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Virtually Split Cache: An Efficient Mechanism to Distribute
Instructions and Data
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First-level caches are usually split for both instructions and data instead of unifying them in a single cache.
Although that approach eases the pipeline design and provides a simple way to independently treat data
and instructions, its global hit rate is usually smaller than that of a unified cache. Furthermore, unified
lower-level caches usually behave and process memory requests disregarding whether they are data or in-
struction requests. In this article, we propose a new technique aimed to balance the amount of space devoted
to instructions and data for optimizing set-associative caches: the Virtually Split Cache or VSC. Our tech-
nique combines the sharing of resources from unified approaches with the bandwidth and parallelism that
split configurations provide, thus reducing power consumption while not degrading performance. Our design
dynamically adjusts cache resources devoted to instructions and data depending on their particular demand.
Two VSC designs are proposed in order to track the instructions and data requirements. The Shadow Tag
VSC (ST-VSC) is based on shadow tags that store the last evicted line related to data and instructions in order
to determine how well the cache would work with one more way per set devoted to each kind. The Global Se-
lector VSC (GS-VSC) uses a saturation counter that is updated every time a cache miss occurs either under an
instruction or data request applying a duel-like mechanism. Experiments with a variable and a fixed latency
VSC show that ST-VSC and GS-VSC reduce on average the cache hierarchy power consumption by 29% and
24%, respectively, with respect to a standard baseline. As for performance, while the fixed latency designs vir-
tually match the split baseline in a single-core system, a variable latency ST-VSC and GS-VSC increase the
average IPC by 2.5% and 2%, respectively. In multicore systems, even the slower fixed latency ST-VSC and
GS-VSC designs improve the baseline IPC by 3.1% and 2.5%, respectively, in a four-core system thanks to the
reduction in the bandwidth demanded from the lower cache levels. This is in contrast with many techniques
that trade performance degradation for power consumption reduction. VSC particularly benefits embedded
processors with a single level of cache, where up to an average 9.2% IPC improvement is achieved. Interest-
ingly, we also find that partitioning the LLC for instructions and data can improve performance around 2%.
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1. INTRODUCTION

The different levels of the cache memory hierarchy usually treat in a different way
data and instructions. A split cache design for instructions and data is commonly found
nowadays in the first level of modern processors. This design is the preferred one, rather
than a unified approach, as it is well suited for the design of the processor pipeline so
that different stages access different caches, there being no conflicts between them and
achieving a better memory bandwidth than a unified cache. Also, the instruction cache
design is simplified as it only requires the support of read operations, while a unified
or data cache needs hardware to deal with both read and write operations. However,
unified approaches, usually found in the lower levels of the memory hierarchy, provide a
better use of resources by automatically sharing the cache capacity for both instructions
and data, even threads of different cores in shared caches, at the expense of requiring
a higher latency and design complexity and limiting the total bandwidth. Also, a first-
level unified cache would usually need to be multiported, so that it could process
simultaneously both instructions and data requests, which requires more complexity.
Furthermore, unified approaches are not aware of the higher locality that instructions
usually have compared to data. As a result they are oblivious to the different space
requirements that instructions and data could demand. In this article, we propose
a middle-way solution aimed to embrace the advantages that both split and unified
designs provide and to alleviate their drawbacks.

The rest of this article is organized as follows. The next section describes the motiva-
tion and background of our Virtually Split Cache or VSC approach. Section 3 explains
two possible implementations of our design. The environment used in our experiments
is described in Section 4, and the results and analysis of our proposals are discussed
in Section 5. Finally, the last section is devoted to the conclusions and future work.

2. BACKGROUND AND MOTIVATION

Nowadays, the most usual configuration for the first level of the cache memory hier-
archy devotes independent caches for both instructions and data. While unified ap-
proaches usually provide higher hit rates by automatically sharing resources instead
of statically partitioning them, split caches are the preferred configuration, mainly
because of the following reasons:

—Different instructions can access the instruction cache, in the fetch stage of the
pipeline, and the data cache, usually in the memory stage, at the same time in
pipelined processors. Unified approaches would require several access ports and,
thus, more complexity to provide the same advantages.

—The instruction cache design may be simpler, as it only needs to perform, ideally,
read operations.

—Unified caches of the same aggregated capacity imply higher latencies.

Several designs have appeared in the last years in order to improve performance or
reduce power consumption in first-level caches. The ones centered on power optimiza-
tion usually offer a trade-off in which some performance is lost in exchange for the
improved energy consumption. This way, Albonesi [1999] disables some cache ways of
an L1 set associative cache during periods of low demand while trying not to exceed a
preset performance degradation threshold. An extensive set of dynamic structures are
adapted in concert by Dropsho et al. [2002] with the same purpose. The Smart Cache
[Sundararajan et al. 2013] can be applied to all the caches in the chip, reconfiguring
their size and associativity in order to save energy. These proposals achieve power con-
sumption reductions of between one third and one half of the baseline in the structures
they modify, with small performance degradations of around 2% to 5%.
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Regarding performance improvement, many techniques focusing on the first-level
data caches have been proposed. Besides increasing associativity, logically or virtually
as pseudo-associative caches do [Agarwal and Pudar 1993; Calder et al. 1996; Zhang
et al. 1997], or early evicting dead blocks in order to retain the recency stack data
with higher locality [Lai et al. 2001; Liu et al. 2008], other techniques oriented to
better distribute the memory references across the cache to reduce conflict misses have
also appeared. For instance, the B-Cache [Zhang 2006] tries to balance the accesses
to the sets of first-level direct-mapped caches by increasing the decoder length and
incorporating programmable decoders and an ad hoc replacement policy. More recently,
Ros et al. [2012] dynamically chose the best set of bits to index a direct-mapped cache
among a larger set of bits. Also, other approaches try to reduce cache access latency
by partitioning the first-level data cache in order to place data near those units that
are more likely to use them [Racunas and Patt 2003], leveraging software techniques
to increase performance [Lu et al. 2003], or merging different designs to reduce power
consumption [Huang et al. 2001].

Regarding the first-level instruction caches, techniques to increase performance
have been focused on code layout optimization [Torrellas et al. 1998] or code reorga-
nization [Kumar and Tullsen 2002] due to the different locality properties and access
patterns instructions usually have compared to data.

None of these previous approaches is aware of the underutilized space instructions
or data caches may provide. This way, they are unable to balance resources in the first
level of the cache memory hierarchy.

On the other hand, unified cache designs are usually found in lower levels of the
memory hierarchy, where issue logic restrictions and latency constraints are more
relaxed. Many approaches have been proposed in order to increase performance at
these levels, both for private and for shared configurations between several cores
in multicore processors (CMPs). Recent approaches are mainly oriented to reduce
capacity misses [Qureshi et al. 2007], conflict misses [Rolán et al. 2009], or both
[Rolán et al. 2012] [Zhan et al. 2010]. There are also techniques specifically oriented
to increase performance in shared last-level caches (LLCs) of CMPs, which usually
apply partitioning mechanisms [Dybdahl et al. 2006; Qureshi and Patt 2006] to limit
the amount of space devoted to each core.

Apparently, there is no previous research on unified caches focused on applying
different policies for instructions and data; that is, there are no unified approaches
that become aware of the different localities that instructions and data may have.
Even more, the design of hybrid approaches with characteristics of shared and split
caches has never been considered either.

In order to analyze the behavior of instructions and data in the first level of the
cache memory hierarchy, we have performed studies increasing the cache size for both
instruction and data first-level caches in order to emphasize the different locality and
space requirements both caches have. Figure 1 shows the evolution of the miss rate
for both instruction and data caches varying their size at executing 10 benchmarks
from the SPEC CPU2006 suite. Further information about the evaluation parameters
can be found in Section 5. Starting with an 8KB direct-mapped cache (configuration
1), we keep increasing the size by 8KB, while keeping the number of sets constant,
until we reach a 64 KB eight-way cache (configuration 8). Our 32KB four-way baseline
instruction and data caches, which will be further described in Section 4, lay in between.
Results show that for a first group of benchmarks such as 444.namd, 471.omnetpp, or
482.sphinx3, three ways are enough to achieve a miss rate close to the one obtained
using eight ways in the instruction cache; that is, allocating more than three ways in
the instruction cache does not provide better performance. In fact, in some benchmarks
that we can include in this category, such as 456.hmmer and 473.astar, a single cache
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Fig. 1. Miss rate for SPEC CPU2006 benchmarks as the number of allocated ways varies for both instruction
and data first-level caches. The X axis shows the number of ways allocated from an eight-way 64KB cache
(the remaining ways are disabled).

way suffices for the instruction cache. On the other hand, allocating more than four
ways in the data cache usually means a lower miss rate for these benchmarks. This is
due to the lower locality and larger working sets that data have related to instructions.
Therefore, instruction caches can provide data caches with space in order to better
balance the resources of the memory hierarchy for this group of benchmarks. A second
group includes those benchmarks where the opposite behavior happens. For instance,
during the execution of the 445.gobmk and 458.sjeng benchmarks, the instruction
cache can benefit from receiving underutilized ways from the data cache from enabling
four ways on. Finally, a third group embraces those benchmarks, usually streaming
applications, where both instruction and data caches are not hardly influenced by the
number of enabled ways because of the poor locality or the great footprint size they
have. An example of this behavior can be observed in benchmark 470.lbm.

3. VIRTUALLY SPLIT CACHE

We propose a new cache design that provides the benefits of a unified approach while not
bringing its inconveniences. Our design can be described as a k-way associative cache
whose data-store and tag-store are partitioned so that part of them will be devoted to
caching instructions while the other part will cache data, giving place to two virtual
caches. Each one of these caches has its own port(s), which operate independently.
Tag- and data-stores are often partitioned in banks in order to achieve power, latency,
and/or bandwidth improvements [Wilton and Jouppi 1996; Sohi and Franklin 1991;
Su and Despain 1995; Wada et al. 1992]. In our design both stores are partitioned in
k banks each, one per cache way. This way, each bank has as many sets as the cache,
but it holds the tag (in the tag-store) or the line (in the data-store) of a single way.
When a traditional k-way associative cache with this design is accessed, the k banks of
its tag-store are read in parallel so that their content for the selected set is compared
with the requested tag. The k banks of the data-store are also read in parallel in the
meantime in order to minimize the latency in case one of these comparisons results
in a hit, as in that case the data from the corresponding bank will be immediately
sent to the processor. Our proposal, called Virtually Split Cache or VSC, divides its
k banks, or corresponding ways, in each store in two groups, one for instructions and
the other for data, which operate as two independent caches. Since there is a tag-store
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Fig. 2. Way j in the tag-store of the Virtually Split Cache.

bank and a data-store bank per cache way, the pair composed by the ith banks of both
stores corresponds to the ith cache way. As a result, in the VSC these two banks form a
cache way and are always assigned together to the same virtual cache. The number of
ways assigned to each virtual cache is decided dynamically by our design based on an
analysis of the behavior and space requirements of the instruction and data streams.

Our design needs some modifications with respect to a standard k-way cache in
order to be able to dynamically assign different roles to its banks. Figure 2 shows
a tag-store bank (or way) of the VSC. The line i/dj indicates whether way j of the
cache is assigned to instructions (value 1) or data (value 0). This signal controls the
multiplexers that choose whether the address lines to select the set that must be in-
dexed in the bank (Indx) and the tag that must be stored or compared (Tag) are
those that come from either the instruction or data port. Similarly, it selects the ap-
propriate selection line (Sinstr or Sdata) so that the bank will only perform accesses
requested by the corresponding port. The modifications in the banks of the data-
store of the VSC are analogous. Figure 3 shows the general structure of the VSC.
Both the tag-store and the data-store, which is called data-instr-store in the figure to
outline that it can store both kinds of information, receive all the signals needed to
operate each bank, both from the instruction and data ports. They also receive the
lines i/dj, 0 ≤ j < k so that each one of them controls whether the jth bank of the
store is assigned to either instructions or data and operates therefore under the sig-
nals from that port. The selection boxes in the lower part of the figure take the k
hit/miss lines from the tag-store, the values read from the data-instr-store, and the
i/d lines that indicate whether each bank is assigned to data or instructions. With
this information they can calculate in a straightforward way whether the current in-
struction (data) access has resulted in a hit or not, and in the first case, select the
value from the associated bank and eventually provide it to the processor. Externally
this design operates as two independent caches, one for instructions and the other
for data, which work in parallel and are made up of ways that can be dynamically
assigned to any of them. It is worthy to point out that in the case of an application
that demands the same amount of cache resources for data and instructions, the VSC
would ideally behave like a split design, thereby not incurring any penalty in terms of
latency.
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Fig. 3. Virtually Split Cache design.

We have assumed a single bank per way in each store and a single port per virtual
cache in order to simplify the explanation. Nevertheless, the banks of the VSC can be
further subdivided as long as all the banks associated to the same way are controlled
by the signals from the same virtual cache. This way, they could be subdivided to save
energy [Su and Despain 1995] or to distribute the sets among interleaved subbanks in
order to support multiple ports per virtual cache [Rivers et al. 1997; Sohi and Franklin
1991]. Any of the other usual strategies to implement multiple cache ports [Rivers et al.
1997] could also be applied to the VSC.

Additionally, while in the abstract representation in Figure 3 the tag-store and the
data-instr-store have been separately depicted to simplify the picture, the layout of
the actual implementations must be designed in order to optimize their latency. This
requires placing nearer the tag-store bank(s) and the data-instr-store bank(s) that
form each cache way and ensuring that the banks that are associated to each kind of in-
formation are those placed nearer to their cache port. We propose a design in which the
instruction port and the data port are on opposite sides of the array of banks, with the
banks of half of the ways of the VSC being placed nearer to one of the ports with the same
disposition, as in a split configuration. As we will see below, we propose that the VSC
always assigns to each kind of information a set of consecutive ways. This way, the set
of banks associated to instructions and the set associated to data occupy separate
nonoverlapping portions on the VSC and they are always the ones nearer to the port
that serves their requests, so that the wire delay of each virtual cache of the VSC is
minimized. With this layout, when half or less of the ways are associated to a virtual
cache, its latency does not exceed that of the equivalent split design. When more than
one half of the VSC is assigned to a virtual cache, it uses further banks placed nearer
to the other port, resulting in increased latency. The results of this smart design will
be presented in Section 5.

The virtual data and instruction VSC caches, even if disjointed, must necessarily be
placed together, as they must be able to reallocate banks between them. As a result,
the VSC does not allow them to be placed in separate places inside the chip, which is
a common strategy to minimize the access latency by the associated pipeline stages.
However, there are state-of-the-art processors [Demerjian 2011] that place these caches
very near, still providing minimal latency [Riedlinger et al. 2011], so this does not
necessarily have a negative impact on performance.
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Finally, note that L1 access latency can be dominated by the TLB translation time if
we assume a parallel cache-TLB access design [Balasubramonian et al. 2000]. In such
a case we could further reduce the latency penalty that the VSC implies in comparison
with the split baseline. In this work we are not taking this into account, though.

There remains the issue of the algorithm to allocate ways to the virtual caches. Our
design uses a counter I of ways that must be assigned to the instruction cache. All the
lines i/dj, 0 ≤ j < I are set to 1, and the ones for I ≤ j < k are set to 0. Our approach
initially allocates half the ways for instructions and the other half for data. During
its operation, the number of ways allocated to each virtual cache varies depending on
each particular demand, provided that both caches have always one allocated bank
at least. This way, the VSC provides additional benefits in comparison with a unified
approach, as it is able to avoid eager behaviors from one of the two types of data. When
a bank is reassigned to another virtual cache, its contents are invalidated. This implies
that this new allocated line per set is likely to be selected as a victim during the next
replacement operation.

We now explain in turn two practical designs of the VSC that use different algorithms
to measure the demand of the virtual caches and decide the number of ways assigned
to each one.

3.1. Shadow Tag VSC

This first approach tracks the space requirements for both instructions and data by
estimating how well both streams would work if they acquired one additional way
per set or, globally, one additional bank. Two shadow tags per set are used in order to
achieve this. One shadow tag stores the last instruction tag evicted from the set and the
other one stores the last data tag evicted from the same set. Each time a miss occurs in
a certain set, the appropriate shadow tag, depending on the kind of request, is checked.
If a hit occurs in the shadow tag and this is an instruction request, a global counter
devoted to instructions is increased. Similarly, we use another global counter for data
misses that hit in the data shadow tag as well. Also, as allocating an additional bank
to a virtual cache implies deallocating it from the other cache, this approach needs
additional structures to predict the impact of depriving a virtual cache of one bank. For
this purpose, our design uses two additional counters to track how many hits take place
in the least recently used (LRU) position of every set for both instructions and data.
Periodically, for each 1 million cache accesses in our experiments, all four counters are
checked. If the value of the shadow tag counter for data is greater than the value of
the LRU counter for instructions, one bank initially devoted to instructions is allocated
for data, and vice versa. The reason is that if the number of hits in shadow tags for
data is higher than the number of hits in LRU positions for instructions, allocating one
additional bank for data brings more benefits in terms of performance than keeping
the same bank devoted to instructions. Analogous conclusions can be obtained for
the opposite situation. This strategy assumes the same cost for instruction and data
misses, which is not necessarily the case, since instruction misses stall the front end
of the pipeline, while data misses stall the back end. For this reason, Section 5.1 studies
the impact of prioritizing instruction misses over data misses in our designs. Note that
the number of allocated banks for instructions and data remains unchanged if both
conditions or none of them are fulfilled. After this process, the four counters are reset.
Figure 4 shows the structure of this approach.

3.2. Global Selector VSC

While having a pair of shadow tags per set implies a small storage overhead (see
Section 3.3), cheaper alternatives can be explored. We propose a lighter design that

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 27, Publication date: December 2013.



27:8 D. Rolán et al.

Fig. 4. Shadow Tag VSC. Fig. 5. Global Selector VSC.

achieves similar results using a common saturation counter, or global selector, to make
instructions and data fight a duel for resources. This global selector is increased each
time a miss occurs for an instruction request and decreased in case of a data miss.
The counter value is checked after an update if at least 1 million cache accesses
have taken place since the latest bank reallocation. If the global selector holds the
maximum value, it means that instructions need more space. One additional bank,
used for data hitherto, is allocated for instructions in that case. If the saturation
counter has its minimum value, it means that more space for data must be provided.
Our approach selects one instruction bank and allocates it for data. The global selec-
tor is then initialized with a value in the middle of its range. We have determined
experimentally that a good range for the Global Selector counter is between 0 and
twice the total number of ways in the cache minus one. As a result, the reset value
used is the number of ways in the VSC. Figure 5 shows the structure of this design.

We tested the usage of counters with upper values from the number of ways of the
whole VSC cache up to four times it. Similar results were obtained in all the tests, with
lower values leading to more frequent reallocations and upper values needing more
storage overhead, namely, an additional bit for the counter each time the upper limit
is duplicated.

3.3. Cost

In this section we evaluate the cost of both the Shadow Tag and Global Selector Vir-
tually Split Caches in terms of storage requirements. The analysis is based on the
baseline and configurations described in Section 4; in particular, the baseline cache is
described in Table II. The Global Selector VSC only needs 4 additional bits, assuming
an aggregated associativity of 8, for the saturation counter. The Shadow Tag VSC needs
two additional tags per set as well as two counters for tracking the hits in the shadow
tags, either for instructions or data, and two additional counters for tracking the num-
ber of hits in LRU positions. According to our experiments and using the periodicity
described in Section 3.1, the counter devoted to the number of hits in the LRU position
for data needs 19 bits, while 16 bits are enough for the rest of the counters. Based on
this, Table I calculates the storage required by both approaches of the VSC and for a
four-way 32KB baseline cache with lines of 64B assuming addresses of 42 bits. Note
that we have taken into account the storage cost for both instruction and data caches
in the split baseline configuration, which will be further described in the next section.
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Table I. Baseline (Instruction cache + Data cache), Global Selector, and Shadow Tag VSC Storage Cost
in a 32KB/Four-Way/64B/LRU Cache

Baseline Global Selector Shadow Tag

Tag-store entry:
State(v+dirty+LRU) 1+1+2 bits 1+1+3 bits 1+1+3 bits
Tag (42 − log2 sets − log2 64) 29 bits 29 bits 29 bits
Size of tag-store entry 33 bits 34 bits 34 bits

Data-store entry:
Set size 64*4*8 bits 64*8*8 bits 64*8*8 bits

Additional structs per set:
Shadow Tags - - 2*29
Total of structs per set - - 58 bits

Total Counters: - 4 bits 16*3 + 19 bits

Number of tag-store entries 512 1024 1024
Number of data-store entries 512 1024 1024
Number of sets 128 128 128
Size of the tag-store 2.0625KB 4.25KB 4.25KB
Size of the data-store 32KB 64KB 64KB
Size of additional storage - 4 bits 936B

Total (I+D) 2*34.0625KB ∼68.25KB (∼0.1%) ∼69.1KB (∼1.4%)

Table II. Architecture
In the table, RT and TC stand for round trip and tag directory check, respectively.

Processor

Frequency 4GHz
Fetch/issue 4/4
ROB entries 176

Integer/FP registers 96/80

Memory subsystem

L1 i-cache & d-cache 32KB/four-way/64 B/LRU/WT
L1 Cache latency (cycles) 2 RT

L2 (unified, inclusive) cache 2MB/eight-way/64 B/LRU/WB
L2 Cache latency (cycles) 14 RT, 6 TC

Main memory latency 62ns

We can see that the storage cost of both approaches is small, even negligible in the case
of the Global Selector VSC. We have also calculated that the storage cost of the Shadow
Tag VSC could be halved, to about 0.65%, if we reduced the number of bits per tag to
10 bits applying the hash functions proposed in Ramakrishna et al. [1997], since the
number of lines that a set can hold, and consequently the number of possible values
that a shadow tag can have, is limited.

4. SIMULATION ENVIRONMENT

To evaluate our approach we have used the SESC simulator [Renau et al. 2005] with
a baseline configuration based on a four-issue out-of-order core with a hybrid branch
predictor scheme and a 16KB stride prefetcher in the L2 cache as well as two on-
chip cache levels. First-level caches are single-ported and use a write-through [Butler
et al. 2010; IBM 2009; Sinharoy et al. 2005; Le et al. 2007; Sinharoy 2009] policy.
Both data cache levels use 32 MSHRs [Kroft 1981], while the instruction L1 uses four.
This configuration is detailed in Table II, where the latency of each component of the
memory hierarchy has been derived using CACTI [HP Labs 2008].
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Table III. Benchmark Characterization

Benchmark DL1 miss rate IL1 miss rate Combined miss rate CPI

401.bzip2 2.7% 0.001% 1.8% 1.5
429.mcf 13% 0.001 11% 6.5
433.milc 5.7% 0.001% 3.7% 2.6
444.namd 1.7% 0.01% 1% 0.96
445.gobmk 1% 3% 1.7% 1.44
450.soplex 5% 1% 2.7% 2.32
456.hmmer 1.2% 0.003% 1% 2.07
458.sjeng 1% 1% 1% 1.6
462.libquantum 8% 0.0001% 3.1% 2
470.lbm 20% 0.0001% 9.6% 1.51
471.omnetpp 7% 1% 6% 1.4
473.astar 5.2% 0.001% 3.1% 3.1
482.sphinx3 7% 0.01% 2% 1.8

4.1. Benchmarks

We have performed experiments running 13 benchmarks from the SPEC CPU 2006
suite, specifically those with a combined L1 miss rate (considering both data and
instruction accesses) of at least 1%. They have been executed using the reference input
set (ref ) during 10 billion instructions after the initialization. Table III characterizes
them providing the miss rate for both instruction and data L1 caches, the combined
miss rate regarding the number of accesses and misses both caches have altogether,
and the CPI obtained with the baseline.

5. PERFORMANCE EVALUATION

We have applied the VSC in the first level of the cache memory hierarchy to evaluate
its performance and power consumption. We have compared both versions of the VSC
as well as a true dual-ported unified cache (with one port for instructions and another
one for data, like the baseline and the VSC) with aggregated capacity of 64 KB and
eight ways, with the baseline. The hit latency, calculated with CACTI [HP Labs 2008],
for this unified approach is three cycles. As for the VSC, as we explained in Section 3,
while it is feasible to get the same latency in cycles as the baseline when a virtual
cache has the same or fewer ways than the equivalent portion of a split cache, when
more ways are in use, it is fair to assume that a longer latency will be needed. We have
conservatively estimated that whenever a VSC virtual cache has even a single more
way than the baseline, its latency grows to three cycles. This estimation is conservative
because this is the latency that CACTI computes for the dual-ported unified cache,
which in fact should tend to be always slower than the VSC for two reasons. First, the
VSC and split cache banks are single ported, as they only support a single access per
cycle, while the unified cache banks need to be truly dual ported in order to provide a
fixed latency for the simultaneous instruction and data accesses, which involve all the
banks. This considerably increases the size of these banks [Tatsumi and Mattausch
1999]. The other reason is that the split and VSC cache ports are connected to four
and to between one and seven banks, respectively, versus the eight banks the unified
cache has always in use. Also, note that the extra hardware the VSC uses to decide its
configuration (shadow tags and counters) is small, and more importantly, it is not in
its critical path, so it can be placed isolated from the VSC core and it can operate in
later stages, particularly as it is only used on misses, or hits in the LRU way, thus not
affecting the VSC latency.
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Fig. 6. Percentage of IPC improvement relative to the baseline cache achieved by several VSC designs.

Since VSC could satisfy hits with different latencies depending on the number of ways
allocated, we evaluate two versions of each one of the designs proposed in Section 3. The
first version is a VSC with variable latency. Using CACTI we have estimated a latency
for each one of the two virtual caches provided by the VSC of one cycle when it has one
or two allocated banks, two cycles for three or four allocated banks, and three cycles
for between five and seven banks. This version requires a pipeline that adjusts to this
latency when executing the instructions. There are several research articles [Agarwal
and Pudar 1993; Calder et al. 1996; Zhang et al. 1997; Balasubramonian et al. 2000]
as well as actual well-known architectures [Tendler et al. 2002] that have different
latencies in the L1 cache despite the issue logic restrictions. In these designs, the
wake-up logic in the pipeline accurately handles the variable return times for the L1,
so that different hit times are supported, in our case depending on the number of banks
a virtual cache uses at a given time. Note that for VSC, each virtual cache, and thus its
latency, is fixed for millions of cycles (on average, 4.4 million and 9 million for Shadow
Tag VSC and Glogal Selector VSC in our tests in Section 5.6, respectively). Thus, the
pipeline and the specific wake-up logic only need to be adjusted to a new latency for
instruction and data accesses very seldomly, with a warranted lower bound of 1 million
accesses, or the minimum policy revision time chosen for the VSC implementation,
working the vast majority of the time as a system with fixed cache latency. This way,
the variable latency VSC is much more feasible to support than other variable latency
approaches in which the hit latency can vary for each access. In our simulations with
the variable latency VSC cache reconfigurations are coupled with a restart of the
processor pipeline with the same cost as a branch misprediction to account for the
reconfiguration cost. The impact on performance is negligible. The second version of
the VSC we test is a design with a fixed latency of three cycles, no matter the current
internal configuration.

Figure 6 shows the percentage of IPC improvement for the VSC designs and the
unified cache relative to the split baseline configuration. The last column shows the
geometric mean of the values normalized to 1. The unified cache degrades the IPC
relative to the baseline by 1.5% due to its higher latency, even if it has a better miss
rate than the baseline, as we will see later. Using variable latencies, our Global Selector
VSC (GS-VSC var) improves IPC by 2%; when using the Shadow Tags VSC (ST-VSC
var) this percentage increases to 2.5%. With a fixed three-cycle latency none of the VSC
approaches noticeably improve over the split baseline design, but they still outperform
the unified approach.

Figure 7 shows the miss rates of the unified and VSC designs relative to the combined
miss rate of the baseline. The unified cache gets a 6% miss rate reduction, ST-VSC
13%, and finally GS-VSC 11%. The further miss rate reduction of the VSC designs
with respect to the unified cache explains why they work better even when they are
evaluated with the same three-cycle latency. The reason for the better hit rate is that

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 27, Publication date: December 2013.



27:12 D. Rolán et al.

Fig. 7. Miss rate of the unified and VSC designs relative to the baseline cache.

Fig. 8. Distribution of the number of banks allocated for instructions and data using the Shadow Tag VSC
(data cache allocation on the left and instruction cache allocation on the right).

VSC, contrary to a unified cache, guarantees a minimum of one way per set both for
instructions and for data. We can conclude that our VSC combines the lower latency of
split approaches with the higher hit rate of unified caches.

Figure 8 shows a box plot with the distribution of the number of banks allocated by the
ST-VSC for both data (column on the left) and instructions (column on the right) during
the execution of the benchmarks considered in Figure 1. The number of banks devoted
to both instructions and data over time has been sampled each 1,000,000 accesses to
the cache, that is, each time a new adjustment is performed in the ST-VSC. The height
of each box indicates the degree of dispersion of the data between the 25th percentile or
Q1, the bottom of the box, and the 75th percentile or Q3, the top border of the box. The
width of each box indicates the size of the sampled population for both instructions and
data (e.g., we gathered more samples, since there are more accesses to the cache, in mcf
than in sjeng). The median, or second quartile (Q2), of the population is marked with a
black dot inside a circle. It often overlaps the first or the third quartile, meaning that the
degree of dispersion is low. Whiskers show both the minimum and maximum samples
not considered outliers. Finally, circles represent outliers, which are the observations
with a value outside the range [Q1 − w(Q3 − Q1), Q3 + w(Q3 − Q1)] with w = 1.5. The
most frequent ones are marked with thicker circles. We can observe how the often
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Fig. 9. IPC achieved for different priority levels for instructions in the Shadow Tag VSC relative to the split
baseline.

poorer locality and larger working set of data compared to instructions translates
into all benchmarks allocating, in a certain moment of the execution, the maximum
number of banks allowed by our approach (the associativity minus one) for data. On
the other hand, half the benchmarks allocate the maximum number of allowed banks
for instructions in a certain moment of time, but most of them are outliers, like when
four or more ways are allocated for instructions. As a result, all benchmark executions
usually have three or more banks allocated for data, although there are samples with
only one or two ways allocated for data in all the benchmarks but 456.hmmer. These
samples are very rare (outliers) in 429.mcf , 444.namd, 473.astar, and 482.sphinx3,
and a little bit more frequent in benchmarks like 458.sjeng or 470.lbm. The minimum
number of allocated banks for instructions is only one, with two or three in the most
common case. Only those benchmarks where the data working set is smaller than the
instruction one, like 445.gobmk or 450.soplex, or where resources are fairly balanced
between data and instructions, like 458.sjeng or 470.lbm, do not need to devote more
banks for data than for instructions.

5.1. Prioritizing Instruction Hits

As instruction misses have a greater impact on performance than data ones due to
the pipeline stalls generated by front-end misses, we have made some experiments
adapting our VSC designs in order to favor the reduction of instruction misses over
data misses. Namely, we have modified the Shadow Tag and Global Selector VSC to
increase the instruction counters (the Shadow Tag counters for instructions in the
former case, and the increasing value for the Global Selector after an instruction miss
in the latter) with a value two, three, four, and five times greater than in the case of
data misses, thus giving more weight to instruction misses. Figures 9 and 10 show
the IPC improvement over the split baseline of our original design and the versions
with increased instruction miss weight for the Shadow Tag and Global Selector VSC,
respectively. We can see that the design that brought the best results for the ST-VSC
was the one in which the update values for the instructions counters are four times
greater than for the data counters, which outperformed the split baseline design by
2.6% on average. We did not select this option for our ST-VSC baseline as it can mean a
higher storage overhead for instruction counters (assuming the reallocation frequency
described in Section 3.1). In the GS-VSC, the best design was the one that gave five
times more weight to instructions than to data, which achieved a 2.1% improvement
but also led to much more often counter saturations, and thus frequent reallocations.
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Fig. 10. IPC achieved for different priority levels for instructions in the Global Selector VSC relative to the
split baseline.

Fig. 11. Energy consumption of the Shadow Tag and Global Selector VSC relative to the split baseline. The
total height of each bar indicates the energy consumption of the complete memory hierarchy when using
the associated VSC design, relative to that of the baseline (100). The extent of each color inside each bar
indicates the relative portion of that energy consumption that took place in the L1 cache, the L2 cache, and
the main memory.

5.2. Memory Hierarchy Energy Consumption Analysis

We have analyzed the energy consumption of our approaches relative to the baseline
configuration in the memory system. The energy consumption per access in the different
levels of the hierarchy has been estimated using CACTI [HP Labs 2008]. Although no
access is required for the eight VSC banks, we have conservatively estimated the cost
of each VSC access to be the same one as an access to a 64KB eight-way cache. That
is, our estimation is the same as if every access to any of the virtual caches of the VSC
accessed all its banks, when on average, only half of them are required. Note the fewer
banks the VSC needs to access the lower energy consumption. The previous estimation
accounts also for the minimal cost of the counters and the eventual shadow tag accesses
of the ST-VSC, which only happen under a miss. This costs a total of 0.06nJ versus
the 0.04nJ required by an access to one of the four-way 32KB caches of the baseline.
Figure 11 shows the relative energy consumption of the full memory hierarchy when
using the Shadow Tag and Global Selector VSC relative to the one measured when the
baseline split cache is used. Each bar is broken down into the percentage of energy
consumption due to hits that are satisfied in the first or second level of the memory
hierarchy or in the main memory, out of the total amount of energy consumption. The
last column shows the arithmetic mean of the reduction as well as the distribution of
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Fig. 12. Average ratio of live and dead lines for Shadow Tag and Global Selector VSC as well as the split
baseline.

the accesses. The Shadow Tag VSC achieves 10% energy consumption reduction, while
the Global Selector VSC achieves 8%. The reason for the larger reduction achieved by
the Shadow Tag VSC is the larger fraction of accesses to the second-level cache that
it is able to avoid. If we compute the energy reduction only on the cache hierarchy, as
most related works that deal with the reduction of power consumption in caches do
[Albonesi 1999; Dropsho et al. 2002; Sundararajan et al. 2013], that is, disregarding
the main memory, the savings are 29.4% for ST-VSC and 24.2% for GS-VSC. This way,
VSC is always an interesting design point, since even if the fixed latency VSC is used,
which offers no performance advantages, power savings on the order of those found in
the bibliography are achieved, but with smaller or even no performance degradation
observed.

5.3. Cache Utilization and Usefulness

Since the VSC performs invalidations during the reallocation process, a natural ques-
tion is whether this leads to a lower utilization of the cache than the baseline. A rough
indicator of the utilization is the ratio of cache lines that are not invalid; however, a
more accurate one is the ratio of live lines. A line is live if it holds information that is
going to be reused by the processor before the line is evicted. A line is, however, dead
since its last reference until it is evicted (or invalidated) [Lai et al. 2001]. Figure 12
shows the average percentage of live and dead lines for all benchmarks and designs
considered during the simulation. The split baseline achieves 67% of live lines, while
the Global Selector VSC obtains 69% and Shadow Tag VSC 71%. An important reason
for the lower utilization of the baseline is the invalidation of instruction cache lines
when manipulating working sets (data plus instructions) that do not fit in the L2 cache
of our inclusive memory hierarchy. This way, the VSC keeps more useful lines in the
cache than the baseline despite the periodic (but seldom) invalidations it performs in
the bank reallocations, which disregard the usefulness of each individual line installed
on them. We can also see that the live line ratios correlate with the performance ob-
served in the preceding sections. In conclusion, the VSC is able to better utilize the
resources, also keeping more useful lines.

5.4. Embedded System Analysis

Several models of embedded system processors include a single level of cache, which
is usually split, and as a result their L1 cache misses go directly to main memory
[Freescale Semiconductor 2011; ARM 2010; Freescale Semiconductor 2007]. In this
section, we evaluate the benefits of the VSC in these systems. Figure 13 shows a
study of the VSC applied in such a baseline architecture by removing the L2 cache
in our baseline configuration. In this environment, the variable latency Shadow Tag
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Fig. 13. IPC improvement relative to a baseline architecture without L2 cache.

Fig. 14. Power consumption reduction relative to a baseline architecture without L2 cache.

VSC outperforms the baseline by 9.2% on average, while the Global Selector VSC
achieved 7.3% improvement. With a three-cycle fixed latency, the average speedups
are reduced to a still meaningful 4.1% and 3.2%, respectively. Figure 14 shows the
power consumption reduction in this environment for the cache plus the main memory
for both VSC designs. The Shadow Tag VSC reduced the global memory hierarchy
power consumption by 14% and the Global Selector VSC by 12%, on average. This way
the power reduction is about 50% larger than in systems with multiple levels of cache.

5.5. Lower-Level Cache Analysis

The VSC was initially designed for the first level of the cache memory hierarchy, since it
is at this level that we can easily identify instructions and data accesses and associate
them to different caches with their respective ports. For this reason, it is usually
the only level of the memory hierarchy where split cache designs are found, which
wastes resources when the requirements for instructions and data memory blocks are
unbalanced; this is the main problem the VSC addresses. However, one may wonder
what is the effect of applying the ideas of the VSC in lower cache levels, which are
always unified caches and thus already allow maximum flexibility for sharing their
resources. Although many approaches have been proposed to distribute resources in
lower-level caches between different threads [Qureshi and Patt 2006; Xie and Loh
2009], this is not the case for distributing instructions and data.

We applied the VSC approaches described in Sections 3.1 and 3.2 in order to apply a
way-partitioning approach for instructions and data in a unified L2 cache. The system
configuration was the same used in the preceding experiments, with the only change
that the memory hierarchy was made noninclusive in order to simplify the design and
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Fig. 15. IPC achieved using a L2 that partitions its resources in each set between instructions and data
using the VSC strategies relative to the unmanaged unified baseline.

Fig. 16. Miss rate for both VSC designs applied in the LLC relative to the unmanaged unified baseline.

to increase the aggregated capacity of the memory system. Also, the same split L1
cache configuration was used with both the regularly managed L2 and the one that
partitions its resources between instruction and data applying the VSC strategies.
Figure 15 shows the relative IPC achieved by the modified L2 designs with respect
to the baseline. The L2 managed under the Shadow Tag VSC outperforms the base-
line by 2.3%, while the one that follows the Global Selector VSC does so by 1.9%.
Figure 16 shows the relative miss rate achieved by this partitioning of the L2 with
respect to the baseline. The average relative miss rate reduction is about 5% in the
case of the Shadow Tag VSC and close to 4% in the case of the Global Selector VSC.
As expected, the improvement is smaller than the one achieved in the first level, but
still, it outperforms the baseline design, thanks to the fact that our approach is able
to better distribute space for instructions and data and to avoid one type of data be-
ing deprived of space by the other one. In this environment, the Global Selector VSC,
which only needs a counter, seems a very cheap and attractive alternative with respect
to the Shadow Tag approach, which needs two shadow tags per set. However, sampling
strategies (using shadow tags only in some sets) such as those proposed in Qureshi and
Patt [2006] would strongly reduce ST-VSC cost.

5.6. Sensitivity Analysis Using Write-Back Policy

As explained in Section 3, our approach simplifies the reallocation process by invali-
dating lines in the new acquired bank. Until now, we have considered a write-through
policy for the first level. This design is used in many single-core and multicore proces-
sors [Butler et al. 2010; IBM 2009; Sinharoy et al. 2005; Le et al. 2007; Sinharoy 2009],
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Table IV. Shadow Tag VSC Statistics When Applied in a Write-Back L1 Cache

Average Average number of
number of dirty Percentage cycles between % IPC

lines per of dirty lines reallocations improvement over
Benchmark reallocation in the bank (thousands) split design

401.bzip2 1.6 1% 2900 1.5%
429.mcf 4 3.1% 9500 4%
433.milc 18 14% 4900 −1%
444.namd 0.78 0.006% 2100 1.5%
445.gobmk 38 29.6% 2800 3.6%
450.soplex 7 5.4% 4700 4.5%
456.hmmer 18 14% 3400 2%
458.sjeng 35 27.3% 3300 −1%
462.libquantum 0.5 0.003% 5100 2.2%
470.lbm 15 11.7% 5100 2.5%
471.omnetpp 11 8.5% 2700 2.5%
473.astar 9 7% 6000 3%
482.sphinx3 3 2.3% 3900 6%

Average 12 9% 4400 2.4%

Table V. Global Selector VSC Statistics When Applied in a Write-Back L1 Cache

Average Average number of
number of dirty Percentage cycles between % IPC

lines per of dirty lines reallocations improvement over
Benchmark reallocation in the bank (thousands) split design

401.bzip2 46 36% 5000 1%
429.mcf 17 13% 2000 3.8%
433.milc 30 23% 3000 −1%
444.namd 98 76% 8000 1.7%
445.gobmk 50 39% 1200 2%
450.soplex 39 31% 1200 3.8%
456.hmmer 51 39% 8200 −0.5%
458.sjeng 39 31% 1300 −0.1%
462.libquantum 47 36% 42000 2.2%
470.lbm 54 42% 11000 1.5%
471.omnetpp 20 16% 1200 2.8%
473.astar 59 46% 30000 2.3%
482.sphinx3 46 36% 3300 6%

Average 45 35% 9000 1.9%

as it simplifies the coherence both in the chip, in the case of multicore ones, and with
other chips. However, write-back L1 caches are also used in many processors in order to
avoid the bandwidth contention produced by write-through policies in the lower cache.
In these systems, coherence is usually handled by snooping mechanisms.

In this section we explore the impact of using an L1 cache with write-back policy
for the VSC. If we consider an L1 cache with the same parameters as in the preceding
sections (64KB of capacity, eight ways, and lines of 64B), each time the VSC performs
a reallocation, the 128 lines kept in a bank, one per set, are switched. Tables IV
and V show the average number of dirty lines that need to be pushed to the lower
level during a reallocation process, and the percentage of the 128 lines in the bank
they represent, when write-back Shadow Tag and Global Selector VSCs are used,
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respectively. The tables also include the average number of cycles between reallocations
for each benchmark and the IPC improvement obtained. Notice that the reallocation
frequency is independent of whether the cache is write-through or write-back, so this
is also the average time between reallocations in the experiments using write-through
caches. We can see that the average number of lines to be pushed in the Shadow Tag
VSC, 12 out of 128, is small enough to not increase the contention in the lower level. This
is particularly true given that, as we can see in the table, reallocations only happen each
4.4 million cycles on average. Thus, the average performance improvement is about
2.4%, quite similar to the 2.5% obtained in the case of the write-through policy. The
improvement is slightly smaller because those benchmarks with the highest number of
pushed lines per reallocation, like 445.gobmk or 458.sjeng, get smaller improvements
than in the case of using a write-through policy due to the latency penalty derived from
performing these write-backs. The average number of dirty evictions per reallocation
is higher in the Global Selector VSC. Still, this does not degrade performance much
because the average number of cycles to perform reallocations is more than twice
greater than in the case of the Shadow Tag VSC. This lower reallocation frequency is
of course directly related to the increase in the number of dirty lines to write back.
The performance improvement, 1.9%, is again slightly smaller than the 2% observed
in the write-through cache. Note that these results do not mean that the write-back
policy performs worse than the write-through one, as we are showing relative numbers
to the baseline. In fact, the write-back policy outperforms the write-through policy in
our experiments by 0.8%, on average.

5.7. Multicore Experiments

Improving the cache behavior in the first level of the hierarchy, which is the main goal
of the VSC, usually brings benefits into the overall system, as lower levels experience
less contention. This is particularly significant in multicore processors with a shared
last-level cache, where the bandwidth that this latter device can provide diminishes
as the number of demanding cores increases. In order to evaluate the overall impact
of the VSC in this scenario, we have performed experiments in two different multicore
environments, namely, dual and quad-core, configured with a 16-way shared L2 cache
of 4 MB (30-cycle hit latency) in case of the dual-core system and 8 MB (40-cycle
hit latency) for the quad-core one. We use the same baseline configuration described in
Table IV for the cores and L1. We have used the benchmarks listed in Table III to create
16 multiprogrammed workloads of two applications and six of four applications. All
these workloads have at least one miss per kilo-instructions (MPKI). Each benchmark
is executed until it commits 10 billion instructions after the initialization, with the
same reference input set as in the previous experiments. When each core reaches this
number of instructions, it continues its execution until the slowest core finishes, in
order to keep competing for the cache resources. Figure 17 shows the percentage of
IPC improvement relative to the baseline for both the Shadow Tag and Global Selector
VSC in the experiments using two cores evaluating both the variable and the fixed
latency implementations. Each group of four columns along the X axis is labeled with
the number of the two benchmarks that were run in parallel (the correspondence to the
benchmark name can be seen in Table III) separated by a plus sign. The last column
indicates the geometric mean. The Shadow Tag VSC has a 4% IPC improvement,
while the Global Selector VSC averages 3.2% when variable latencies are supported;
otherwise, the improvements are 2.2% and 1.6%, respectively.

The experiments with four simultaneous applications are shown in Figure 18 using
the same naming scheme for the workloads along the X axis. The variable latency
Shadow Tag and Global Selector VSC obtain 4.8% and 3.9% IPC improvement over the
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Fig. 17. Percentage performance improvement over the split baseline executing two applications using the
Shadow Tag and Global Selector VSC.

Fig. 18. Percentage performance improvement over the split baseline executing four applications using the
Shadow Tag and Global Selector VSC.

baseline, respectively. The fixed three-cycle latency variations provide a 3.1% and 2.5%
speedup, respectively.

From these results we can infer that the benefits of VSC grow as the number of
cores applying it and sharing the lower level increases. The reason is the increased
availability of the shared cache thanks to the smaller number of accesses that it must
handle as a result of the usage of the VSC in the L1 of the cores. As a result, in multicore
systems even the VSC design with the fixed worst-case latency provides not only power
savings but also performance improvements.

6. CONCLUSIONS

We have proposed the Virtually Split Cache (VSC), a new design that provides higher
hit rates than split configurations and even unified approaches by balancing resources
between the two kinds of information found in the cache memory hierarchy: instruc-
tions and data. It can also provide lower latencies than a unified cache by (1) specifically
devoting each cache bank only either to data or to instructions, which eliminates the
need for truly multiporting them in order to support simultaneous data and instruction
accesses, and thus reduces their size; (2) limiting the maximum number of cache banks
that can be devoted to each kind of information; and (3) assigning to each kind of infor-
mation only the banks that are nearer to the corresponding port of access. As far as we
know this is the first approach to look at the varying capacity needs for instructions
and data within an application and to allocate resources for both depending on their
demand.

Two alternative designs to track the different requirements that instructions and
data demand have been proposed, the Shadow Tag VSC (ST-VSC), which uses shadow
tags to decide whether assigning one more bank for instructions or data increases
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performance, and the Global Selector VSC (GS-VSC), which uses a common saturation
counter to make instructions and data fight a duel for resources. Both designs have
a very small hardware overhead, and they have been evaluated both using variable
latencies depending on the number of allocated ways and using a fixed latency identical
to that of a dual-ported unified cache of the same global size.

Our experiments indicate that the VSC can reduce the power consumption in the
cache hierarchy on average about 29% for the ST-VSC and 24% for the GS-VSC. Con-
trary to other techniques that provide energy savings, this does not translate into
performance degradation. In fact, while the fixed latency VSCs match the performance
of the baseline, the variable latency ST-VSC and GS-VSC improve the IPC around
2.5% and 2% on average, respectively. Prioritizing instruction misses over data misses,
given their higher impact of performance, slightly improves the performance of the
basic VSC designs evaluated. Furthermore, the advantages of the VSC grow with
the number of cores that share the LLC thanks to the reduction in the contention of
the shared cache levels it achieves. This way, the ST-VSC outperformed a four-core
baseline configuration by 4.8% on average in terms of throughput when using variable
latency and by 3.1% with fixed latency, the corresponding values for GS-VSC being
3.9% and 2.5%, respectively. Not surprisingly, embedded systems with a single level
of cache particularly benefit from the VSC, achieving 50% more power savings and
average performance improvements between 3.2% and 9.2%. Finally, we found that
reserving a specific number of lines for instructions and for data in each set of a lower-
level cache using the policies we have proposed to manage the VSC also has a small
positive impact on performance.

Future directions for research include studying the behavior in terms of performance
at a set level, or even finer granularities like line level, as well as exploring other metrics
and mechanisms to track the instructions and data requirements.
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