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ABSTRACT

Shallow water simulation enables the study of problems
such as dam break, river, canal and coastal hydrodynamics,
as well as the transport of inert substances, such as pollu-
tants, on a fluid. This article describes a GPU efficient and
cost-effective CUDA implementation of a finite volume nu-
merical scheme for solving pollutant transport problems in
bidimensional domains. The fluid is modeled by 2D shallow
water equations, while the transport of pollutant is mod-
eled by a transport equation. The 2D domain is discretized
using a first order finite volume scheme. The evaluation
using a realistic problem shows that the implementation
makes a good usage of the computational resources, being
very efficient for real-life complex simulations. The speedup
reached allowed us to complete a simulation in 2 hours in
contrast with the 239 hours (10 days) required by a sequen-
tial execution in a standard CPU.

KEYWORDS: Shallow water, pollutant transport, fi-

nite volume methods, GPGPU, CUDA.

1. INTRODUCTION

Shallow water systems describe the evolution of an incom-
pressible fluid in response to gravitational accelerations,
where the depth of the layer of fluid is small compared to the
dimensions of the domain. These systems have many appli-
cations, enabling the simulation of rivers, canals, coastal
hydrodynamics or dam-break problems, among others. In
particular, the transport of pollutant in a fluid, which is
modelled by a transport equation, has particular relevance
in many ecological and environmental studies. This paper
uses a mathematical model that consists in the coupling of a
shallow water system and a transport equation. These cou-

pled equations constitute a hyperbolic system of conserva-
tion laws with source terms, that can be discretized using
finite volume schemes [1].

Finite volume schemes solve the integral form of the shal-
low water equations in computational cells. Therefore,
mass and momentum are conserved in each cell, even in
the presence of flow discontinuities. Numerical finite vol-
ume schemes for solving the shallow water equations have
been developed in many works. For example, numerical
schemes for the pollutant transport problem, in the context
of shallow water systems, have been developed in [2–5].

The simulations of these problems have very large comput-
ing requirements which grow with the size of the space and
time dimensions of the domain. For example, in the simu-
lation of marine systems, the spatial domain can have many
kilometers and the length of the simulation time can last for
months or even years. Thus, due to the interest of this kind
of problems and its high computational demands, several
parallel implementations have been proposed on a wide va-
riety of platforms, such a version combining MPI and SSE
(Streaming SIMD Extensions) instructions [6] or GPU ver-
sions [7–9]. A limitation of all these parallel implementa-
tions is that they do not handle pollutant transport problems.

This paper presents a parallel shallow water simulator im-
plemented on a CUDA architecture that supports pollu-
tant transport. Generic parallelizing transformations were
applied to the sequential code to adapt its computational
structure to the stream programming model [10], which of-
fers great flexibility and is exploited by the programming
paradigms of current GPUs. This paper shows that shal-
low water problems are well suited for the stream paradigm,
and that it is possible to take advantage of the stream pro-
gramming model efficiently. The resulting implementation
achieves good scalability and good performance on CUDA-
enabled GPUs, which enables really large simulations even
when dealing with pollutant transport problems and dry-wet
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zones on very complex terrains.

The outline of the article is as follows. Section II describes
the mathematical model of the shallow water system. Sec-
tion III introduces the structure of the numerical algorithm.
Section IV presents our GPU parallelization approach us-
ing CUDA. Section V presents experimental results for a
real domain. Finally, Section VI presents conclusions and
future work.

2. MATHEMATICAL MODEL: SHALLOW
WATER WITH POLLUTANT TRANSPORT
EQUATIONS

We use a model based on general shallow water equations
coupled with a transport equation in order to simulate the
transport of an inert contaminant on a fluid:
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where problem unknown variables are the water column
height h(x, t), the flux q(x, t) = (qx(x, t), qy(x, t)) and
the pollutant concentration C(x, t). The flux is the product
of the height h(x, t) and the flow speed,

q(x, t) = h(x, t)uuu(x, t) = h(x, t)(ux(x, t), uy(x, t)), (2)

H(x) is the bottom bathymetry, i.e. the depth measured
from a reference level, and therefore it doesn’t depend on
time.

The equation system (1) can be written as system of conser-
vation laws with source terms:
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Figure 1. Finite Volume: Structured Mesh
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In order to discretize (3), we decompose the computational
domain into cells or square control volumes [11]. As shown
in 1, given a finite volume Vi ⊂ R2, (i = 1, . . . , L), Ni is
the set of indexes having Vj and Vi as neighbors, Eij is the
shared common edge between them and |Eij | is its length,
ηij = (ηij,x, ηij,y) is the unitary vectorial normal to the
edge Eij and that points towards cell Vj .

Assuming that W (x, t) is the exact solution for system (3),
we denote by W n

i an approximation of the average of the
solution on the volume Vi and time tn.

W n
i '

1

|Vi|

∫
Vi

W (x, tn)dx (4)

where |Vi| is the cell’s area and tn = tn−1 + ∆t is the time
instant, being ∆t the time step.

Once the approximation Wn
i of Wi at time tn is known, we

can advance time considering a family of unidimensional
Riemann problems projected in the normal direction to each
edge Eij . These Riemann problems can be linearized by a
path-conservative Roe scheme.

Finally, the approximate solutions of these linear Riemann
problems is averaged in the cells to obtain new partial con-
stant approximations to portions of the solution. The result-
ing numerical scheme is as follows:
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where Hα = H(Nα), α = i, j, and Aij and Sij are the
evaluations of
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and
S(W,ηηη) = S1(W )ηx + S2(W )ηy (8)

in (W,ηηη) = (Wij , ηηηij), being Wij Roe’s “intermediate
state” between Wn

i and Wn
j . Pij matrix is computed as

follows:

P−ij =
1

2
Kij · (I − sgn(Dij)) · K−1

ij (9)

where I is the identity matrix,Dij andKij are the eigenval-
ues and eigenvectors matrices, respectively.

In system (1) particular case, the average states are given
by:
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Since the obtained numerical scheme is explicit, in order
to ensure its stability, it is necessary to impose a CFL
(Courant-Friedrichs-Lewy) condition. In practice, this con-
dition implies a time step restriction so that to advance from
iteration tn to tn+1, the time step is determined by:

∆tn = min
i=1,...,L

{∑
j∈Ni

|Eij | ‖Dij‖∞
2γ|Vi|

}
(16)

with ‖Dij‖∞ being the infinity norm of matrix Dij , i.e. the
maximum of matrix Aij eigenvalues. As the resulting time
step can be very small, it could be required to execute a
large number of iterations to simulate problems that happen
in large periods of time. Therefore, from the computational
view point, the solution of the problem is reduced to per-
forming a large number of small vector and matrix opera-
tions of size 4× 4.

Figure 2. Numerical Scheme

3. STRUCTURE OF THE ALGORITHM

The algorithm that approximates the solution of the numer-
ical scheme is shown in 2. The main loop performs the
simulation through time. In each time step, the amount of
flow that crosses through each edge is calculated in order to
compute the flow information for every finite volume. This
algorithm performs a huge number of small vector and ma-
trix operations (product, inverse, . . . ) to solve the equations
of the coupled system for each edge of the mesh. Each time
iteration is divided in three stages:

1.- Compute the variation of the flow ∆M and the vari-
ation of time step ∆t for each volume v. For each
edge a, the amount of fluid and pollutant that crosses
the edge towards the neighbor volume on the left,
∆M [left(a)], is computed. Furthermore, the contri-
bution to the neighbor on the right, ∆M [right(a)], is
also computed. At the beginning of this stage, ∆M [v]
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is set to zero (∆M [v] has four components: the wa-
ter column height, the volume flow in the x and y co-
ordinates, and the pollutant concentration). Upon the
completion of the stage, every finite volume will have
received the contributions from all of its four neigh-
bor edges. For each volume, ∆t[v] is computed in a
similar manner.

2.- Compute the global time step variation ∆tGlobal as
the minimum of all the time step variations stored in
∆t.

3.- Compute the simulated flow M for each volume.
For this purpose, the pollutant concentration and the
fluid stored in M [v] are updated using ∆M [v] and
∆tGlobal.

Stage 1 is the most computationally intensive part. More
specifically, the huge number of small vector and matrix
operations involved in solving the equations are specially
costly. This way, a profiling execution for an example mesh
of 100 × 100 volumes shows that ≈ 90% of the runtime is
consumed by vector and matrix operations.

4. PARALLEL SOLUTION USING CUDA

Discovering the parallelism available in full-scale applica-
tions is a complex and time-consuming task. The domain-
independent concept-level computational kernels recog-
nized by the XARK compiler framework [12] have proved
to be an useful analysis tool for whole program paralleliza-
tion [13–15] and for data locality optimization [16]. Do-
main independent computational kernels (or simply com-
putational kernels from now on) characterize the computa-
tions carried out in a program with independence of the pro-
gramming language. Well-known examples are inductions,
reductions and array recurrences. These kernels do not take
into account domain-specific problem solvers. Thus, for ex-
ample, a dot product and a matrix-vector product will be
recognized as reduction kernels.

The sequential algorithm of Figure 2 consists of three stages
that compute different types of reduction kernels: irregular
reduction (Stage 1), scalar reduction (Stage 2) and regular
reduction (Stage 3). The key characteristic of the reduction
kernels is that the value of a memory location is updated
in terms of the previous value of such memory location. A
well-known example is a scalar reduction that accummu-
lates the sum of a set of values, for instance, the result of the
dot product of two vectors. The rest of this section describes
our CUDA-based GPU implementation, which maps each
stage to a different CUDA kernel.

The first stage consists of a loop that traverses the edges
of the mesh. Each edge a writes its contribution to its two
neighbor volumes left(a) and right(a). This procedure
is an irregular reduction that is characterized by the use of
an indirection array that selects the memory locations to be
updated. The concurrent execution of this loop will cause
write conflicts because for a given volume v the compu-
tation of ∆M [v] depends on several loop iterations (each
edge of v corresponds to a different iteration). In the scope
of CUDA, we rewrite the irregular reduction into a conflict
free counterpart based on the recomputation of edge con-
tributions. As shown in Figure 3, each loop iteration com-
putes the flow associated to the four edges of a volume, so
each edge is processed twice, once for each neighbor vol-
ume. Our CUDA-based implementation maps iterations to
threads that run concurrently in a conflict-free manner. Al-
though half of computations will be redundant, the great
computational power of the GPUs allows to obtain a very
good performance.

The second stage computes a scalar reduction kernel that
determines the minimum time step variation ∆tGlobal:
CUDA supports parallel scalar reductions through a set
of atomic functions. These functions use synchronization
to protect write operations to shared variables by several
threads. As the use of these functions decreases perfor-
mance, our CUDA implementation exploits privatization
and minimizes synchronization overhead. In our two-phase
implementation, the set of loop iterations is partitioned
among thread blocks. Each thread block runs a tree-based
parallel scalar reduction in order to compute a private copy
of ∆tGlobal in shared memory with coalesced read ac-
cesses to the global memory. At the end of this stage
each thread block writes the value of its private copy of
∆tGlobal into the global memory. Finally, these partial re-
sults are combined to calculate the final value of the scalar
reduction.

The third stage computes a regular reduction kernel, which
consists of a set of scalar reductions that do not depend on
each other and that may be executed in parallel in differ-
ent threads. M [v] and ∆M [v] are located consecutively
in memory and coalesced global memory accesses are ex-
ploited.

5. EXPERIMENTAL RESULTS

The performance of our CUDA shallow water algorithm
was evaluated on two CPU/GPU platforms:

System A: The first system consists of an Intel Core 2 6600
running at 2.40 GHz, with 2 GB of DDR2 memory. It is
connected to a GeForce GTX 295 GPU, with compute ca-
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Figure 3. Stage 1 Using Recomputation-Based Solution

pability 1.3, 240 streaming processors (distributed in 30
streaming multiprocessors, each one having 8 streaming
processors) and 896 MB of GDDR3 memory. This GPU
reaches a memory bandwidth of 112 GB/s. The software
setup is Debian GNU/Linux 6.0 (squeeze) operating sys-
tem using g++ 4.3.5 compiler and nvcc version 3.2 to com-
pile CUDA code. The GPU version was compiled with g++
because nowadays CUDA is not compatible with the 12.x
version of the icpc compiler.

System B: The second system has an Intel Xeon X5650 run-
ning at 2.67 GHz, with 6 cores and 2 threads by core reach-
ing a maximum memory bandwidth of 32 GB/s [17]. This
CPU has 12 GB of DDR3 memory. It is connected to an
S2050 GPU with Fermi architecture, 448 streaming pro-
cessors (distributed in 14 streaming multiprocessors, each
one having 32 streaming processors), with 3 GB of GDDR5
memory. This GPU provides 1030 GFlops of performance
in single precision floating point reaching a memory band-
width (with ECC disabled) of 150 GB/s. This is a device of
compute capability 2.X thus, we can configure its L1 cache
size vs the shared memory size. In our case, we have config-
ured the S2050 GPU with 48 KB of L1 cache and 16 KB of
shared memory using cudaFuncSetCacheConfig()
[18]. This choice is recommended in [18] for kernels that
use a lot of local memory, which is in fact the case in the
kernels developed for this application. The reason of good
performance of choosing this option is because of the local
memory and the global memory are competing for the L1
cache and incrementing the amount of L1 cache provides
more cache size for both memory types. The software setup
is Debian GNU/Linux 6.0.1 (squeeze) operating system us-
ing icpc 12.0.2 and g++ 4.3.5 compilers and nvcc version
3.2.

The natural environment is the Rı́a de Arousa, an estuary in

(a) Initial setup (b) Pollutant concentration af-
ter eight days

Figure 4. Development Environment

Table 1. Execution Time (in Seconds) for the System A
Mesh size CPU/Seq CPU/OpenMP GPU GTX 295

time time speedup time speedup
100× 100 2654 1335 1.99x 66.64 39.8x
200× 200 21086 10629 1.98x 239.66 88.0x
300× 300 69560 35702 1.95x 549.80 126.5x
400× 400 164850 84234 1.96x 1059.14 155.6x
500× 500 319858 163736 1.95x 1905.45 167.9x
600× 600 N-A N-A N-A 3083.03 N-A
700× 700 N-A N-A N-A 4777.12 N-A
800× 800 N-A N-A N-A 6817.04 N-A
900× 900 N-A N-A N-A 9689.67 N-A

1000× 1000 N-A N-A N-A 12833.41 N-A

Galicia (Spain). In this test this environment is simulated
using real terrain and bathymetry data. The north and east
limits have free boundary conditions, while in the south and
west borders the tides are simulated using barometric tidal
equations. As shown in Figure 4(a), a discharge of pollutant
is artificially added in order to study its propagation and de-
termine the most affected areas. The total simulated period
is 604800 seconds (one week of real time) (see Figure 4(b)).

Tables 1 and 2 show the execution time of the sequential
implementation (CPU/Seq) of several mesh sizes in the Sys-
tem A and the System B, respectively. The tables also in-
clude the execution times of a parallel OpenMP-based CPU
implementation (CPU/OpenMP) and a parallel GPU im-
plementation (GPU GTX 295 for the System A and GPU
S2050 for the System B). The corresponding speedups are
computed with respect to the CPU/Seq sequential time of
its system. For the System A, we have only obtained the
execution time for the smaller grids because for the bigger
meshes the execution times were too high.

The GPU speedup column of Table 1 shows that the GPU
implementation reaches a speedup of 167.9x in the System
A. For example, for the 100×100 grid in the Intel Core 2
CPU the sequential code takes almost 44 minutes while the
CUDA code takes only 66 seconds. For the 400×400 grid,
the sequential code requires almost 46 hours and the CUDA
code takes 18 minutes for GTX 295 GPU. The results for
the System B depicted in Table 2 reflect the performance
difference between the two systems. For example, for the
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Table 2. Execution Time (in Seconds) for the System B
Mesh size CPU/Seq CPU/OpenMP GPU S2050

time time speedup time speedup
100× 100 932 157 5.9x 17.53 53.2x
200× 200 7440 1086 6.8x 80.34 92.6x
300× 300 23912 3443 6.9x 233.06 102.6x
400× 400 56256 8361 6.7x 505.12 111.4x
500× 500 109201 16527 6.6x 980.64 111.4x
600× 600 188125 28580 6.6x 1624.35 115.8x
700× 700 297849 45344 6.6x 2606.61 114.3x
800× 800 443246 67110 6.6x 3779.21 117.3x
900× 900 629210 95461 6.6x 5468.73 115.1x

1000× 1000 860457 130815 6.6x 7315.71 117.6x

400 × 400 grid, in this CPU the sequential code takes just
over 15 hours and a half, 2 hours and 20 minutes for the
OpenMP version and almost 8 minutes for GPU version.

It is very remarkable that in some cases, the execution time
is shorter than the simulated time and therefore we can work
in real time. For example, for the biggest mesh (1000 ×
1000), the System B has a sequential simulation time of 10
days (this is, three days more that the simulated time) while
the GPU GTX 295 only takes 2 hours.

Figure 5 shows a graphical representation of the execu-
tion times using a logaritmic scale. We see that the GPU
speedup grows gradually with the problem size. One rea-
son is that small grids fit in the cache hierarchy of the CPU.
Therefore, the bigger the grid size, the more accesses (by it-
eration) to the main memory of the CPU. Another reason for
the low speedups in small grids, is that small grids lead to
the creation of fewer thread blocks than bigger grids. Thus,
when a thread block accesses to global memory (because of
a global memory access, texture cache miss or local mem-
ory access), the thread scheduler chooses other thread block
ready to execute. If the number of thread blocks is low, it
is possible that there are not any thread blocks ready to ex-
ecute. For example, for the 100 × 100 grid, we have 12
thread blocks by streaming multiprocessor. However for
1000 × 1000 grid, we have 1117 thread blocks; that is al-
most 100 times more thread blocks.

From the point of view of power consumption, our results
point that GPUs are a better solution to parallelize this kind
of problems than CPUs. For example, the system con-
formed by the Intel Core 2 (65 W of power consumption)
and the GeForce GTX 295 (289 W of maximum power con-
sumption) is 86 times faster than the (CPU/OpenMP) mul-
tithread solution executed on Intel Core 2 (65 W of power
consumption). However, the power consumption of one In-
tel Core 2 is only 5 times shorter than the Core 2 + GTX
295 group. The ratio power consumption-speedup is clearly
favorable to the GPU. In other words, with perfect scaling
86 CPUs would be necessary to reach that speedup, which

(a) System A

(b) System B

Figure 5. Execution Time for Several Mesh Sizes and
Speedups between CPU/Seq and CPU/OpenMP and,

CPU/OpenMP and GPU

would obviously require 86 times the power of one CPU.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have solved the simulation of pollutant
transport in shallow water systems with the Nvidia CUDA
technology. The problem presented has great interest in
many industrial and environmental projects, being very
computationally costly.

For the two systems, we can ensure that it would be possi-
ble the use in real time of this CUDA version of the shal-
low water simulator to follow the evolution of a pollutant in
real environments. As the simulated time is seven days, the
simulation can be done in real time if the simulation time is
shorter than seven days. This fact occurs for the System B,
the CPU/OpenMP takes 36 hours (1.5 days); for the System
A, the GPU GTX 295 takes 4 hours and; for the System B,
the GPU S2050 takes only 2 hours of simulation to simu-
late the environment during seven days. As future work we
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will consider the implementation of a multi-GPU solution
and changing the recomputation-based solution by a more
efficient one.
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