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Abstract. Current parallelizing and optimizing compilers use techniques
for the recognition of computational kernels to improve the quality of
the target code. Domain-independent kernels characterize the compu-
tations carried out in an application, independently of the implemen-
tation details of a given programming language. This paper presents
streaming-oriented parallelizing transformations for irregular assignment
and irregular reduction kernels. The advantage of these code transforma-
tions is that they enable the parallelization of many algorithms with little
effort without a depth knowledge of the particular application. The ex-
perimental results show the efficiency on current GPUs, although the
main goal of the proposed techniques is not performance, but assist the
programmer in the parallelization for a better productivity.
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1 Introduction

The development and maintenance of applications that make efficient use of
modern hardware architectures is a complex and time consuming task even for
experienced programmers. Parallel application lifecycle costs are highly depen-
dent on the hardware advances, especially in domains that change as fast as
the GPUs (Graphics Processing Units). The use of GPUs for general purpose
computation (or GPGPU) is becoming more relevant because of the increasing
computational power and low cost of last-generation GPUs. However, from a pro-
grammability standpoint, CPUs have many advantages over GPUs due to the
existence of standard programming languages like C++ or Java, very powerful
tools for software development and debugging, and well-known parallel program-
ming APIs like OpenMP. Nowadays, GPU programming is more complicated as
it requires using special languages (like OpenCL [9], NVIDIA’s CUDA [12] or
ATI’s Brook+ [1]) which often expose hardware features or limitations that re-
strict the flexibility of GPU programs.
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INCITEO8PXIB105161PR and O08TIC001206PR, and the Ministry of Science
and Innovation, cofunded by the FEDER funds of the European Union, under the
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Recently, tools for the parallelization of sequential codes for modern GPUs
are beginning to emerge. An OpenMP-like semiautomatic approach targeting
regular codes as well as read-only irregular computations has been proposed [11].
A step forward towards automatic parallelization for these platforms is a C-to-
CUDA parallel code generator for sequential affine (regular) programs based on
the polyhedral model [6]. Despite these advances, the automatic parallelization
of irregular applications for GPUs remains a great challenge.

Parallelizing compilers for multiprocessors address irregular applications by
recognizing domain-independent computational kernels [5] (e.g. inductions, scalar
reductions, irregular reductions and array recurrences) and by applying appro-
priate parallelizing transformations [8,3]. The main contribution of this paper
is the proposal of streaming-oriented parallelizing transformations for the well-
known domain-independent kernels called irregular assignment and irregular re-
duction. Our strategies combine inspector-executor techniques, loop versioning
and loop unrolling. A performance analysis using the Brook+ language for GPU
programming is also presented. Brook+ is well suited for the streaming model
that we are going to use in this work.

This paper is structured as follows. Section 2 describes the domain-indepen-
dent irregular kernels and Section 3 presents the parallelizing transformations
for a stream programming model. Section 4 describes our tests and shows the ex-
perimental results on a GPU. Finally, section 5 summarizes the main conclusions
and future work.

2 Domain-Independent Irregular Kernels

Multiple definitions of computational kernel have been proposed in the lit-
erature in the context of automatic program analysis. In this work we use
the domain-independent concept-level computational kernels recognized by the
XARK compiler framework [5], which proved to be a useful tool for automatic
parallelization of procedural and object-oriented programming languages [4], as
well as for data locality optimization [2].

Domain-independent kernels (or simply kernels from now on) characterize
the computations carried out in a program with independence of the program-
ming language. These kernels do not take into account domain-specific problem
solvers. Well-known examples are irregular assignment and irregular reduction,
which will be described next.

2.1 Irregular Assignment

An assignment kernel consists in storing a value in a memory address. Within a
program, this address can be accessed by a scalar variable, a memory pointer or
an indexed variable, typically an array. Thus, an irregular assignment (see Algo-
rithm 1) may be represented by a loop that computes a sentence A(f (7)) = e(7),
where A is the output array, f is an indirection array that introduces an un-
predictable access pattern at compile-time, and e is an expression. Neither the
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Algorithm 1: Irregular assignment  Algorithm 2: Scalar reduction Algorithm 3: Irregular reduction

10 Ale) = e 10 ve=... 10 Ale) = e

2: fori=1 to Asize do 2: fori=1tondo 2: fori =1 to Asize do

3: A(f(i)) = e(i) 3: v =v®e(i) 3: A(f(i)) = A(f(i)) ® e(i)
4: end for 4: end for 4: end for

right-hand side expression e(i) nor any function call within it contain occur-
rences of A. As a result, unless f is a permutation, output data dependencies
will appear at run-time. This kernel can be found in application fields such as
computer graphics, finite element applications or sparse matrix computations.

2.2 Irregular Reduction

The distinguishing characteristic of the reduction kernel is that the value stored
in a memory address is computed using its previous value. The most popular one
is the scalar reduction (see Algorithm 2), v = v @ e(4), where the reduction vari-
able v is a scalar, @ is the reduction operator and e(3) is a loop-variant expression
whose value is not dependent on v. Scalar reductions appear in financial appli-
cations or statistical methods to obtain information of a sample, like the mean
value. They are so common that programming languages usually provide some
built-in support. An irregular reduction, A(f(i)) = A(f(i)) @ e(i), is character-
ized by the use of an indirection array f that selects the locations of an array
A to be updated (see Algorithm 3). Note that in this kernel loop-carried output
and true data dependencies may appear at run-time. Irregular reductions are
very common in many complex scientific applications and adaptive algorithms.

3 Parallelizing Transformations for the Streaming Model

In this section we describe streaming-oriented parallelizing transformations for
irregular assignments and irregular reductions targeting current GPUs.

3.1 Irregular Assignment

In the literature, parallel irregular assignments for multiprocessors follow two
main approaches. First, loop-partitioning oriented techniques [10] split the iter-
ation space among processors and privatize the output array A. However, this
technique is not of practical use on GPUs because memory requirements will
grow proportionally to the number of threads (one copy of A for each thread),
which limits its scalability and performance. Second, data-partitioning oriented
techniques [3] split the iteration space and the output array A, reordering the
loop iterations in order to balance the workload among the processors. Hereafter,
we propose a data-partitioning oriented parallelizing transformation based on the
inspector-executor model tuned for a streaming model.

The inspector-executor technique analyzes the contents of the indirection ar-
ray f at runtime to determine which set of loop iterations must be assigned
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Algorithm 4: Irr. Assignment Inspector

Algorithm 5: Irr. Assignment Executor

1:
2:
3:
4:

ins_table(1.. Asize) = 0
for i = 1 to Asize do

ins_table(f(i)) =i
end for

1:

2
3:
4:
5: end for

for i = 1 to Asize do
if ins_table(i) > 0 then
A(i) = e(ins_table(i))
end if

Algorithm 6: Irr. Reduction Inspector

Algorithm 7: Irr. Reduction Executor

1: contention(1..Asize) = 0 1: if max_cont > 4 then
2: max_cont =0 2: for i = 1 to Asize do
3: fori=1 to Asize do 3: j=0
4: contention(f(i))++ 4: while ins_table(i, j) > 0 do
5: if contention(f(i)) > max_cont then 5: A(i) = A(i) ® e(ins_table(i, j))
6: max_cont = max_cont + 1 6: j=j+1
7: end if 7: end while
8: end for 8: end for
9: ins_table(1..Asize, 1..max_cont) = 0 9: else
10: fori =1 to Asize do 10: fori = 1 to Asize do
11: dest = f(i) 11: if ins_table(i, 0) > 0 then
12: j=1 12: A(i) = A(i) ® e(ins_table(i, 1
13: while ins_table(dest, j) > 0 do 13: end i(f) () ® e(ins. G
14: j=j+1
15: end while 20: if ins_table(i, 3) > 0 then
16: ins_table(dest, j) =i 21: A(i) = A(i) @ e(ins_table(i, 3))
17: end for 22: end if
23: end for
24: end if

to each processor to avoid write conflicts. As shown in Algorithm 4, the in-
spector generates a table ins_table to store the last loop iteration that writes
to each element of A. Algorithm 5 shows the executor, which uses ins_table
to determine whether each element of the output array A remains unchanged
(ins_table(i) = 0) or will be updated (ins_table(i) > 0) in iteration ins_table(i).

Finally, some performance issues are briefly discussed. First, a given access
pattern is often reused during the execution of an adaptive irregular application
(this is called reusability). In this case, the extra cost of the inspector is amortized
over several calls of the executor. Second, our inspector minimizes the cost of
the executor by performing run-time dead code elimination, which removes any
loop iterations that compute values of A overwritten in higher iterations.

3.2 Irregular Reduction

Techniques based on loop-partitioning and data-partitioning have also been pro-
posed for irregular reduction parallelization in multiprocessors. In the scope of
GPUs, we propose an inspector-executor technique that uses loop versioning and
loop unrolling to efficiently exploit the available resources. The inspector code
is shown in Algorithm 6. The goal is to create a table ins_table that stores all
the iterations writing to a given element of A. First, the indirection array f is
analyzed (lines 1-8) to compute the degree of contention, that is, the maximum
number of writes to the same element of the output array A. Then, the de-
gree of contention max_cont is used to statically allocate memory for ins_table
in the GPU. Note that, in contrast to irregular assignments, all the iterations
that contribute to an element need to be stored. Next, the executor presented
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in Algorithm 7 is called to compute the parallel reduction. A set of conflict-
free iterations can be assigned to each processor using ins_table. In the CPU
each thread will compute a portion of the iterations, while on the GPU each
thread will be assigned the reduction of a single location of A. This adaptation
is only beneficial for streaming architectures because they heavily depend on
multithreading techniques to hide memory access latencies. The GPU can also
benefit from the use of both loop versioning and loop unrolling (see lines 11-24),
storing the information on one or more SIMD short vectors (like float4 or int/)
which can be fetched in a single memory access.

4 Performance evaluation on a GPU using Brook+

Our test platform is composed by a Phenom II X4 940 processor running at 3.0
GHz, 4 GB DDR2 800 CL5 memory, a 790X chipset based motherboard and a
Radeon 4850 GPU. The software setup is WinXP z64 operating system, using
MS Visual C++ 2005 compiler (x64, release profile) and Catalyst 9.12 driver.
As the programming language we use Brook+ 1.4 [1], a C extension for AMD
GPUs that exposes a stream programming model [7], designed to encourage and
exploit a high degree of parallelism without significant compiler effort. In this
paradigm the same function is applied to a set of inputs in parallel, producing
another set of outputs, but there should be no overlapping between the input
and the output data to prevent race conditions. The data inputs and outputs of
a streaming kernel are called streams and each thread can only write to a certain
location of the output stream, otherwise the performance is greatly reduced.

4.1 Benchmark suite

We designed several benchmarks to analyze the performance of the GPU using
our streaming-oriented parallelization strategies. In the irregular assignment test
Asig_Irr, the data of a matrix is updated using an indirection array whose values
were generated using a uniform random distribution. As the number of indirec-
tions is equal to the size of the input, it is very likely that several iterations will
try to update the same output address. To simulate a moderate computational
load, the right-hand side of the assignment adds 100 integer numbers.

In the irregular reduction test Red_Irr, a matrix is updated by adding a
value to those matrix locations specified by an indirection array generated using
an uniform random distribution, thus again it is highly probable that more than
one reduction will be performed on many of the matrix locations. The number of
reductions for a given location can be easily estimated by a binomial distribution
B(N,1/N). As in the previous case, in order to simulate some computational
load, the reduction function will add 100 integers. Figure 1 shows an implemen-
tation using Brook+ of the executor method for the irregular reduction kernel. It
presents a general version for any degree of contention (gpu_-executor), as well as
a specialized version for degrees of contention less or equal to (gpu_executor_f4)
that uses float/ data type.
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1: // Function to execute, Brook+ GPU version 27: // Executor code, Brook+ GPU float4 version
2: kernel float 28: kernel void
3: gpu_fun (int pos<>, float val<>, float red<>) | 29: gpu_executor_f4(float src[1[1,
4: 30: int4 ins<>, float dst R<>,
5: return red + (float)pos * val; 31: out float dst W<>,
6: 32: int dimX)
33: {
7: // Executor code, Brook+ GPU general version 34: // Obtains the locations to read from ins
8: kernel void o 35:  int2 ins2Da = ADR_I1(ins.x, dimX);
9: gpu_executor(float src[][], int ins[1[1, 36: int2 ins2Db = ADR_I1(ins.y, dimX);
10: float dst_R<>, out float dst W<>, 37: int2 ins2Dc = ADR_I1(ins.z, dimX);
11: c int max_cnt, int dimX) 38: int2 ins2Dd = ADR_I1(ins.w, dimX);
12: . . .
13: // 2D texture coordinates to 1D position 39: él/ erfeifge pr‘e\:rous value in the output array
14: int2 ins2D, pos2D = instance().xy; 40: st_W = dst_R;
15: int i, pos = ADR_2Dto1D(ins, dimX); 41: // Calls the reduction function when needed
16: // Writes the previous value in the output array 42: if(ins.x >= O) dst_ W = .
17: dst W = dst R: gpu_fun(ins.x, src[ins2Da.y] [ins2Da.x],
- - dst_W);
18: // Ref:ds The‘mspac‘ror table . 43: if(ins.y >= 0) dst W =
19: for(i = 0; i < max_cnt; i++) { gpu_fun(ins.y, src[ins2Db.y] [ins2Db.x],
20: int p =ins[pos2D.y][max_cnt * pos2D.x +i]; dst_W);
21: // Calls the reduction function when needed 44: if(ins.z >= 0) dst_ W = .
22: if(p < 0) break; gpu_fun(ins.z, src[ins2Dc.y] [ins2Dc.x],
23: ins2D = ADR_1Dto2D(p, DIMX); R dst_W);
24: dst_W = gpu_fun(p, 45: if(ins.w>= Q) dst_ W = _
src[ins2D.y][ins2D.x], dst_W); gpu_fun(ins.w, src[ins2Dd.y] [ins2Dd.x],
25: ¥ dst_W);
26: ¥ 460 ¥

Fig. 1: Brook+ versions of the executor for the irregular reduction kernel

Table 1: Execution time (in sec.) and speedup for the 2048 x 2048 problem size
[BencHMARK [CPU 1P (Original)|[CPU 2P (OMP)[CPU 4P (OMP)[GPU (Brook+)]

Asig I RO_| 7144 — [37.20 (1.9%) 2294 (3.1x) | 10.59 ( 6.7x)
—R100[ 71.38 — [ 25.83 (2.8x) | 1270  (5.6x) | 0.91 (78.4x)
Red Ire RO | 75.00 — 6569 (1.1x) | 44.81  (1.7x) | 29.98 ( 2.5x)
~[R100| 75.12 — [41.09 (1.8x) | 19.97 (3.8%x) | 1.28 (58.7x)

4.2 Performance analysis

Here we analyze the performance of the proposed parallelization techniques on
a GPU and on a multi-core CPU using OpenMP. The tests were run in single
precision for matrices of sizes 512 x 512, 1024 x 1024 and 2048 x 2048, repeating
each test 100 times to obtain meaningful times for the smaller problems. The
computational cost of the tests tends to be deliberately low to study a worst case
GPU scenario. Table 1 summarizes the execution times obtained in the tests
using a 2048 x 2048 problem size as well as the respective speedups enclosed in
parentheses. The time measured for the GPU includes the inspector and the data
transfer of the analysis table between the CPU and the GPU. The execution of
each inspector requires about 0.10 sec. for the Asig_Irr test, while the Red_Irr
test requires about 0.25 sec. due to the additional memory and complexity.
Figure 2 shows the speedup of the two kernels for several problem sizes and for
several reusability degrees (R0 if the inspector is not reused, R10 if it is reused 10
times, and R100 if it is reused 100 times). Under the same conditions of problem
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Fig. 2: Performance analysis of domain-independent irregular kernels

size and reusability, GPU performance is always better than the CPU, but for
a good performance there should be some reusability in both cases. Otherwise,
the execution time of the additional analysis required by the inspector stage
is proportionately high. In the GPU, even a small reusability degree is able to
compensate for the memory transfer times.

In the irregular assignment (Figure 2(a)) the optimal GPU performance is
obtained for a 1024 x 1024 input. If there is no reusability, both architectures
lose speedup as the problem size increases. The OpenMP implementation has
superlinearity for the irregular assignment kernel because with the increase in
the number of cores, the problem fits better in their caches. Also note that our
inspector implementation is performing runtime dead code elimination, so the
parallel execution can avoid computing some of the iterations.

Figure 2(b) shows the speedups for the irregular reductions. Although the
speedups are not as remarkable as in the case of the irregular assignment, the
parallelization is still beneficial. The reason behind this lower speedup is the
additional bandwidth required by the inspector table in the GPU. Observe that
in this case, the bigger the problem size, the more speedup the GPU is able
to achieve over the CPU. In the GPU, every thread within a wavefront must
execute the same code, so a certain degree of computing power will be wasted
if the degree of contention is uneven. In problems where the contention has
a large variance, the lookup table could be stored in a sparse matrix format
like CRS (compressed row storage), however, accessing the data in the executor
would require an additional indirection level, which according to our experiments
lowers the efficiency on the GPU.

5 Conclusions and future work

This paper proposes streaming-oriented parallelizing transformations for two
widely-used domain-independent computational kernels: the irregular assign-
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ment and the irregular reduction. The strategy hinges on the inspector-executor
model to split the iteration space and the output array with irregular access pat-
tern. It also takes advantage of loop versioning and loop unrolling to exploit the
hardware of the GPU. The paper proposes a performance evaluation on a GPU
using Brook+ and an OpenMP-based multi-core implementation. The results
show good performance even in codes with low arithmetic intensity and irregu-
lar memory access patterns. Due to the complexity of GPU programming, peak
performance is not the goal of this work. Rather our contribution is centered on
maximizing the programmer productivity thanks to the described parallelization
techniques. As future work we intend to study the parallelization of other less
common kernels and port our work to other languages like OpenCL or CUDA.
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