heterogeneity.

As future work we plan to implement a general coherency system that allows to ar-
bitrarily use the same HPL array in any number of devices, always keeping a consistent
view of its data, and providing optimized transfers between devices when necessary. In
a second step, we will extend the expressiveness of HPL to support assignments of data
between different arrays and the usage of portions of arrays in the kernel executions and in
the assignments. We also want to explore the adaptation of the runtime of HPL to each
specific environment to maximize the performance it provides.
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