
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 00:1–16
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A Multi-GPU Shallow Water Simulation with Transport of
Contaminants
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SUMMARY

This work presents cost-effective multi-GPU parallel implementations of a finite volume numerical scheme
for solving pollutant transport problems in bidimensional domains. The fluid is modelled by 2D shallow
water equations, while the transport of pollutant is modelled by a transport equation. The 2D domain
is discretized using a first order Roe finite volume scheme. Specifically, this paper presents multi-GPU
implementations of both a solution that exploits recomputation on the GPU, and an optimized solution
that is based on a ghost cell decoupling approach. Our multi-GPU implementations have been optimized
using nonblocking communications, overlapping communications and computations, and applying ghost
cell expansion in order to minimize communications. The fastest one reached a speedup of 78x using 4
GPUs on an Infiniband network with respect to a parallel execution on a multicore CPU with 6 cores and 2-
way hyperthreading per core. Such performance, measured using a realistic problem, enabled the calculation
of solutions not only in real-time, but orders of magnitude faster than the simulated time.
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1. INTRODUCTION

Shallow water systems are commonly used to simulate the behavior of a fluid when the height
of fluid is small when compared to the horizontal dimensions of the studied domain. Thus, these
systems can be used to simulate river and coastal currents, among other applications. In many
situations, the fluid may transport a pollutant. In such situations, an extra equation is added to model
the transport phenomena. The coupled system has relevance in many ecological and enviromental
studies. From the mathematical point of view, the resulting coupled system constitutes a hyperbolic
system of conservation laws with source terms, which can be discretized using finite volume
schemes [1].

Finite volume schemes solve the integral form of the shallow water equations in computational
cells. Therefore, mass and momentum are conserved in each cell, even in the presence of flow
discontinuities. Numerical finite volume schemes for solving the shallow water equations have been
developed in many works (see for example [2] and the references there in). Numerical schemes for
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2 M. VIÑAS ET AL.

the pollutant transport problem, in the context of shallow water systems, have been developed in
[2, 3, 4, 5, 6].

The simulation of these problems may have heavy computational requirements. For instance, the
simulation of tidal currents in a marine basin is usually carried out in big spatial domains (up to many
kilometers), and during long periods of time (several months or even years). Due to the interest of
this kind of problems and their high computational demands, several parallel implementations have
been proposed on a wide variety of platforms, such as a version combining MPI (Message Passing
Interface) and SSE (Streaming SIMD Extensions) instructions [7], single-GPU versions [8, 9] or
CUDA-based multi-GPU solutions [10, 11]. In [10] an efficient implementation of a shallow water
system that overlaps computation with communication reaches almost a perfect scaling on a GPU
cluster of 32 nodes but it does not use the Ghost Cell Expansion technique [17] to reduce the inter-
node communication frequency. In our work, we compare two different multi-GPU implementations
that overlap computation with communication, and that reduce the communication frequency. In
[11] a shallow water solver is presented and tested in a single node with four GPUs reaching near-
perfect weak and strong scalling. In this work, we also use four GPUs but they are divided into two
nodes, which requires to use message passing on a network between several MPI processes. Finally,
note that both [10, 11] do not consider the pollutant transport problem.

The main objective of this work is to present a CUDA-based multi-GPU parallel shallow water
simulator that supports pollutant transport as well as dry-wet fronts in emerging bottom situations.
The starting point consists of two different single-GPU solutions: first, a naive solution that
exploits recomputation on the GPU; and second, an optimized solution that is based on ghost
cell decoupling, on the efficient use of the GPU shared memory to minimize global memory
accesses, and on the use of the texture memory to optimize uncoalesced global memory accesses.
The paper presents multi-GPU versions of these naive and optimized single-GPU solutions. They
use nonblocking communications to overlap communication with computation and the Ghost Cell
Expansion technique to minimize the communication frequency. Overall, this paper shows that
shallow water problems are well suited for exploiting the stream programming model on multi-
GPU systems. The resulting implementations achieve excellent performance on CUDA-enabled
GPUs and make efficient usage of our multi-GPU system, which makes feasible the execution of
really large simulations even when dealing with pollutant transport problems and dry-wet zones on
very complex terrains.

The outline of the article is as follows. Section 2 describes the shallow water underlying
mathematical model. Section 3 introduces the naive single-GPU CUDA implementation based on
recomputation. Section 4 presents the optimized single-GPU implementation based on ghost cell
decoupling. Section 5 details the implementation of the two multi-GPU versions contributed in this
paper. Section 6 discusses the experimental results. Finally, Section 7 presents the conclusions.

2. MATHEMATICAL MODEL: SHALLOW WATER WITH POLLUTANT TRANSPORT
EQUATIONS

A pollutant transport model consists in the coupling of a fluid model and a transport equation. Here,
the bidimensional shallow water system is used to model the hydrodynamical component and a
single transport equation is added to complete the system:
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Figure 1. Finite volume: structured mesh

where problem unknowns are the water column height h(x, t), the vertical averaged flux q(x, t) =
(qx(x, t), qy(x, t)) and the vertical averaged pollutant concentration C(x, t). The mean velocity
field is related with the flux by the equation,

q(x, t) = h(x, t)uuu(x, t) = h(x, t)(ux(x, t), uy(x, t)), (2)

g is the gravity andH(x) is the bottom bathymetry measured from a reference level, and we suppose
that it does not depend on time. Here, we have neglected the friction terms, although they play an
important role in practical applications.

The system (1) can be written as a system of conservation laws with source terms:
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being qC = hC.

In order to discretize (3), the computational domain is divided into cells. In this work we use
Cartesian structured grids. The following notation is used (see Figure 1): given a finite volume
Vi ⊂ R2, (i = 1, . . . , L), Ni is its geometrical center, Ni is the set of indexes j, such that Vj
is a neighbor of Vi, Eij is the shared common edge between them and |Eij | its length, and
ηij = (ηij,x, ηij,y) is the unit normal vector to Eij pointing towards cell Vj .

Assuming that W (x, t) is the exact solution for system (3), we denote by W n
i an approximation

of the average of the solution on the volume Vi and time tn.

W n
i '

1

|Vi|

∫
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W (x, tn)dx (4)

where |Vi| is the cell’s area.
Let us suppose that Wn

i is known, then to advance in time, a family of unidimensional Riemann
problems projected in the normal direction to each edge Eij are considered. These Riemann
problems can be linearized by a path-conservative Roe scheme. Finally, Wn+1

i is computed by
averaging the solutions of each Riemann problem at each cell. The resulting numerical scheme is as
follows:

Wn+1
i = Wn

i −
∆t

|Vi|
∑
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|Eij |F−ij (5)
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with ∆t = tn+1 − tn the time step, and

F−ij = P−ij (Aij(W
n
j −W

n
i )− Sij(Hj −Hi)) (6)

where Hα = H(Nα), α = i, j, and Aij and Sij are the evaluations of
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in (W,ηηη) = (Wij , ηηηij), being Wij Roe’s “intermediate state” between Wn
i and Wn

j . Pij matrix is
computed as follows:
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where I is the identity matrix, Dij and Kij are, respectively, the matrix of eigenvalues and
eigenvectors of Aij .

The Roe state for system (1) is given by Wij = [hij , hijuij,x, hijuij,y hijCij ]:

hij =
hi + hj

2
(10)

uij,α =

√
hi ui,α +

√
hj uj,α√

hi +
√
hj

, α = x, y (11)

Cij =

√
hiCi +

√
hjCj√

hi +
√
hj

(12)

Jacobian matrices are given by:
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In order to ensure the stability of the explicit numerical scheme previously presented, it is
necessary to impose a CFL (Courant-Friedrichs-Lewy) condition. In practice, this condition
implies a time step restriction:

∆tn = min
i=1,...,L

{∑
j∈Ni

|Eij | ‖Dij‖∞
2γ|Vi|

}
(16)

where ‖Dij‖∞ is the maximum of the absolute values of the eigenvalues of matrix Aij and γ ≤ 1.
Note that, in practice, the resulting time step may be very small, so a huge amount of time steps may
be performed to obtain the final simulation. From the computational point of view, a big amount of
small vector and matrix operations of size 4× 4 should be performed in each time step.

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe



MULTI-GPU SHALLOW WATER SIMULATION WITH TRANSPORT OF CONTAMINANTS 5

Figure 2. Naive algorithm Figure 3. Recomputation-based solution
on a multithreading system

3. NAIVE SINGLE-GPU SOLUTION

This section explains a naive single-GPU solution that uses a recomputation-based algorithm to
take advantage of the computational power of the GPU. It is developed using only the basic features
of CUDA programming and avoiding hardware-dependent tuning techniques. Figure 2 shows the
algorithm corresponding to the numerical scheme of the coupled system given by Equation 3. The
main loop performs the simulation through time. In each time step, the amount of flow that crosses
through each edge is calculated in order to compute the flow of data for all finite volumes. This
algorithm performs a huge number of small vector and matrix operations to solve the equations of
the coupled system for each edge of the mesh. Each time iteration is divided into 3 stages:

Stage1. Computation of the flow of data ∆M and the time step ∆t for each volume v
(lines 4-14 in Figure 2) applying a recomputation-based solution. For each volume, the
recomputation-based algorithm calculates four flow contributions (up, down, left and right)
that are associated to each of the four edges of a volume. This implies that each edge is
processed twice, once for each neighbor volume. For each volume, ∆t[v] is computed in a
similar way. Our naive CUDA implementation maps volumes to threads that run concurrently
in a conflict-free manner. Although one half of the computations will be redundant, the great
computational power of the GPUs allows to obtain a competitive performance. Figure 3
depicts an example for two threads. The contribution that volume V m does to volume V n
takes the same value (though opposite sign) as the contribution of volume V n to volume V m.
However this contribution is recalculated when volume V m computes the contribution from
its neighbors. This first kernel only performs accesses to global memory and thus, it saves
arrays ∆M and ∆t in global memory.

Stage2. Computation of the global time step ∆tGlobal (lines 17-19 in Figure 2) as the minimum of the
local time steps ∆t computed for each volume in Stage1. CUDA supports atomic operations
on global memory, but we do not use them because their performance is very poor in practice.
The implementation of Stage2 is based on a reduction kernel that is launched many times in
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6 M. VIÑAS ET AL.

order to reduce the array ∆t allocated in global memory. In each invocation of this reduction
kernel, the set of loop iterations is partitioned among thread blocks so that read accesses
to global memory are coalesced. Each thread block runs a tree-based parallel reduction that
operates only on a buffer allocated in shared memory. The partial result is saved in a private
copy of ∆tGlobal allocated in shared memory. At the end of the kernel invocation, each thread
block writes this partial result into a different element of array ∆tGlobal allocated in global
memory. Finally, when the size of the array is twice the thread block size, no more reduction
kernels are launched and this array is reduced by the CPU.

Stage3. Computation of the simulated flow data M for each volume (lines 22-24 in Figure 2). This is
achieved by updating in each volume the pollutant density and the fluid data using ∆M from
Stage1 and ∆tGlobal from Stage2. This stage computes a set of operations that do not depend
on each other and that, therefore, will be executed in parallel in different threads.

The naive single-GPU implementation described above differs from the solution presented in
[12], where a reduction kernel based on reduce3 of the CUDA SDK [13] is used in the Stage2. In
this work, we use a kernel based on the reduce5 implementation of the CUDA SDK. This kernel
is completely unrolled, and avoids divergence, shared memory bank conflicts and unnecessary
synchronization points.

The first stage is the most computationally intensive part of the algorithm, being the huge number
of small vector and matrix operations needed to solve the equations specially costly. This way, a
profiling execution for an example mesh of 1000× 1000 volumes shows that about 80% of the
runtime is consumed by the computations done in this first stage.

4. OPTIMIZED SINGLE-GPU SOLUTION

In this section, an efficient single-GPU implementation based on the ghost cell decoupling
technique is proposed. This implementation, whose structure is shown in Figure 4, contains
three improvements with respect to the naive implementation presented in Section 3. The first
improvement (see lines 7-22 in Figure 4) is the application of a ghost cell decoupling technique to
Stage1 in order to avoid most of the duplicated computations of the recomputation-based solution.
Our ghost cell decoupling strategy uses shared memory to save the local time steps before storing
them into global memory. This leads naturally to the second improvement (see lines 24-34 in Figure
4), which consists in splitting the reduction of Stage2 into two phases: first, each thread block
of the kernel of Stage1 reduces its local time steps in shared memory and saves partial results in
global memory (see lines 24-28); and second, the kernel of Stage2 reduces the partial results using
the reduce5 CUDA implementation (see lines 31-34). The third improvement is the usage of
texture memory when uncoalesced memory accesses occur, provided that the arrays affected by
those accesses do not change during the execution and the consistency of the texture memory can
be guaranteed. This avoids the time penalties of uncoalesced accesses to global memory. The rest of
this section describes these three improvements in more detail. Their impact on the execution time
will be studied in Section 6.

4.1. Ghost cell decoupling solution

This improvement is aimed to reduce the large number of duplicated computations that arise in the
recomputation-based solution used in Stage1 (lines 4-14 of Figure 2). This improvement starts with a
decomposition of the 2D domain using the ghost cell decoupling technique. This technique enables a
memory conflict-free execution of the thread blocks (avoiding communications and synchronization
between thread blocks). For this purpose, the 2D domain is splitted into 2D subdomains that include
several ghost cells. The ghost cells represent flux contributions that are recomputed in two neighbor
thread blocks. In our shallow water problem, these ghost cells are a row and a column of each
2D subdomain. This way, this memory region (ghost region from now on) is read by two thread
blocks, although it is only updated by one. The reason is that the ghost region, together with the
rows and columns whose updating is responsability of the thread block, provide the information the
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1 t = 0;
2 blocks; /*The number of thread blocks of the first kernel*/
3 while t < simulation time do
4
5 /* Stage1 */
6 for block ∈ {0 . . . blocks} do
7 for all v ∈ block do
8 flR[v] = f’ (M[v], M[right(v)])
9 flD[v] = f’ (M[v], M[ down(v)])
10 ∆M[v] = flR[v] + flD[v]
11
12 dtR[v] = f”(M[v], M[right(v)])
13 dtD[v] = f”(M[v], M[ down(v)])
14 ∆t[v] = dtR[v] + dtD[v]
15 end for
16
17 sync barrier
18
19 for all v /∈ {GHOST REGION} do
20 ∆M[v] = ∆M[v] - flR[left(v)] - flD[ up(v)]
21 ∆t[v] = ∆t[v] + dtR[left(v)] + dtD[ up(v)]
22 end for
23
24 sync barrier
25
26 for all v /∈ {GHOST REGION} do
27 ∆t[block] = MIN(∆t[v])
28 end for
29 end for
30
31 /* Stage2 */
32 for all block ∈ {0 . . . blocks} do
33 ∆tGlobal = MIN(∆t[block])
34 end for
35
36 /* Stage3 */
37 for all v do
38 M[v] = f (M[v], ∆M[v], ∆tGlobal)
39 end for
40
41 t = t + ∆tGlobal
42 end while

Figure 4. Optimized GPU solution

thread block needs to perform its computations, making therefore the block self-sufficient. Overall,
the ghost cell decoupling technique removes the replicated computations for most of the cells, the
exception being the ghost cells of each thread block.

The algorithm shown in Figure 4 shows the implementation details of the ghost cell decoupling
technique. The thread responsible for volume v computes the flow from the neighbor volumes on
the right (flR in line 8) and bottom (flD in line 9). Next, a partial flow ∆M [v] is calculated as
flR[v] + flD[v] (line 10). The same procedure is followed to obtain the partial ∆t[v] (lines 12-14).
These partial values flR[v], flD[v], dtR[v] and dtD[v] are stored in the shared memory, so that in a
second phase (lines 19-22) the thread responsible for volume v only has to add to its partial flow the
opposite contribution of its left and up neighbors (see line 20; correspondingly see ∆t[v] in line 21).
A synchronization barrier is needed between the first and the second phase (line 17) because in the
second phase each thread reads the partial flows (lines 20-21) stored in shared memory by another
thread in the first phase (lines 8-14). In CUDA, a synchronization barrier ( syncthreads())
stops all warps within a given thread block until all the warps have reached the synchronization
barrier. This way, the synchronization barrier guarantees that all threads of the thread block have
stored their partial flows and timesteps in shared memory before another thread makes use of them.
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Figure 5. The two phases of the Ghost cell decoupling solution

The first two phases of this approach are illustrated in Figure 5 using a thread block size of
4× 4. In the first phase, the flux contributions calculated by the thread block 0 and thread block
1 are depicted. In each volume there are two arrows that simbolize the storage of its right and
down flux contributions in buffers allocated in shared memory. The ghost region of a thread block
consists of the volumes located in the frontiers of the 4× 4 thread block (see shaded boxes in
Figure 5). Note that in order to achieve a conflict free concurrent execution of the thread blocks, the
computations of some frontier volumes (see volumes V14, V24, V34, and V44) are replicated in both
thread blocks. In the second phase, the volumes that do not belong to a ghost region update their
flux by accumulating the left and up contributions saved in the shared memory buffers at the end of
the first phase. Therefore, only nine (3×3) threads of each block do work in this second phase.

The improvement obtained with the implementation of the ghost cell decoupling technique grows
with the thread block size because there are fewer threads that do not work in the second phase. For
a block size blockdimX×blockdimY, the ratio of threads that perform the second stage is given
by:

% threads =
(blockdimX − 1)× (blockdimY − 1)

blockdimX × blockdimY
× 100

For example, if the block size is 64 (8×8), then 49 (7×7) threads work in the second phase, which
represents 76% of the threads in the block. If the block size is 16× 16, this ratio increases to 88%.
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Thus, the percentage of threads by block that do not make the second phase is smaller for larger
block sizes.

4.2. Two-phase reduction

This improvement consists in executing a part of the reduction of Stage2 at the end of Stage1, thus
reducing the amount of work of the reduction kernel of Stage2. Following this strategy, in the kernel
of Stage1 each thread block makes a local reduction of the ∆t[v] calculated by the threads belonging
to this block (lines 26-28 of Figure 4) and that have already been stored in shared memory buffers
(line 21 of Figure 4).

For example, without this improvement, given a grid of 1000× 1000 volumes, there would be
1000000 time steps (one per volume) to be reduced by the reduction kernel. Considering a thread
block size of 8×8 in the kernel of Stage1, the size of the vector ∆t would be 1000000/49 ≈ 20408
elements. Note that the denominator is 49 because although the thread block size is 64 (8×8
threads), only 49 (7×7) of the threads are responsible for computing the time step (∆t[v]) in
Stage1. The remaining 15 threads process the volumes of the ghost regions and therefore do not
compute time steps. Furthermore, let us realize that the thread block has the 49 values of ∆t[v]
it has computed in shared memory, where the accesses needed to reduce them to a single value
are much faster than in global memory. As a result, in this example only 20408 accesses to global
memory will be required in the kernel of Stage2.

Another important performance consideration is that the thread block size must be well-balanced.
On one hand, it must be large enough so that the percentage of threads that perform useful work
in the second phase of the Stage1 is high. On the other hand, it must be small enough to enable
the parallel execution of enough thread blocks to keep busy the cores in the device. According to
this, we have tried a set of thread block sizes and we have obtained the best performance for 8× 8.
Note that with size 8× 8, each thread block needs 4 KB of shared memory. For a configuration
of 48 KB for shared memory, it enables more than 8 simultaneous blocks in a single SM. Finally,
this optimization requires another two changes with respect to the naive implementation: a buffer to
perform the local reduction in the kernel of Stage1, and an adjustment of the grid size of the kernel
of Stage2.

4.3. Usage of the texture memory

Despite the optimization described above, this algorithm still presents uncoalesced accesses to
the GPU global memory because of the accesses in the y-direction of the grid of volumes.
Specifically, threads that belong to the same halfwarp access to different memory segments. Nvidia
advises in [14] to use texture memory for these cases, and this exploits its higher bandwidth if
there is 2D locality in the texture fetches, avoiding this way uncoalesced loads. Although this
recommendation is for devices with compute capability 1.X, in the case of the compute capability
2.X the performance is still better than the one obtained using global accesses and the L1 cache
[15], reason why we have applied this optimization.

It is important to mention that we use texture memory both for reads and writes. Nvidia indicates
[14] that if the global memory pointed by a texture is overwritten, the texture cache will stay in an
inconsistent state and the following reads (within the same kernel) to these texture memory positions
will return wrong values. Nevertheless, the arrays that benefit from the texture memory and which
are both read and written in our application, never experience both kind of accesses in the same
kernel, i.e., they are only either read or written within a given kernel. Thus they can be safely stored
in texture memory. The arrays that are accessed by the texture unit are: (1) the array of fluid of the
previous iteration, which is stored as a 2D texture of float4 elements and which changes in each
iteration; and (2) the array of parameters, which is stored as a 2D texture of float elements and
remains constant during the whole simulation. Let us emphasize that these data cannot be stored
into constant memory because they require more than 64 KB, which is the maximum of constant
memory size for devices of compute capability 2.X.
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Figure 6. Multi-GPU implementation for two GPUs

In [9] the texture memory is used instead of shared memory meanwhile we store the parameters
of the fluid in shared memory but we access to the global memory through the texture memory in
order to avoid the uncoalesced accesses when they go in the y-direction of the grid.

5. MULTI-GPU IMPLEMENTATION

The GPU implementations presented in Sections 3 and 4 have been extended to run on multi-GPU
systems using MPI [16]. Figure 6 shows the execution flow of our multi-GPU implementations
running on two GPUs. Basically, we have an MPI process for each GPU and the workload of the
time loop (see lines 2-27 of Figure 2) is distributed among these MPI processes, so that each one
of them contains the portion to be processed by its associated GPU. In order to preserve load-
balancing, the following data distribution has been done. The key idea is to split the 2D domain by
applying a consecutive distribution in the first dimension (also known as row block distribution).
The 2D domain is represented by a matrix of 8 rows in the figure. The first GPU is assigned rows
0..3 and the second GPU rows 4..7. In order to compute the flow from all neighbors in Stage1, the
rows that are in the border of the region assigned to each GPU need the data of neighboring rows
assigned to another GPU. Thus, the borderline rows are duplicated in the neighbor GPUs, giving
place to read-only ghost regions of one row of size (see ghost row 4 in GPU 0 and ghost row 3
in GPU 1). For the computations to be correct accross iterations of the time loop, the ghost rows
must be updated in each time iteration through MPI messages between the processes that own the
original row and the ghost row. Overall, the behavior of the MPI parallel program resembles at the
MPI process level the behavior of the ghost cell decoupling technique.

The parallel program described above needs one MPI message to update each ghost region in
each time step. The number of MPI messages can be reduced by sending more than one ghost
row per MPI message. This is, if a process sends GHOST ROWS ghost rows, in the following
iteration the receiver process will be able to read these GHOST ROWS ghost rows, and it will update
GHOST ROWS-1 of them. In the next iteration, the receiver process will read the GHOST ROWS-1
ghost rows updated in the previous iteration, which have therefore correct values, and it will update
GHOST ROWS-2 of them and so on. This way, as long as a process has at least one updated ghost
row it can start a new loop iteration without requiring MPI messages to update its ghost rows.
Summarizing, when one ghost row is used per border of the region assigned to each GPU, then one
MPI message is needed per iteration to maintain the consistency of the ghost region between each
two processes. With two ghost rows, the MPI message is only needed every two iterations (although
it will be twice larger); with four ghost rows, the MPI message would be only required every four
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Figure 7. Overlapping of communication and computation in multi-GPU versions

iterations (and it would be four times larger), and so on. This technique is known as Ghost Cell
Expansion [17] and it has been used in other works of shallow water simulation [11].

Another important feature of our multi-GPU versions is the use of nonblocking MPI messages in
order to overlap communications with GPU computations (see Figure 7). For this, we have splitted
the Stage3 into two separate kernels. The changes in the algorithm with respect to the single-GPU
version appear after the global time step reduction of Stage2. First, each MPI process updates the
rows that are ghost rows at its neighbor processes (Stage3a). Then, each process uses nonblocking
messages to communicate the ghost rows and, meanwhile, it updates the remaining rows (Stage3b).
Once this update is done, each process checks the reception of the ghost rows and it updates the
GPU memory with these data. At this point, each MPI process can start a new time step iteration.

We also experimented with a version that overlapped the MPI messages with the computations
in Stage1. First, the flux variations of the ghost rows were calculated. These flux variations were
interchanged while those of the remaining rows were calculated. Finally, right before Stage3, each
MPI process received the flux variations sent from the neighbor processes so that it could update
all of its volumes, including those in the ghost rows. The results of this implementation are not
discussed because its performance is worse than the version that makes the data interchange during
Stage3.

Another point where MPI messages are needed is when all the threads finish the kernel of Stage2.
At this moment each GPU has a local minimum of ∆tGlobal. To complete the reduction process,
each process sends its local ∆tGlobal to a unique process that performs the reduction on CPU.

6. EXPERIMENTAL RESULTS

Our evaluation has been performed in a heterogeneus cluster with 2 nodes connected via an
Infiniband network. This system is a Nvidia S2050 preconfigured cluster with 4 M2050 GPUs. Each
node is directly connected (PCIe) to two M2050 GPUs. Each node has 12 GB of host DDR3 memory
and its general purpose CPU is an Intel Xeon X5650 at 2.67 GHz, with 6 cores and hyperthreading
of 2 threads per core reaching a maximum memory bandwidth of 32 GB/s. Each M2050 GPU has
448 streaming processors and 3 GB of GDDR5 memory. The software setup is Debian GNU/Linux
6.0.1 (squeeze) operating system using g++ 4.3.5 and nvcc 4.0 compilers.

The simulation performed in this work is based on the Rı́a de Arousa, an estuary in Galicia
(Spain), whose GoogleMaps satellite image is displayed in Figure 8(a). In this test the natural
environment is simulated using real terrain and bathymetry data. The north and east limits have free
boundary conditions, while in the south and west borders the tides are simulated using barometric
tidal equations. This test makes extensive use of dry-wet fronts in the coastal zones and emerging
islands. A discharge of pollutant is artificially added to study its propagation and determine the
most affected areas. The total simulated period is 604,800 seconds (one week of real time). Figure
8(b) represents the initial setup where the pollutant is concentrated on a small circle with a radius
of 400m. The color scale below indicates the normalized concentration of pollutant. The model
has provided an accurate simulation of the disaster evolution (see Figure 8(c)), and thanks to the
simulation it was possible to predict the most affected areas. Pollutant discharge not only may have
serious environmental consequences, but it can also cause much economical damage to zones where
an important part of the local wealth depends on seafood products or tourism.

Table I shows the execution time and the speedups for several mesh sizes. All our implementations
use single precision data. The CPU times were taken on the CPU that was described above,
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(a) Satellite image (GoogleMaps) (b) Initial setup

(c) Pollutant concentration after eight days

Figure 8. Evolution of the Rı́a de Arousa simulation

Table I. Execution times (in seconds) and speedups

Mesh CPU single-GPU single-GPU multi-GPU multi-GPU
size sequential OpenMP naive optimized naive optimized

time time speedup time speedup time speedup time speedup time speedup
100 932 157 5.92x 12.28 12.78x 11.6 1.06x 16.58 0.74x 16.71 0.69x
200 7440 1086 6.85x 64.96 16.71x 59.04 1.10x 45.10 1.44x 46.49 1.27x
300 23912 3443 6.95x 203.90 16.89x 169.77 1.20x 107.39 1.90x 96.58 1.76x
400 56256 8361 6.73x 447.19 19.71x 387.69 1.15x 187.27 2.38x 172.89 2.24x
500 109201 16527 6.61x 878.55 18.81x 730.09 1.20x 319.10 2.75x 283.41 2.58x
600 188125 28580 6.58x 1455.18 19.64x 1231.97 1.18x 507.43 2.87x 454.75 2.71x
700 297849 45344 6.57x 2343.87 19.35x 1928.40 1.22x 764.76 3.06x 683.94 3.01x
800 443247 67110 6.60x 3322.87 20.20x 2849.49 1.17x 1074.23 3.09x 947.59 3.01x
900 629210 95461 6.59x 4848.76 19.69x 4020.39 1.21x 1549.51 3.13x 1324.24 3.04x
1000 860457 130815 6.58x 6448.80 20.29x 5455.51 1.18x 2035.36 3.17x 1717.92 3.18x

using OpenMP [18] to take advantage of that multicore chip. Since the second thread provided by
hyperthreading typically only provides 15% to 20% of the performance of a real core, we can see
that our OpenMP implementation is very efficient. The speedups of the naive GPU implementation
are calculated with respect to the CPU times. The speedups of the single-GPU optimized version
and the multi-GPU naive version have been obtained with respect to the single-GPU naive version.
The speedup of the multi-GPU optimized version, has been obtained with respect to the single-
GPU optimized one. The processes of the multi-GPU versions share a single ghost row with each
neighbor. The smallest mesh takes the minimum time for single-GPU versions. These versions are
faster than the multi-GPU versions for this mesh because the ghost rows copies between GPUs
offset completely the advantage of the parallelization of the computations on multiple GPUs for this
small amount of data. The simulation of the biggest mesh requires about 36 hours in a multithread
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Table II. Execution times (in seconds) and speedups after applying each improvement separately

Mesh Num. single-GPU evol-I evol-II single-GPU
size Iter. naive optimized

time time speedup time speedup time speedup
100× 100 164243 12.28 11.71 1.05x 11.95 0.98x 11.55 1.03x
200× 200 335514 64.96 63.35 1.03x 64.84 0.98x 59.04 1.10x
300× 300 503362 203.90 187.49 1.09x 189.06 0.99x 169.77 1.11x
400× 400 671293 447.19 424.27 1.05x 426.26 1.00x 387.69 1.10x
500× 500 839237 878.55 797.99 1.10x 799.51 1.00x 730.09 1.10x
600× 600 1007255 1455.18 1337.99 1.09x 1334.99 1.00x 1231.97 1.08x
700× 700 1175349 2343.87 2141.43 1.09x 2139.18 1.00x 1928.40 1.11x
800× 800 1343453 3322.87 3196.86 1.04x 3128.72 1.02x 2849.49 1.10x
900× 900 1511582 4848.76 4550.57 1.07x 4458.91 1.02x 4020.39 1.11x

1000× 1000 1679708 6448.80 6146.36 1.05x 6025.03 1.02x 5455.51 1.10x

CPU implementation and 107 minutes for the single-GPU version based in recomputation. With the
optimized single-GPU version presented in this paper, this same simulation takes 91 minutes, and
only 29 minutes in the multi-GPU version using 4 GPUs.

6.1. Isolated impact of the improvements applied

Table II shows the evolution of the performance after applying step by step the improvements
explained in Section 4 to the naive implementation. It is an incremental development so that each
version includes all improvements of the previous ones. The speedups of each version have been
measured with respect to the times of the previous version. There are two intermediate versions:
evol-I and evol-II. The evol-I version is equal to the single-GPU naive version after replacing its
first recomputation-based kernel of Stage1 with the ghost cell decoupling-based kernel (see details
in Section 4.1). The evol-II version includes additionally the local reduction in the kernel of Stage1
taking advantage of using shared memory buffers and the subsequent modifications of the size of
the kernel of Stage2 (see Section 4.2). Finally, the last version, single-GPU optimized, also contains
the last improvement applied in our development, i.e., the usage of texture memory (see Section
4.3).

The local reduction improvement evaluated in the evol-II column represents a poor contribution
to the overall speedup. This improvement is aimed at reducing the work and the number of accesses
to global memory of the reduction kernel of Stage2. This kernel performs little work for the smaller
meshes and applying this improvement has no impact on performance. As the work of the reduction
kernel increases, the speedup provided by this optimization grows too. The best improvement
percentage is achieved by the usage of the texture memory. The GPU used in this study (Nvidia
S2050) is a device with 2.0 compute capability, which has L1 cache for the global memory. The
usage of texture memory is more recommended for GPUs of lower compute capabilities because
the use of texture cache has a bigger impact in devices that have no L1 cache for their global
memory. However, in our case the usage of texture memory means a noticeable 10% of improvement
percentage because it optimizes the uncoalesced memory accesses (see details in Section 4.3).

6.2. Impact of communication/computation overlapping

In order to measure the impact on performance of our MPI implementation, we have performed
a set of measures of the execution time needed to send/receive the ghost rows, the execution
time of the GPU kernel whose time cost we want to hide and the total time of the send/receive
operations plus the kernel time. We have used a Gigabit Ethernet network and an Infiniband
network. Figure 9 illustrates the study performed including the times with blocking and nonblocking
communications. As expected, the communication time is very high for the Gigabit Ethernet
network using blocking communications. For this reason using nonblocking communications and
communication/computation overlapping halves the total execution time. This improvement is
much higher than the one obtained on the Infiniband network. Nevertheless, our overlapping of
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Figure 9. Overlapping communication and GPU computation

Table III. Execution times (in seconds) and speedups with respect to the version using a single ghost row of
the multi-GPU optimized version using 2, 4 and 8 ghost rows over an Infiniband network

Mesh Num. multi-GPU multi-GPU multi-GPU
size Iter. (2 ghost rows) (4 ghost rows) (8 ghost rows)

time speedup time speedup time speedup
100× 100 164243 12.40 1.35x 10.58 1.58x 10.65 1.57x
200× 200 335514 39.10 1.19x 35.38 1.31x 32.95 1.41x
300× 300 503362 84.26 1.15x 79.52 1.21x 75.27 1.28x
400× 400 671293 156.12 1.11x 148.89 1.16x 147.78 1.17x
500× 500 839237 270.58 1.05x 258.88 1.09x 261.43 1.08x
600× 600 1007255 426.85 1.07x 417.31 1.09x 416.25 1.09x
700× 700 1175349 642.43 1.06x 621.28 1.10x 636.45 1.07x
800× 800 1343453 902.63 1.05x 909.56 1.04x 903.25 1.05x
900× 900 1511582 1254.30 1.06x 1239.61 1.07x 1269.25 1.04x

1000× 1000 1679708 1704.33 1.01x 1680.38 1.02x 1680.73 1.02x

communication and GPU computation still allows us to hide a part of the communication cost and
achieve a non negligible 11% reduction of the execution time in this network.

6.3. Impact of the Ghost Cell Expansion technique

In each iteration of the time loop, our multi-GPU version of the shallow water simulator needs to get
the current value of the ghost rows used by each process. As this application uses the MPI library,
we need to send MPI messages of the size of a row from the process that uses and updates the ghost
row, to the process that only uses that row as a ghost row. Thus, one MPI message is needed by time
iteration to update each ghost region. In this section, we evaluate the impact of using the multi-GPU
version of the optimized implementation the Ghost Cell Expansion strategy described in Section 5.
This strategy is based on the use of ghost regions ofN rows each, so that the MPI messages required
to refresh these regions are N times larger being only needed every N iterations of the time loop.

Table III shows the execution times and the speedups of the multi-GPU optimized version with
the Infiniband network, when using ghost regions of 2, 4 and 8 rows. The baseline of the speedups
is the version with ghost regions of a single row. The best speedups were obtained for the smaller
problems as it was expected. This is because there are fewer computations and we need the same
number of messages than for the largest problems, so message passing represents an important part
of the total execution time. For larger meshes the speedup obtained is slight. This is due to two
reasons: the high performance of the Infiniband network and the ratio between message passing and
computation.

The results with an Ethernet network are shown in Table IV. In this case, sharing more than one
ghost row between processes has a greater impact on performance. As in the case of the Infiniband
network, the best speedups are obtained for the smaller meshes, although in this network the impact
is larger. All the times are worse than the times of Infiniband, but this difference is low enough
to consider this implementation a very competitive multi-GPU version for both Infiniband and
Ethernet. For example, for the largest mesh, the execution time using an Infiniband network is a
15% lower than the execution time of Gigabit Ethernet.
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Table IV. Execution times (in seconds) and speedups of multi-GPU optimized version using 1, 2, 4 and 8
ghost rows over a Gigabit Ethernet network

Mesh Num. multi-GPU multi-GPU multi-GPU multi-GPU
size Iter. (1 ghost row) (2 ghost rows) (4 ghost rows) (8 ghost rows)

time time speedup time speedup time speedup
100× 100 164243 78.72 67.08 1.17x 43.00 1.83x 34.93 2.25x
200× 200 335514 210.54 121.49 1.73x 100.84 2.09x 81.58 2.58x
300× 300 503362 289.54 217.09 1.33x 152.68 1.90x 150.66 1.92x
400× 400 671293 405.24 370.88 1.09x 247.34 1.64x 234.65 1.73x
500× 500 839237 661.15 559.73 1.18x 403.09 1.64x 346.31 1.91x
600× 600 1007255 815.93 747.39 1.09x 562.96 1.45x 592.89 1.38x
700× 700 1175349 1085.22 878.17 1.24x 794.83 1.37x 846.37 1.28x
800× 800 1343453 1502.48 1281.25 1.17x 1085.69 1.38x 1188.71 1.26x
900× 900 1511582 1781.19 1580.05 1.13x 1473.26 1.21x 1622.48 1.10x

1000× 1000 1679708 2333.83 2042.44 1.14x 1934.34 1.21x 2022.69 1.15x

Table V. L1 norm at time T = 1 s for several meshes. The reference solution is CPU sequential

L1error 100× 100 400× 400 1000× 1000

h 1,10e-7 8,75e-8 1,79e-7
qx 1,40e-7 1,78e-7 5,79e-7
qy 9,00e-8 1,28e-7 3,58e-7

6.4. Comparison with a reference CPU implementation

In this section, we measure the accuracy of our GPU simulations with respect to the numerical
results of the same test case executed with the CPU sequential version as reference solution. The
test used is an academic problem where a water column falls in a water tank so that the generated
ripples can be easily tested. Table V shows the value of the L1 norm for T = 1 second for the
meshes 100× 100, 400× 400, 1000× 1000 using the GPU optimized version. The rows of the table
show the error for each conformant parameter of the fluid. The measured numerical error for single
precision data is negligible, so it does not affect the accuracy of the parallel shallow waters simulator.

7. CONCLUSIONS

In this work we have started from a naive single-GPU implementation for the simulation of pollutant
transport in shallow waters. This version was based on a recomputation solution in which redundant
computations and many accesses to global memory were performed. An optimized single-GPU
version that significantly reduces the number of computations by following a ghost cell decoupling
strategy and which exploits shared memory and textures has been implemented. This optimized
version achieved an average speedup of 19% with respect to the naive single-GPU implementation
for the five largest problem sizes.

We have also developed MPI-CUDA versions of these naive and optimized single-GPU
implementations that make efficient usage of multi-GPU systems. Moreover, we have optimized
our multi-GPU versions applying ghost cell expansion, which reduces the number of messages by
using ghost regions of several rows for the chunks of data assigned to each GPU. The impact on
performance of this technique heavily depends on the type of the network connection. This way,
while in Infiniband changing the ghost region size from one row to four rows, increases the speedup
when using 4 GPUs and the largest mesh from 3.18x to 3.25x (2% of increase) with respect to the
single-GPU version, in Gigabit Ethernet the speedup goes from 2.34x to 2.82x (21% of increase).
This result, which is very possitive taking into account the penalties of communications, makes this
version especially interesting when a high performance network is not available.

For a mesh of 1000× 1000 volumes, using 4 GPUs and an Infiniband network and with a ghost
region size of four rows, the optimized multi-GPU version simulates the evolution of a realistic
environment during seven days in only 28 minutes. Thus, there is a factor of 360 units of real time
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simulated during a single unit of simulation time. This property is very interesting, as it enables
to perform quick studies of the behavior of a pollutant in a realistic environment, under different
hypothesis, and fast enough to take all the required decisions to deal with it.
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