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Abstract Divide-and-conquer is one of the most im-

portant patterns of parallelism, being applicable to a

large variety of problems. In addition, the most power-

ful parallel systems available nowadays are computer

clusters composed of distributed-memory nodes that

contain an increasing number of cores that share a com-

mon memory. The optimal exploitation of these sys-

tems often requires resorting to a hybrid model that

mimics the underlying hardware by combining a dis-

tributed and a shared memory parallel programming

model. This results in longer development times and

increased maintenance costs. In this paper we present a

very general skeleton library that allows to parallelize

any divide-and-conquer problem in hybrid distributed-

shared memory systems with little effort while provid-

ing much flexibility and good performance. Our pro-

posal combines a message-passing paradigm at the pro-

cess level and a threaded model inside each process,

hiding the related complexity from the user. The eval-

uation shows that this skeleton provides performance

comparable, and often better than that of manually

optimized codes while requiring considerably less effort

when parallelizing applications on multi-core clusters.
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1 Introduction

Parallelism, whose exploitation is never trivial, is nowa-

days ubiquitous in every kind of software. In addition,

many applications require the usage of clusters either

because their memory requirements exceed the capacity

of a single node or because they need a large number

of processors to complete their computations in a rea-

sonable time or both. Since the appearance of multi-

core processors every cluster is a hybrid distributed-

shared memory system, as each node contains its own

separate memory, which is shared by one or more lo-

cal multi-core processors. The applications that run in

these clusters require a programming paradigm suitable

for distributed memory in order to cope with the dis-

tributed memory nodes, while they can take advantage

of the parallelism inside each node by means of either

distributed or shared memory programming models,

the latter ones usually providing the best performance

thanks to the reduced communication and synchroniza-

tion costs within the shared memory of a node. The

usage of two programming models in order to achieve

the best performance, where one or both are often rel-

atively low-level, results in low programmability and

therefore increased programmer effort and costs. This

has motivated extensive research on the improvement

of the programmability of these systems, which has led

to proposals such as the Partitioned Global Address

Space (PGAS) paradigm [46], which offers a global view

of the data in an application together with informa-

tion on the locality of each portion of the data to each

processors. Unfortunately these approaches have not

been widely adopted for different reasons, important

ones being their suboptimal performance [31] and code

reusability, since many proposals are new languages. As

a result, most current high performance codes for hy-
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brid distributed-shared memory systems are still writ-

ten using message passing (typically on MPI), often

combined with shared memory solutions such as OpenMP,

and the best strategy to program these systems is still

an open problem.

In this paper we explore the efficient programming

of hybrid distributed-shared memory systems following

the algorithmic skeleton approach [8], which identifies

typical patterns of parallelism [32] and automates their

management by means of predefined skeletons that hide

the complexity of the parallel implementation from the

programmer. Namely, we propose an algorithmic skele-

ton for the well-known divide-and-conquer pattern of

parallelism, which parallelizes the divide-and-conquer

problem resolution strategy [1]. We chose to parallelize

this strategy for two reasons. The first one is that it

is widely applicable, appearing in fact in many crucial

algorithms in different fields [23,15,4,49,34,48,39,26].

The second one is that, if properly designed, this skele-

ton also allows to express simpler common computation

patterns such as the ones provided by the higher-order

functions map and reduce [19], thus covering even more

problems.

Our proposal is a substantial extension of [16], which

was restricted to shared memory systems. Our new al-

gorithm template not only efficiently combines two pro-

gramming models in order to try to achieve the best

performance in hybrid distributed-shared memory sys-

tems, but it also provides an enormous flexibility for

the execution of the divide-and-conquer algorithms in

these systems, as we will see. All this is achieved with an

easy-to-use high-level interface that requires small effort

from the user. The main contributions of this work are:

– We present the first divide-and-conquer skeleton op-

timized for hybrid distributed-shared memory sys-

tems we know of.

– The skeleton has a large configurability that allows

it to adapt to the required input and output con-

ditions as well as to control its internal behavior in

several ways.

– Our proposal allows to define, build and operate on

arbitrary distributed data structures, even with par-

tial replications, that are amenable to the applica-

tion of this skeleton.

– Our library provides novel and handy mechanisms

to optimize data transfers of complex data struc-

tures.

– We present a demanding evaluation of our algorithm

template that compares it both in terms of perfor-

mance and programmability with hand-optimized

versions based on two of the most popular tools

used in applications parallelized for computer clus-

ters, MPI and OpenMP.

– The library is also favorably compared to two state-

of-the-art tools that are particularly well suited to

parallelize the divide-and-conquer pattern, namely

Cilk Plus [24] and the most recent skeleton for divide-

and-conquer that we found [10].

– The software package is made publicly available at

https://github.com/fraguela/dparallel recursion under

an open-source license.

The remainder of this manuscript is organized as fol-

lows. Section 2 reviews the related work. Then, Sect. 3

discusses the key aspects of the divide-and-conquer pat-

tern of parallelism and presents an algorithm template

that implements this pattern in shared memory sys-

tems. Section 4 analyses the challenges of the imple-

mentation of this skeleton in hybrid memory systems

and presents our new skeleton. This is followed by an

evaluation in Sect. 5 and our conclusions and future

work in Sect. 6 .

2 Related work

Divide-and-conquer [1], hence denoted D&C, is a very

widely applicable strategy, therefore it has been imple-

mented in many libraries of skeletal operations. While

some of them are restricted to shared-memory environ-

ments [29,16,10], including the first skeleton designed

to parallelize irregular problems [18], many others sup-

port distributed-memory systems, enabling the use of

clusters. This multiplies by the number of nodes exist-

ing in the cluster both the amount of parallelism and

the amount of memory available to the problem to be

solved, having in exchange to deal with the complexities

inherent to distributed memory. Unfortunately, almost

all of the libraries in this second group only provide

distributed-memory parallelism, which can severely re-

strict the performance and the scalability in current

multi-core clusters, as we will see in our evaluation in

Sect. 5.1. However, that is not the only difference with

our proposal. For example, the fact that eSkel [9] re-

lies on C precludes it from benefiting from the large

advantages that object-oriented languages provide to

the development of libraries such as encapsulation or

polymorphism. As a result its API results somewhat

low-level, exposing many MPI-specific implementation

details. Lithium [2] is a skeleton library for Java that

exploits a macro data flow implementation schema in-

stead of the more usual implementation templates, and

largely enjoys the advantages of objects, including run-

time polymorphism. Our library however almost exclu-

sively uses approaches resolved at compile time, and

thus cheaper, such as static polymorphism and C++

template metaprogramming. Another library that heav-

https://github.com/fraguela/dparallel_recursion
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ily relies on these latter techniques is Quaff [13], as

its task graph must be encoded by the programmer by

means of type definitions from which the compiler pro-

duces optimized message-passing code. This static gen-

eration of the tasks implies that, unlike our proposal,

Quaff cannot dynamically generate new parallel tasks

depending on runtime conditions.

SkeTo [25] and Muesli [7] are the two libraries of

skeletal operations we know of that have made an ef-

fort to better adapt to multi-core clusters. They also

have in common with our proposal that they are writ-

ten in C++ and they support distributed memory par-

allelism on top of MPI. However, SkeTo centers around

data-parallel skeletons on distributed data-types it pro-

vides and offers no support for task parallel skeletons.

Thus, it does not provide any D&C skeleton. As for

Muesli, its adaption to hybrid memory systems, based

on OpenMP, was only performed on its data-parallel

skeletons. As a result, its D&C skeleton is built for pure

distributed-memory systems. In addition, while our li-

brary heavily uses on template metaprogramming and

static polymorphism, Muesli reliance on runtime poly-

morphism leads to large overheads for simple applica-

tions in [27].

Skeletons are not the only high-level approach suit-

able to parallelize D&C algorithms. For example, Cilk [5],

and more recently, Cilk Plus [24], largely simplify their

implementation by means of keywords to spawn and

synchronize parallel tasks. Cilk Plus provides some ad-

ditional facilities such as simple loop parallelization or

specific support for reductions, but also only within

shared-memory environments. The Java-based Satin sys-

tem [43], which also relies on spawn-sync primitives and
was recently extended with support for heterogenous

many-cores [22], allows to parallelize D&C problems in

distributed memory environments adding many addi-

tional features such as replicated shared objects, specu-

lative parallelism, fault tolerance, malleability and cluster-

aware stealing for load balancing. The lack of knowledge

on the structure of the problem does not allow Satin

to implement global-level optimizations enabled by our

proposal such as broadcasts or gather/scatter opera-

tions and puts the user in charge of the explicit par-

allelization and synchronization of the required tasks.

Tools that simplify the exploitation of task-level par-

allelism by analyzing the dependencies between tasks

and managing their execution in order to provide a

data-flow model avoid this latter shortcoming in the

parallelization of D&C problems. This is the case of

DepSpawn [17] and ClusterSs [41], although compared

to our skeleton, while the first one is restricted to shared-

memory systems, the second one does not support nested

spawning of tasks.

Finally, many big data processes can be seen as

D&C algorithms, and there are several specialized frame-

works to support them [11,45,47]. These tools operate

at a different level to that of our proposal, not only

because they have been particularly designed to ma-

nipulate large amounts of data, but also because they

provide features that can be critical for this kind of

processes such as high performance distributed file sys-

tems, resource management, or resilience. In situations

in which these features were not required, or our skele-

ton could be complemented with modules that provided

them, our proposal could be an interesting alternative

to these frameworks.

Other contributions and differences of our work with

respect to the approaches discussed above are the pos-

sibility of building and supporting arbitrary truly dis-

tributed data structures that can be reused across dif-

ferent algorithms and the facilitation of several opti-

mizations that can have an important impact on per-

formance.

3 A divide-and-conquer skeleton for shared

memory systems

The divide-and-conquer strategy applies to problems

whose solution can be obtained from solutions of smaller

separate subproblems into which the problem can be

divided. Since the subproblems usually have the same

nature as the original one, this strategy gives place to

a recursive subdivision that stops when a base case is

detected. Also, the independence of the subproblems

naturally enables parallelism, the D&C pattern of par-

allelism [32] being in fact one of the most commonly

applicable and used. For this reason this pattern is sup-

ported by several libraries of algorithmic skeletons, as

we have seen in Sect. 2. In the remainder of this sec-

tion we describe in detail the approach taken by [16], a

C++ D&C algorithm template for shared-memory sys-

tems called parallel recursion, as it is the base for

our work.

A simple analysis of the D&C parallel pattern shows

that it consists of four basic blocks: the determination

of whether a problem is a base case that must be solved

at once or a decomposable one, the resolution of a base

case, the subdivision of a non-base case, and finally the

combination of the results of the subproblems of a de-

composable problem. A more careful analysis reveals

that these components can be classified in two groups.

One of them, which is comprised of the identification

of the base case and the subdivision in subproblems of

non-base cases, is more strongly related to the structure

of the problem, which is usually directly related to the

data structure(s) used to represent it. This way, if we
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template<typename T, int N>
struct Info : Arity<N> {

bool is base(const T& t) const; //base case detection

//number of subproblems of t
int num children(const T& t) const;

//get i−th subproblem of t
T child(int i, const T& t) const;
};

template<typename T, typename S>
struct Body : EmptyBody<T, S> {

void pre(T& t); //preprocessing of t

S base(T& t); //solve base case

S post(T& t, S ∗r); //combine children solutions

};

Fig. 1 Class templates with pseudo-signatures for the info
and body objects used by parallel recursion

apply different algorithms that can be accommodated

to the D&C strategy (e.g. finding the minimum value,

adding all the values, etc.) to different data structures

(e.g. a binary tree, a vector, etc.) we will find that these

components will be naturally different for the different

data structures, but they will be often reusable for dif-

ferent computations on the same data structure. As a

result [16] proposes to use an object called info object

whose aim is to provide information on the structure

of the problem, including these two D&C components.

The second group comprises the other components of

the algorithm, i.e., the resolution of the base case and

the combination of partial solutions, which are more

strongly related to the concrete problem at hand to be

solved, and they are encapsulated in a second object

called the body object.

The C++ templates Info and Body in Fig. 1 de-

scribe the requirements and signatures for the info and

body objects discussed above, respectively. Since an

info object only deals with the problem input, its tem-

plate depends on the datatype T of the input, but not

on the type of the algorithm result, which we call here S,

possibly with both types being the same. As expected,

the info object has a method that returns a boolean

specifying whether a problem is a base case or not. The

non-base case decomposition is split in two methods:

num children, which specifies the number of subprob-

lems identified, and child, which given an integer i

between 0 and num children−1 and the current prob-

lem t, returns an object that holds the i-th subproblem

of t. This design was chosen so that when a non-base

case is split, each subtask can be in charge of building

its subproblem from the parent. The info object must

derive from a provided class Arity<N> that is param-

eterized by the number N of subproblems in which a

non-base case can be subdivided, which we call the ar-

ity of the problem. When N is a fixed value known in

advance, Arity<N> provides the num children method.

When the arity is variable or unknown, the argument

for Arity must be the predefined variable UNKNOWN and

the user is responsible for implementing a proper method

for num children.

Regarding the Body object, it has the expected me-

thod base to solve a base case, and post, which com-

bines the solutions of the subproblems of a non-base

case (provided by means of a pointer in order to facili-

tate the support for variable numbers of children) into

a single one. This latter method also receives the parent

problem in case it has information required to compute

the global solution that is not found in the children

solutions, a situation we have found to be very com-

mon. Finally, the body also has a method pre that is

invoked on the problem object before any processing, or

even checking whether it is a base case, is performed on

it. This method is motivated by the observation that

in some algorithms it is useful to perform some pro-

cessing on the input before considering it for the first

time in the D&C algorithm. The parallel recursion

library provides a utility class template EmptyBody<T,

S> from which body object classes can be derived, which

provides empty definitions of all the body object meth-

ods, so that the users does not need to define those that

are not required.

Besides the input problem, and the info and the

body objects, this skeleton supports a fourth optional

argument, called the partitioner, that controls the par-

allelism depending on its data type. Three classes of

partitioners are supported. The simple partitioner

just runs a new parallel task for each child identified

in any level of subdivision of the recursive process-

ing of the D&C algorithm. The auto partitioner is

a smarter partitioner that tries to launch just enough

parallel tasks to keep all the cores busy and allow them

to balance their load by means of a work-stealing mech-

anism that is automatically provided by the underly-

ing Intel TBB library [37], which parallel recursion

uses to define and run its parallel tasks. Finally, there

is a custom partitioner class that must implement

a method do parallel(const T& t) that returns a

boolean specifying whether the children of the problem

t must be processed in parallel, if true, or sequentially,

otherwise.

Figure 2 illustrates the parallelization, using this

skeleton, of the treeadd benchmark from the Olden
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1 struct TreeAddInfo: public Arity<2> {
2 bool is base(const tree t ∗t) const

3 { return t−>level == 1; }
4

5 tree t ∗child(int i, const tree t ∗t) const

6 { return t−>child[i]; }
7 };
8

9 struct TreeAddBody: public EmptyBody<tree t ∗,int>{
10 int base(tree t ∗ t) { return t−>val; }
11

12 int post(tree t ∗ t, int ∗r)
13 { return r[0] + r[1] + t−>val; }
14 };
15 ...
16 int r = parallel recursion<int> (root, TreeAddInfo(),

TreeAddBody(), auto partitioner());

Fig. 2 Reduction on a binary tree using parallel recursion

benchmark suite [38], which adds the values in all the

nodes of a binary tree. The arity of the D&C algorithm

is 2, since every decomposable node will have two chil-

dren, and this is reflected in the definition of the info

object in line 1. The problem inputs are pointers to

tree nodes (tree t *). Each node has a value val, its

level in the tree and an array of two pointers to chil-

dren called child. The base case of the recursion are

the nodes at level 1 (lines 2-3), which just return the

value they store (line 10). Getting the i-th child of a

decomposable node just involves returning the i-th el-

ement of its child array (lines 5-6), while reducing the

values computed by the two children subtasks of a node

with the node value itself involves adding these three

values (lines 12-13). The usage of an algorithm template

with arguments that are objects whose template classes

are available to the compiler allows the inlining of the

required methods in the code generation and a large

degree of optimization. The result is that users do not

need a separate definition of the algorithm steps for the

sequential and the parallel cases. Rather, the skeleton is

able to internally build separate high-performance par-

allel and sequential components from this specification,

achieving a performance similar, and often even better

than that of more burdensome approaches such as the

native TBB algorithm templates, or standard compiler

directives such as OpenMP [16].

4 Supporting divide-and-conquer in hybrid

memory systems

The presence of a distributed memory, and even fur-

ther, a hybrid distributed-shared memory system, no-

ticeably complicates the implementation of a D&C par-

allel algorithm. The most important consideration is

probably the distribution of the input problem on the

distributed-memory nodes. In this regard we have three

possible situations, all of which should be efficiently

supported by a skeleton for maximum generality. The

first one is that the input is replicated in all the nodes

that participate in the computation. In this situation

no initial data distribution is needed and all the nodes

will work in parallel on their local copies, taking care

that each one of them solves a different portion of the

problem.

Another common situation is that the input is lo-

cated in a single source node. Depending on the relative

cost of the broadcast of the input to all the nodes and

the problem subdivision component of the D&C algo-

rithm we may choose between two possibilities. If the

broadcast is cheaper, the algorithm should replicate the

input in all the nodes by means of a broadcast and the

proceed as in the situation when the input is replicated.

Most often however the best policy will be to decom-

pose the input problem until at least one subproblem

per each participating node is obtained, and send to

each node its subproblem(s).

The last possibility is that the data structure that

represents the initial problem is already distributed among

the participating nodes, possibly with some partial repli-

cation (for example, the top part in the case of a tree).

In this case, the distribution stage can be skipped and

each node can just work on its local portion.

In all the situations the parallelism within each node

should be exploited to the fullest. Besides, this should

be usually done using a shared-memory (threaded) strat-

egy in order to facilitate load balancing and avoid mes-

sage passing between its parallel tasks, rather exploit-
ing the fast communication and synchronization facil-

ities enabled by shared memory. The usage of multi-

ple processes per node should be also supported, as

in some applications this may perform better than a

purely threaded approach. For this reason during the

rest of our explanation we will refer to processes rather

than to nodes when talking about the executing entities

that have distributed memory. Relatedly, if the applica-

tion were run using a single process, the skeleton should

automatically only rely on a threaded strategy for its

parallelization. Also, the skeleton should be able to sup-

port any arbitrary data types, and hide the details of

interprocess communication as much as possible. Fi-

nally, regarding the result of the D&C algorithm, users

should be able to choose between obtaining it only in

the source process, letting it distributed on the pro-

cesses that participated in the computation, or getting

it replicated in all the processes.

Our dparallel recursion skeleton was designed

having all these requirements in mind. Let us now dis-
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cuss its syntax and functionality, followed by some im-

plementation details.

4.1 Syntax and functionality

Since the abstract nature of a D&C parallel algorithm

is the same no matter the kind of system where it is ex-

ecuted, we wanted our skeleton to experience minimum

changes in order to adapt it to hybrid memory systems.

In fact, its syntax only differs in three points from the

one described in Section 3. The first difference is that

the info object class must derive from the class template

DInfo<T, N>, where T is the type of the input problem

and N is its arity, i.e., the number of subproblems of

a non-base case, or UNKNOWN when it is variable or not

known in advance. The constructor of this class admits

an optional integer that indicates the minimum number

of tasks in which the user wants to partition the work

in each process when the auto partitioner is used.

This improvement was motivated by our observation

of the most common requirements for the execution of

this kind of algorithms. The most important property

of the DInfo objects is, however, that they store the

information on the distribution of the input of the al-

gorithm. This information is stored in the object after it

has been used in the first dparallel recursion invo-

cation on a given input, which will either distribute that

input or learn that it is already distributed, based on

user-defined flags that are described below. The avail-

ability of this information in the DInfo object is use-

ful because once a given data structure is distributed

using our algorithm template, other D&C algorithms

can be directly applied to the same input using our

skeleton and allowing it to optimally exploit the actual

data distribution, just by providing the same DInfo ob-

ject. The result is maximum performance with mini-

mum programmer effort.

The second change is that the skeleton allows a fifth

optional argument that is a bitset of flags used to con-

figure its behavior. The large variety of behaviors sup-

ported by the skeleton is now explained through the

description of some of the available flags:

– DefaultBehavior implements the behavior applied

when no bitset is provided. In this configuration the

skeleton assumes that the input is only in the pro-

cess with id or rank 0 (called source process), from

which it must be partitioned, and where the only

copy of the result of the algorithm will be located

when the computation finishes.

– ReplicatedInput informs that the input problem

is replicated in all the processes. The skeleton par-

titions the problem locally in each process making

sure that each process works on a different subprob-

lem once a given level of subdivision of the initial

common parent problem is reached.

– DistributedInput allows to apply the skeleton to

distributed data structures that have not been cre-

ated using our skeleton, and thus, for which the

DInfo object contains no distribution information.

Namely, this flag reports that the input is already

distributed among the processes, and the portion

resident in each process is the input provided to the

skeleton by that process. Notice that the existence

of a pre-distributed input in which each process has

an independent portion implies that there is a not

a top-level single element from which to obtain ev-

ery level of decomposition of the problem. Therefore

this situation requires that the post operation that

combines the results of the subproblems of a given

input either does not use this input for the reduc-

tion or accepts one that is default-constructed by

the skeleton to complete the reduction in the upper

levels.

– ReplicateInput indicates that the input is only in

the source process and it requests that instead of

partitioning the input and sending a chunk to each

one of the other processes, the input is replicated in

all the processes and the algorithm then proceeds as

in the ReplicatedInput case.

– ReplicateOutput affects the placement of the re-

sult. Instead of obtaining the final result only in the

source process, a copy of it is obtained in all the

processes.

– DistributedOutput informs the skeleton that there

is no need to gather or replicate the output. Each

process will simply keep its portion of the result.

– GatherInput controls the behavior of the skeleton

with respect to the input problem after the D&C

algorithm execution. By default the skeleton only

collects the result of the reduction of the algorithm,

that is, the value returned by the post method of

the body object. This flag requests that the skele-

ton also gathers the input problem in the source

process (or all the processes, if ReplicateOutput is

also active). The most relevant situation when this

is interesting is when the D&C algorithm modifies

the initial input problem. This can happen in any

or all the methods of the body object, as one can

see that the model for these methods in Fig. 1 uses

a non-const reference to the user problem, allowing

to change it. Users are nevertheless free to use, and

in fact should use, a const reference when the input

is not going to be modified.

– PrioritizeDM asks to prioritize the distribution and

reduction on distributed memory (DM) rather than
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Process 0

Partitioning

Partitioning

Process 0 Process 1 Process 2 Process 3
Distribution

(a) Prioritizing partitioning

Process 0

Process 0 Process 2

Process 0 Process 1 Process 2 Process 3

Partitioning

PartitioningPartitioning

Distribution

DistributionDistribution

(b) Prioritizing distribution

Fig. 3 Partitioning strategies supported by
dparallel recursion, assuming 4 processes.

on shared memory. By default the source process

partitions the problem until there are subproblems

for all the processes, then gives these problems to

the other processes to be solved, solves its own por-

tion, and finally gathers all the sub-results to com-

pute the final one. Figure 3(a) represents the parti-

tioning stage of this strategy. When PrioritizeDM

is requested, the source process follows the strategy

depicted in Fig. 3(b), which sends subproblems as

soon as possible to other processes, and all the pro-
cesses that have sub-problems continue partitioning

them in parallel and sending subproblems to other

processes until all of them have work to do. The

reduction stage follows exactly the reverse order.

Other flags express potential optimizations of dif-

ferent kinds. For example, some of them indicate that

either the input or the result should be communicated

by means of collective gather/scatter operations rather

than point to point messages. Others help with the bal-

ancing of the distribution of work. Namely, the Balance

flag balances the number of subproblems per process,

while UseCost balances the computational cost of the

problems assigned to each process. This latter function-

ality requires a user-provided function to estimate such

cost.

The third change has nothing to do with the dis-

tributed nature of the new skeleton, but with our ob-

servations on D&C algorithms. Namely, we found that

sometimes it is useful to perform some computations on

a problem before partitioning it in subproblems, but

not when it is a base case. Since the pre method of

the body objects is always run on a problem, regard-

less of whether it is a base or not, it can perform these

tasks, but at the cost of checking before whether the

problem is a base case, which is something the skeleton

has also to do anyway. As a result, better performance

and programmability can be achieved by allowing a

new method in bodies that is run only before prob-

lem subdivisions. We call this optional used-provided

method pre rec. An empty implementation is provided

by EmptyBody, so that it need not be defined if it is not

useful.

Figure 4 shows how these new features work to-

gether in the treeadd benchmark used as example in

Sect. 3. Unlike Fig. 2, this code includes not only the

reduction but also the construction of the tree using

our skeleton, as it also constitutes a D&C algorithm.

This allows to illustrate two uses of the skeleton and,

furthermore, the creation and reuse in different invoca-

tions of distributed data structures using our library.

In addition, the solution is very efficient, as not only is

the tree built in a parallel and distributed fashion, but

it also enables the second D&C algorithm to begin to

work locally on its portion of the distributed structure

in each process without initial communications.

The only value used by this benchmark to allocate

the tree is its number of levels, and in fact it is the

only value required by the constructor of the tree nodes.

Also, each node in the tree, shown in lines 1-9, stores

its level in the tree (variable nlevel), the leaves being

at level 1, the value val to be added, and pointers to its

children. The code in Fig. 4 assumes that the number

of levels of the desired tree is available in all the nodes

in the variable NumLevelsTree. This allows to build a

replicated root for the tree in all the nodes in line 36. It

deserves to be mentioned that while the constructor of

a tree node tree t in the sequential version triggers the

recursive allocation of all its subtree, in our skeleton-

based version each node allocation (lines 5-8) only cre-

ates one node. The reason is that it is the responsibility

of dparallel recursion to perform and parallelize the

D&C allocation process, thus filling in the appropriate

pointers to children. This task is performed by the skele-

ton invocation in line 38, which specifies that its input

is replicated across the processes and the result will be

obtained in a distributed fashion. As we can see in the

figure, the TreeInfo class that describes the partition-

ing of the problem is identical to the TreeAddInfo class

used in Fig. 2 with the exception that it derives from

DInfo<tree t *, 2> instead of Arity<2>. In the re-

cursive creation of the tree, non-base nodes will fill in

their child components with pointers to nodes of the
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1 struct tree t {
2 int val, nlevel;
3 tree t ∗child[2];
4

5 tree(int lvl) : nlevel(lvl) {
6 val = ...;
7 child[0] = child[1] = nullptr;
8 }
9 };

10

11 struct TreeInfo: public DInfo<tree t ∗, 2> {
12 bool is base(const tree t ∗t) const
13 { return t−>nlevel == 1; }
14

15 tree t ∗child(int i, const tree t ∗t) const {
16 return t−>child[i];
17 }
18 };
19

20 struct ParAllocBody : EmptyBody<tree t ∗, void> {
21 void pre rec(tree t ∗t) {
22 t−>child[0] = new tree t(t−>nlevel − 1);
23 t−>child[1] = new tree t(t−>nlevel − 1);
24 }
25 };
26

27 struct TreeAddBody : EmptyBody<tree t ∗, int> {
28 int base(tree t ∗t) { return t−>val; }
29

30 int post(tree t ∗t, int ∗r)
31 { return t−>val + r[0] + r[1]; }
32 };
33

34 TreeInfo tree info;
35

36 tree t ∗root = new tree t(NumLevelsTree);
37

38 dparallel recursion<void>(root, tree info,
ParAllocBody(), auto partitioner(),

ReplicatedInput | DistributedOutput);
39 ...
40 int r = dparallel recursion<int>(root, tree info,

TreeAddBody(), auto partitioner());

Fig. 4 Main elements of a treeadd implementation based on
dparallel recursion.

immediately lower level. This is achieved in the pre rec

method of the class ParAllocBody used by the skeleton.

Notice how in this problem the body object does not

generate a separate output, but rather modifies the in-

put of the algorithm. As a result, and since the resulting

tree will be available through the root variable in each

process, the return type of this dparallel recursion

invocation is void, which is specified as the only tem-

plate argument to the invocation in line 38. Therefore

in this case the skeleton operates as a procedure that

builds the tree exploiting the property mentioned above

that it can modify its input. This is in contrast with the

invocation in line 40, where the int template argument

to the invocation informs that the skeleton will return

Node 0 Node 1 Node 2 Node 3

Fig. 5 Shape of the local tree built by the code in Figure 4
in each process, assuming 4 processes.

an integer, which is stored in the destination variable

r. Of course, the return type must be compatible with

the operations and types specified in the body object

of the associated invocation.

When the root of a problem is present in a single

process, unless the user requests to prioritize the distri-

bution across processes over the partitioning (Priori-

tizeDM), this process recursively subdivides the prob-

lem until there is at least one subproblem for each pro-

cess, then distributes the work to the other processes,

and later works on the subproblems it has assigned to

itself. When the root is replicated, however, all the pro-

cesses subdivide in parallel the original problem until

there is at least one subproblem for each process, then

choose the subproblems they keep for themselves, and

continue working only on them. As a result of this pol-

icy, in our example the local tree built in each process

replicates the top levels of the tree, but just below the

level where there are as many or more vertices than

computing processes, each process only has one or some

of the branches, as Fig. 5 shows. Our skeleton is totally

general, so any number of computing processes is sup-

ported. As a result, in some situations there can be

some imbalance, that is, some processes can keep more

low level portions of the distributed data structures

than others. In any case, users do not need to be aware

of these details. They just need to know that the infor-

mation on the concrete partitioning used is stored in the

info object, called tree info in Fig. 4, and that using

it in subsequent invocations of dparallel recursion

will allow the skeleton to operate correctly and opti-

mally on the data structure. This way, the usage of this

object in the invocation in line 40 to perform the reduc-

tion on the values of the tree ensures that each process

will correctly identify the portions of the structure it

owns.

Notice that the invocation in line 40 does not use

the DistributedInput flag for two reasons. The first

one is that tree info already contains all the informa-

tion on the distribution of the input, making the flag

useless. The second and most important one is that, as

we explained above, this flag is actually not suited for

this situation, its purpose being to allow the application

of the algorithm template to data structures that have
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not been distributed using dparallel recursion. An

example input for which this flag would be appropriate

is a distributed array where each process has a sepa-

rate portion of the global array following some strategy

predetermined by the programmer.

It deserves to be mentioned that the design of this

algorithm template allows to use it to provide the func-

tionality of other very common skeletons. For exam-

ple the map operation that applies in parallel some

function to the elements of a list giving place to an-

other list with the results can be naturally implemented

by partitioning the input list until there are enough

chunks to exploit all the parallelism available, process-

ing these chunks as base cases, and merging the re-

sulting lists in the post operation of the body object.

In the case of reduce, which reduces to a single value

several elements using an associative operator, post

would perform the reduction of the partial reductions

from several chunks. In fact this implementation for

reduce follows a strategy similar to the one used by

the parallel reduce template function of the Intel

TBB [37], although ours is more general, the main ad-

vantages of dparallel recursion being the support of

distributed memory and arbitrary problem arities.

Finally, while the dparallel recursion skeleton is

the kernel of our library, it also includes some items to

facilitate its use. The main ones are range classes that

provide automatic partitioning, shallow arrays that al-

low to partition arrays without replicating their data,

and macros and function templates to implement paral-

lel loops on top of our skeleton using a very simple syn-

tax. The framework also provides parallel recursion,

our skeleton for shared-memory parallelization, as well

as similar utilities built on top of it. Also, while they are

not part of the public API, it is very easy to access in-

ternal functions that provide communications between

processes on top of MPI using a simple syntax similar

to that of Boost.MPI [20], and more importantly, ap-

plying the optimizations described in Sect. 4.2, which

was in fact the reason for their development.

4.2 Implementation and optimizations

As shown in Fig. 6, our framework, which is the area en-

closed in the thicker black line, relies on three external

libraries. Both the dparallel recursion skeleton pro-

posed in this paper, and the parallel recursion algo-

rithm template introduced in [16] rely on Intel TBB [37]

for the shared-memory parallelism, using its low level

API to build and synchronize tasks. This is a C++

library for parallel programming on multi-core proces-

sors based on tasks. TBB provides mechanisms to de-

fine, order (i.e., specify dependences) and synchronize

TBB

dparallel_recursion

parallel_recursion
Boost

serializationMPI

Fig. 6 Library dependences of dparallel recursion

tasks, letting the runtime of the library in charge of the

low level details such as managing thread pools, enforc-

ing the dependences declared by the user, or stealing

tasks between threads for the sake of load balancing.

This library was preferred over other alternatives such

as OpenMP because it provides better control and ac-

cording to studies like [36] its task creation, scheduling

and load balancing mechanisms seem to be more so-

phisticated and optimized than those of OpenMP. As an

added benefit, a compiler without support for OpenMP

can be used to compile our skeleton1, something that

is not trivial and requires special measures for libraries

that rely on OpenMP [7]. The shortcoming of the Intel

TBB library with respect to OpenMP is that even if the

user relies on the algorithm templates it provides, which

largely simplify its usage compared with its low level

API, its programming costs are much higher than those

of compiler directives [16]. In our case, all this complex-

ity is hidden inside our library. The distributed-memory

parallelism is supported by means of the MPI standard.

A final dependence of our skeleton is Boost [6], the well-

known collection of C++ peer-reviewed libraries, which

is mainly used to serialize data to be transmitted in the

MPI messages. This library is delimited by a dashed line

in Fig. 6 because while its headers are always required,

it only needs to be linked to an application based on

our skeleton when its most advanced features are used.

The implementation follows five stages. First, the

problem is decomposed until there is at least one sub-

problem for each MPI process or the load balancing

criteria set by the user are met. This stage is skipped if

the input is distributed, since this implies each process

has already a subproblem. This top level decomposi-

tion is stored in the DInfo object in case the problem

is used in further skeleton invocations. Then, the sub-

problems are distributed among the processes, except

if the input was replicated or distributed, in whose case

each process directly takes care of its subproblems. The

1 One might think that in 2016 every major compiler dis-
tribution should support OpenMP, but as a representative
example, during the development of this work we found that
the compilers of the standard development environment for
the current version of Mac OS X do not support OpenMP.
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third stage processes in each process the problem(s)

assigned to it. This stage is very much the algorithm

template presented in [16] except for the new pre rec

method and the inclusion of new optimizations enabled

by C++11. The fourth stage gathers the partial results

in the source process, and the fifth one performs the fi-

nal reduction until a single result is obtained. Of course,

these two latter stages are skipped if the user requested

to keep the output distributed. Also, if PrioritizeDM

was requested, the first two stages happen in an inter-

leaved way until all processes get work, and the same

happens with the two last stages until a single result is

obtained.

The implementation contains numerous optimiza-

tions that make it very competitive with hand-optimized

codes. First, it extensively relies on C++ template me-

taprogramming so that polymorphism is efficiently re-

solved at compile time rather than at runtime. Second,

we tried to exploit as much as possible the new op-

timizations enabled by the C++11 standard, mainly

those associated to rvalue references and move con-

structors and assignments. Third, every relevant step

inside the library has been parallelized. The only excep-

tion are MPI messages, which can be sent or received

from different threads in a process, but never simulta-

neously from several threads. The main reason for this

design was ease of installation and portability, since im-

portant MPI distributions are not compiled by default

to support this possibility, while others do not even sup-

port this feature in popular environments [12]. Also, the

implementation exploits MPI collective communication

primitives whenever it identifies it is possible and safe

to do so.

The parallelization pattern followed in the initial de-

composition proceeds by levels, generating a new level

of subproblems out of the most recently generated one

by decomposing all its elements in parallel. This pattern

was chosen due to the need to (a) generate a minimum

number of subproblems before proceeding to their dis-

tribution among the processes and (b) try to make these

subproblems as similar as possible in terms of size to

balance work. Since by default the skeleton has no infor-

mation on the cost of each subproblem, it follows the

heuristic of distributing subproblems obtained at the

same level of decomposition. The algorithm template

stops the initial decomposition either at the first level

with enough problems to feed all the processes, or when

the conditions set by the user for the load balance by

means of the Balance or UseCost flags commented in

Sect. 4.1 are met, or when further problem subdivision

is possible.

As explained before, the MPI calls cannot be made

simultaneously from different threads. Despite this fact,

the communication stages can also exploit parallelism

because the skeleton tries to parallelize the (de)serializa-

tion process of the data involved in the communications

when such process is needed. The parallelization is both

among different (de)serialization tasks as well as with

the active communication task in each moment.

Typically the most expensive part of the execution

is the stage in which each process solves its subprob-

lem(s), which has been parallelized following a recursive

pattern. Namely, whenever a task partitions a prob-

lem, it checks whether there are enough parallel tasks

in the system depending on the partitioner provided

by the user (see Sect. 3). If this is the case, the chil-

dren are processed using a purely sequential implemen-

tation of the D&C algorithm. For example, this version

makes no further checks related to parallelism. Other-

wise, the task generates an independent parallel task

for the processing of each subproblem, launches them

to execution, and awaits their completion. This wait is

not active; rather the task simply remains in the stack of

the thread that run it until all its children tasks finish,

which allows the thread to return to it. At that point,

the task performs the reduction of the results using the

post method and finishes. Finally, the last stage nat-

urally follows the same parallelization pattern as the

first one, but in the reverse order, that is, bottom-up.

An issue that can play an important role in perfor-

mance and where our library provides very simple and

effective mechanisms to improve the performance is the

data serialization. Our framework implements three se-

rialization policies that the user can choose from. First,

arithmetic types or types marked as bitwise serializ-

able by means of the BOOST IS BITWISE SERIALIZABLE

macro can be represented just by the consecutive se-

quence of bytes that constitutes them. Thus they re-

quire no actual serialization and they are directly sent

from, or received in, their original storage in mem-

ory by our algorithm template. Otherwise, the user

has to provide functions to serialize/deserialize the ob-

ject in/from an archive provided by the skeleton us-

ing the API supported by the Boost serialization li-

brary. Relying on this library is very convenient given

its degree of optimization and the facilities it provides

for the (de)serialization with minimum effort of point-

ers, arrays, STL collections, etc. The user can choose

between two possibilities for the transmission of non-

bitwise serializable data types. If she marks the type

with the macro TRANSMIT BY CHUNKS, each interaction

of the user (de)serialization function(s) with the archive

provided by the skeleton, i.e., the (de)serialization of

each individual component of the object to transmit,

will give place to a separate message that will transmit

only this element. In its turn, whenever any of these
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Table 1 Benchmarks used.

Name Arity Assoc Imbalance Input Output

fib 2 Yes yes scalar scalar
quicksort 2 - yes array array
nqueens var Yes yes board scalar
strassen 7 No yes arrays array
treeadd 2 Yes no tree scalar
tsp 2 No no tree cycle
barnes hut var Yes Yes array array
ep var Yes No range histogram

chunks is bitwise serializable, it will be directly sent/re-

ceived from/in its existing location avoiding any copy

or translation cost. If the type is not labeled with this

macro, the skeleton will serialize all the components of

the object in a single buffer and transmit it in a single

message. Our implementation has been made in such a

way that serialization functions are written in exactly

the same way for both kinds of serialization, making the

process totally oblivious to users but for the application

of the macro to the data type.

Choosing the best serialization policy can be critical

for performance. A good example is a variable-length

vector whose components are an integer sz with its

size and a pointer ptr to the elements it stores. This

type is not bitwise serializable, as the bits of its two

data members are not enough to represent all the data

associated to it. As a result, the user has to provide

functions that serialize/deserialize in/from an archive

the size sz and the array of sz elements pointed by

ptr. By default dparallel recursion will copy these

two components to/from a single temporary buffer and

send/receive them in a single message. Nevertheless, if
the type is marked with TRANSMIT BY CHUNKS, sz will

be transmitted in one message and the array of elements

in another one. If the elements stored in the vector are

bitwise serializable, there will be no need for any tem-

porary allocation or copy of data, neither in the sender

nor in the receiver.

Other simple user-level optimization enabled by our

library are the flags related to collective communica-

tions mentioned in Sect. 4.1 and the usage of DInfo ob-

jects belonging to the subclass BufferedDInfo. These

objects optimize memory usage by keeping the buffers

used during the communication between processes to

avoid their repetitive allocation and deallocation. Also,

they allow the user to provide those buffers, so that if an

existing data structure can used as temporary storage,

even the allocation, and sometimes more importantly,

the extra memory footprint, is avoided. In a similar

fashion, the skeleton has also mechanisms to let the

programmer specify the location of the object that will

hold the final result in order to avoid the creation of

temporaries as well as unneeded copies or movements.

5 Evaluation

In this section our skeleton is evaluated both in terms

of performance and programmability using the eigth

benchmarks described in Table 1. The table provides,

for each benchmark, its arity (number of subproblems

in which each problem can be divided), whether the

combination of the results of the subproblems is asso-

ciative or not or not needed, whether there is imbalance

between children problems of the same parent, and the

kind of input and output of the algorithm. Let us now

briefly discuss each one of these programs.

The fib benchmark recursively computes a Fibo-

nacci number fib(i) = fib(i− 2) + fib(i− 1). Although

this is an inefficient method to compute this value, this

benchmark is widely used in academia (e.g. [30,42]) as

an example of D&C algorithm with imbalanced tasks.

Furthermore, let us notice that since skeletons execute

the same computational blocks as serial or manually

parallelized versions of the same code, adding the ele-

ments needed to connect and run them in parallel, it is

in simple benchmarks such as this one or treeadd, de-

scribed in the preceding sections, where skeletons are

expected to more clearly show their overheads. Our

test assumes that the input is replicated in all the pro-

cesses and the result is obtained only in one. Notice

that since the input is a scalar, if it were not initially

replicated, it would be trivial to replicate it with little

cost using a MPI broadcast operation, or just using the

ReplicateInput flag in the case of our skeleton.

Our second example, quicksort, sorts a vector of

integers initially located in a single process using the

quicksort algorithm and leaves the result distributed

among the participating processes. The imbalance of

the tasks of this algorithm is highly variable, as de-

pending on the pivot (randomly) chosen for the par-

titioning of an array, the resulting children tasks can

be heavily imbalanced. When a subproblem reaches a
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size below 104 elements, our implementations resort to

the std::quicksort function provided by the standard

library to complete the sorting process.

The main interest of the third algorithm, nqueens,

which computes the number of solutions to the N Queens

problem, lays on the variable number of children of each

subproblem. Just as in fib, the input is assumed to be

replicated and the result is obtained only in one process.

Again, since the board object is bitwise serializable, its

replication in MPI or with ReplicateInput would be

trivial and inexpensive.

The fourth benchmark is Strassen’s algorithm for

matrix multiplication, which has complexity O(N2.8074)

compared to the O(N3) of the traditional algorithm.

Our implementations begin with the input matrices in

a single process and gather in it the final result. The

tasks of this algorithm present very little imbalance,

but the fact that its arity is 7 makes recursive over-

decomposition necessary to optimally exploit the num-

ber of cores, as it is typically even, and often a power

of 2. When the decomposition reaches matrices of size

256 × 256 our programs resorts to a standard matrix

product algorithm provided by uBLAS [44].

The next two applications have been taken from the

Olden benchmarks suite [38]. The first one is treeadd,

which has been used as example in the preceding sec-

tions. The second one, tsp, solves the traveling sales-

man problem on a tree in which each node represents a

city. As in treeadd, tsp contains two distributed D&C

algorithms that are interrelated because the result of

the first one (tree construction) is the input of the sec-

ond one (traveling salesman problem resolution). For

this reason the best implementation strategy for tsp is

also to build the tree in a distributed fashion, so that

the second D&C algorithm can proceed in parallel in

the different processes without the need of messages to

distribute the input. In our tests the result of treeadd

is obtained in all the processes, while the one of tsp is

obtained only in the source process.

The seventh benchmark is the Barnes-Hut n-body

algorithm [3], which classifies the bodies in an octree

of cells in order to reduce the computations. Namely,

the octree agglomerates the bodies in hierarchical cells

so that a single computation representing the whole cell

suffices to compute the approximate impact of the bod-

ies within the cell on bodies that are beyond a given dis-

tance threshold. Our implementation started from the

Barnes-Hut code of the Lonestar suite [28], which only

parallelized the computation of the forces. Our bench-

mark is more ambitious, as we also parallelized the up-

date of the bodies due to those forces and the computa-

tion of the center and the diameter of the space where

the simulation takes place.

The last benchmark is the ep application of the

NAS Parallel Benchmarks [35], which generates inde-

pendent gaussian random values using the Marsaglia

polar method and then performs a reduction on them.

This benchmark was chosen for two reasons. First, it

illustrates the use of our skeleton on problems that can

be easily expressed as a parallel loop with a reduction.

Second, it is a well-known benchmark with standard

optimized implementations with which to compare and

where the optimal implementation is straightforward.

Five versions of each benchmark, in addition to the

one based on our proposal, were developed for this eval-

uation. First, we built, or took from the existing suite,

an optimized sequential baseline. Then, in order to com-

pare with optimized codes that only rely on distributed

memory communications, we developed MPI versions.

Since the most widespread approach to exploit hybrid

memory systems in HPC applications is the combina-

tion of MPI with OpenMP, the well-known standard

for shared-memory parallelism, we also wrote versions

that combine these two paradigms. The main purpose of

the other two versions is to compare our proposal with

other high level approaches that provide programma-

bility advantages for D&C algorithms. As we will see in

Sect. 5.1, the MPI-only implementations considerably

lag behind the dparallel recursion and the hybrid

MPI/OpenMP versions for many benchmarks. Thus,

comparing with any approach without support for mul-

tithreading and shared-memory parallelism would have

been unfair. Also, as discussed in Sect. 2, we found no

skeletons optimized for multi-core clusters that sup-

port the D&C pattern. This way, in the end we de-

veloped versions based on MPI combined with Cilk

Plus [24] and with the newest D&C parallel skeleton

we found [10]. This skeleton, which will be called dac

in the following, follows a multi-threaded approach to

parallelize D&C problems in shared-memory environ-

ments, and like ours. is a parallel template that uses

C++11 features. Since several backends were developed

for this skeleton, all of which provide similar perfor-

mance in [10], our experiments use the backed based

on Intel TBB [37] in order to maximize the similarity

of the approaches compared. In the rest of this paper we

use the term hybrid versions/codes/implementations to

refer to those that combine MPI with a threaded ap-

proach, including our skeleton.

We actually developed many more than six ver-

sions of many benchmarks, because several paralleliza-

tion strategies were tested for the codes in which the

best one was not obvious, seeking the implementation

with the best performance. For example we found that

the best MPI-only implementation of quicksort fol-

lowed the decomposition strategy in Fig. 3(b), while
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the best dparallel recursion and hybrid implemen-

tations followed Fig. 3(a), which besides facilitates the

use of MPI Scatterv to optimize the data distribution.

The final manually developed hybrid versions apply ex-

actly the same optimizations and patterns of paral-

lelization, which are equivalent to those of our skeleton,

or sometimes better thanks to hand-made optimiza-

tions. Also, the parallelization was not restricted to the

kernel of the D&C algorithms. Rather, it was applied

to all the meaningful parts of the applications. For ex-

ample, the deserialization of the cycles of cities built in

the tsp problem can be accelerated with a parallel loop.

Following with this code, even with this improvement,

it is very important for performance to parallelize the

deserialization process with the receipt of the cycles of

cities that come from other processes in the reduction

stage of the computation. The MPI + OpenMP imple-

mentations parallelized these portions of the code us-

ing OpenMP directives; the dparallel recursion and

MPI + dac versions resorted to the TBB facilities for

this, and the codes based on MPI and Cilk Plus relied

on Cilk tasks, including those generated by Cilk for

loops. The Cilk Plus and OpenMP versions follow very

similar schemes because omp for pragmas parallelize

loops in a similar way to that of Cilk for, and the

OpenMP tasking mechanism introduced in version 3.0

of the standard was used to parallelize recursive pro-

cesses. This enables a style, which although based on

directives, is similar to the one provided by Cilk Plus

keywords. The schemes are only slightly different in

that the parallel loops that contain nested parallelism

based on tasks were parallelized in OpenMP by means

of tasks from a single common ancestor in order to try

to facilitate the load balancing of all the tasks involved

in the parallel computation.

All our parallel versions are written to support any

number of processes. In addition, the threaded versions,

that is, all of them except the sequential and the MPI-

only version, support any number of threads per process

and allow to choose the number of tasks per thread. In

several algorithms it is impossible to generate an exact

number of tasks per thread unless those tasks corre-

spond to different levels of decomposition of the initial

problem, which could imply heavy imbalances between

tasks. For this reason, the threaded versions are de-

signed to generate all their sequential tasks at the same

level of decomposition of the original problem. As a re-

sult, they stop the parallel partitioning and generation

of tasks when they reach the first level of decomposi-

tion that allows to generate at least the number of tasks

per thread requested by the user. This means that the

actual number may be larger than the requested one.

Table 2 Experimental environment.

Feature Value

Processors/node 2 x Intel Xeon E5-2680 v3
Family Haswell

Frequency 2.5 GHz
#cores/CPU 12
Memory/node 64GB DDR4

#nodes 32
Network Infiniband FDR
Compiler g++ 6.1

OpenMP version 4.0
MPI OpenMPI 1.10.2
TBB 4.4

5.1 Performance evaluation

Our experiments were performed in the Linux cluster

described in Table 2, which consists of 32 nodes with 24

cores each, totaling 768 cores. The optimization level

O3 was used in all the compilations. Table 3 shows

the relevant configuration parameters that describe the

problem size of each benchmark tested, the runtime of

the sequential execution and the number of processes

per node that gave place to the shortest runtime of

each application when using the 32 nodes available. The

treeadd and tsp benchmarks contain two very differ-

ent D&C kernels that are parallelized in our experi-

ments: one that builds the tree (allocate) and another

one that performs the computations (compute). While

the compute kernels are interesting for clear reasons,

we think that the allocate kernels also deserve atten-

tion because they illustrate how dparallel recursion

can build distributed data structures (in this case, with

partial replication) that can be used in other D&C ker-

nels, as our example based on treeadd in Section 4.1

showed. Also, the two allocation kernels differ among

themselves, as the one in treeadd is very intensive

on memory operations, with almost no computations,

while the one in tsp contains several double-precision

floating point operations, including non-trivial calcula-

tions such as logarithms.

In what follows, unless otherwise stated, in the ex-

ecutions that use several nodes, which are all the ones

that involve more than 24 cores, the number of threads

used by each process was fixed to 24/N where N is

the number of processes per node shown in Table 3.

In the executions using c ≤ 24 cores, which always

use a single node, the number of processes was set to

p = dc/(24/N)e, with c/p threads each. It also deserves

to be mentioned that the degree of variability observed

in the runtimes was the normal one. This way, the stan-

dard deviations were below 1% of the average for the

large runtimes and they were under 10% for the shortest

runtimes, which are below 10 milliseconds for the allo-
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Table 3 Problem sizes and common configuration for performance evaluation.

Name Problem size Seq. time Procs/node

fib 54st Fibonacci number 390.79 1
quicksort 500 million 32-bits integers 50.38 1
nqueens 16× 16 board 175.23 1
strassen 8192× 8192 double-precision matrix 137.05 4
treeadd allocate binary tree with 30 levels 25.99 2
treeadd compute 100 reps. of the tree reduction 415.76 2
tsp allocate binary tree with 27 levels 29.60 2
tsp compute traveling salesman problem 281.41 2
barnes hut 10 iter. 5× 105 bodies in 3D space 232.13 2
ep class D (236 values) 2758.86 2

cate kernels of treeadd and tsp when using the whole

cluster.

Several combinations of flags for those benchmarks

for which the best combination was not obvious were

tried in order to decide the best implementation of each

algorithm. Figure 7 shows the results of these exper-

iments, plotting the average speedup achieved by 16

executions with at least 4 subtasks per thread with re-

spect to the optimized serial implementation for dif-

ferent numbers of nodes. Notice that all the combina-

tions for fib use ReplicatedInput because, in order

to evaluate different situations, the input scalar is as-

sumed to be available in all the nodes for this experi-

ment. Similarly, DistributedOutput appears in all the

combinations for quicksort because in order to test

different possibilities, our codes assume that the user

wants the resulting vector distributed across the pro-

cesses that participate in the computation. We must

also note that the flags in Fig. 7(d) apply to the only

stage of the algorithm that requires communications in

our implementation, namely the update of the bodies

with the previously computed forces. In our implemen-

tation all the bodies exist in all the processes so that

each process can build the whole octree and the force

computation stage can access any arbitrary body found

in the octree. For this reason, the flags for this stage

include ReplicatedInput. The flag ReplicateOutput

must also be used, because the bodies must be repli-

cated again in all the processes for the next iteration of

the simulation.

In order to interpret the results we must remem-

ber that Balance just balances the number of subprob-

lems per process, while UseCost balances the cost of

the subproblems assigned to each process. This latter

flag requires the user to provide a function to estimate

this cost. Since fib has an arity 2, its number of sub-

problems is always a power of 2, and Balance does

not have any influence on performance in Fig. 7(a).

The quicksort kernel has also arity 2, and for this

reason we skipped trying this flag in this benchmark.

Nevertheless, both fib and quicksort are very imbal-

anced in the cost of their subproblems, and therefore

UseCost can improve their performance. It must be

mentioned that our template allows to configure sev-

eral parameters related to the load balancing process,

including the maximum time spent in it or the maxi-

mum imbalance allowed, measured as the ratio of addi-

tional subproblems/cost of the process with more load

with respect to the process with less load. All our ex-

periments use the default configuration, which allows

a maximum imbalance of 20%. While cost-based load

balancing is very positive for fib, its effects are not

consistent in quicksort. The reason is that in this

algorithm the initial partitioning stage is very expen-

sive, and the imbalance can be very large even after

many levels of subdivision. As a result, requesting to

balance the load among the processes can force the

threads of the source process to perform many levels

of decomposition of the problem that would have been

otherwise parallelized among the threads of all the pro-

cesses. A second problem is that without UseCost the

skeleton partitions the problem until there is at least a

subproblem per each process, and then sends a single

subvector to each process, but with UseCost there are

several subproblems per process, each process in gen-

eral receiving a different number of subproblems. This

leads to many more messages, which results in addi-

tional performance degradation. This is the reason why

the Scatter flag, which informs dparallel recursion

that the input is a vector that can be distributed by

means of MPI Scatterv, almost does not help when

load balancing is not requested, but clearly improves

the execution of the algorithm for most numbers of

nodes when UseCost is applied. This latter combina-

tion (DistributedOutput|Scatter|UseCost) is the one

with the best average performance, and thus the chosen

one. Although nqueens is an imbalanced algorithm, we

have not experimented with the application of UseCost

to it because we do not know of a heuristic that allows
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Fig. 7 Impact of different optimization flags on the speedup of dparallel recursion over the sequential version as a function
of the number of nodes used in the execution.

to estimate the cost of a subproblem for this bench-

mark.

As for strassen, this is an algorithm where the

PrioritizeDM partitioning algorithm is clearly needed

to obtain the best performance. Also, since the num-

ber of subproblems is always a power of 7, and thus

not divisible by the number of processes used, which is

a power of 2, the Balance flag is useful for this algo-

rithm.

Regarding barnes hut, as explained before, by de-

fault communications take place by means of point-to-

point messages. Since all the bodies of this application

are located in a consecutive vector, collective communi-

cations based on the MPI Gatherv family can speedup

the execution if the programmer uses the Gather flag.

In addition, since the number and relative position of

the bodies assigned to each process within the vector

remain constant during the execution, the communi-

cations that prepare the collective communication en-

suring that every process knows how much to receive

and send from/to any other process can be performed

just once instead of in every iteration of the simulation.

The user can provide this information to the skeleton

by means of the ReusableGather flag. We can see in

Fig. 7(d) that collective communications are increas-

ingly important for barnes hut as the number of pro-

cesses grows, while the ReusableGather optimization

plays a minimal role. Notice that since ReusableGather

implies a gather collective, its use makes unnecessary

the specification of the Gather flag.

Table 4 shows the partitioner and the flags used for

our dparallel recursion experiments. The partition-

ers have been chosen so that they simplify the imple-

mentation of a program that allows the user to con-

trol the number of tasks per thread. Algorithms that

basically parallelize loops are well served by a single

level of subdivision in which each loop is divided in as

many tasks as desired, which are considered base cases.

This situation, found in barnes hut, is easily expressed

with a simple partitioner. Algorithms that necessar-

ily require a recursive subdivision in order to generate

different numbers of subproblems are better served by

an automatic partitioner, because it allows users to

specify the number of tasks they want and then it com-

putes and manages the number of subdivisions required

to achieve the desired granularity. Finally, a problem
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Table 4 Configuration of dparallel recursion for performance evaluation.

Name Partitioner Flags

fib automatic ReplicatedInput|UseCost
quicksort automatic DistributedOutput|Scatter|UseCost
nqueens custom ReplicatedInput|Balance
strassen automatic PrioritizeDM|Balance
treeadd alloc automatic ReplicatedInput|DistributedOutput
treeadd comp automatic ReplicateOutput
tsp alloc automatic ReplicatedInput|DistributedOutput
tsp comp automatic DefaultBehavior
barnes hut simple ReplicatedInput|ReplicateOutput|ReusableGather
ep - - (dpr pfor reduce was used)

with variable arity in which several levels of subdivi-

sion may be needed to generate the desired number

of tasks demands a more complex approach. For this

reason nqueens is the only algorithm that relies on a

custom partitioner. Regarding the flags, as explained

before, some of them correspond to the assumptions

made on the initial input conditions, such as whether

the inputs are already available in all the processes.

Other flags indicate the desired output conditions; for

example whether the output must be distributed or

replicated. The flags related to collective communica-

tions, partitioning strategy (PrioritizeDM) and load

balancing have been chosen for performance reasons,

as explained during the discussion of Fig. 7. The table

shows that ep, rather than making a standard invoca-

tion to the dparallel recursion function template,

resorts to dpr pfor reduce. This is a macro provided

by our framework that relies on our algorithmic skele-

ton to parallelize the very common pattern consisting

in a parallel loop with a reduction, which is in fact the

nature of the ep benchmark. The macro efficiently dis-

tributes the iterations and the reductions both across

processes and threads.

Since the most comparable high-level solutions cho-

sen, the dac skeleton [10] and Cilk Plus [24], do not na-

tively support multiple processes, the performance com-

parison with them, shown in Fig. 8, uses a single pro-

cess and a single node in our cluster. The figure shows

the percentile speedup achieved by each implementa-

tion with respect to the sequential code when using the

24 cores available. In order to find this speedup, an ex-

haustive search allowing 2i, with 0 ≤ i ≤ 30, tasks per

thread was made. Each execution with each different

number of subtasks was repeated 4 times, and the min-

imum time of the series for each benchmark was taken.

All the benchmarks were initially implemented follow-

ing the scheme illustrated in our examples in Fig. 4,

meaning that the D&C algorithm was only written once

using the tool of choice, with the recursion finishing in

the actual base case. While this policy perfectly fit-
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Fig. 8 Performance comparison with other high level ap-
proaches in a single node (24 cores).

ted our skeleton, the other high level solutions suffered

from reduced performance in algorithms with many lev-

els of recursion and light computations such as fib or

treeadd. In the case of the dac skeleton, strong slow-

downs with respect to the serial version were observed

in several cases, as the negative bars in Fig. 8 show. As

a result, we optimized the dac and Cilk Plus versions

of the algorithms that require a recursive decomposi-

tion to achieve parallelism, which are all of them except

barnes hut and ep, by writing the D&C algorithm in

two stages. Namely, in these versions the execution of

each algorithm begins at the top level with an imple-

mentation parallelized with dac or Cilk Plus that stops

its recursion not in the actual base case of the algo-

rithm, but in one in which we want to switch from the

parallel recursive decomposition to a sequential one. At

that level, the resolution of the problem is entrusted to

a serial implementation of the algorithm. This is in fact

the usual strategy followed to make manual optimized

parallel implementations of this kind of algorithms [42].
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It deserves to be mentioned that while some algorithms

favor the development of the two stages as separate en-

tities, mainly for performance reasons, in others, partic-

ularly in the most complex ones, it is possible to reuse

most of the code, just choosing a different execution

path depending on the level of decomposition of the

problem. The improved versions, labeled as optimized

in Fig. 8, allowed dac and Cilk Plus to reach a per-

formance similar to that of dparallel recursion in

all the benchmarks except fib. In fact, we can notice

that the speedup of dparallel recursion for this algo-

rithm is super-linear, reaching a value of 39 on 24 cores.

The main reason is that the object code that the com-

piler generates from our skeleton is much more efficient

than the one it generates from the typical recursive im-

plementation used by the other versions. This way, the

sequential computation of the 54th Fibonacci number

using our algorithm template is 80.3% faster than the

sequential implementation.

On average, dparallel recursion was 6.7% and

4.7% faster than the optimized dac and Cilk Plus ver-

sions, respectively, or 2.6% and 0.5% if fib is not con-

sidered because of the favorable treatment that the

compiler provides to the version generated by our skele-

ton. These values, as well as all the other averages of

ratios and speedups in this paper have been computed

as geometric means [14]. Since our skeleton allows to

exploit multi-process parallelism with very little effort,

a final piece of data shown in Fig. 8 is the speedup that

it can achieve on the same system when using the num-

ber of processes indicated in Table 3, which is labeled

as dparallel recursion MP (for multi-process) in the

figure. The ability to exploit multi-process parallelism

allows our proposal to be on average 24.1% and 21.7%

faster than dac and Cilk Plus, respectively, or 21.4%

and 18.9% without fib, respectively.

Figure 9 shows the speedup of the parallel versions

of each D&C algorithm with respect to the sequential

time for a varying number of cores. The versions that

combine MPI with OpenMP, dac and Cilk Plus ap-

ply the optimized recursive implementation motivated

in the previous experiment. The configuration of the

runs was the one explained at the beginning of this

Section, based on the number of processes per node

reflected in Table 3. The speedups for the MPI ver-

sions correspond to the average of 12 executions. The

multithreaded versions were also run 12 times, but in

their case the tests were performed generating at least

one, two, or four tasks per thread, and repeating the

execution with each number of subtasks 4 times. The

figure plots for each version and number of cores the

average speedup achieved by the degree of partition-

ing that offered the best average performance for that

configuration.

The reason for the large advantage of our algorithm

template with respect to the other approaches in fib

has already been discussed. The behavior of the MPI

implementation for 768 cores is due to the cost of the

balancing algorithm, which is more expensive as the

number of processes among which to subdivide the work

grows. While the other implementations split the com-

putation among 32 processes, and then let each process

freely assign its subtasks to its threads, this one has to

deal with 768 processes. Also, since at this level of par-

allelism the runtime of the problem is very short, the

relative impact on it of the partitioning algorithm we

implemented, which is the same in all the versions, is

very strong despite being below a couple of seconds in

this worst-case situation. Implementing a more efficient

partitioning algorithm, from which our skeleton would

also benefit, is part of our future work. The MPI ver-

sions also underperform with respect to the hybrid im-

plementations for several other benchmarks for differ-

ent reasons. For example, the best partitioning strategy

for MPI quicksort, which prioritizes distribution over

partitioning (see Fig. 3) not only makes very complex

and expensive the load balancing but also makes it im-

possible to benefit from collective communication prim-

itives. The larger requirements for communications and

related data (de)serialization processes are common to

all the MPI implementations, but while in some kernels

the impact is negligible, in others it totally precludes

the application from scaling. This is the case of the

computational kernel of tsp.

The hybrid versions have a pretty similar perfor-

mance for most benchmarks, the largest difference hap-

pening in fib because of the better code that the com-

piler generates for our skeleton. Despite being the only

alternative that applies a high-level programming model

both for the inter-process and inter-thread paralleliza-

tion of the applications and that avoids having to write

two versions of the D&C algorithms in all the situa-

tions, our framework is on average 10.6%, 5.8% and 5%

faster than optimized hand-made codes that combine

MPI with OpenMP, the dac skeleton and Cilk Plus,

respectively across the set of parallel executions. If we

discard fib because of the advantage the compiler pro-

vides to our proposal, the average improvement is still

2.9%, 0.2% and 0.5%, respectively. This way, the qual-

itative conclusion is that the skeleton is competitive

with hand-optimized codes.

The impact of problem over-decomposition on per-

formance is explored in Fig. 10, which shows for each

benchmark and implementation the geometric mean of

the speedup shown in Fig. 9 with respect to the one
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Fig. 9 Speedup of the parallel versions with respect to the sequential executions as a function of the number of cores/threads
used.

achieved generating the minimum number of tasks re-

quired to have at least one task per thread. Notice that

in many benchmarks it is impossible to generate ex-

actly one task per thread, as for example if the ar-

ity is 2, the number of subproblems will be a power

of 2, while our nodes have 24 cores. As expected, the

importance of problem over-decomposition is stronger

in the problems that exhibit large imbalances between

tasks, the biggest imbalance corresponding to fib and

quicksort. It also favors benchmarks whose tasks are

balanced but for which it is not possible to generate ex-

actly one task per core –for the reason just explained–,
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Fig. 11 Speedup increase of the skeleton thanks to the trans-
mission by chunks for different numbers of nodes.

such as treeadd or tsp. In these applications the gen-

eration of a larger number of more fine-grained tasks

thanks to over-decomposition helps reduce the imbal-

ance of work among the cores. We also see that in gen-

eral OpenMP is the approach that benefits less from

this technique. This suggests that its task management

mechanisms are less optimized than those of other thread-

ing approaches, something which has been pointed out

by previous works [36]. These problems for OpenMP

do not appear when the code does not need taskwait

clauses, which is the case of quicksort.

Another optimization enabled by our framework that

can be easily applied is the transmission by chunks of

data items whose storage is not consecutive. Figure 11

shows the percentage of speedup growth achieved by

the skeleton by using this optimization for the bench-

marks where it can be applied. The values reported for

strassen and tsp are the actual ones, as these bench-

marks use this optimization. In the case of quicksort

and barnes hut, the best version of these benchmarks

does not use this optimization. The reason is that in

these codes dparallel recursion is invoked with flags

that request to perform scatter or gather operations

(see Table 4), which require, and thus assume, that the

data to transmit is stored in a vector and can be there-

fore transmitted with a single collective communication

primitive. For this reason, in their case the figure plots

for informative purposes which would have been the

impact on these benchmarks if they had not enjoyed

the optimization based on collective communications,

which would have implied sending the data by means

of point to point messages with the associated serializa-

tion process for the data to communicate. We can see

that this optimization is critical for strassen, and it

would have been so for barnes hut if our framework

could not exploit the collective gather optimization.

The impact on quicksort would have been smaller be-

cause, as shown in Fig. 9(b), this benchmark has low

scaling due to the fact that most of its cost is concen-

trated in its initial stages, in which the reduced num-

ber of subproblems allows to exploit little parallelism.

Finally, although on average the optimization is posi-

tive for tsp, it introduces a small performance degra-

dation when more than 8 nodes of the cluster are used.

The reason is that there is a tradeoff between this op-

timization and the parallelism in the reception and de-

serialization of messages. Namely, the transmission by

chunks implies that these chunks are received and de-

serialized in a given sequence by the receiver, as often

the unpacking of a message must precede the process-

ing of the next one. A good example is the transmission

of a vector, in which the size must be obtained before

allocating memory to receive and store the contents.

Because tsp is the algorithm with the more expensive

deserialization process, and it is also among the ones

with the largest messages, the reduction of parallelism

available when this optimization is applied outweighs

its advantages by a narrow margin when the number of

messages (and thus, the parallelism lost) is large.

5.2 Programmability comparison

The ideal strategy to compare the programmability of

different approaches would be to ask a team of program-

mers to use them and compare the development times,

the quality of the results and their opinions [40]. Un-

fortunately this is seldom possible. For this reason an-

other widely used approach is to rely on objective met-

rics automatically extracted from the codes. The best

known metric of this kind is probably the number of

the source lines of code excluding comments and empty

lines (SLOCs). Unfortunately this is a quite rough mea-

sure, as lines of code can widely vary in terms of length

and complexity, which makes SLOCs a somewhat un-

reliable estimator. A more accurate metric is the Hal-

stead programming effort [21], which estimates the de-

velopment cost of a code by means of a reasoned for-
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Fig. 12 Halstead programming effort comparison.

mula based on the number of unique operands, unique

operators, total operands and total operators found in

the code. For this, the formula regards as operands the

constants and identifiers, while the symbols or combi-

nations of symbols that affect the value or ordering of

operands constitute the operators. Another interesting

metric is the cyclomatic complexity [33], which is de-

fined as V = P + 1, where P is the number of decision

points or predicates in a program. There is one pred-

icate for each condition in the program that leads to

a different execution branch, there being one for each

if, while, for, or case statement as well as for each

ternary conditional (?: operation). The larger V , the

more complex the program is. Our programmability

analysis will be based on these two latter metrics.

Figures 12 and 13 show the increase in program-
ming effort and cyclomatic complexity of the differ-

ent parallel versions of our benchmarks as a percentage

of the corresponding ones of the sequential version of

the algorithm, respectively. The figures represent in the

same column the metrics for the MPI-only version and

the increase that appears when parallelization based on

OpenMP, the dac skeleton and Cilk Plus is performed

too. Also, in the case of these two latter codes, the figure

shows separately the increase when developing the basic

and the optimized versions discussed in Section 5.1 and

evaluated in Fig. 8. The MPI parallelization exhibits

high costs when the optimal version involves balancing

mechanisms and/or a relatively complex implementa-

tion such as the one required by the interleaving of par-

titioning and distribution of data favored by strassen.

It is also natural that the simpler the kernel, the higher

the relative cost and viceversa. This, together with the

balancing algorithm is the reason why the complexity

metrics increased in fib much more than in any other

benchmark. In the opposite part of the scale, algorithms
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Fig. 13 Cyclomatic complexity comparison
.

that can be parallelized with few MPI calls and a dis-

tribution of loop iterations among the threads of each

process, such as barnes hut or ep, experience small

complexity increases due to parallelization. When in-

terpreting the results of quicksort we must take into

account that since the MPI-only implementation could

hardly benefit from a balancing algorithm in the distri-

bution, this was integrated in the threaded versions and

is thus attributed to the OpenMP, dac and Cilk Plus

parallelization. Regarding the programming cost of the

threading approaches, it is much smaller than the one of

MPI, and since compiler directives, skeletons and Cilk

Plus keywords are mechanisms with a reasonable high

level of abstraction, the difference between the three

alternatives is small when the code is fully optimized.

The metrics show a similar situation in all the bench-
marks. Both the Halstead programming effort and the

cyclomatic number for our skeleton are always similar

or clearly better than those of the MPI-only version.

When multithreading is incorporated to optimally ex-

ploit the resources within each node, the advantage

of dparallel recursion becomes even larger. Alto-

gether, all the hybrid codes that are not based on our

skeleton present a very similar complexity metrics. This

way, no matter OpenMP, dac or Cilk Plus is considered,

these codes have roughly about 150% more Halstead

programming effort and a 90% higher cyclomatic num-

ber (geometric means) that those based on the skeleton

proposed in this paper.

While the programmability metrics just discussed

are very positive for our proposal, we really think that

these figures do not make justice to the programmabil-

ity advantages of dparallel recursion. The reason is

that they do not reflect the effort that a programmer

may have to spend during the exploration of the imple-

mentation space of an algorithm, seeking the best one
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in a given hardware and software environment. While

making changes to manually try different strategies for

load balancing, serialization, communication, etc. can

take large amounts of time depending on the problem

at hand, with our library it is possible to quickly exper-

iment with different alternatives just by changing the

behavior bitset, and sometimes providing small support

functions. In our experience based in the development

of the codes for this paper, this is an enormous quali-

tative advantage.

6 Conclusions

Every cluster nowadays is composed of distributed mem-

ory nodes whose memory is shared by the cores of one

or more processors. The optimal exploitation of these

systems requires combining parallel programming mod-

els that are suited to these two situations, resulting in

increased program complexity and cost, both for de-

velopment and maintenance. A promising approach to

deal with this situation is to encapsulate this complex-

ity in skeletal operations that automate important par-

allel patterns, as long as they provide flexility to accom-

modate a reasonable range of situations and their per-

formance is comparable with that of hand-tuned codes.

However, there has not been much research on the de-

velopment of skeleton libraries optimized for these en-

vironments.

In this paper we present dparallel recursion, a

C++ algorithm template with some supporting classes

that implements the ubiquitous divide-and-conquer pat-

tern of parallelism in current multi-core clusters. The

skeleton was designed to provide a modular API based

on simple semantics. It also supports large flexibility

in the location of the data involved in the processing,

allowing the parallelization of complex algorithms with

reduced effort. This way, it not only supports the us-

age of existing data structures that can be distributed,

replicated, or placed in a single node, but it can also

distribute existing ones, or create in a distributed fash-

ion new data structures. The distribution details are

encapsulated in objects that allow to reuse the data

structures in the skeleton invocations. Its design also

makes it easy to use this algorithm template to im-

plement simpler skeletons such as map or reduce, thus

increasing its scope of application.

Much effort was put into making our skeleton as ef-

ficient as possible so that it could be competitive with

hand-optimized implementations. The vast majority of

the optimizations, such as its extensive internal paral-

lelization or its exploitation of template metaprogram-

ming to resolve polymorphism at compile time, are au-

tomatically provided by the library. Users can some-

times further optimize their codes with small hints. Ex-

amples are indicating whether the objects to be trans-

mitted need no serialization or whether they benefit

from sending separately each one of their components

rather than packing them all in a single message.

Experiments using up to 768 cores show that the

performance of our proposal is comparable to —and

often better than– that of manually fine-tuned codes

parallelized combining MPI with other approaches to

exploit parallelism in shared memory. Even if we disre-

gard one benchmark where the compiler gives a strong

advantage to our skeleton, the codes based on it were on

average between 0.2% and 2.9% faster than optimized

manual implementations, depending on the tool cho-

sen for thread parallelism. Regarding programmabil-

ity, an evaluation based on objective metrics extracted

from the codes indicates that the effort in the paral-

lelization of an application for multi-core clusters us-

ing dparallel recursion is on average between 47%

(cyclomatic number) and 60% (Halstead programming

effort) of the one involved by the other alternatives

tested. Based on these results, we conclude that our

algorithm template is an excellent alternative for the

implementation of D&C algorithms in multi-core clus-

ters from both the performance and the programmabil-

ity points of view.

While other improvements are possible, we envision

two main possible lines of future work for this library.

One is extending it with implementations of other rele-

vant skeletons following the same philosophy. Another

possibility is to design mechanisms that allow the algo-

rithm template to exploit hardware accelerators.

The library is publicly available under an open source

license at https://github.com/fraguela/dparallel recursion.

Acknowledgements

This research was supported by the Ministry of Econ-

omy and Competitiveness of Spain and FEDER funds

(80%) of the EU (Ref. TIN2013-42148-P and TIN2016-

75845-P), and by the Galician Government under the

Consolidation Program of Competitive Reference Groups

(Ref. GRC2013/055). We also acknowledge the Centro

de Supercomputación de Galicia (CESGA) for the use

of their computers, as well as the 16 anonymous review-

ers because of their valuable feedback and suggestions.

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-
man. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

https://github.com/fraguela/dparallel_recursion
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