Adaptive Line Placement with the Set Balancing Cache

Dyer Rolan

Basilio B. Fraguela

Ramén Doallo

Depto. de Electrénica e Sistemas
Universidade da Coruia
A Coruna, Spain
{drolan, basilio, doallo}@udc.es

ABSTRACT

Efficient memory hierarchy design is critical due to the in-
creasing gap between the speed of the processors and the
memory. One of the sources of inefficiency in current caches
is the non-uniform distribution of the memory accesses on
the cache sets. Its consequence is that while some cache
sets may have working sets that are far from fitting in them,
other sets may be underutilized because their working set
has fewer lines than the set. In this paper we present a tech-
nique that aims to balance the pressure on the cache sets by
detecting when it may be beneficial to associate sets, displac-
ing lines from stressed sets to underutilized ones. This new
technique, called Set Balancing Cache or SBC, achieved an
average reduction of 13% in the miss rate of ten benchmarks
from the SPEC CPU2006 suite, resulting in an average IPC
improvement of 5%.

Categories and Subject Descriptors: B.3.2 [Memory
Structures]: Design Styles—cache memories

General Terms: Design, Performance

Keywords: cache, performance, adaptivity, balancing

1. INTRODUCTION

Memory references are often not uniformly distributed
across the sets of a set-associative cache, the most common
design nowadays [14]. As aresult, at a given point during the
execution of a program there are usually sets whose working
set is larger than their number of lines (the associativity of
the cache), while the situation in other sets is exactly the op-
posite. The outcome of this is that some sets exhibit large
local miss ratios because they do not have the number of
lines they need [9], while other sets achieve good local miss
ratios at the expense of a poor usage of their lines, because
some or many of them are actually not needed to keep the
working set. An intuitive answer to this problem is to in-
crease the associativity of the cache. Multiplying by n the
associativity is equivalent to merging n sets in a single one,
joining not only all their lines, but also their correspond-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MICRO’09, December 12—-16, 2009, New York, NY, USA.

Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

ing working sets. This allows to balance smaller working
sets with larger ones, making available previous underuti-
lized lines for the latter, which results in smaller miss rates.
Unfortunately, increments in associativity impact negatively
access latency and power consumption (e.g. more tags have
to be read and compared in each access) as well as cache
area, besides increasing the cost and complexity of the re-
placement algorithm. Worse, progressive increments in the
associativity provide diminishing returns in miss rate reduc-
tion, as in general, the larger (and fewer) the sets are, the
more similar or balanced their working sets tend to be. This
way, only restricted levels of associativity are found in cur-
rent caches.

In this paper we propose an approach to associate cache
sets whose working set does not seem to fit in them with
sets whose working set fits, enabling the former to make use
of the underutilized lines of the latter. Namely, this cache
design, which we call Set Balancing Cache or SBC, shifts
lines from sets with high local miss rates to sets with un-
derutilized lines where they can be found later. Notice that
while an increase in associativity equates to merging sets
in an indiscriminate way, our approach only exploits jointly
the resources of several sets when it seems to be beneficial.
Also, increases in associativity cannot choose which sets to
merge, while the SBC can be implemented using either a
static policy, which also preestablishes which sets can be as-
sociated, or a dynamic one that allows to associate a set with
any other one. Thus, as we will see in the evaluation, the
SBC achieves better performance than equivalent increases
in associativity while not bringing their inconveniences.

The rest of this paper is organized as follows. Next section
will describe the algorithm and structure of a static SBC, in
which sets can only be associated with other sets depending
on a preset condition on their index. Section 3 will intro-
duce a dynamic SBC that allows to shift lines from a set
that presents a bad behavior to the best set available (i.e.
not yet associated) in the cache. Both SBC proposals will
be evaluated using the environment described in Section 4,
the results being discussed in Section 5. The cost of both
approaches will be examined in Section 6. A deeper analy-
sis of the cost and performance of the SBC is presented in
Section 7. Related work will be discussed and compared in
Section 8. The last section is devoted to the conclusions and
future work.

2. STATIC SET BALANCING CACHE

We seek to reduce the pressure on the cache sets that are
unable to hold all the lines in their working set, by displacing

100

90

80

70

60

(%)

50

40

30

20

0 100 200 300 400 500 600

Accesses

Figure 1: Distribution of the sets with a high sat-
uration level(black), medium saturation level(gray)
and low saturation level(white) in 473.astar. Sam-
ples each 10”K accesses.

some of those lines to sets that seem to have underutilized
lines. These latter sets are those whose working set fits
well in them, giving place to small local miss rates. This
idea requires in the first place a mechanism to measure the
degree to which a cache set is able to hold its working set.
We call this value the saturation level of the set and we
measure it by means of a counter with saturating arithmetic
that is modified each time the set is accessed. If the access
results in a miss, the counter is incremented, otherwise it is
decremented. We call this counter saturation counter.

The fact that different sets can experience very different
levels of demand has already been discussed in the bibliog-
raphy [12][14]. This fact, which is the base for our proposal,
can be illustrated with the saturation counters. Figure 1
classifies the sets in a 8-way 2MB cache with lines of 64
bytes during the execution of the astar benchmark, from
the SPEC CPU2006 suite. The classification is a function
of their saturation level as measured by saturation counters
whose maximum value is 15 in this case. The levels of sat-
uration considered are low (the counter is between 0 and
5), medium (between 6 and 10) and high (between 11 and
15). We can see how after the initialization stage there are
some sets that are little saturated, while others are very sat-
urated. These sets of opposite kinds could be associated,
moving lines from highly saturated sets to little saturated
ones in order to balance their saturation level and avoid
misses. This also gives place to make second searches, or in
general up to n-th searches if n sets are associated, if a line is
not found in the set indicated by the cache indexing function
and this set is known to have shifted lines to other set(s). As
a result, the operation of the Set Balancing Cache we pro-
pose involves, besides the saturation counters explained, an
association algorithm, which decides which set(s) are to be
associated in the displacements, a displacement algorithm
which decides when to displace lines to an associated set,
and finally, modifications to the standard cache search algo-
rithm. We will now explain them in turn.

2.1 Association algorithm

This algorithm determines to which sets can displace lines
a given one. Although the number of sets involved could be
any, and it could change over time, we have started studying

the simplest approach, in which each cache set is statically
associated to another specific set in the cache. That is the
reason why we call this first design of our proposal static
SBC (SSBC). This design minimizes the additional hard-
ware involved as well as the changes required in the search
algorithm of the cache. We have decided the associated set
to be the farthest set of the considered one in the cache,
that is, the one whose index is obtained complementing the
most significant bit of the index of the considered set. This
decision is justified by the principle of spatial locality, as if
a given set is highly saturated, it is probable its neighbors
are in a similar situation. A consequence of this decision
is that given to sets X and Y associated by this algorithm,
sometimes lines will be displaced from X to Y, and vice
versa, depending on the state of their saturation counters.
Notice also that when the associativity of a cache design is
multiplied by 2, this is equivalent to merging in a single set
the same two sets that our policy associates, i.e., those that
differ in the most significant bit of the index.

2.2 Displacement algorithm

A first issue to decide is when to perform displacements.
In order to minimize the changes in the operation of the
cache and take advantage of line evictions that take place
in a natural way in the sets, we have chosen to perform the
displacements when a line is evicted from a highly saturated
set. Since the replacement algorithm we consider for the
cache sets is LRU, as it is the most extended one, this means
that the LRU line will not be sent to the lower level of the
memory hierarchy; rather it will be actually displaced to
another set.

It is intuitive that displacements should take place from
sets with a high saturation level to sets little saturated. A
concrete range for the saturation counter, from which value
of the counter we consider that displacements should take
place, and under which value we consider a set to be little
saturated are the parameters to choose for this policy. We
have observed experimentally that a good upper limit for a
saturation counter in a cache with associativity K is 2K —1,
thus the counters used in this paper work in the range 0 to
2K — 1.

Regarding the triggering of the displacement of lines from
a set, when its saturation counter has a value under its max-
imum it means that there have been hits in the set recently,
thus it is possible its working set fits in it. Only when the
counter adopts its maximum value will have most recent
accesses (and particularly the most recent one) resulted in
misses and it is safer to presume that the set is under pres-
sure. Thus our SBC only tries to displace lines from sets
whose saturation counter adopts its maximum value, a de-
cision taken based on our experiments.

Finally, although it is the association algorithm respon-
sibility to choose which is the set that receives the lines in
a displacement, it is clear that displacing lines to such set
if/when its saturation counter is high can be counterproduc-
tive, since that indicates the lack of underutilized lines. In
fact we could end up saturating a set that was working fine
when trying to solve the problem of excess of load on another
set. Thus a second condition required to perform a displace-
ment is that the saturation counter of the receiver is below
a given limit we call displacement ltmit. We have deter-
mined experimentally that the associativity K of the cache
is a good displacement limit for the counters in the range

0 to 2K — 1 we have used. Notice that since displacements
only take place as the result of line evictions, the access to
the associated set saturation counter needed to verify this
second condition can be made during the resolution of the
miss that generates the eviction.

Concerning the local replacement algorithm of the set that
receives the displaced line, the line is inserted as the most
recently used one (MRU). The rationale is that since the
displaced line comes from a stressed working set, while the
working set of the destination set fits well in it, this line
needs more priority than the lines already residing in the set.
Besides this way n successive displacements from a set to
another one insert n different lines in the destination set. If
the displaced line were inserted as the least recently used one
(LRU), each new displacement would evict the line inserted
in the previous one. We have checked experimentally that
the insertion in the MRU position yields better results than
in the LRU one.

2.3 Search algorithm

In the SBC a set may hold both memory lines that corre-
spond to it according to the standard mapping mechanism
of the cache and lines that have been displaced from its as-
sociated set. Thus the unambiguous identification of a line
in a set requires not only its tag, but also an additional dis-
placed bit or d for short. This bit marks whether the line
is native to the set, when it is 0, or it has been displaced
from another set, when it is 1. Searches always begin exam-
ining the set associated by default to the line, testing for tag
equality and d = 0. If the line is not found there, a second
search is performed in the associated set, this time seeking
tag equality and d = 1. If the second search is successful, a
secondary hit is obtained.

Our proposal avoids unnecessary second searches by means
of an additional second search (sc) bit per set that indicates
whether its associated set may hold displaced lines. This
bit is set when a displacement takes place. Its deactivation
takes place when the associated set evicts a line, if the OR
of its d bits changes from 1 to 0 as result of the eviction.
Checking this condition and resetting the second search bit
of the associated set is done in parallel with the resolution of
the miss that generates the eviction. Without this strategy
to avoid unnecessary second searches, the IPC for the static
SBC (SSBC) would have been 0.6% and 1.0% smaller in the
two level and the three level cache configurations used in our
evaluation in Section 5, respectively.

2.4 Discussion

Figure 2 shows a simple example of the operation of a Set
Balancing Cache with 4 sets. Line addresses of 7 bits are
used for simplicity, the lower two bits being the set index
and the upper 5 ones the tag. The first reference is mapped
to set 0, where sc = 0, thus no second search is needed
and a miss occurs. Checking saturation counters results in
a displacement of the line that must be evicted from set 0,
here the one with tag 10010, to set 2 (00 = 10), so it is
actually the LRU line of set 2 the one that is evicted from
the cache. The second reference is mapped again to set 0,
where it misses. Since now its sc bit is 1, a second search
is performed in set 2, where there is a hit, since the tag is
found with the displaced bit d = 1.

As Section 2.1 explains, a K-way SSBC associates exactly
each pair of sets of the cache that would have been merged in

REF1: 1111000 (MISS) REF2: 1001000 (SECOND HIT)
\’/LTJ
tag set
sat sat sat
Tags d sc count Tags d sc count Tags d sc count
00000 0 11110 0 11110 0
Set0 | oo |0 | |3 00000 | 0 | 1|3 o000 | 1|8
00101 | 0 00101 | 0 00101 | 0
oo oo 0o
Set1 ot | o Displacement ot | o Second search | 01111 | 0
oro1 | 0 10010 ->Set2 | 10010 | 1 in Set 2 10010 | 1
Set2 | Yo |o |01 oot |0 | 0| " otior | o | O] °
10010 | 0 10010 | 0 10010 | 0
Set3 | o0 | 0| 0|2 0100 | 0 | 0| 2 oot00 [0 |]2

Figure 2: Static SBC operation in a 2-way cache
with 4 sets. The upper tag in each set is the most
recently used and the saturation counters operate in
the range 0 to 3.

a single set in the 2K-way cache with the same size and line
size. Still, there are very important differences between both
caches. While the 2K-way cache unconditionally merges the
sets and their working sizes, in the SSBC the merging is con-
ditioned by the behavior of the sets. Namely, their resources
are shared only when at least one of the sets suffers a stream
of accesses with so many misses that its saturation counter
reaches the maximum limit, while the other set shows to be
large enough to hold its current working set, which is sig-
naled by a value of its saturation counter smaller than the
displacement limit. This smarter management of the shar-
ing of resources in the cache leads to better performance for
the SSBC even when it leads to second accesses when lines
have been displaced from their original sets.

Contrary to other cache designs that lead to sequential
searches in the cache [1][3] the SBC does not swap lines
to return them to their original set when they are found
displaced in another set. This simplifies management and
does not hurt performance because our proposal, contrary
to those ones, is oriented to non first level caches. Thus once
a hit is obtained in a line, the line is moved to the upper level
of the memory hierarchy, where successive accesses can find
it. Experiments performing swapping of lines in the SBC to
return displaced lines to their original set under a hit proved
that this policy had a negligible impact on performance.

Finally, in principle, the tag and data arrays of an SBC can
be accessed in parallel. Still, we recommend and simulate
a sequential access to these arrays for two reasons. One
is that the SBC is oriented to non-first level caches, where
both arrays are often accessed sequentially because in those
caches the tag-array latency is much shorter than the data-
array one, and the sequential access is much more energy-
efficient than the parallel one [5][17]. The other is that since
the SBC may lead to second searches, the corresponding
parallel data-array accesses would further increase the waste
of energy.

3. DYNAMIC SET BALANCING CACHE

The SSBC is very restrictive on associations. Each set
only relies on another prefixed set as potential partner to
help keep its working set in the cache. It could well hap-
pen that both sets were highly saturated while others are
underutilized. When a cache set is very saturated, it would
be better to have the freedom to associate it to the more
underutilized (i.e. with the smallest saturation value) non-
associated set in the cache. This is what the dynamic SBC
(DSBC) proposes. We now explain in turn the algorithms
of this cache.

3.1 Association algorithm

The DSBC triggers the association of sets when the sat-
uration counter of a set that is not associated with another
set reaches its maximum value, which is 2K — 1 in our ex-
periments, where K is the associativity of the cache. When
this happens, the DSBC tries to associate it with the avail-
able set (i.e. not yet associated with another one) with the
smallest saturation level. An additional restriction is that
the association will only take place if this smallest saturation
level found is smaller than the displacement limit, described
in Section 2.2. The reason is that it makes no sense to
consider as candidate for association a set whose saturation
counter indicates that lines from other sets should not be
displaced to it.

In principle this policy would require hardware to com-
pare the saturation counters of all the available sets in order
to identify the smallest one. Instead we propose a much
simpler and cheaper design that yields almost the same re-
sults, which we call Destination Set Selector (DSS). The
DSS has a small table that tries to keep the data related
to the less saturated cache sets. Each entry consists of a
valid bit, which indicates whether the entry is valid, the in-
dex of the set the entry is associated to, and the saturation
level of the set. Comparers combined with multiplexes in a
tree structure allow to keep updated a register min with the
minimum saturation level stored in the DSS (min.level), as
well as the number of its DSS entry (min.entry) and the in-
dex of the associated set (min.index). This register provides
the index of the best set available for an association when
requested. Similarly, a register maz with the maximum sat-
uration counter in the DSS (maxz.level) and the number of
the DSS entry (maz.entry) is kept updated. The role of this
register is to help detect when sets not currently considered
in the DSS should be tracked by it, which happens when
their saturation level is below maz.level.

When the saturation counter of a free set (one that is not
associated to another set) is updated, the DSS is checked
in case it needs to be updated. The index of this set is
compared in parallel with the indices in the valid entries of
the DSS. Under a hit, the corresponding entry is updated
with the new saturation level. If this value becomes equal
to the displacement limit, the entry is invalidated, since sets
with a saturation level larger or equal to this limit are not
considered for association. If the set index does not match
any entry in the DSS and its saturation level is smaller than
maz.level, this set index and its saturation value are stored
in the DSS entry pointed by maz.entry; otherwise they are
dismissed.

Any change or invalidation in the entries of the table of
the DSS lead to the update of the min and max registers. In-
validations take place when the saturation value reaches the
displacement limit or when the entry pointed by min is used
for an association. In this latter case the saturation value of
the entry is also set to the displacement limit. This ensures
that all the invalid entries have the largest saturation values
in the DSS. Thus whenever there is at least an invalid en-
try, max points to it and mazx.entry equals the displacement
limit, which is the limit to consider a set for association with
a highly saturated set.

The operation of the DSS allows to provide the best can-
didate for association to a highly saturated set most of the
times. The main reason why it may fail to do this is because
all its entries may be invalidated in the moment the associa-

tion is requested. When this happens no association takes
place. Obviously, the larger the number of entries in the
DSS, the smaller the probability this situation arises. The
efficiency of the DSS as a function of its number of entries
will be analyzed in Section 5.

The DSBC has a table with one entry per set called Asso-
ciation Table (AT) that stores in the i-th entry AT'(3).index,
the index of the set associated with set ¢, and a source/des-
tination bit AT'(i).s/d that indicates in case of being asso-
ciated, whether the set triggered the association because it
became saturated (s/d = 1) or it was chosen by the Desti-
nation Set Selector to be associated because of its low sat-
uration (s/d = 0). When a set is not associated, its entry
stores its own index and s/d = 0.

3.2 Displacement algorithm

Just as in the SSBC, displacements take place when lines
are evicted from sets whose saturation counter has its max-
imum value. In the DSBC, sets are not associated by de-
fault to any other specific set, thus another condition for
the displacements to take place is that the saturated set
is associated to another set. Another important difference
with respect to the SSBC is that displacements are unidirec-
tional, that is, lines can only be displaced from the set that
requested the association (the one whose counter reached its
maximum value), which we call source set, to the one that
was chosen by the Destination Set Selector to be associated
to it, which we call destination set. The rationale is that
the destination set was chosen among all the ones in the
cache to receive lines from the source one because of its low
level of saturation. For the same reason, displacements will
not depend on the level of saturation of the destination set:
once it is designated as destination set, it will continue to
receive lines displaced from the source until the association
is broken. If the same policy as in the SSBC were applied,
that is, displacements only take place when the destination
set saturation counter is smaller than K, the average miss
rate in our experiments would have been on average 0.6%
larger, and the resulting IPC would have been 0.38% worse.

3.3 Search algorithm

Just as in the SSBC, there is a displaced bit d per line
that indicates whether is has been displaced from another
set. The cache always begins a search looking for a line
with the desired tag and d = 0 in the set with the index
i specified by the memory address sought. Simultaneously
the corresponding i-th entry in the Association Table, AT ()
is read. Upon a hit, the LRU of the set (and the dirty bit if
needed) is modified. Otherwise, the access is known to have
resulted in a miss if AT (i).s/d = 0, as this means that either
the set is not associated or this set is the destination set of
an association, which cannot displace lines to its associated
set. In any case the saturation counter is updated and if it
has reached its maximum and the set is not yet associated,
a destination set can be requested from the Destination Set
Selector while the miss is resolved.

If AT(i).s/d = 1 the destination set indicated by AT'().in-
dex is searched for an entry with the tag requested and
d = 1. Here we can get a secondary hit or a definitive miss.
In both cases the set saturation counter will be updated,
although this will not influence the association. If there is
a miss, the LRU line of the destination set will be evicted,
and the LRU line from the source set will be moved to the

destination set to replace it. This happens in parallel with
the resolution of the miss, whose line will be inserted in the
source set.

3.4 Disassociation algorithm

The approach followed to break associations is very sim-
ilar to the one used to avoid unnecessary second searches
in the SSBC. A disassociation can take place upon a first
search miss (i.e., a native miss) in a destination set . If the
OR of the d bits of this set changes from 1 to 0 as result of
the eviction triggered by the miss, the association is broken.
This can be calculated once the line to be evicted is decided,
as this condition is equivalent to requiring that the OR of
the d bits of all the lines but the one to evict is 0. This way,
the detection of the disassociation and the changes it in-
volves take place in parallel with the eviction itself and the
resolution of the miss. The disassociation requires access-
ing the AT of the source set of the association, as provided
by AT(i).index, and clearing the association there. The
entry for the destination set is then also modified setting
AT (i).index = i.

3.5 Discussion

Figure 3 shows an example of the DSBC operation with
the same references as in Figure 2. The first reference is
mapped to set 0, where a miss occurs. Since this set is not
associated (AT(0).index = 0) but its saturation counter has
its maximum value, a destination set for an association is
requested. The figure assumes the Destination Set Selector
provides set 3 as candidate, proceeding then to evict the
LRU line in set 3 to replace it with the LRU line in set 0.
When the line missed arrives from memory it is stored in
the block that has been made available in set 0. The second
reference is mapped again to the set 0 resulting in a miss.
A second search is initiated in set AT(0).index = 3, where
it is found.

REF1: 1111000 (MISS) REF2: 1001000 (SECOND HIT)
=Y
tag set AT AT AT
sat sat sat

Tags d ind s/d count Tags d ind s/@ count Tags d ind s/d count
00000 | 0 1110 | 0 11110 | 0

Set0 | oo | o [°]°] 2 o000 | 0 [*[1]3 o000 | 0 [°]1] 3
00101 | 0 Association (0-3) | oot01 | 0 00101 | 0

Set1 |omi|o|"|°]2 and ottt | 0 | "] %] ? | secondsearch| ot | 0 | "] °] 2
01101 | 0 displacement 01101 | 0 inset3 01101 | 0

Set2 o | o |2]°]° 10010 ->Set3 | 10111 | 0 2|0)3 it [0 | 2]0]
10010 | 0 10010 | 1 10010 | 1

Set3 | oo |0 |°]°]° w00 | 0| °]°]° 100 [0 [©)0]°

Figure 3: Dynamic SBC operation in a 2-way cache
with 4 sets. The upper tag in each set is the most
recently used and the saturation counters operate in
the range 0 to 3.

The greater flexibility of the DSBC allows it to apply a
more aggressive displacement policy, as Section 3.2 explains.
Section 5 will show it also achieves better results. Beyond
performance measurements, graphical representations also
help explain the net effect of SBC on a cache. Figure 4
illustrates it showing the distribution of the saturation level
across the sets of the L2 cache of the two-level cache configu-
ration of Table 1 during part of the execution of the omnetpp
benchmark of the SPEC CPU 2006 suite. The level is mea-
sured with a saturation counter in the range 0 to 15. The
baseline in Figure 4(a) has a high ratio of highly (level 11 to

15) and lowly (level 0 to 5) saturated sets. The SSBC in Fig-
ure 4(b) basically turns highly-saturated sets into medium-
saturated sets. The DSBC in Figure 4(c) alleviates more
highly-saturated sets without generating medium-saturated
sets.

150 it 150 150

(@) (b) ()

Figure 4: Distribution of the sets with a high sat-
uration level(black), medium saturation level(gray)
and low saturation level(white) during a portion of
the execution of omnetpp in the L2 cache of the two-
level configuration. (a) Baseline (b) Static SBC (c)
Dynamic SBC. Samples each 5 * 10°K accesses.

4. SIMULATION ENVIRONMENT

To evaluate our approach we have used the SESC simu-
lator [15] with two baseline configurations based on a four-
issue CPU clocked at 4GHz, with two and three on-chip
cache levels respectively. Both configurations assume a 45 nm
technology process and are detailed in Table 1. The tag
check delay and the total round trip access are provided for
the L2 and L3 to help evaluate the cost of second searches
when the SBC is applied. Our three-level hierarchy is some-
what inspired in the Core i7 [8], the L3 being proportionally
smaller to account for the fact that only one core is used
in our experiments. Both configurations allow an aggressive
parallelization of misses, providing between 16 and 32 Miss
Status Holding Registers per cache.

4.1 Benchmarks

We use 10 representative benchmarks of the SPEC CPU
2006 suite, both from the INT and FP sets. They have been
executed using the reference input set (ref), during 10 billion
instructions after the initialization. Table 2 characterizes
them providing the number of accesses to the L2 during the
10'° instructions simulated, the miss rate in the L2 cache
both in the two-level (2MB L2) and the three-level (256kB)
configurations, and whether they belong to the INT or FP
set of the suite. It is a mix of benchmarks that vary largely
both in number of accesses that reach the caches under the
first level and in miss ratios in the L2 cache.

S. PERFORMANCE EVALUATION

The SBC has been applied, for both static and dynamic
versions, in the second level for the two-level configuration
and in the two lower levels for the three-level configuration.
The dynamic SBC uses a Destination Set Selector (described
in Section 3.1) with four entries based on our experiments,
which we detail next.

Table 1: Architecture. In the table RT, TC and
MSHR stand for round trip, tag directory check and
miss status holding registers, respectively.

I Processor 1l
Frequency 4GHz
Fetch/Issue 6/4
Inst. window size 80 int+mem, 40 FP
ROB entries 152
Integer/FP registers 104/80
Integer FU 3 ALU,Mult. and Div.
FP FU 2 ALU, Mult. and Div.

I Common memory subsystem 1l
L1 i-cache & d-cache 32kB/8-way/64B/LRU

L1 Cache ports 2i/2d
L1 Cache latency (cycles) 4 RT

L1 MSHRs Ii/324d
System bus bandwidth 10GB/s
Memory latency 125ns

I Two levels specific memory subsystem 1l
L2(unified) cache 2MB/8-way/64B/LRU

L2 Cache ports 1

L2 Cache latency (cycles) 14 RT, 6 TC

L2 MSHR 32

I Three levels specific memory subsystem 1l

L2(unified) cache 256kB/8-way/64B/LRU
L3(unified) cache 2MB/16-way/64B/LRU

Cache ports 1L2,1L3
L2 Cache latency (cycles) 11 RT, 4 TC
L3 Cache latency (cycles) 39 RT, 11 TC
MSHR 32 L2, 32 L3

Table 2: Benchmarks characterization. MR stands
for miss rate.

Bench L2 2MB L2 256kB L2 Comp.
Accesses MR MR

bzip2 125M 9% 41% INT
milc 255M 1% 75% FP
namd 63M 2% 5% FP
gobmk TTM 5% 10% INT
soplex 105M 8% 15% FP
hmmer 55M 10% 41% INT
sjeng 32M 26% 27% INT
libquantum 156M 74% 74% INT
omnetpp 100M 28% 91% INT
astar 192M 23% 48% INT

5.1 Destination Set Selector efficiency

A request for a destination set made to the Destination
Set Selector (DSS) may result in four outcomes. If the DSS
provides a candidate, this cache set can (A) actually have
the smallest level of saturation among the available sets in
the cache or (B) not. The DSS will not provide a candidate
if all its entries are invalid. This may happen either because
(C) there are actually no candidates in the cache (all the
sets are either associated or too saturated), or (D) there are
candidates in the cache, but not in the DSS. Figure 5 shows
the evolution of the average percentage of times each one
of these four situations happens during the execution of our
benchmarks in the L2 cache of the two-level configuration as
the number of entries in the DSS varies from 2 to 128. The
outcomes are labeled A, B, C and D, following our explana-
tion. We see that even with just two entries the DSS has
a quite good behavior, since outcomes A and C, in which
the DSS works as well as if it were tracking the behavior of
all the sets, add up to 80%. With 4 entries A4+C behavior

100 T
90 A
I B
8ok e
D
70F 1

2 4 8 16 32 64 128
Number of entries in the selector

Figure 5: Percentage of association requests made to
the Destination Set Selector (DSS) in the L2 cache
of the two-level configuration that (A) are satisfied
with a set with the minimum level of saturation,
(B) are satisfied with a set whose level of saturation
is not the minimum available, (C) are not satisfied
because there are no candidate sets in the cache,
and (D) are not satisfied because none of the exist-
ing candidate sets is in the DSS, depending on the
number of entries in the DSS.

improves to 90%, and after that there is a slow slope until
almost 100% of the outcomes are either A or C with 128.
Based on this we have chosen a 4-entry DSS to optimize the
balance between hardware and power required and benefit
achieved. In this graph we can also see that under the condi-
tions requested in the DSBC, around 35% of the association
requests are satisfied.

5.2 Performance comparison

Figure 6 shows the ratio of accesses that result in a miss, a
hit, and a secondary hit in the L2 and L3 caches in the two
memory hierarchies tested, using standard caches, SSBC,
and DSBC for each one of the benchmarks analyzed. The
last group of columns (mean), represents the arithmetic mean
of the rates observed in each cache. We can see that the
SBCs basically keep the same ratio of first access hits as a
standard cache, and they turn a varying ratio of the misses
into secondary hits. When the baseline miss rate is small or
there are few accesses, the SBCs seldom perform displace-
ments of lines and second searches happen also infrequently.
Also, the DSBC achieves better results than the SSBC, as
expected. Hit and miss rates are not the best characteri-
zation for SBCs because they involve second searches that
make secondary hits more expensive than first hits, and
which delay the resolution of misses that need the second
search to be confirmed. This is better measured in Figure 7,
which shows the average data access time improvement of
the static and dynamic SBC with respect to the baseline
caches for each benchmark.

Despite the overhead of the second searches, the SBC al-
most never increases the average access time of any bench-
mark. There is only a small 1% slowdown in the L2 cache
in the two-level configuration for 444.namd and 445.gobmk,

100

50 —

I \Visses
[Hits
[]Second Hits

50 —

100

50—

3 3 3] L3

155 255 238 255 #£85 8
s °Tq s g 3 g <
401.Bzip2 433Mic 444Namd 445.Gobmk

450.Soplex 456.Hmmer

(b)

O

cg7 O
2]

O 2
5 ol
§ 43

O 2 O
L5 L
§ &S

O @
G
() < &

O @
S
& <

bag,

458.Sjeng 462.Libquantum 471.0mnetpp 473.Astar

(©

Figure 6: Miss, hit and secondary hit rates for the (a) L2 cache in the two-level configuration, (b) L2 cache
in the three-level configuration, and (c¢) L3 cache in the three-level configuration.

because their second searches contribute very little to reduce
its already minimal miss rate. Not surprisingly the greater
flexibility of the DSBC allows it to choose better suited cache
sets for the displacements than the SSBC, leading to better
average access times. The average improvement (geometric
mean) of the access time in the L2 of our two-level configura-
tion is 4% and 8% for the SSBC and the DSBC, respectively.
In the three-level configuration the average reduction is 3%
and 6% for the L2, and 10% and 12% for the L3, for the
SSBC and the DSBC, respectively.

Figures 8 and 9 show the performance improvement in
terms of instructions per cycle (IPC) for each benchmark in

the two level and the three level configurations tested, re-
spectively. The figures compare the baseline not only with
the SSBC and the DSBC, but also with the baseline system
where the L2 and the L3 have duplicated their associativ-
ity. This latter configuration is tested to show the difference
between associating two sets of K lines following the SBC
strategy and using sets of 2K lines. The bar labeled geomean
is the geometric mean of the individual IPC improvements
seen by each benchmark.

In the two-level configuration the SBC always has a posi-
tive or, at worst, negligible effect on performance. Two kinds
of benchmarks get no benefit from the SBC: those with a

% Average Access Time improvement

O—T—T T 1T T T T T T 1

stat dyn stat dyn stat dyn stat dyn stat dyn
& & & & &
& ~ & s K
5 & S & g
¥
v ¥ ¥ &

stat dyn stat dyn stat dyn stat dyn stat dyn stat dyn
s > g) 'S IS
g £ g & 4 &
& @ g N < &
$ & § § g $
§ ¢ 3 S e §
W & &
¥

Figure 7: Average access time reduction achieved by the static and the dynamic SBC in the (a) L2 cache in
the two level configuration, (b) L2 cache in the three level configuration, and (c) L3 cache in the three level

configuration.

15 15
1 O Baseline double—way 1 O Baseline double—way

= 1 = Static SBC = 1 @ Static SBC
E | @ Dynamic SBC E | @ Dynamic SBC
210 210
o] o]
= =
=% =%
= £
&) 1) 1
g s & s
R R

0- 0-

> ~ i o > ~ i &

; S ¥ S S ¥
SEFESs s §58 8 SEF s s §5¢88
¥ Y ¥ ¥ ¥ e v S &5 Y % O R SN S I SN/

g v g v
¥ ¥

Figure 8: Percentage IPC improvement over the base- Figure 9: Percentage IPC improvement over the base-
line in the two-level configuration duplicating the L2 line in the three-level configuration duplicating the L2
associativity or using SBC. and L3 associativity or using SBC in both levels.

small miss rate, like 444.namd or 445.gobmk, in which our
proposal can do little to improve an already good cache be-
havior; and 458.sjeng, which has very few accesses to the L2,
just 3.2 each 1000 instructions, as Table 2 shows. The small
number of accesses reduces the influence of the L2 behavior
in the IPC, and more importantly it reduces the frequency
of triggering of the SBC mechanisms.

In the three-level configuration the improvement is larger
and applies to all the benchmarks. The benchmarks that did
not benefit from the SBC in the two-level configuration ben-
efit now for two reasons. One is the larger local miss ratios
either in the L2 or in the L3. The other is that in this 256
kB L2 cache (modeled after the one in the Core i7) the ac-
cesses are spread on 8 times less sets than in the 2MB cache
of the two-level configuration. This increases the working
set of each set, generating more SBC-specific activity. The
DSBC systematically outperforms the SSBC, which in its
turn achieves much better results than duplicating the as-
sociativity of the caches. Since the SSBC associates exactly
the two same sets that a duplication of the associativity
merges, these results outline the benefit of sharing resources
among sets under the control of a policy that triggers this
sharing only when it is likely it is going to be beneficial and
disables it when the feedback is not good.

6. COST

In this section we evaluate the cost of the SBC in terms
of storage requirements, area and energy, which has been
estimated using CACTI 5.3 [7].

The SBC requires additional hardware because of the need
of a saturation counter per set to monitor its behavior and
additional bits in the directory to identify displaced lines
(d bit). The SSBC has an additional bit per set to know
whether second searches are required. The DSBC instead
requires an Association Table with one entry per set that
stores a s/d bit to specify whether the set is the source or
the destination of the association, and the index of the set it
is associated to. It also requires a Destination Set Selector
(DSS) to choose the best set for an association, a 4-entry
DSS being used in our evaluation. Based on this, Table 3
calculates the storage required for a baseline 8-way 2 MB

Table 3: Baseline and SBC storage cost in a 2MB/8-
way/64B/LRU cache. B stands for bytes.

Base Static Dynamic
SBC SBC
Tag-store entry:
State(v+dirty+LRU+[d]) 5 bits 6 bits 6 bits
Tag (42 — logy sets — logg Is) | 24 bits 24 bits 24 bits
Size of tag-store entry 29 bits 30 bits 30 bits
[Data-store entry: |
[Set size | 512B 512B 512B
Additional structs per set:
Saturation Counters - 4 bits 4 bits
Second search bits - 1 bit -
Association Table - - 12+1 bits
Total of structs per set - 5 bit 17 bits
[DSS (entries+registers) [- [- [10B I
Tag-store entries 32768 32768 32768
Data-store entries 32768 32768 32768
Number of Sets 4096 4096 4096
Size of the tag-store 118.7kB| 122.8kB 122.8kB
Size of the data-store 2MB 2MB 2MB
Size of additional structs - 2560B 8714B
[Total [2215kB[2222kB | 2228kB ||

cache with lines of 64B assuming addresses of 42 bits. As
we can see, the SSBC and the DSBC only have an overhead
of 0.31% and 0.58% respectively, compared to the baseline
configuration. The energy consumption overhead on average
per access calculated by CACTT is less than 1% for SBC and
79% for the baseline with double associativity, and the cor-
responding area overhead is shown in Table 4. We see that
the SBC not only offers more performance, but also requires
less energy and area than duplicating the associativity.

7. ANALYSIS

In this section we evaluate how the performance and cost
of the SBC vary with respect to the parameters of the cache.
We also analyze how it compares to the usage of a victim
cache whose cost is comparable to the overhead of the SBC.
Along all this section we will always use as baseline the
2MB/8-way/64B/LRU L2 cache of our two-level configura-
tion.

Table 4: Baseline and SBC area. Percentages in the Total column are related to the Baseline configuration.

Il Configuration [Components [Details [Subtotal] Total I
Baseline Data + Tag 2MB 8-way 64B line size + tag-store 12,57 mm? 12,57 mm?
Baseline with double Data + Tag 2MB 16-way 64B line size + tag-store 14,52 mm? 14,52 mm?2
associativity (> 3%)
Data + Tag 2MB 8-way 64B line size + tag-store (with 12,58 mm?2
additional d bit)
X EJ H 2 2
Static SBC Counters 4096*4 bits 0,01 mm 12(,201(;2;1
Second search 4096 bits < 0,01
bits mm?2
Data + Tag 2MB 8-way 64B line size + tag-store (with 12,58 mm?
additional d bit)
Counters 4096*4 bits 0,01 mm?
Dynamic SBC Association Table 4096%12 bits 0,04 mm? 12,64 mm?2
(< 1%)
DSS (entrics TF(IF12+4) T2 (2+4) bits 20,01
regs) mm?

Table 5: Cost-benefit analysis of the static and the dynamic SBC as a function of the cache size.

|| Cache | Baseline SSBC miss | DSBC miss SSBC miss rate DSBC miss rate SSBC storage DSBC storage ||
size miss rate rate rate reduction reduction overhead overhead
256KB 45.13% 40.81% 39.24% 9.6% 13.1% 0.28% 0.51%
512KB 39.07% 35.54% 34.47% 9.2% 11.8% 0.29% 0.53%
1MB 33% 30.84% 29.14% 6.55% 9.3% 0.30% 0.55%
2MB 25.6% 23.25% 22.3% 9.2% 12.8% 0.30% 0.58%
4MB 20.7% 19.6% 19.3% 5.4% 6.8% 0.31% 0.60%

Table 6: Cost-benefit analysis of the static and the dynamic SBC as a function of the line size.

Line Baseline miss SSBC miss DSBC miss SSBC miss rate DSBC miss rate SSBC storage DSBC storage
size rate rate rate reduction reduction overhead overhead
64B 25.6% 23.25% 22.31% 9.2% 12.8% 0.30% 0.58%
128B 27.46% 25.6% 25% 6.5% 9% 0.16% 0.29%
256B 24.6% 23.2% 22.3% 5.7% 9.3% 0.08% 0.14%

Table 7: Cost-benefit analysis of the static and the dynamic SBC as a function of the associativity.

Line size Baseline SSBC miss DSBC miss SSBC miss rate DSBC miss rate SSBC storage DSBC storage
miss rate rate rate reduction reduction overhead overhead
8-ways 25.6% 23.25% 22.31% 9.2% 12.8% 0.30% 0.58%
16-ways 25.1% 22.8% 21.88% 9.2% 12.83% 0.26% 0.38%
32-ways 24.6% 22.28% 21.43% 9.4% 12.88% 0.23% 0.29%

7.1 Impact of varying cache parameters
increases.

the DSBC behaves better than the SSBC as the line size

Table 7 makes the same study from the point of view of

Table 5 shows the miss rate reduction achieved by the

static and the dynamic SBC as well as the storage overhead
it involves as the cache size varies between 256kB and 4MB.
Both kinds of SBC always reduce the average miss rate ob-
tained, but as the cache size increases the working set of
some benchmarks fits better, reducing the opportunities of
improving it.

Table 6 studies the cost-benefit of both SBC proposals
comparing the miss rate reduction achieved by them versus
the additional storage cost they incur as a function of the
line size in the baseline cache. The increase in the line size
reduces proportionally both the number of sets and lines,
being the SBC cost mostly proportional to it as we can see.
The reduction of the number of sets and the fact their lines
keep more data also makes more probable the SSBC finds
the static pairs of sets it is able to associate are too satu-
rated to trigger displacements. The greater flexibility of the
DSBC allows to overcome better this problem. This is why

the associativity considering values of 8, 16 and 32. The in-
crease of associativity reduces the number of sets, and thus
the relative cost of the SBC, but increases the tag size. Miss
rates and their reduction stay very flat. Also, just as the ex-
periments in Section 5.2 considering caches that duplicated
the associativity, this table shows that making shared usage
of the lines of two sets under heuristics like the ones pro-
posed by the SBC is much more effective than organizing
the cache lines in sets with twice or even four times larger.
This way, even the 8-way static and dynamic SBC have 5.5%
and 9.31% less misses than the 32-way baseline, respectively.

7.2 Victim cache comparison

Figure 10 shows a comparison of the L2 cache miss rates
among a static SBC, a dynamic SBC, and the cache ex-
tended with a fully-associative victim cache [10] of either
8kB or 16kB of data store, relative to the L2 two-level base-

1.50 15.00
0 Static SBC

B Dynamic SBC

B Victim cache 8K

0 Static SBC

B Dynamic SBC

B Victim cache 8K
B Victim cache 16K

B Victim cache 16K

5.00

% 1PC improvement

L2 cache misses relative to baseline cache
(2MB 8-w 64B line size)

Figure 10: Comparison of the static SBC, the dynamic Figure 11: Comparison of the static SBC, the dynamic
SBC, a victim cache of 8kB and a victim cache of 16kB SBC, a victim cache of 8kB and a victim cache of 16kB
in terms of miss rate relative to the one in the L2 in in terms of IPC relative to the one in the L2 in the two-
the two-level baseline configuration. level baseline configuration.

line configuration. We have chosen these sizes because as
Table 3 shows, the storage overhead for the L2 cache con-
figuration considered is about 7kB for the static SBC and
about 13 kB for the dynamic SBC. Thus, the 8kB and the
16kB victim caches are larger than the static and the dy-
namic SBC respectively. If their tag-store were considered
too, they would be even more expensive in comparison. We
see how with less resources, any SBC performs better than
the largest victim cache. Figure 11 makes the same compar-
ison based on the IPC.

7.3 SBC Behavior

While comparisons in miss rate, average access time or
IPC allow to assess the effectiveness of the SBC with re-
spect to other designs, measurements on its internal behav-
ior allow to understand better how it achieves these results.
Thus, we analyze here this behavior based on measurements
in the L2 cache of our two-level configuration. This way, the
hit rate observed in the second searches, that is, the ratio
of second searches that result in a secondary hit, is on aver-
age 36.3% and 47.7% for the SSBC and DSBC, respectively.
The SSBC is more conservative in displacing lines than the
DSBC because of its restriction on the associated set. As a
result, less lines are displaced, leading to a smaller second
access hit ratio. In fact the SSBC displaces an average of 1.7
lines per association (i.e. since the sc bit in an association
is activated until it is reset), while the DSBC displaces an
average of 2.15 lines before the association is broken. On
the other hand, the conservative policy of the SSBC leads
it to make safer decisions than the DSBC on which lines it
is interesting to displace to the associated sets, that is, the
lines it displaces are more likely to be referenced again. The
result of this is that the average number of secondary hits
per line displaced is 3.64 in the SSBC, while it decreases to
3.29 in the DSBC.

It is also interesting to examine the frequency of second
searches, as they may generate contention in the tag-array.
On average only 10.3% and 10.2% of the accesses to the
cache require second searches in the SSBC and the DSBC,
respectively.

8. RELATED WORK

There have been several proposals to improve the architec-
ture of caches to deal with the problem of the non-uniform
distribution of memory accesses across the cache sets. Alter-
native indexing functions have been suggested [16][11] that
succeed at achieving a more uniform distribution, but they
do not attempt to identify underutilized lines or working
sets that cannot be retained successfully in the cache. The
idea underlying most proposals to improve the capability of
the caches to keep the working set is the increase with re-
spect to the standard design of the number of possible places
where a memory block can be placed. In general, the smaller
the associativity of the cache, the greater the imbalance in
the demand on the individual set of the cache. Thus it was
in the context of direct-mapped caches where the first ap-
proaches of this kind appeared. Pseudo-associative caches
belong to this family of proposals. Initially they provided
the possibility of placing the blocks in a second associated
cache line, providing a performance similar to that of 2-
way caches [1][3], but they were also generalized to provide
larger associativities [19]. These proposals present search
structures based at the line level as they perform searches
line by line, unlike SBC that performs searches set by set.
Besides they do not provide mechanisms to inhibit line dis-
placements: whenever a cache line is occupied by a memory
block mapped to it and a second memory block of this kind
is requested, there is an automatic displacement to an asso-
ciated cache line. In our proposal this depends on the value
of the saturation counters, and in the case of the dynamic
SBC, whether there is associated set or not, and the set is
considered a source or a destination of lines. Another impor-
tant difference is that pseudo-associative caches swap cache
lines under non-first hits in order to place them back in their
major location according to the default mapping algorithm
of the cache, so that successive searches will find them in
the first search. The SBC performs no swaps because it is
oriented to non-first level caches, thus the effect of succes-
sive accesses is blurred, as many will be satisfied from the
upper levels in the memory hierarchy.

The adaptive group-associative cache (AGAC) [12] tries to
detect underutilized cache frames in direct-mapped caches
in order to retain in them some of the lines that are to be
replaced. Contrary to the SBC, AGAC records the location
of each line that has been displaced from its direct-mapped
position in a table, which is accessed in parallel with the
tag-storage. Besides, AGAC needs multiple banks to aid
the swappings triggered by hits on displaced lines. Also, the
decision on what to do with a line on a miss in its location
depends on whether it is among the most recently used ones
or not. If it has been recently used, it is displaced to a loca-
tion that is not among the most recently used or displaced
ones, the selection being then random in that subset.

The Indirect Index Cache (IIC) [6] seeks maximum flexi-
bility in the placement of memory blocks in the cache. Its
tag-store entries keep pointers so that any tag-entry can be
associated to any data-entry. The tag-store is made up of a
primary 4-way associative hash table that under a miss pro-
ceeds to the traversal of the collision set for its hash entry
in a direct-mapped collision table. Each entry of this table
points to the next entry in the collision set. The IIC swaps
entries from the collision table to the primary hash table to
speed up future accesses, resulting in increased port conten-
tion and power consumption. Finally, the IIC management
algorithms are much more complex than those of the SBC,
in particular the generational replacement run by software.

The NuRAPID cache [4] provides a flexible placement of
the data-entries in the data array in order to reduce av-
erage access latency, allowing the most recently used lines
to be in the fastest subarrays in the cache. This requires
decoupling data placement and tag placement, which Nu-
RAPID achieves through the usage of pointers between tag-
entries and data-entries. This flexibility does not exist in the
tag array, which is completely conventional in its mapping
and replacement policies. Thus NuRAPID does not target
miss rate and has the same problems of workload imbalance
among sets as a standard cache.

The B-Cache [18] tries to reduce conflict misses balancing
the accesses to the sets of first-level direct-mapped caches by
increasing the decoder length and incorporating programma-
ble decoders and a replacement policy to the design. There
is no explicit notion of pressure on the sets or displacements
between them as a result of it.

The V-Way cache [14] adapts to the non-uniform distri-
bution of the accesses on the cache sets by allowing different
cache sets to have a different number of lines according to
their demand. It duplicates the number of sets and tag-store
entries, keeping the same associativity and number of data
lines. Data lines are assigned dynamically to sets depending
on the access pattern of the sets and a global replacement
algorithm on the data lines. Namely, the V-Way cache reas-
signs the less reused data lines to sets with empty tag-store
entries that suffer a miss, which is the origin of the variabil-
ity of the set sizes. When a set reaches its maximum size, it
stops growing and replacements take place under a typical
replacement algorithm such as LRU. The structure to allow
any data line to be assigned to any tag-entry requires the
storage for forward and reverse pointers between the tag-
store and the data-store entries, besides the reuse counters
used by the global replacement algorithm. A comparison
with IIC shows similar miss rate reductions, particularly for
few (1 or 2) additional tag-store accesses per hit by the IIC.
Finally, the V-Way cache outperforms largely AGAC in their

cache

0 Static SBC

B Dynamic SBC
B V-Way

| DIP

relative to b
(2MB 8-w 64B line size)

L2 cache

Figure 12: Comparison with recent proposals in
terms of number of cache misses relative to the L2
cache of our two-level configuration.

tests.

More recently, Scavenger [2] has been proposed, which un-
like SBC is exclusively oriented to last level caches and par-
titions the cache in two halves. One half is a standard cache,
while the other half is a large victim file (VF) organized as a
direct-mapped hash table with chaining, in order to provide
full associativity. The VF tries to retain the blocks that miss
more often in the conventional cache, which are identified by
a skewed Bloom filter based on the frequency of appearance
of each block in the sequence of misses. If a block evicted
from the standard cache is predicted by the filter to have
more misses than the block with the smaller priority in the
VF, this latter block is replaced by the one evicted from the
standard cache. This policy requires a priority queue that
maintains the priorities of all the VF blocks. Accesses take
place in parallel in both halves of the cache. When a block
is found in the VF| it is moved to the standard cache.

These two proposal achieve good results, but their cost is
much larger than that of the SBC. This way, while the V-
Way cache and Scavenger require about an additional 11%
and 10% storage on the L2 cache of our two-level configura-
tion, respectively, the overhead for the static and dynamic
SBC is 0.3% and 0.58%, respectively (Table 3). Something
similar happens with the area required, which we estimate
to the about 4% for the V-Way cache and more than 12%
for Scavenger, while it is below 1% for the SBC (Table 4).

We compare here the performance of the SBC with that of
the V-Way cache and the Dynamic Insertion Policy (DIP) [13]
because their cost also scales well with the cache size. DIP
is a proposal to adapt dynamically the policy of insertion
of new lines in sets, alternating between marking the most
recently inserted lines in a set as most recently used lines
(the traditional policy) or the least recently used ones, the
replacement policy being LRU. Notice that if the latter case,
only if the block is accessed again in the cache will it become
the MRU in its set. Otherwise the next miss will trigger its
eviction. This system helps keep the most important part
of the working set in the cache when the size of this set is
much larger than the cache.

Figure 12 compares the miss rates among SSBC, DSBC,
V-Way cache and DIP in the L2 cache for the two-level con-
figuration used previously. Data shown are relative to miss
rate of the baseline configuration. DIP has been simulated

with 32 dedicated sets and € = 1/32 (see [13]). The last
group of bars correspond to the geometric mean of the ra-
tios of reduction of the miss rate for the four policies. The
results vary between the 19% reduction for the dynamic SBC
and the 12% reduction for DIP, which is the simplest and
cheapest alternative. The V-way cache achieves a 15% re-
duction, slightly better than the 14% one of the static SBC.
Benchmark by benchmark, the V-way cache is the best one
in three of them, DIP in one, and the dynamic SBC in the
other six ones. We must take into account that DIP and
the V-Way cache turn misses into hits, while the SBC turns
them into secondary hits, which suffer the delay of a second
access to the tag array. On the other hand, the duplication
of tag-store entries, the addition of one pointer to each entry
and a mux to choose the correct pointer increases the V-Way
tag access time around 39%, while the SBC has very light
structures (up to 17 bits per set plus one bit per tag-store
entry), thus having a negligible impact on access time.

9. CONCLUSIONS

We have presented the Set Balancing Cache (SBC), a
new design aimed at non-first level caches with a good cost-
benefit relation. This cache associates sets with a high de-
mand with sets that have underutilized lines in order to
balance the load among both kinds of sets and thus reduce
the miss rate. The identification of the degree of pressure
on a set, which we call level of saturation, is performed by
a counter per set called saturation counter. The balance
is materialized in the displacement of lines from cache sets
with a high level of saturation to sets that seem to be un-
derutilized, the displaced lines being found in the cache in
subsequent searches. Two designs have been presented: a
static one, which only allows displacements between prees-
tablished pairs of sets, and a dynamic one that tries to asso-
ciate each highly saturated set with the less saturated cache
set available. The selection of this less saturated set is made
by a very cheap hardware structure we call Destination Set
Selector (DSS), which yields near-optimal selections.

Experiments using 10 representative benchmarks of the
SPEC CPU2006 suite achieved an average reduction of 9.2%
and 12.8% of the miss rate for the static and the dynamic
SBC, respectively, or 14% and 19% computed as the geo-
metric mean.

This led to average IPC improvements between 2.7% and
5.25% depending on the type of SBC and the memory hier-
archy tested. Furthermore, the SBC designs proved consis-
tently to be better than increasing the associativity, both in
term of area and performance.

In this paper we have explored the feasibility of using
information at the set level to adopt decisions on cache
management. Future directions for research include com-
plementing it with information at the line level beyond the
recency of use provided by the set local replacement policy
and analyzing improvements to the SBC strategy for multi-
core shared caches.

10. ACKNOWLEDGMENTS

This work was supported by the Xunta de Galicia un-
der projects INCITEO8PXIB105161P and “Consolidacion e
Estructuracion de Unidades de Investigacion Competitivas”
3/2006 and the MICINN, cofunded by the Fondo Social Eu-
ropeo, under the grant with reference TIN2007-67536-C03-
02. The authors are also members of the HIPEAC network.

11. REFERENCES

[1] A. Agarwal and S. D. Pudar. Column-associative
caches: A technique for reducing the miss rate of
direct-mapped caches. ISCA, pages 179-190, May
1993.

[2] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and
J. F. Martinez. Scavenger: A new last level cache
architecture with global block priority. MICRO, pages
421-432, December 2007.

[3] B. Calder, D. Grunwald, and J. S. Emer. Predictive
sequential associative cache. HPCA, pages 244-253,
February 1996.

[4] Z. Chishti, M. D. Powell, and T. N. Vijaykumar.
Distance associativity for high-performance
energy-efficient non-uniform cache architectures.
MICRO, pages 55—66, December 2003.

[5] Digital Equipment Corporation. Digital semiconductor
21164 alpha microprocessor product brief, March 1997.

[6] E. G. Hallnor and S. K. Reinhardt. A fully associative
software-managed cache design. ISCA, pages 107-116,
June 2000.

[7] HP Labs. CACTI 5.3. cacti.5.3.rev.174.tar.gz.
Retrieved in November, 2008, from
http://www.hpl.hp.com/research/cacti/.

[8] Intel Corporation. Intel core i7 processor extreme
edition and intel core i7 processor datasheet, 2008.

[9] A. Jaleel. Memory characterization of workloads using
instrumentation-driven simulation. Retrieved on
December 18, 2008, from
http://wuw.glue.umd.edu/"ajaleel/workload/.

[10] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache prefetch buffers. ISCA, pages
364-373, June 1990.

[11] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee. Using
prime numbers for cache indexing to eliminate conflict
misses. HPCA, pages 288-299, February 2004.

[12] J. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic
memory reference behavior with adaptative cache
topology. ASPLOS, pages 240-250, October 1998.

[13] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr.,
and J. S. Emer. Adaptive insertion policies for high
performance caching. ISCA, pages 381-391, June 2007.

[14] M. K. Qureshi, D. Thompson, and Y. N. Patt. The
V-Way Cache: Demand-Based Associativity via
Global Replacement. ISCA, pages 544-555, June 2005.

[15] J. Renau et al. SESC simulator. sesc_20071026.tar.
Retrieved on May 18, 2008, from
http://sesc.sourceforge.net.

[16] A. Seznec. A case for two-way skewed-associative
caches. ISCA, pages 169-178, May 1993.

[17] D. Weiss, J. Wuu, and V. Chin. The on-chip 3-mb
subarray-based third-level cache on an itanium
microprocessor. IEEE Journal of Solid State Circuits,
37(11):1523-1529, November 2002.

[18] C. Zhang. Balanced cache: Reducing conflict misses of
direct-mapped caches. ISCA, pages 155-166, June
2006.

[19] C. Zhang, X. Zhang, and Y. Yan. Two fast and
high-associativity cache schemes. IEEE MICRO,
17:40-49, 1997.

