
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A Fine-Grained Thread-Aware Management Policy for Shared
Caches

Dyer Rolán 1, Diego Andrade 2∗ Basilio B. Fraguela2 and Ramón Doallo2

1Intel Labs Barcelona, Barcelona, Spain
2Departamento de Electrónica e Sistemas, Universidade da Coruña, A Coruña, Spain

SUMMARY

Two of the main sources of inefficiency in current caches are the non-uniform distribution of the memory
accesses across the cache sets, which causes misses due to the mapping restrictions of non fully-associative
caches, and the access patterns with little locality that degrade the performance of caches under the
traditional LRU replacement policy. This paper proposes a technique to tackle in a coordinated way both
kinds of problems in the context of Chip Multiprocessors, whose Last Level Caches can be shared by threads
with different patterns of locality. Our proposal, called Thread-Aware Mapping and Replacement Miss
Reduction (TAMR2) policy, tracks the behavior of each thread in each set in order to decide the appropriate
combination of policies to deal with these problems. Despite its small overhead, TAMR2 achieved in our
experiments average power consumption and memory latency reductions of 10% and 12% respectively,
resulting in an average throughput improvement of 5.6%, relative to a traditional cache design using 4 cores.
TAMR2 also outperformed many recent related approaches in the field.
Copyright c© 2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Thread-awareness, coordination, policies, last-level cache memories

1. INTRODUCTION

The optimization of last-level caches (LLC), which are responsible for avoiding the costly off-chip
memory accesses, is a key point in the design of current computers. One of the behaviors observed
in caches is the lack of uniformity in the distribution of the memory references among their sets.
This way, some sets can exhibit large local miss ratios because they do not have the number of
lines required by their working set, while other sets achieve good local miss ratios at the expense
of a poor usage of their lines, because some or many of them are actually not needed to keep the
working set. This gives place to misses, known as mapping misses [1], which happen due to a limited
associativity in the cache. A number of different approaches such as victim caches [2], the adaption
of the assignment of lines to sets [3] or displacements of lines between sets [4] primarily deal with
this situation.

Other behaviors that stress caches are related to their temporal management, giving place to
replacement misses [1]. This is the case of thrashing, which happens when a working set larger
than the cache [5] evicts useful lines due to the LRU replacement policy. Mixed access patterns in
which frequently accessed items are discarded from the cache due to interleaved bursts of references
without temporal locality, also known as scans, also fit in this category. The proposals to deal with
these problems modify in some way the replacement policy of the cache [6][7][8].

∗Correspondence to: Fac. de Informática, Campus de Elviña, A Coruña, Spain. E-mail: diego.andrade@udc.es

Copyright c© 2013 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 D. ROLÁN ET AL.

In general, since cache management policies that mostly target either mapping or replacement
misses deal with different problems, they resort to very different mechanisms both to regulate their
internal behavior as well as to detect the problems they target. This makes difficult the desirable
coordinated implementation of these policies in a cache. The problem of the selection of the most
suitable policy and its application to the appropriate portions of the cache is further complicated in
the context of Chip Multiprocessors (CMPs), as they often have LLCs shared by several cores.

This paper explores the problem of the coordinated reduction of mapping and replacement misses
in shared caches. Our approach, called Thread-Aware Mapping and Replacement Miss Reduction
(TAMR2), detects the degree to which each thread can suffer problems of unbalance among cache
sets or inadequate temporal management in each cache set independently. Then, TAMR2 applies
an appropriate combination of policies for mapping or replacement miss reduction to the lines of
each thread in each set, being therefore a very fine-grain thread-aware technique. TAMR2 takes
some decisions based on the joint behavior of all the applications that share the cache, while other
decisions are specific to the behavior of each application. Still, these latter decisions do not consider
the application in isolation, but rather take also into account how the other applications impact on
the behavior of the analyzed one. As for the policies it applies, TAMR2 deals with problems of load
unbalance among sets using the Set Balancing Cache [4], which displaces lines from oversubscribed
sets to underutilized ones. This policy was chosen because of its reduced cost and its ability to
be applied with fine granularity only in some sets and only to some threads if desired. As for
replacement misses, TAMR2 has been tested with two suitable techniques that also fulfill these
properties, the Bimodal Insertion Policy (BIP) [6], and the Re-Reference Interval Prediction [7].

The rest of this paper is organized as follows. The next section reviews the related work and
motivates further our approach, which is described in Section 3. The environment for its evaluation
is described in Section 4 while comparison with other techniques and experimental results are
discussed in Section 5. Then, Section 6 gives our conclusions and future work.

2. BACKGROUND AND MOTIVATION

Contrary to the traditional 3C classification of the cache misses, which ignores the replacement
policy [1, 9] in the case of conflict misses, the OPT model [1] considers it. As a result, it
distinguishes two different types of conflict misses: mapping misses, which occur as a result of the
restrictions imposed by the set mapping strategy in non fully associative caches, and replacement
misses, which occur as a result of sub-optimal replacement inside a set.

In the past years several approaches that mostly target mapping misses have appeared. To name
a few, [10] proposes an alternative indexing function that achieves a more uniform distribution
of the working set on the cache than the standard one. The V-Way cache [3] adapts to the non-
uniform distribution of the accesses on the cache sets by allowing different cache sets to have a
different number of lines according to their demand. The Set Balancing Cache [4] tracks the degree
of pressure on each set and displaces lines from stressed sets to underutilized ones. This idea is also
explored in [11] using dead block prediction instead of identifying high and low pressured sets.

The problems that appear when the working set of an application is larger than the cache, or
when it suffers from frequent bursts with no temporal locality (scans) that expel from the cache
frequently used working sets, are qualitatively related to replacement misses. These problems have
been mainly addressed by changes in the insertion and replacement policies. Some examples of
this approach are the Bimodal Insertion Policy (BIP) [6], the Pseudo-LIFO policies [12] and the
Dynamic Re-Reference Interval Prediction (DRRIP) replacement policy [7]. Finally, Signature-
based Hit Predictor (SHiP) [8] correlates the re-reference behavior of a cache line with a unique
signature so that it can apply replacement policies with a finer granularity.

In the case of shared caches management, we can distinguish between self and inter mapping and
replacement misses. Self misses would be the ones that take place even if the associated application
had all the cache for itself, while the inter-mapping and inter-replacement misses would be the new
misses of the respective kind that appear in the presence of other applications, considering together
all their working sets. This way, Adaptive Set Pinning (ASP) [13] detects inter-mapping misses

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 3

Standard
Management

High
Pressure?

SSL saturated

No

Can
displace
lines?

Displace a line
(SBC)

Yes

Yes

No Pressure
Management

(BIP-C or BRRIP)

Low
Pressure?

SSL < threshold

Yes

No

Figure 1. High level view of TAMR2

in shared caches and addresses them specifically. A proposal oriented to self and inter-replacement
misses is the Thread-Aware Dynamic Insertion Policy (TADIP) [14], which extends to shared caches
the insertion policies introduced in [6] to deal with replacement misses in private caches. TADIP can
apply these policies in isolation to each independent thread according to the benefit it can get from
them, measured by means of set dueling. The thread-aware TA-DRRIP [7] also chooses the most
appropriate Re-Reference Interval Prediction (RRIP) insertion policy for each application based on
set dueling, RRIP being mainly focused on replacement misses. Furthermore, there are approaches
like Promotion/Insertion Pseudo-Partitioning (PIPP) [15], which combines pseudo-partitioning with
new insertion and promotion policies.

As we see, there are no proposals to the best of our knowledge that tackle specifically both
the self and inter-mapping misses as well as the self and inter-replacement misses we identify in
shared caches. Also, most of the proposals that target replacement problems in shared caches take
their decisions globally, based on an average picture of the cache behavior obtained either from set
dueling [6] or set sampling [16]. They also apply those decisions uniformly in all the cache sets.

3. THREAD-AWARE MAPPING AND REPLACEMENT MISS REDUCTION

As Section 1 explained, our Thread-Aware Mapping and Replacement Miss Reduction (TAMR2)
proposal addresses in a coordinated way the mapping and the replacement misses commonly found
in caches. This requires three components: a mechanism to track the status of the cache, a policy
to tackle mapping misses, and a strategy to deal with replacement misses. We now describe at high
level these components and their interaction, which is graphically depicted in Figure 1.

Since mapping misses appear due to unbalanced loads in different cache sets, the tracking
mechanism needs to be implemented at the set level. Due to its low cost, fine granularity and
accuracy we have chosen for this first component the Set Saturation Level (SSL) metric [4]. This
is the value of a counter with saturating arithmetic that is increased each time an access to the set
results in a miss, and decreased with every hit. A SSL counter works in the range 0 to 2 ∗K − 1, K
being the associativity of the cache henceforth. TAMR2 uses a SSL counter per set and per core that
is updated only by the accesses from that core. This allows TAMR2 to take independent decisions
for each thread in each cache set. A high SSL indicates the thread is stressed in the set. On the
contrary, low SSLs of all the threads in a set hint the availability of space in the set. This way,
when TAMR2 identifies two sets in these opposite situations, it tries to reduce mapping misses by
applying the Set Balancing Cache (SBC) [4]. This technique, described in Section 3.1, balances the
load of the sets by displacing lines from stressed sets to underutilized ones.

If a SSL is saturated but there are no sets with low SSLs that are not already helping to reduce the
pressure of stressed sets, TAMR2 cannot apply SBC. Since the cache is under stress and SBC does
not suffice to alleviate it, TAMR2 assumes that at least part of the problem must be related to the
cache temporal management. Thus, when this happens, a strategy to reduce replacement misses is
applied to the lines of the thread whose SSL got saturated. In this situation the thread changes in the
set from the standard management (SM) mode, which follows the usual insertion and replacement
policies, to pressure management (PM), which applies policies to reduce replacement misses. The

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 D. ROLÁN ET AL.

Ax1 Ax2 Ay1 Ax3

Sequence of accesses

MRU LRUSet X

MRU LRUSet Y

SSL

0

0

. . . Ax3 Ax1 Ax2 Ay1 . . .

Ax2 Ax1

Ay1 -

SSL

2

1

Ax1 Ax2 Ay1 Ax3 . . .

Ax3 Ax2

Ax1 Ay1

SSL

3

1

Displaced

After Ax1 Ax2 Ay1 After Ax1 Ax2 Ay1Ax3

Figure 2. Set Balancing Cache example in a 2-way cache.

thread returns to standard management (SM) when its SSL falls below K, as this indicates the thread
is no longer stressed in the set. Section 3.2 describes the temporal management strategies used by
TAMR2, followed by a discussion on the coordination and interaction of these policies with SBC
under TAMR2 in Section 3.3.

3.1. Unbalances Among Sets: Mapping Misses

The Set Balancing Cache (SBC) [4] associates sets with high SSL with sets with low SSL that will
be used to store part of the working set of the former ones. Concretely, when the SSL of a set is
saturated, SBC associates it with the set with the lowest SSL that is not currently involved in any
association, provided that its SSL is smaller than K. This latter condition avoids associating sets
without enough unbalance between them. All subsequently evicted lines from the set with the high
SSL of an association (source set) are displaced to the set with the low SSL (destination set) rather
than to memory, as long as the SSL of the source set has its maximum value when the eviction takes
place. That is, if the SSL of the source set is 2 ∗K − 1, its LRU line is displaced to the destination
set, where it is inserted in the MRU position; otherwise the line is evicted from the cache. Misses
in source sets of associations lead to searches in their destination set, giving place to secondary hits
and misses. Thus, this technique needs an additional bit in every tag-store entry to identify displaced
lines. Finally, associations are broken when the destination set evicts all the displaced lines.

Figure 2 illustrates how SBC works in a 2-way associative cache in which sets X and Y are
depicted. The cache cyclically receives the sequence of accesses to different lines Ax1Ax2Ay1Ax3

where the Ax ones are mapped to set X an the Ay ones to set Y. Since the sequence has 3 lines
mapped to the same set and there are 2 ways, in a standard cache all the Ax accesses result in
misses, while set Y keeps a single line. In a SBC the first three accesses operate in the standard way,
just increasing the SSLs, resulting in the middle illustration. The access to Ax3 saturates the SSL of
set X, which becomes associated to set Y thanks to its low SSL, smaller than the associativity. The
stressed set then displaces its LRU line, Ax1 to the MRU position of set Y, freeing up the line for
Ax3, which becomes the MRU line in set X. In the resulting cache, shown in the last illustration in
Figure 2, all the subsequent cycles of access always result in hits. In particular, all accesses are first
hits except Ax1, which is found in a second access in set Y after the initial search in set X fails.

SBC is not thread-aware and thus it uses a single SSL per set. In TAMR2 a SSL per core and per
set determines the state of each thread in each set and the saturation of any SSL indicates the need
to perform displacements. However, a set should only receive displaced lines if none of the threads
is stressed in the set. This way in TAMR2 the fact whether a set can be a destination set or not is
based on a single SSL value per set called Global SSL (GSSL), which is computed every time a
SSL is updated. The GSSL does not need to be stored in the set; it is just supplied to the Destination
Set Selector (DSS) [4], a low-cost structure that tracks the sets with the lowest SSL in the cache
that are not involved in any association in order to provide the best one when an association request
is issued. The GSSL and the corresponding set index are stored in the DSS only if the GSSL is
smaller than the maximum value in the selector, and it is also below the saturation limit K (the
cache associativity) allowed for a set to be candidate to become a destination set.

The GSSL can be computed by simply adding the SSLs and saturating the outcome to the
maximum value of a single SSL. The GSSL can be also tuned taking into account the state of
each application. Applications in PM mode always have a SSL≥ K, since they return to SM when
the SSL falls below K, as this indicates that the working set fits in the set. This way, if their SSLs

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 5

A3 A4 B1 A5

Sequence after A1A2B1

A2B1

 SSL MODE
A 2 SM
B 1 SM

. . .A6 B1

Set
B1

 SSL MODE
A 3 PM
B 1 SM

Set
A4B1

 SSL MODE
A 3 PM
B 1 SM

Set

A4 B1 A5 . . .A6 B1 A7

A3

B1 A5 . . .A6 B1 A7 A8

After A1A2B1A3 After A1A2B1A3A4

Figure 3. TAMR2 management of replacement misses in a 2-way cache shared by two cores using BIP.

are added up directly, these applications preclude GSSLs smaller than K, making impossible for the
corresponding sets to become destination sets. Still, the high SSL of an application in PM mode
does not mean that it is effectively using many lines in the set. Rather, it means that there is high
recent miss rate, probably because the application is memory-intensive. As as result it is likely that
many of its lines are of little use and it would be better to give them to another application. Of course
this can also happen with applications in SM mode, but the chances are higher among those in PM
mode. Thus, in our experiments the SSL of applications in PM mode is scaled down for the sake of
the computation of the GSSL by dividing them by 2, since this can be implemented in hardware with
a simple shift of one bit. This minor change improved the throughput in our tests around 0.25%.

3.2. Suboptimal temporal management inside cache sets: Replacement Misses

As pointed out in Section 2, there are several proposals that target replacement misses. We have
evaluated TAMR2 with two simple and effective techniques. The first one is the Bimodal Insertion
Policy (BIP) [6], which is applied in caches with LRU replacement policy. BIP inserts most lines in
the LRU position of the recency stack and, only with a small probability, ε, in the MRU position.
This way, most lines require a second access to be promoted to the MRU position. As a result, lines
that are dead on fill cannot trash the cache, and are instead evicted when a new line is inserted in
the set. Therefore, the number of replacement misses is reduced by keeping those lines with more
locality in the cache set while discarding temporary data as soon as possible. Nevertheless, a plain
BIP policy may lead to some performance degradation in shared caches, so we have used a modified
version that will be further described in the next Section. The complementary technique to BIP in
TAMR2, that is, the one to apply when the thread is in standard management (SM) mode, is the
standard MRU insertion policy.

The second policy evaluated is Bimodal Re-Reference Interval Prediction (BRRIP) [7]. BRRIP
works similarly to BIP in a cache that applies Re-reference Interval Prediction (RRIP), a
replacement policy in which each line has an associated Re-reference Prediction Value (RRPV), so
that under a miss, a line with the longest predicted re-reference interval is evicted. While Static RRIP
inserts all lines with some intermediate re-reference interval prediction, Bimodal RRIP predicts a
long re-reference interval for most lines, and an intermediate interval only for a small number of the
insertions. This way, in the context of TAMR2, threads in SM mode apply SRRIP, while sets under
pressure management (PM) apply BRRIP.

Figure 3 illustrates the temporal management or TAMR2 in a set of a 2-way cache shared by two
cores, A and B, using BIP. In this example thread A has poor locality while thread B periodically
accesses a single line B1 in the set, interleaved with the accesses of A. This gives place to a sequence
of the form A1A2B1A3A4B1 The first illustration in the figure shows the situation after the first
three accesses assuming that the SSLs were initially 0. The miss on A3 saturates A’s SSL. Thus if
TAMR2 cannot find an underutilized set to which to displace lines from this set, A enters pressure
management in the set, which results in A3 being inserted in the LRU position of the set under BIP.
The illustration in the middle shows the outcome. The access to A4 is another miss, but A’s SSL is
already saturated and we continue applying BIP, giving place to the last state shown in Figure 3. We
can see that thanks to the protection that this management has provided to B1, its upcoming access
will hit in the cache. In a standard cache, however, B1 would not be protected and its accesses would
systematically result in misses.

Tracking the status of each thread in each set by means of a SSL allows TAMR2 to decide
with a granularity of thread and set whether to apply the standard or the pressure management.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 D. ROLÁN ET AL.

0 200 400 600 800
0

20

40

60

80

100
(a)

Accesses in 433.milc

%
 o

f s
et

s

0 200 400 600 800
0

20

40

60

80

100
(b)

Accesses in 482.sphinx3

%
 o

f s
et

s

Figure 4. Distribution of the sets with a high
(black), medium (gray) and low (white) SSL for
433.milc during its simultaneous execution with
482.sphinx3 in a 8-way 2MB cache. Samples

each 5 ∗ 105K accesses.

A

B

C

D

E

C

A

E

A

C

MRU

LRU

Original State Traditional MRU BIP BIP-C

A

B

B

C

B

E

1

1

2

2

1

2

2

1

1

2

2

1

1

2

1

2

Owner

Figure 5. Behavior of different insertion policies
after inserting new line E in set X of a 4-way

LLC shared by 2 cores.

The importance of thread-awareness for the policies that deal with replacement misses is already
known [14][15][7], as applications with good locality will be hurt by the policies applied under
pressure management. However, while all the works we know of uniformly apply the same policy
to all the lines of each given application in all the cache sets, TAMR2 can apply different policies
to the same thread in different sets. This finer granularity is useful because some sets may require
policies to avoid replacement misses while others do not, being thus counterproductive to uniformly
apply the same policy in all the sets.

This latter observation is exemplified in Figure 4 with a situation we have seen in many parallel
executions. It classifies in three categories the sets of an 8-way 2MB L2 cache shared by SPEC
CPU 2006 applications 433.milc and 482.sphinx3, during the execution of 10 billion instructions of
433.milc and taking samples every 5 ∗ 105 accesses to the cache. The sets are classified according
to the value of a SSL which is only updated by the accesses by benchmark 433.milc to the set.
Concretely, each SSL is classified as low (0-5), medium (6-10) or high (11-15). Another SSL
updated in each set only by 482.sphinx3, not shown, is uniformly saturated in all the sets along
this simultaneous execution. We see there is a representative and sustained 20% to 25% of sets in
which 433.milc exhibits a low SSL, pointing to a good locality that should benefit from a standard
management. This variability of the pressure on the lines of the same application in different sets is
even larger in the context of TAMR2 since, as it also applies SBC policies, some sets that originally
had problems to retain their working set in the cache could solve them thanks to displacements.

3.2.1. BIP-C, A New Insertion Policy We propose a modified BIP to apply under the PM mode,
called BIP-C, which inserts the incoming lines min{C − 1, bK/2c − 1} positions away from the
LRU position of the recency stack, where C is the number of cores sharing the cache and K
the associativity. The rationale for this is that while in a private cache it is only up to the owner
application to evict the line with a subsequent miss, or reuse it and bring it to the MRU position,
in a shared cache any other application can evict the line before the owner has a chance to reuse
it. The situation is even more challenging when the cache works under TAMR2, as lines near the
bottom of the LRU stack can be replaced not only by incoming lines mapped to the set, but from
lines that come from displacements as a result of applying SBC. BIP-C inserts lines near the bottom
of the recency stack in typical configurations (K� C) while allowing a few misses in the set from
the other running threads before the line is evicted, so that the owner has more chances to prove
the merit of the line. Figure 5 shows an example of its operation in a LLC shared by 2 cores and
assuming a replacement operation driven by core number 1.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 7

0

5

10

15

401+444+
445+456

(2.5)

444+445+
456+471

(3.1)

401+433+
450+462

(33.9)

433+471+
473+482

(42.3)

401+444+
458+471

(3)

444+458+
462+471
 (16.2)

geomean

0

5

10

15

%
 T

hr
ou

gh
pu

t
im

pr
ov

em
en

t
		

re
la

ti
ve

 t
o

L
R

U

TAMR2-BIP
TAMR2-BIP-CC
TAMR2-BIP-C/2
TAMR2-BIPC

Figure 6. Throughput improvement over a 4MB 16 ways baseline cache shared by 4 cores using TAMR2
with different versions of BIP. MPKI (misses per kilo instruction) of each workload in parenthesis under its

name.

Figure 6 shows the throughput improvement of TAMR2 with respect to a baseline 4MB 16-way
cache shared by four cores when using four BIP variations. The variations are the original BIP, BIP-
CC, which inserts new lines as many positions away from the LRU one as different cores have lines
in the set; BIP-C/2, which inserts min{bC/2c, bK/2c − 1} positions away from the LRU one, and,
finally, BIP-C. The workloads consist of SPEC CPU 2006 benchmarks that will be presented in
Section 4 with all the other parameters of the simulations. BIP-C outperforms clearly the other
approaches. Altogether, TAMR2 using BIP-C provides 1.1% better throughput than a modified
TAMR2 using BIP due to the reasons explained above.

3.3. Coordination and Interaction between the Policies to Reduce Mapping and Replacement
Misses

As we have explained, TAMR2 changes to PM mode applications whose SSL reaches the maximum
value and which cannot find a destination set to solve a potential problem of mapping misses. The
reason is that if there are no candidates, the cache must be under pressure globally, and we cannot
provide the sets with more space, so a policy to deal with replacement misses must be applied.
Now, if an application experiences this problem, the associations initially established will become
useless. In fact, they will be counterproductive: dead lines will be moved to destination sets, giving
later place to second searches that will be useless most of the time, delaying the resolution of
misses and potentially increasing the miss rate in destination sets. Also, there must be a way to
enable an application to change to PM in the sets that participate in an association, and eventually
break it if the high SSLs continue. TAMR2 does this by changing the state of a thread to PM also
for (1) applications in destination sets in which their SSL reach the highest value, 2 ∗K − 1, and
(2) applications in source sets that try to displace a line to their destination set and find that the
application is in PM mode there. Notice that the second situation implies the SSL of the application
is the highest one in the source set as well. This way, if an application suffers replacement misses in
an association, this is first detected in the destination set, which is the one that suffers more pressure
because of the displacements, and then it is propagated to the source set. Relatedly, in TAMR2 if
an application is in PM mode in a source set, it stops displacing lines to the destination set, since
the displacements are not helping. This avoids the counterproductive situation described above. It
also avoids the perverse effect that lines recently inserted in the destination set with a high priority
of eviction (due to the pressure management) are evicted due to displacements from the source set
before having a chance to be reused. Further, this strategy facilitates breaking the association, since
this happens when the destination set evicts all the lines from the source set. Misses in the source
set always lead to searches in the destination set while the association lasts.

While it is clear that insertions are ruled by the application that requests the line to be inserted, a
clarification is needed on the rules for displacements. TAMR2, as the SBC, displaces the line that
is selected by the replacement policy in the source set. Nevertheless, its displacement must not be

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 D. ROLÁN ET AL.

1 access(Core i, Address addr) {
2 if hit(addr) {
3 SSL[i]−−;
4 update priority of line in replacement algorithm;
5 if lowlySaturated(SSL[i])
6 mode[i] = SM;
7 }
8 else {
9 SSL[i]++;

10 if (this is a secondary search)
11 return;
12 if (set is source set of an association)
13 if (access(i, addr) is successful in destinationSet)
14 return;
15 request addr line to memory;
16 let line to evict = line to evict according to replacement algorithm;
17 if (set is not associated) {
18 if (exists candidate destination set in DSS) {
19 if mode[line to evict.owner] == SM && saturated(SSL[line to evict.owner])
20 associate this set to candidate destination set;
21 } else if saturated(SSL[i])
22 mode[i] = PM;
23 }
24 if (set is source set of an association && mode[line to evict.owner] == SM && saturated(SSL[line to evict.owner])
25 if destinationSet.mode[line to evict.owner] == PM {
26 mode[line to evict.owner] = PM;
27 evict line to evict from cache;
28 } else
29 displace line to evict to position with highest locality in destination set;
30 else
31 evict line to evict from cache;
32 if (set is the destination set of an association) {
33 if saturated(SSL[i])
34 mode[i] = PM;
35 if (there are no lines from the source set)
36 break association;
37 }
38 }
39 }

Figure 7. TAMR2 operation under a cache access.

ruled by the application that generates the eviction, but by the owner of the line to be potentially
displaced. Thus TAMR2 requires storing the owner of each line (log2C bits, where C is the number
of cores) in the tag-store. Under a miss, the field is examined for the line to be evicted in order to
decide which is the policy to apply based on the mode and SSL of its owner.

Finally, the association algorithm changes slightly with respect to the one in SBC. Association
attempts are triggered when under a miss the owner of the line to be evicted is in SM mode and its
SSL is the highest one. This is sensible since this is a precondition for a displacement to take place.
The association takes place if the Destination Set Selector can provide a suitable destination set, that
is, one with a GSSL smaller than K.

Figure 7 shows a C-like pseudocode of the actions taken by TAMR2 under an access to a set. The
computation of the GSSL and corresponding update of the DSS, which take place when an SSL is
updated, are elided. The insertion of incoming lines, which simply follows the insertion policy of
the owner application in the set, is not reflected either because it takes place when they arrive.

Figure 8 illustrates how TAMR2 coordinates SBC and BIP in a 2-way cache shared by two
cores, A and B. We use the sets X and Y from Figure 2, assuming that they remain associated
under SBC and with the same contents as in the last illustration of that figure. The only
difference is that the initial SSLs are assumed to be 0. At this point, a sequence of accesses
Ax1Bx1Bx2Ax2Bx3Bx4Ax1Bx5Bx6Ax2 . . . reaches the cache. Since the accesses from B have no
locality, they should be inserted with low priority, while A would benefit from keeping the two lines
it reuses in the cache. The first illustration in Figure 8 shows the status of the cache after the accesses

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 9

After Ax1Bx1Bx2

Bx1Bx2

 SA SB MA MB

 1 2 SM SM

 0 2 SM SMAy1Ax1

Ax2

Bx2Ax2

 SA SB MA MB

 2 2 SM SM

 1 2 SM SMAy1Ax1

Bx3

Bx3Ax2

 SA SB MA MB

 2 3 SM PM

 1 3 SM SMAy1Ax1

Bx4

Bx4Ax2

 SA SB MA MB

 2 3 SM PM

 1 3 SM SMAy1Ax1

Ax1

Bx3Ax2

 SA SB MA MB

 3 3 SM PM

 0 3 SM SMAy1Ax1

Bx5

Bx5Ax2

 SA SB MA MB

 3 3 SM PM

 0 3 SM SMAy1Ax1

Bx6

Bx6Ax2

 SA SB MA MB

 3 3 SM PM

 0 3 SM SMAy1Ax1

Ax2

Bx6Ax2

 SA SB MA MB

 2 3 SM PM

 0 3 SM SMAy1Ax1

1 2 3 4

5 6 7 8

Figure 8. TAMR2 management in a 2-way cache shared by two cores using BIP.

Ax1Bx1Bx2, where SA and SB are the SSLs and MA and MB the management for the threads. In
set X SA = 1 because Ax1 misses there, while it hits in set Y. In both sets SB = 2 because due
to the association, Bx1 and Bx2 miss in both sets. Each one of the subsequent illustrations update
the cache after another access from the sequence. This way, Ax2 misses in both sets and is inserted
under SM in set X. Then, Bx3 misses in both sets, triggering PM in set X. This results in its insertion
in the LRU position under BIP. The same happens in Bx4. Ax1 misses again in set X but is found
in set Y. The figure continues showing the updates for Bx5, Bx6 and Ax2. Altogether, the facts that
B is managed under PM, and that the sets association under SBC allows to balance the load for
applications in SM, allows Ax1 and Ax2 to remain in the cache, thus providing an optimal miss rate.

Finally, we must mention that real environments present situations of context switching and
thread migration. Since TAMR2 decisions are managed by counters of a small size that are updated
with each access to the L2, our design can very quickly adjust its policies in each set to new
circumstances. This way, when this kind of changes takes place, TAMR2 may take wrong decisions
just for a very short period, until the SSLs reflect the new situation.

4. SIMULATION ENVIRONMENT

We use the SESC simulator [17] to evaluate our proposal. The baseline system consists of two cores
with private L1 caches and a shared L2 cache. Table I shows the main parameters of the architecture.
The tag check delay TC and the total round trip RT time are provided for the L2 to help evaluate
the cost of second searches when there are associations of sets. As in [4] and others, the tag and the
data arrays are accessed sequentially in the L2 cache. This reduces the power dissipation of large
cache arrays and limits the additional delay of second searches to the tag check delay. The power
analyses are based on on estimations of the dynamic energy per access in the different levels of
the memory hierarchy calculated with CACTI assuming a 32 nm technology and disregarding idle
time in DRAM, as the simulator does not model DRAM power modes. As our approach reduces the
number of accesses to main memory it is pretty likely that the power reductions we have calculated
are smaller than the ones that would be obtained considering DRAM power modes.

As for the parameters that are specific to the different approaches evaluated in this study, TADIP
(specifically TADIP-Feedback) [14] and TADRRIP (using Hit Priority) [7] use 32 sets dedicated
to each policy for each core to decide between BIP and MRU insertion in the former case, and
between BRRIP and SRRIP in the latter. These bimodal policies, BIP and BRRIP, as well as the ones
triggered by TAMR2, use a probability ε = 1/32 that a new line is inserted in the MRU position of
the recency stack or with a long re-reference interval prediction in the BRRIP case. SHiP uses as
signature the program counter, as it is the one with the best results in [8], and uses a table of 16K
entries with counters of three bits and no set sampling. The RRIP policies in TADRRIP, TAMR2-
RRIP and SHiP use two bits to characterize the re-reference prediction and Hit Priority update
policy [7]. Finally, the Destination Set Selector of BSBC [19] and TAMR2 has four entries.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 D. ROLÁN ET AL.

Table I. Architecture

Processor
Frequency 4GHz
Fetch/Issue 6/4
Inst. window size 80 int+mem, 40 FP
ROB entries 152
Integer/FP registers 104/80
Integer FU 3 ALU, Mult. and Div.
FP FU 2 ALU, Mult. and Div.
Branch predictor Hybrid [18]

Memory subsystem
TLB entries 64 for instructions + 64 data
L1 i-cache & d-cache 32kB/8-ways/64B/LRU/2 ports
L1 latency (cycles) 4 RT
L2 (unified, inclusive, shared) 4MB/16-ways/64B/LRU/1 port
L2 latency (cycles) 14 RT, 6 TC
System bus bandwidth 10GB/s
Memory latency 125ns

RT, round trip; TC, tag directory check.

4.1. Multiprogrammed workloads

Twelve benchmarks from the SPEC CPU 2006 suite have been selected to make 16
multiprogrammed workloads with at least an MPKI (misses per kilo instruction) of 1. They have
been simulated using the reference input set (ref), during the execution of their first 10 billion
instructions after the initialization. When the first core reaches this number of instructions it
continues its execution until the second core finishes, in order to keep both cores competing for the
cache shared resources. The statistics for each application are only recorded during the execution of
its first 10 billion instructions. These long simulations, in which applications can go through several
stages, lead to lower IPC improvements over the baseline for all the policies in our experiments
than those observed in other studies. We feel the results achieved in this way are very stable and
representative of real behaviors. Table II characterizes the multiprogrammed workloads with their
miss rate (MR) and MPKI in a 4MB 16-ways L2 cache.

5. TAMR2 RESULTS AND ANALYSIS

Figure 9 shows the throughput improvement of all the approaches relative to the LRU traditional
policy for the 16 workloads described above. In this figure and all the subsequent ones the last group

Table II. Multiprogrammed workloads characterization.

Name Benchmarks L2 miss rate(%) MPKI
MW1 471.omnetpp + 473.astar 7.8 6
MW2 433.milc + 482.sphinx3 65.1 26
MW3 401.bzip2 + 462.libquantum 32.3 13.2
MW4 462.libquantum + 470.lbm 36.1 45.6
MW5 401.bzip2 + 429.mcf 17.5 24
MW6 429.mcf + 433.milc 49 72
MW7 444.namd + 471.omnetpp 1.6 1.1
MW8 456.hmmer + 482.sphinx3 52.4 10.4
MW9 445.gobmk + 473.astar 12.9 4.7
MW10 462.libquantum + 471.omnetpp 24.5 13.4
MW11 433.milc + 473.astar 42.1 19.2
MW12 458.sjeng + 482.sphinx3 52.4 9
MW13 429.mcf + 444.namd 15.4 18.2
MW14 429.mcf + 445.gobmk 18.3 21
MW15 433.milc + 470.lbm 37.5 56
MW16 401.bzip2 + 458.sjeng 6.5 1.2

MPKI, mises per kilo instruction

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 11

-5

0

5

10

15

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

10

M
W

11

M
W

12

M
W

13

M
W

14

M
W

15

M
W

16

ge
om

ea
n-5

0

5

10

15

%
 T

hr
ou

gh
pu

t
im

pr
ov

em
en

t
re

la
ti

ve
 t

o
L

R
U BSBC

TADIP
TADRRIP
SHIP
TAMR2-BIPC
TAMR2-RRIP

Figure 9. Throughput improvement over the baseline configuration using several policies.

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
10

M
W

11
M

W
12

M
W

13
M

W
14

M
W

15
M

W
16

ge
om

ea
n

-5

0

5

10

%
 W

ei
gh

te
d

sp
ee

du
p

	im
pr

ov
em

en
t

re
la

ti
ve

 t
o

L
R

U BSBC
TAMR2-BIPC
TAMR2-RRIP

Figure 10. Weighted speedup improvement over the baseline configuration using BSBC and TAMR2.

of columns corresponds to the geometric mean for the values achieved for all the workloads. The
mean improvement achieved by each technique is: BSBC 1.8%, TADIP 2.2%, TADRRIP 3.1%,
SHiP 4%, 4% for TAMR2 with BIP-C and 4.1% for TAMR2 with RRIP. These results show
two trends that appear consistently in all the evaluation. The first one is that, non surprisingly,
thread-aware approaches, tend to outperform in general the non-thread-aware BSBC. For example,
comparing BSBC and TAMR2-BIPC: out of the 16 workloads, the thread-aware TAMR2 technique
proposed in this paper outperforms the thread-oblivious BSBC, which also reduces replacement
as well as mapping misses, in 11 workloads, while both yield very similar results in the other 5
workloads. Further, TAMR2-BIPC improvements over the baseline are on average 120% larger
than those of BSBC. The second trend observed is that those approaches that tackle both mapping
and replacement issues tend to achieve the best results in their category. The other techniques can
reduce replacement misses. Some also improve the detection and eviction of dead blocks in each
independent set, which can reduce conflicts, but they cannot exploit the load unbalance among sets,
therefore it is more difficult for them to make effective use of large portions of dead cache lines [11].

The other performance metrics analyzed show very similar trends to those observed in Figure 9 for
the throughput improvement. Therefore, Figures 10 and 11, devoted to the weighted speedup [20]
and the harmonic mean of weighted speedups [21], respectively, only show the values for BSBC
and TAMR2 in order to emphasize the value of thread-awareness. This way, under the weighted
speedup metric the relative advantage of TAMR2-BIPC over the baseline is about 100% larger than
that of BSBC, since this technique is able to apply the best policies to each thread depending on its
behavior. This helps avoid slowing down threads at the expense of others. When TAMR2 is applied
with the RRIP policies, a 50% of additional improvement with respect to BSBC is achieved.

Our fairness metric also clearly reflects the positive properties of TAMR2 in this regard in
Figure 11. On average, BSBC gets 2.3% improvement over the baseline, which is largely improved
by TAMR2-BIPC with 4.4% and TAMR2-RRIP with 4.8%. The average values for the other
techniques evaluated not shown in the graph are: TADIP 2.6%, TADRRIP 3.4% and SHiP 4%.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 D. ROLÁN ET AL.

-5

0

5

10

M
W

1
M

W
2

M
W

3
M

W
4

M
W

5
M

W
6

M
W

7
M

W
8

M
W

9
M

W
10

M
W

11
M

W
12

M
W

13
M

W
14

M
W

15
M

W
16

ge
om

ea
n

-5

0

5

10

%
 H

ar
m

on
ic

 I
P

C
 m

ea
n

	 i
m

pr
ov

em
en

t
re

la
ti

ve
 t

o
L

R
U BSBC

TAMR2-BIPC
TAMR2-RRIP	

Figure 11. Harmonic IPC improvement over the baseline configuration using BSBC and TAMR2.

-10

-5

0

5

10

15

20

25

30

35

40

45

M
W

1

M
W

2

M
W

3

M
W

4

M
W

5

M
W

6

M
W

7

M
W

8

M
W

9

M
W

10

M
W

11

M
W

12

M
W

13
M

W
14

M
W

15

M
W

16
ge

om
ea

n-10

-5

0

5

10

15

20

25

30

35

40

45

%
 M

is
s

ra
te

	r
ed

uc
ti

on
 r

el
at

iv
e

to
 L

R
U

BSBC
TAMR2-BIPC
TAMR2-RRIP

Figure 12. Miss rate reduction over the baseline configuration using BSBC and TAMR2.

As expected, thread-aware policies tend to show more potential for fairness. Among them, TAMR2
has the best behavior because while the other techniques are restricted to managing the working set
associated to each cache set, TAMR2 can better promote a fair usage of the cache resources thanks
to the incorporation of a displacement policy among sets based on their state.

It is interesting to notice that TAMR2 is the only proposal that does not slow down any IPC metric
for absolutely any workload in any configuration with respect to its baseline. This is in contrast with
other strategies, which can reduce the metrics up to 10% (15% in the case of fairness) in some
experiments.

Another metric we evaluate is the global MR, which considers, as a whole, the accesses of all
the applications during their simultaneous execution until the slowest one completes its 10 billion
instructions. These rates give an idea of the reduction of bandwidth to memory provided by each
approach, a resource which becomes more critical as the number of cores in CMPs increases. Since
accesses to memory require much more power than cache hits, they are also a good indicator of the
energy savings that can be achieved by the different techniques. Figure 12 shows this MR reduction
relative to the one observed in the baseline for the 4MB L2 caches considered. The (geometric)
average relative reduction of the MR achieved by each policy is BSBC 7%, TAMR2-BIPC 12%
and TAMR2-RRIP with 15.6%. The qualitative tendency in these figures is the same as in the IPC
metrics. When the benefit of thread-aware policies is added, the good MR reduction achieved by
BSBC can still be almost duplicated by TAMR2-BIPC. In fact, this technique, with only a 0.64%
overhead as we will see in section 5.4, provides 40% of the MR reduction achieved by doubling the
size of our baseline cache to 8MB. Still more impressive is TAMR2-RRIP, which reaches more than
50% of that reduction with an overhead below 0.3%.

The percentage that second hits represent in terms of power consumption and latency has been
counted in Figure 13, which shows the percentage of power consumption and latency reduction
achieved by TAMR2-RRIP, the best TAMR2 implementation. Each bar is broken down in the
percentage of hits that are satisfied in the second level of the memory hierarchy or in the main
memory. The percentage due to the L1 hits is not shown because it is very similar for all the

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 13

0

10

20

30

40

50

60

70

80

90

100

MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10 MW11 MW12 MW13 MW14 MW15 MW16 mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L2 Hits

Figure 13. Average power consumption and memory latency reduction achieved by TAMR2-RRIP relative
to the baseline using 2 applications. Each bar shows a breakdown of the accesses, either satisfied in the L2

cache or in main memory.

Table III. Percentage of throughput, weighted speedup, harmonic IPC improvement and MR reduction of
TAMR2-BIPC over the baseline, varying the cache size.

Cache
size (MB)

Throughput
improvement (%)

Weighted
Speedup (%)

Harmonic IPC
improvement (%)

Miss rate
reduction (%)

1 4.5 6.3 6.3 11.0
2 5.1 4.2 4.3 14.3
4 4.0 4.0 4.4 12.0
8 3.0 3.2 3.5 11.0

approaches. As the tag check delay means only a 3% of the total power consumption per read/write
access in the cache, our approach has a negligible power consumption overhead. On average, a 9%
and 10% of power consumption and memory latency savings are achieved.

5.1. Scalability Analysis

In this section the scalability of TAMR2 with respect to the cache size and the number of cores are
evaluated. This way, Table III shows the evolution of the metrics previously considered to evaluate
TAMR2 with respect to a baseline 16 ways cache shared by two cores for different cache sizes
when it is used in conjunction with BIP-C. These values are geometric means obtained on the 16
multiprogrammed workloads in Table II. As expected the values tend to diminish with the cache
size, but the reduction is not continuous or pronounced.

Figure 14 shows the throughput improvement with respect to the baseline 4MB 16-way cache
using four cores. All the workloads used, identified by the benchmark numbers, have also an MPKI
(in parenthesis) greater than 1. On average, BSBC gets an improvement of 1.8%, TADIP 3.5%,
TADRRIP 3.4%, SHiP 3.6%, TAMR2-BIPC 5% and TAMR2-RRIP 5.6%. The increase in the
number of cores that share the cache leads thread-aware techniques to more clearly outperform the
non-thread-aware BSBC. As for TAMR2, the variety of policies it uses, coupled with the accuracy
and fine grain with which it applies them, allows it to adapt very well to an increasing number
of cores, showing the best potential for scalability of results. Its fine granularity and accuracy
are also reflected in the fact that it does not slow down any workload in this environment either.
Regarding the TAMR2 variations evaluated, the advantage of TAMR2-RRIP over TAMR2-BIPC
observed in the 2-core experiments grows in this environment. Finally, Figure 14 also compares a
CMP to a private LLC (16 ways, 1MB per core, 8 cycles for the round trip latency and 4 for the tag
check delay) per core. We can see the importance of sharing resources, as this configuration clearly
performs worse than our baseline shared LLC.

Figure 15 completes our scalability study with the power consumption and latency reduction
achieved by TAMR2-RRIP in our 4-core experiments. The results also indicate a growth in the

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 D. ROLÁN ET AL.

0

5

10

15

401+444+
445+456

(2.5)

444+445+
456+471

(3.1)

401+433+
450+462

(33.9)

433+471+
473+482

(42.3)

401+444+
458+471

(3)

444+458+
462+471
 (16.2)

geomean

-3 -5 -7 -10 -5 -5

0

5

10

15

%
 T

hr
ou

gh
pu

t
im

pr
ov

em
en

t
re

la
ti

ve
 t

o
L

R
U

BSBC
TADIP
TADRRIP
SHIP
TAMR2-BIPC
TAMR2-RRIP
Private LLC

Figure 14. Throughput improvement over the 4MB 16 ways baseline cache shared by 4 cores using several
policies. MPKI of each workload in parenthesis under its name.

0

10

20

30

40

50

60

70

80

90

100

445+401+444+456

445+444+456+471

433+462+450+401

433+471+473+482

458+444+401+471

458+444+471+462

mean

P
o
w

e
r

L
a
te

n
cy

P
o
w

e
r

L
a
te

n
cy

Main Memory Hits

L2 Hits

Figure 15. Average power consumption and memory latency reduction achieved by TAMR2-RRIP relative
to the baseline using 4 applications. Each bar shows a breakdown of the accesses, either satisfied in the L2

cache or in main memory.

improvements achieved by TAMR2 in this environment. This way, TAMR2-RRIP reduces power
consumption and memory latency by 10% an 12%, respectively.

5.2. Experiments with multithreaded applications

We performed experiments with multithreaded applications in order to evaluate TAMR2 in
environments where each core tends to exert the same pressure on the shared cache. For these
experiments benchmarks from SPLASH2 and PARSEC were run on 4 cores for 10 billion
instructions (most of them until completion) using the large input set for PARSEC and the
appropriate input set for SPLASH2. Most of these benchmarks are not hard memory demanding
so the L2 capacity was reduced to 512 Kb to get more meaningful results. Figure 16 shows the
reduction in execution time over the baseline using 4 threads for several techniques. As expected,
the execution time reductions achieved are smaller than in multiprogrammed workloads. This way,
the average performance improvement is 3% for TAMR2-BIPC and 4.5% for TAMR2-RRIP. In a
multithreaded application it makes sense that the advantage of RRIP over BIP-C is larger than the
observed in a multiprogrammed workload. The reason is that BIP-C provides more opportunities for
a line to be reused before it is evicted from a set than RRIP in order to take into account that the cache
is shared with other cores. Concretely, when there are replacement problems in a set, a single miss
will evict a line inserted by RRIP with the longest re-reference prediction interval, while C-1 misses
will be required by a line inserted by BIP-C, where C is the number of cores sharing the cache. If a

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 15

-­‐10,00%	

-­‐5,00%	

0,00%	

5,00%	

10,00%	

15,00%	

20,00%	

ba
rn
es
	

rad
ios
ity
	

ray
tra
ce
	

bla
ck
sc
ho
les
	

ca
nn
ea
l	

fer
re
t	

flu
ida
nim

ate
	

fre
qm
ine
	

str
ea
mc
lus
te
r	

sw
ap
?o
ns
	

av
er
ag
e	

TAMR2-­‐RRIP	

TAMR2-­‐BIPC	

SHIP	

TADRRIP	

TADIP	

BSBC	

Figure 16. Reduction in execution time over the baseline LRU cache for several policies when running
multithreaded applications with four threads.

single application is running in the C cores and BIP-C or RRIP is activated by one of its threads in a
set, most chances are that all the threads are experiencing replacement misses (for example, due to
thrashing). In this situation, while RRIP only wastes one way of the cache to store the data without
locality, BIP-C subjects C-1 ways to thrashing. This hurts multithreaded applications under BIP-
C when more than 2 cores share the cache. In any case, both TAMR2 variants clearly outperform
execution time reductions of 1.8% of SHiP, 1.6% of TADRRIP, 1% of TADIP and 1.4% of BSBC.

5.3. Interaction with Prefetching

We have performed experiments adding a 16KB stride prefetcher to the L2 shared cache for
the TAMR2 and the baseline configurations. The inclusion of this prefetcher made the baseline
performance improve 5% on average. We briefly comment some of these results in terms of IPC
improvement. For the 2-core experiments TAMR2-BIPC got an average IPC improvement of 3.97%
over the baseline, quite similar to the 4% obtained without prefetching. The IPC improvement
achieved by TAMR2-RRIP grew to 4.6%, versus the 4.1% achieved without prefetching. As for the
4-core applications, TAMR2-BIPC achieved a 6.1% improvement, which is 22% greater than the 5%
reached in the plain experiments. TAMR2-RRIP reached a 8.3% average IPC improvement, which
nearly duplicates the 4.4% improvement achieved without prefetching. This way, we can make
three important observations from these results. First, in the presence of a prefetcher, the advantages
derived from the application of TAMR2 stay similar or grow. This makes sense since, particularly in
the case of shared caches, a prefetcher further stresses the bandwidth requirements of the memory.
Therefore, any policy that saves memory bandwidth, such as TAMR2, has a potential for a greater
impact than in an environment without prefetcher. Even more, as TAMR2 keeps the lines with
more locality in the cache, although still giving a chance to those without locality, the prefetcher is
able to perform better predictions, therefore achieving better results. The second observation is that
TAMR2 advantages grow, both in absolute and relative terms, as the number of applications sharing
the cache increases. This is due both to the larger bandwidth demand as we increase the number of
cores sharing the cache and to the nature of TAMR2. Namely, the particular management of each
core that TAMR2 proposes allows the prefetcher to obtain a more accurate prediction, achieving
higher hit rates than the prefetcher applied to the baseline configuration. For example, as the BIP-
C policy may prevent recently inserted lines from being evicted by a different core from that one
that brought the line to the cache, the stream of references that the prefetcher receives has fewer
interferences [22] between cores than the prefetcher used in the baseline configuration. Note that
we are using a simple prefetcher, without regarding the interaction between several cores in the
shared cache. Our last observation is that of the two TAMR2 variations evaluated, TAMR2-RRIP is
the one in which these effects are stronger. The reason is that the advantages of RRIP over BIP and

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 D. ROLÁN ET AL.

Table IV. Baseline and TAMR2 storage cost in a 4MB/16-way/64B/LRU cache shared between 2 cores.

Baseline TAMR2-BIPC TAMR2-BRRIP
Tag-store entry:

State(v+dirty+Repl+[d]+[c]) 6 bits 8 bits 6 bits
Tag (42− log2 sets− log2 64) 24 bits 24 bits 24 bits

Size of tag-store entry 30 bits 32 bits 30 bits
Data-store entry:

Set size 64*16*8 bits 64*16*8 bits 64*16*8 bits
Additional structs per set:

Saturation Counters - 2*5 bits 2*5 bits
Insertion policy bit - 2*1 bits 2*1 bits
Association Table - 12+1 bits 12+1 bits

Total of structs per set - 25 bits 25 bits
DSS (entries+registers) - 11B 11B

Number of tag-store entries 65536 65536 65536
Number of data-store entries 65536 65536 65536

Number of sets 4096 4096 4096
Size of the tag-store 245760B 262144B 245760B
Size of the data-store 4096kB 4096kB 4096kB

Size of additional structs - 12811B 12811B
Total 4336kB 4364kB 4348.5kB

2 4 8 16 32
0

1

2

3

4

5

6

Number of cores

%
 S

to
ra

g
e

 o
v
e

rh
e

a
d

 o
f

T
A

M
R

2

2MB 8−w BIPC
8MB 16−w BIPC
16MB 32−w BIPC
2MB 8−w BRRIP
8MB 16−w BRRIP
16MB 32−w BRRIP

Figure 17. Storage overhead of TAMR2 as a function of the number of cores for several cache configurations.

even BIP-C are more noticeable as the demand on the cache increases and the prefetcher removes
misses that no replacement policy can avoid.

5.4. Cost

We consider here the costs of TAMR2 in terms of storage. Table IV calculates the storage required
for a 4MB 16-way baseline cache with lines of 64B assuming addresses of 42 bits. The TAMR2
using BIP-C requires the following additional hardware with respect to a standard cache: a saturation
counter per set to compute the SSL for each core; an additional bit per entry in the tag-array to
identify displaced lines (d bit in Table IV); an Association Table with one entry per set that stores
a bit to specify whether the set is the source or the destination of the association; and the index of
the set it is associated to, and, finally, a Destination Set Selector (DSS) to choose the best set for
an association. TAMR2 also needs one bit per set to indicate the management mode for each core.
Based on this, the TAMR2 storage overhead using BIP-C is about 0.64%. The overhead is reduced
to 0.29% when TAMR2 applies SRRIP/BRRIP thanks to the reduction from 4 to 2 bits per line
needed for the replacement policy. In comparison, the overhead of SHiP, the alternative with the
most similar performance, is around 2.54% for this configuration.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 17

0

1

2

3

4

D
IP

SB
C

B
SB

C

TA
D

IP
 (B

IP
)

TA
SB

C

D
IP

+T
A

SB
C

TA
D

IP
+T

A
SB

C

TA
D

IP
-L

oc
al

TA
D

IP
-L

oc
al

+S
B

C

TA
-D

R
R

IP

TA
M

R
2-

B
IP

TA
M

R
2-

B
IP

C

TA
M

R
2-

R
R

IP

0

1

2

3

4

%
 I

P
C

 im
pr

ov
em

en
t

re
la

ti
ve

 t
o

L
R

U

Figure 18. Throughput improvement over a 4MB 16 ways baseline cache shared by two cores under several
policies.

Figure 17 shows the hardware overhead scalability of our design when varying the number of
cores for three cache configurations. We can see that for typical realistic configurations the cost
stays around 1% or below. In fact, very unrepresentative configurations, such as a 2MB cache shared
by 8 cores or a 8MB cache shared by 16, are needed to reach a 2% cost, which is still reasonable.
As the cache size increases, the overhead is reduced. Also, its growth is sublinear with respect to
the number of cores that share the cache. Altogether, while the cost of other techniques designed
for shared caches is even smaller, the large performance benefits of TAMR2 coupled with its small
cost make it a very interesting design point, particularly given the large availability of transistors
and the critical role of cache performance in current systems. Additionally, the cost of the structures
per set can be reduced by applying the same policies and SSL counters to a number of consecutive
sets instead of a single one. This ideas has been successfully validated in [23], proving that it can
even improve the performance achieved. We do not evaluate this here due to space limitations and
because it is not needed in the studied environments.

5.5. Contribution of each Policy to TAMR2 Performance

Our evaluation finishes analyzing by means of Figure 18 the contribution of each portion of TAMR2
to its global behavior by comparing the average throughput improvement that several policies
achieve over the 4MB 16-ways baseline cache shared by two cores described in Section 4 when
running the workloads in Table II. From left to right, a non-thread aware Dynamic Insertion Policy
(DIP) [6], which selects between BIP or LRU insertion depending on which one is working better
in the cache, provides less performance than a non-thread aware SBC. The Bimodal Set Balancing
Cache (BSBC) [19], which combines BIP and SBC in private caches, but which, unlike TAMR2,
is unaware of the existence and the behavior of the different applications, performs much better by
coordinating efficiently placement and insertion policies to reduce mapping and replacement misses.
TADIP thread-awareness applied to insertion policy management brings large advantages in shared
caches, as seen in [14].

Nevertheless, a thread-aware SBC (TASBC), that is a cache that uses an SSL per core in each
set in order to apply SBC to the accesses of each code depending on its specific SSL value, has
no advantages over SBC. The reason is that the problem solved by SBC, i.e., the unbalance of the
load of different cache sets, is not specific to the behavior of a thread, but to the combined behavior
of all of them in each set. The importance of adequately coordinating the insertion and placement
policies can be seen by comparing BSBC, which is totally thread-oblivious but coordinates the
insertion policy and SBC, with DIP+TASBC, which applies independently DIP and the TASBC
policy described above, being each one of them totally unaware of the behavior of the other one.

Applying TADIP with TASBC in an uncoordinated way brings similar performance advantages to
those of discovering and applying the best insertion policy to each thread in each set independently,
a technique we have called TADIP-Local. This technique uses an SSL per core in each set to choose
between BIP, which is activated when the SSL is saturated, and the usual MRU insertion policy,
which is goes into effect when the SSL falls below K, for the accesses of the core associated to

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 D. ROLÁN ET AL.

the SSL. This way, TADIP-Local acts like TAMR2 without its SBC component, and using BIP
instead of BIP-C or RRIP. If TADIP-Local is combined with SBC (which, let us remember, has
very similar performance to TASBC) in an uncoordinated way, a small additional performance
gain is achieved. Let us recall that all these approaches that combine in a non-coordinated way
a technique that tries to reduce replacement misses, like DIP, with another one that mainly tackles
mapping misses, like SBC, can generate harmful behaviors like displacing recently inserted lines in
source sets working under BIP, giving raise to unsuccessful second searches, or like evicting just
inserted lines in destination sets due to displacements, depriving them of a chance to be reused
before being evicted. As a result, this technique achieves worse results than the simple TA-DRRIP
policy [7]. The situation changes noticeably when TADIP-Local+SBC is improved by means the
coordination provided by the TAMR2, giving place to TAMR2 (BIP), which uses BIP for those sets
in PM mode, just like TADIP and TADIP-Local. Finally, when TAMR2 applies the BIP-C policy
proposed in this paper, performance improves to levels very similar to those of TAMR2 operating
with the SRRIP/BRRIP policies, as the last two bars show.

The relative contributions of each policy vary of course with the environment. For example thread-
awareness relevance grows with the number of cores sharing the cache, while SBC becomes more
important for workloads whose working sets fit relatively well in the cache, for which MRU insertion
works well.

6. CONCLUSIONS

The traditional problems due to the load unbalance among cache sets and the suboptimal
replacement algorithms present in single core environments, which the Set Saturation Level (SSL)
metric has been successfully proved to detect [4] [19], are found in shared caches as well. In
fact, new misses of both kinds appear in shared caches due to the effects of the joint working
set of the applications sharing them. From this analysis, this paper proposes, in a reasoned way, a
coordinated thread-aware strategy to alleviate both problems. This technique, called Thread-Aware
Mapping and Replacement Miss Reduction (TAMR2) policy measures the degree of pressure that
each application applies to each cache using the Set Saturation Level. When TAMR2 estimates
an application is experiencing problems in a set, it first tries to displace lines of the problematic
application to underutilized sets applying the Set Balancing Cache [4] techniques. When this fails
or is not possible, it resorts to policies specifically designed to deal with thrashing such as a modified
Bimodal Insertion Policy, called BIP-C, or BRRIP.

Simulations using a wide range of workloads indicate five things. First, thread-awareness is a
very desirable property for policies oriented to shared caches and can be successfully managed by
the SSL as well. Second, among them, TAMR2 consistently achieves the best results overall. This is
due to two key characteristics that clearly distinguish it from all the other thread-aware techniques
we are aware of. The first one is the small granularity with which it can take and apply decisions,
as opposed to the global decisions of other approaches. The second one is its coordinated approach
to reduce mapping and replacement misses that can balance load among sets. This latter issue is
largely ignored by the other proposals specifically designed for shared caches, which only focus on
the workload inside each set. We think that it is of the upmost importance to identify the dead blocks
in the cache and make the best usage of them. This requires changes to the placement policy like
the ones explored here. The third conclusion is that, according to our experiments, TAMR2 exhibits
a very good scalability potential. The fourth observation is that despite its fine-grained nature both
in terms of measurement and modification of the cache behavior, and the variety of policies that it
can apply, TAMR2 cost is very reasonable; well below 1% in representative configurations. Finally,
it is worth to point out that the proposed BIP-C insertion policy implies a notable improvement with
respect to the original BIP [6] in shared caches, as it protects lines from early displacements due to
other threads.

In this paper we have evaluated TAMR2 considering one thread per core. In a SMT system, the
number of threads to manage equals the number of cores multiplied by the number of threads per

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

A FINE-GRAINED THREAD-AWARE MANAGEMENT POLICY FOR SHARED CACHES 19

core. Each one of these hardware threads would be treated as a (virtual) core from the point of view
of TAMR2.

As future work, the cooperative implementation of other policies to reduce misses can be
explored. Reductions of the hardware required by TAMR2 can also be studied, for example grouping
the observation and management of nearby sets. A combined replacement algorithm that takes into
account the core making the request can also be explored.

ACKNOWLEDGEMENTS

This work has been supported by the Galician Government under projects Consolidation of
Competitive Research Groups (ref 2010/6), INCITE08PXIB105161PR and UDC/GI-000265, and
the Ministry of Education and Science of Spain, FEDER funds of the European Union (Project
TIN2010-16735). We also thank the anonymous reviewers for their suggestions, which helped
improve the paper. The authors are members of the HIPEAC network.

REFERENCES

1. Sugumar RA, Abraham SG. Efficient simulation of caches under optimal replacement with applications to miss
characterization. Proceedings of the ACM Sigmetrics Conference on Measurement and Modling of Computer
Systems, SIGMETRICS ’93, 1993; 24–35.

2. Jouppi NP. Improving direct-mapped cache performance by the addition of a small fully-associative cache prefetch
buffers. Proceedings of the 17th International Symposium on Computer Architecture, 1990; 364–373.

3. Qureshi MK, Thompson D, Patt YN. The V-Way cache: Demand-based associativity via global replacement.
Proceedings of the 32st International Symposium on Computer Architecture, 2005; 544–555.

4. Rolán D, Fraguela BB, Doallo R. Adaptive line placement with the Set Balancing Cache. Proceedings of the 42nd
IEEE/ACM International Symposium on Microarchitecture, 2009; 529–540.

5. Bershad BN, Lee D, Romer TH, Chen JB. Avoiding conflict misses dynamically in large direct-mapped caches.
Proceedings of the sixth international conference on Architectural support for programming languages and
operating systems, ASPLOS-VI, 1994; 158–170.

6. Qureshi MK, Jaleel A, Patt YN, Steely Jr SC, Emer JS. Adaptive insertion policies for high performance caching.
Proceedings of the 34th International Symposium on Computer Architecture, 2007; 381–391.

7. Jaleel A, Theobald KB, Jr SCS, Emer JS. High performance cache replacement using re-reference interval
prediction (RRIP). Proceedings of the 37th International Symposium on Computer Architecture, 2010; 60–71.

8. Wu CJ, Jaleel A, Hasenplaugh W, Martonosi M, Jr SCS, Emer JS. Ship: signature-based hit predictor for high
performance caching. Proceedings of the 44th IEEE/ACM International Symposium on Microarchitecture, 2011;
430–441.

9. Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach. 4th edn., Morgan Kaufmann, 2006.
10. Kharbutli M, Irwin K, Solihin Y, Lee J. Using prime numbers for cache indexing to eliminate conflict misses.

Proceedings of the 10th International Symposium on High Performance Computer Architecture, 2004; 288–299.
11. Khan SM, Jiménez DA, Burger D, Falsafi B. Using dead blocks as a virtual victim cache. Proceedings of the 19th

International Conferene on Parallel Architecture and Compilation Techniques, 2010; 489–500.
12. Chaudhuri M. Pseudo-LIFO: The foundation of a new family of replacement policies for last-level caches. MICRO

42: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, 2009; 401–412.
13. Srikantaiah S, Kandemir MT, Irwin MJ. Adaptive set pinning: managing shared caches in chip multiprocessors.

Proceedings of the 13th International Conference on Architectural Support for Programming Languages and
Operating Systems, 2008; 135–144.

14. Jaleel A, Hasenplaugh W, Qureshi MK, Sebot J, Jr SCS, Emer JS. Adaptive insertion policies for managing shared
caches. Proceedings of the 17th International Conference on Parallel Architecture and Compilation Techniques,
2008; 208–219.

15. Xie Y, Loh GH. PIPP: promotion/insertion pseudo-partitioning of multi-core shared caches. Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitecture, 2009; 174–183.

16. Qureshi MK, Patt YN. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
2006; 423–432.

17. Renau J, Fraguela B, Tuck J, Liu W, Prvulovic M, Ceze L, Sarangi S, Sack P, Strauss K, Montesinos P. SESC
simulator January 2005. Http://sesc.sourceforge.net.

18. McFarling S. Combining branch predictors 1993.
19. Rolán D, Fraguela BB, Doallo R. Reducing capacity and conflict misses using Set Saturation Levels. Proceedings

of the 2010 International Conference on High Performance Computing, 2010.
20. Snavely A, Tullsen DM. Symbiotic jobscheduling for a simultaneous multithreading processor. Proceedings of the

9th International Conference on Architectural Support for Programming Languages and Operating Systems, 2000;
234–244.

21. Luo K, Gummaraju J, Franklin M. Balancing throughput and fairness in SMT processors. Proceedings of the 2001
IEEE International Symposium on Performance Analysis of Systems and Software, 2001; 164–171.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 D. ROLÁN ET AL.

22. Wu CJ, Martonosi M. Characterization and dynamic mitigation of intra-application cache interference. Proceedings
of the 2011 IEEE International Symposium on Performance Analysis of Systems and Software, 2011; 2–11.

23. Rolán D, Fraguela BB, Doallo R. Adaptive set-granular cooperative caching. Proceedings of the 18th IEEE
International Symposium on High Performance Computer Architecture, 2012; 213–224.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Background and Motivation
	3 Thread-Aware Mapping and Replacement Miss Reduction
	3.1 Unbalances Among Sets: Mapping Misses
	3.2 Suboptimal temporal management inside cache sets: Replacement Misses
	3.2.1 BIP-C, A New Insertion Policy

	3.3 Coordination and Interaction between the Policies to Reduce Mapping and Replacement Misses

	4 Simulation Environment
	4.1 Multiprogrammed workloads

	5 TAMR2 Results and analysis
	5.1 Scalability Analysis
	5.2 Experiments with multithreaded applications
	5.3 Interaction with Prefetching
	5.4 Cost
	5.5 Contribution of each Policy to TAMR2 Performance

	6 Conclusions

