
Enhancing and Evaluating the Configuration
Capability of a Skeleton for Irregular Computations

Carlos H. González and Basilio B. Fraguela
Depto. de Electrónica e Sistemas

Universidade da Coruña
A Coruña, Spain

e-mail: {cgonzalezv, basilio.fraguela}@udc.es

Abstract—Although skeletons largely facilitate the paralleliza-
tion of algorithms, they often provide little support for the
work decomposition. Also, while they have been widely applied
to regular computations, this has not been case for irregular
algorithms that can exploit amorphous data-parallelism, whose
parallelization in fact requires much more effort from pro-
grammers and thus benefits more from a structured approach.
In this paper we improve and evaluate the configurability of
a recently proposed skeleton that allows to parallelize this
latter kind of algorithms. Namely, the skeleton allows to easily
change critical details such as the data structures, the work
partitioning algorithm or the task granularity to use. The simple
procedures to choose among these possibilities and their influence
on performance are described and evaluated. We conclude that
the skeleton allows to conveniently explore different possibilities
for the parallelization of irregular applications, which can result
in substantial performance improvements.

Keywords-parallel skeletons; amorphous parallelism; libraries

I. INTRODUCTION

Most of the research to facilitate the development of parallel
applications has focused on regular codes, as they are much
easier to tackle than irregular applications, particularly the
ones that operate on pointer-based data structures presenting
amorphous data-parallelism [1]. For example, in these latter
applications it is much harder or even impossible to perform a
priori an optimal partitioning of the work or to avoid conflicts
between their parallel tasks. As a result, when the libraries
of predefined parallel implementations of popular algorithms
do not cover their needs, users have to parallelize these more
complex codes by hand or by means of transactional memory
tools, whose performance and even programmability are often
not satisfactory [2].

There have been some proposals to enable the parallelization
of irregular algorithms through the exploitation of useful
abstractions. For example, [3] proposes a framework that
relies on user annotations that describe the properties of the
operations, while [4] is based on a language to describe the
evolution of the working set associated to each parallel task.
This paper focuses on [5], a parallel algorithmic skeleton [6][7]
that allows to parallelize a large class of irregular applications
with little programmer effort by applying a data parallel
approach extended with new abstractions [8]. Namely, this
skeleton, called parallel domain proc, is based on the

concept of domain, so that the elements of the irregular
structure to process can be mapped on a provided domain
using their properties. The domain is used by the skeleton
to partition the work, by subdividing the domain, as well as
to detect potential conflicts between tasks, which is achieved
by testing the ownership of a new element to access by the
domain associated to a parallel task.

The skeleton approach is very practical, as skeletons can
be implemented by means of libraries, which facilitates their
application and code reuse. Also, they provide a high level
of abstraction and generality. In fact, they are higher order
functions that encapsulate the communication and computation
patterns found in many parallel algorithms, taking as argu-
ments the user-defined functions that perform the computations
specific to the particular algorithm to implement. Unfortu-
nately skeletons often provide either no tools or very restrictive
possibilities to control essential aspects of their execution.
This can result in suboptimal performance because parallel
applications are highly sensitive to implementation decisions
such as the work partitioning algorithm, the degree of work
decomposition, or the data structures used. For example,
[9] describes some disadvantages of the highly automated
template implementation of skeletons, such as taking wrong
decisions that the users cannot fix.

The reduced parametrization capability of a skeleton is a
small problem and can be in fact very justified in regular
algorithms, as it is easier or even straightforward to derive
heuristics to choose good parallelization strategies for them.
This is the case of skeletons for purely data parallel operations,
which can offer only block distributions [10][11][12] or even
totally hide the work decomposition from the user [13][14].
Nevertheless, this is not a good approach for irregular ap-
plications, and in particular for the amorphous data-parallel
ones, where the patterns of computation can widely vary
between algorithms, and the best work decomposition for a
given algorithm can follow different strategies for different
inputs, there being besides a large variety of partitioning
strategies [15]. Therefore in these applications it is critical
that users can experiment with several possibilities, and using
a high-level approach such as a skeleton should not pre-
clude but facilitate this. In this regard, although there are
skeletons [16][17][18][19] that allow total control of the task
decomposition, they require users to programmatically specify

all the details of this decomposition except for basic trivial
cases like ranges, and they do not support amorphous data-
parallelism.

This paper expands the work presented in [5] in many
aspects. First, by describing the configuration capabilities
present in the library, which allow the programmer to tune the
behavior of the skeleton for the problem at hand. The main
configuration options in this regard affect the task spawning
policy, the data containers used, the domain decomposition
strategies, and the degree of decomposition of the input
domain. The evaluation, which considers two new algorithms
with respect to [5] and uses different data structures to
prove the generality and flexibility of our library, evaluates
the impact on performance of the different variations of the
configurations options presented. This paper also describes
some improvements in the interface of the library, compared
to the previous version.

The rest of this paper is structured as follows. The next
section briefly describes the class of irregular problems we
target and the parallel domain proc algorithm template,
while its configuration possibilities are explained in Sect. III.
This is followed by their evaluation in Sect. IV and a brief
discussion on related work in Sect. V. Finally, Sect. VI
contains conclusions and future work.

II. A DOMAIN-BASED SKELETON FOR IRREGULAR
ALGORITHMS

Algorithms that can exploit amorphous data-parallelism [1]
operate on a set of the elements of an irregular data structure,
which can be considered in general as a graph. This set
conforms a dynamic work list, from which several threads can
take workitems to process in parallel. While some algorithms
present constraints with respect to the order in which the
workitems must be processed, others allow any ordering.
These algorithms, called unordered, naturally present more
parallelism and scale better [20].

Several issues complicate the effective parallelization of
irregular algorithms. This way, the processing of a workitem
often gives place to new workitems that must be added to
the work list. Another problem is conflicts with other parallel
tasks, which can appear whenever the processing of an element
requires accessing, and sometimes modifying, a portion of the
graph around it, which is called the neighborhood of the ele-
ment. The management of the conflicts is simpler in what are
called cautious operations —that is, the operations that read
all the neighborhood before performing any modification—,
as conflicting tasks need only abort the processing and try
it later. Non-cautious operations need also to roll back the
modifications performed, resulting in more expensive conflicts.
Another situation that must be handled is the possibility that a
work list element may have been modified or even destroyed
during the processing of another workitem, if it happened to
be within its neighborhood.

The parallel domain proc algorithm template [5] seeks
to help programmers parallelize with minimal effort this kind

Parallel processing

Split
Split

Join

Initial
Step 1

Step 2Step 3

Step 4 Step 5

Join

Fig. 1. Structure of the domain-based parallelization performed by
parallel_domain_proc

of algorithms in shared memory systems based on the abstrac-
tion of domain. Namely, the skeleton requires a domain on
which the elements of the graph can be mapped. The skeleton
uses the domain to partition the work, by assigning the
processing of the elements that map to different subdomains
to different parallel tasks. The domain is also used to detect
potential conflicts between parallel tasks. This way, whenever
an element outside the subdomain assigned to the current
task is requested during the processing of an element, such
processing is aborted in order to avoid a potential conflict with
the parallel task whose subdomain owns the requested element.
Elements whose processing has failed for this reason are
automatically gathered by the skeleton and placed in new work
lists whose processing is later reattempted by new parallel
tasks that are associated to larger subdomains.

As Fig. 1 shows by means of a graph in which the thicker
dots represent possible limits of subdomains within the graph,
parallel domain proc goes through three stages to apply
this strategy. In the first one, the original domain provided by
the user is recursively split in n steps until 2n subdomains are
generated. This is illustrated in steps 1 and 2 of the figure,
which generate 4 bottom level subdomains. In the second
stage, a parallel task to process the workitems of each low
level subdomain is launched to execution. During this stage all
the elements provided in the initial work list are successfully
processed, except those whose neighborhood extends outside
the bottom level subdomain they belong to. During the third
stage, represented in the two last steps in Fig. 1, each time the
tasks associated to the subdomains that descend from the same
parent domain finish, the lists of the items whose processing
failed in these subdomains are merged into a new work list.
This work list is the input for a new parallel tasks that is
associated to the parent domain. This way those elements
whose neighborhood did not fit in any of the children domains
but which fits within the parent domain will be successfully
processed by the new task. The process is repeated for each

1 bool is divisible()
2 Domain& get left()
3 Domain& get right()
4 bool contains(Element∗ e)
5 void push(Element∗ e)
6 void push(Iterator begin, Iterator end)

Fig. 2. Required interface for the Domain class

level of subdivision, so that larger subdomains are considered
in each step. Finally, as the topmost task is associated to the
whole domain, it is guaranteed to finish the processing of the
remaining workitems.

The implementation proposed in [5] is a C++ library that
provides not only the skeleton but also all the components
needed to write parallel applications in shared memory sys-
tems following this approach, from generic graph, node and
edge classes, to domain and work list classes. These classes
are C++ templates so that users can easily adapt them to their
needs, however they are free to use any classes they want,
as long as they provide the API and semantics expected by
the algorithm template. The library has evolved enhancing its
usability, flexibility and performance with respect to the initial
proposal in [5]. The most important improvement is that work
lists are now integrated inside the domain objects because
this design increases locality and allows more implementation
possibilities. For example the domain can build the initial work
list directly as a set of local work lists from the workitems
to process when it is subdivided, avoiding the creation of an
additional global work list that contains them all when this is
not natural. The algorithm template takes the form

void parallel_domain_proc<bool redirect=false>

(Graph, Domain, Operation)

where the arguments are objects that represent the graph in
which the computation takes place, the domain used to classify
and hold the workitems, and the operation to perform, respec-
tively. The redirect template argument is a performance hint
that will be discussed in the next section. Let us now briefly
review the function arguments.

The graph is the only element that must be able to support
concurrent modifications by parallel tasks, as all the tasks
generated by the skeleton work on the same graph. It is also the
only input of the skeleton on whose interface it does not have
any requirement. The reason is that the runtime of the skeleton
never needs to directly interact with the graph structure, as the
only element that accesses it is the user provided operation.

The domain is used to partition the work, by subdividing
it, and to identify the ownership of elements in order to
avoid potential conflicts, by testing whether they belong to
the subdomain associated to the current task or not. As a
result of its first function, it also contains the worklists. The
skeleton invokes the methods shown in Fig. 2 to perform these
tasks. As for subdivisions, is divisible indicates when a
subdomain can still be subdivided. In this case, the methods
get left and get right return the two halves of a split
domain. Ownership of an element e by a domain is tested

by the contains method. The last method, push, is used to
insert individual workitems, or workitems stored between two
iterators, in the local worklist of its corresponding subdomain.

Finally, the operation can be any functor, function
pointer or C++11 lambda function with the form
void op(Workitem& e, Context& c), the arguments
being the current workitem and a context object supplied
by the skeleton that provides access to the graph, the task
work list, and the domain associated to the task. Namely
the context provides a method that allows to enqueue the
new workitems generated during the operation in the work
list. The domain is available so that before a graph element
is accessed for the first time, its ownership by the current
domain can be tested. When the operation finds an element
outside the domain, it must call an abort function provided
by the skeleton that delays the processing of the workitem
to later stages where larger domains are used. The context
object is a programmability improvement with respect to
the API in [5] that reduces the number of arguments of the
operation and facilitates the exploration of different types for
the objects involved in the skeleton execution.

III. SKELETON BEHAVIOR CONFIGURATION

The proposed strategy to parallelize irregular applications
allows users to explore a large space of possible concrete im-
plementations without renouncing to the high level structured
approach and good programmability enabled by the skeleton.
A first configurable element is the boolean template parameter
redirect mentioned in Sect. II, which controls the behavior
of tasks that work at the bottom level of decomposition when
they find an element outside their subdomain in their work list.
Since the initial work lists in bottom level tasks only contain
elements within their assigned subdomain, this only happens
in algorithms whose processing can generate new workitems.
When redirect is false, which is its default, the usual
policy of delaying the processing of the workitem to later tasks
that will be run with larger subdomains is applied. When it is
true, if the task associated to the workitem subdomain at the
bottom level of subdivision or a parent of it is already running,
the usual policy is also followed. Otherwise, the workitem is
placed in the work list of the owner bottom level task, and
the task is submitted to execution. In order to enable this
redirection process, the skeleton does not run tasks whose
work lists are empty. While this flag controls a very specific
situation, it is critical to enable the parallelization of the large
class of algorithms that begin with a single node in the graph
from which the processing propagates throughout the whole
structure.

While redirect was introduced in [5] and it is required
to parallelize certain algorithms, in this paper we enable
and evaluate other three implementation variations that are
design decisions that can lead to different performance for
different algorithms and inputs. The first one is the usage of
different domain decomposition algorithms, which can lead
to different load balance and number of conflicts among
the tasks. The parallel domain proc skeleton allows to

explore this possibility by writing domains with user-defined
splitting strategies or simply by using or deriving from domain
classes provided by the library that implement predefined
partitioning schemes. The ones we have developed are:

• Clustered Domain (cd) tries to assign nodes that are
close in terms of edges between them to the same
subdomain. This is achieved by means of a clustering
process in which each cluster starts from a random node
and expands from it following a breadth first search. The
clustering process is performed only once, generating all
the bottom level domains required, and it stops when all
the nodes have been assigned to subdomains. The inter-
mediate levels of domain decomposition are generated
by aggregating neighbor clusters following a bottom-up
process. The fact that the decomposition does not follow
the top-down approach explained in Sect. II is hidden
inside the domain and it is totally oblivious to the user and
the skeleton, which uses the same interface and logical
process as for any other domain decomposition scheme.

• Clustered Tree Domain (ctd) Instead of building all the
subdomains simultaneously, this alternative starts with
one source node. It does a breath-first search and adds
nodes to a subdomain, until half of the nodes are in
it. This splits the whole graph in two subdomains with
almost the same number of elements. Then, it chooses
one source node from each subdomain, and it repeats the
subdivision process. This continues recursively until the
number of desired subdomains is reached. This generally
creates subdomains with a similar number of nodes,
providing better work balance.

• DomainND (d2d) Very often the domains are N -
dimensional spaces in which each dimension is associated
to one of the data items of the graph elements and its
extent is given by the range defined by the minimum and
the maximum value found in the graph elements for that
item. This domain is easily divisible by cyclically split-
ting each one of its dimensions (i.e., the i-th subdivision
splits the domain(s) across dimension i mod N) until the
required number of subdomains are generated. This was
the only scheme tested in [5].

Another possibility is changing the number of levels of
decomposition of the domains. Generating a bottom level do-
main, and thus a bottom level parallel task, per core available
is a reasonable option. However, since the runtime of our
skeleton is built on top of Intel TBB [16], it can provide
improved load balancing if the domain is over-decomposed,
so that the task-stealing scheduler can profit from the excess
parallelism created. We have simplified the exploration of this
possibility, which required manual user intervention in [5],
by adding a new optional parameter to the constructor of the
domains, overdecomposition. This parameter requests their
decomposition in 2i subdomains per core, the default being
overdecomposition = 0, that is, a bottom level subdomain
per core.

Finally, we can experiment with different data structures.

For example, work lists, which are dynamic structures from
which elements are being continuously removed, but which in
some algorithms also dynamically receive new workitems, can
play a crucial role in performance. Given these characteristics,
it looks like regular (STL) lists are a good alternative for
them, as they perfectly model the behavior required, and they
were in fact the work lists used in [5]. Other implementations
can be however considered. This way we have also built a
(STL) vector-based work list that pushes new workitems at
the end of the vector and which never removes the already
processed workitems. Rather, it simply increases an internal
pointer that indicates the first unprocessed workitem in the
vector. This way this implementation trades space inefficiency
for better locality and reduced allocation and deallocation cost,
as vectors grow by chunks.

The programming effort required to explore these configura-
tion variations is minimal. The redirect flag simply requires
providing a boolean, while the level of domain decomposition
is specified with a single method invocation to the domain
object. Finally, the domains, work list containers, context
objects, etc. are template classes, so they can accommodate
any classes either provided by the library or built by the
user for any of the objects involved. Of course this includes
the skeleton, which is a function template that automatically
adapts to the types of its arguments. This way exploring the
possibilities available only requires changing the type of the
associated object.

IV. EVALUATION

Our evaluation is based on five algorithms with very differ-
ent nature that we briefly describe here:

• Boruvka algorithm computes the minimal spanning tree
through successive applications of edge-contraction on
the input graph in an unordered fashion. In each step
a random node is chosen, and it is edge-contracted with
its lightest neighbor. The edge-contraction forms a new
node with the union of the connectivity of the incident
nodes of the two chosen nodes. If there are duplicate
edges after the contraction, only the one with smallest
weight is carried through in the union.

• Independent Set (IS) computes a maximal independent
set of a graph, which is a set of nodes such that (1)
no two nodes share the same edge and (2) it cannot
be extended with another node. This greedy algorithm
labels each node with a flag that may be in one of three
states: Unmatched, Matched and NeighborMatched. All
the flags begin in the Unmatched state. An unmatched
node is selected from the graph. If none of its neighbors
are matched, then the flag for the node is set to matched
and all of its neighbors flags are set to NeighborMatched.
This process continues until there are no more unmatched
nodes, in which case, the nodes with matched flags are a
maximal independent set.

• Delaunay Mesh Refinement (DMR) implements the
algorithm described in [21]. A 2D Delaunay mesh is a
triangulation of a set of points such that no point is inside

1 atomic<int> contracted;
2 contracted = 0;
3 ClusteredDomain<std::vector> dm(&graph);
4
5 // Initializing worklists
6 dm.push(graph−>begin nodes, graph−>end Nodes());
7
8 // Calling parallel skeleton
9 parallel domain proc(graph, dm, [&](Node& src, Context& ctx) {

10 Node lightest = findLightest(graph, src);
11
12 if(lightest) {
13 ctx.check node and neighbours(src, lightest);
14 contracted += graph−>findEdge(src, lightest)−>data();
15 ctx.push(edgeContract(graph, current, lightest));
16 }
17 });
18
19 return contracted;

Fig. 3. Boruvka algorithm implemented with our library

the circumcircle of any triangle. This algorithm enforces
the additional constraint of not having any angle with less
than 30 degrees by operating on the triangles of the input
mesh that do not fulfill this condition, which are called
bad triangles. It achieves it by iteratively re-triangulating
a cavity or neighborhood around each bad triangle.

• Spanning Tree (ST) computes the spanning tree of an
unweighted graph. It starts with a random root node, and
it checks its neighbors and adds to the tree those not
already added. The processing continues from each one
of these nodes, until all the nodes have been checked and
added to the tree.

• Single-Source Shortest Path (SSSP) solves the single-
source shortest path problem with non-negative edge
weights using a demand-driven modification of the
Bellman-Ford algorithm. Each node maintains an esti-
mate of its shortest distance from the source. Initially,
this value is infinity for all nodes except for the source,
whose distance is 0. The algorithm proceeds by iteratively
updating distance estimates starting from the source and
maintaining a work list of nodes whose distances have
changed and thus may cause other distances to be up-
dated.

While Boruvka, DMR and ST were already used in [5],
IS and SSSP are new additions to the set of algorithms
implemented with our skeleton, thus helping illustrate its
generality.

Figure 3 shows a possible implementation of the Boruvka
algorithm using our library. In Line 3 it declares the domain dm

it is going to use, in this case the class provided for the
clustered domain explained in the preceding Section. Our
library domain classes are parameterized with the type of
work list to use. In this case the programmer has chosen
std :: vector, but other containers can be used just providing
their name here. Similarly, in order to explore other partition-
ing strategies, the user only needs to change the domain class
name, using any of the other domain classes in our library,
or a new one provided by the programmer. It is left to the
programmer how her custom domain will work internally, as

TABLE I
BASELINE TIMES FOR THE ALGORITHMS

Benchmark Serial time (s)
Boruvka 17.95
IS 0.34
DMR 13.66
ST 1.61
SSSP 0.63

long as it fulfills the interface and semantics explained in
Section II. The initial worklist is initialized in Line 6, using
the method push, that will store a reference to each work
item from the input list in the corresponding local worklist of
its subdomain. Lines 9 to 17 call the parallel skeleton with
the operation implemented as a C++11 lambda function. This
function uses the Context& ctx parameter to check whether
the elements fall in the current subdomain using method
check node and neighbours in Line 13, which will return
immediately the control from the user operation to the skeleton
if this is not the case. The use of the context to add new
elements to the work lists is also illustrated in Line 15. On
average, despite the complexity of these irregular applications,
our parallel versions based on parallel domain proc are
just two lines of code longer than the serial ones, which gives
an idea of the power of the skeleton-based approach.

The experiments were performed in a system with 2 Intel
Xeon E5-2660 Sandy Bridge-EP CPUs (8 cores/CPU) at 2.2
GHz and 64 GB of RAM, using g++ 4.7.2 with optimization
flag −O3. The graph, node and edge classes used were taken
from the Galois system [3], as they were found to be more
efficient than the locally developed ones used in [5] and
the skeleton transparently supports any classes. The inputs
were a road map of the USA with 24 million nodes and
58 million edges for Boruvka, IS and ST, a road map of
New York City with 264 thousand nodes and 733 thousand
edges for SSSP –both maps taken from [22]– and a mesh
with 1 million triangles taken from the Galois project for
DMR. Since Spanning Tree and Single-Source Shortest Path
begin their operation with a single node from which the
computation spreads to the whole graph, their parallelization
has been performed activating the redicted optional feature
of parallel domain proc, which is not used in the other
benchmarks.

Figure 4 shows the speedups obtained with respect to a se-
quential execution for each benchmark using different number
of cores. The baselines, whose runtimes are shown in Table I,
are pure sequential implementations, and therefore they are
neither based on our skeleton nor on any other parallelization
mechanism that could add any overhead, and they use the best
data structures for graphs and work lists, which are vectors,
as we will soon see. We tried six combinations based on the
usage of the three domain decomposition strategies described
in Sect. III (cd for Clustered Domain, ctd for Clustered Tree
Domain and d2d for the DomainND in two dimensions) and
two work list containers, namely standard (std::)lists (l) and
vectors (v), both using the default C++ allocators. The exe-

Fig. 4. Speedups using different domains and containers

cutions followed the default policy of generating one bottom
level task per core. The slowdown for a single core gives an
idea of the overhead of the skeleton, which can be up to three
times slower than the sequential version in these runs.

Vector-based work lists clearly perform better than list-
based ones despite being more memory greedy, as they do
not remove already processed elements (see description in
Sect. III). Thanks to the reduced memory management cost
and better locality, the traversal of the worklist is much more
efficient when using vectors than when using lists. While in
some algorithms the extra cost of lists is relatively small
(DMR, or ST for some domain partitionings), and lists are
in fact negligibly faster in ST with domain ctd for 8 and 16
cores, in others the disadvantage of lists is enormous. The best
example is IS, where the versions that use lists obtain much
worse speedup than those with vectors.

We suspected that the most important reason for the bad
performance of lists is their requirement to continuously
allocate and deallocate items. This operation is even more
expensive in a multithreaded program, where the memory
management provided by the C++ runtime is thread-safe, with
the associated synchronization costs. In order to prove this,
we wrote a customized allocator class that acts as a pool,
thus minimizing the number of invocations to the underlying
thread-safe memory manager. Our allocator has a thread-safe
and a faster non-threadsafe version. We could use the last one
thanks to the fact that each worklist is always accessed by a
single thread of the skeleton. The results are shown in Fig. 5,
where lists use our allocator; a change that was straightforward
thanks to the easy configurability of our skeleton, just requiring
modifications in a couple of lines. Using our pool allocator

greatly reduces the gap in performance between vectors and
lists, up to the point of almost achieving the same speedups
with both containers and in some cases, like ST and SSSP,
improving them. The most significant case is IS, which did not
show any speedup when using lists with the standard allocator
(in Fig. 4) but now presents a reasonable scalability with the
list container. Fig. 6 shows the speedup that the list-based
codes obtain when using our allocator with respect to the
original experiments using the standard one in the executions
using 16 cores. While IS achieves very large speedups of
32.4, 35.1 and 59.8 when using the domains cd, ctd and d2d,
respectively, the other benchmarks become between 1.07 and
2.51 faster with our allocator, the mean speedup for them being
a still noticeable 1.53. If IS is also taken into account, the
average speedup is 9.7.

The type of domain decomposition also plays a critical
role in performance, there being not a clear winner. The Do-
mainND strategy is usually the best one for IS, ST and SSSP,
while the Clustered Tree Domain offers the best performance
for Boruvka and DMR. The need to allow programmers to
easily test different configurations of the skeleton execution is
further supported by the fact that while in some applications
a decomposition algorithm is always the best across the
board, this is not the case in others. For example, while
for 8 and 16 cores SSSP achieves the best performance with
DomainND, the best speedups for 2 and 4 cores are achieved
with the Clustered Domain and the Clustered Tree Domain
strategies, respectively. Similary, while DomainND is also
the best strategy for IS for runs with 8 and 16 cores, it is
the worst partitioning when we only have 2 cores. Also, in
some specific situations all the partitioning algorithms can

Fig. 5. Speedups using different domains and containers. In this figure, lists use our pool allocator

provide a very similar speedup. This is the case of DMR
with two threads. This algorithm performs a lot of work per
workitem, so it tends to scale linearly if the domains are
balanced in terms of work, and the number of conflicts due
to neighborhoods that extend outside the local domain are
minimized. When only two domains are used, the number of
conflicts is minimal due to the small number of subdomains. If
in addition, the domains are built using reasonable heuristics
like the ones considered in this paper, they will probably be
reasonably balanced. Both ciscumstances favor the behavior
observed. Another reason for the complex behavior of these
applications in terms of performance is that in many of them
the amount of work per workitem is highly variable, and
sometimes impossible to predict in advance. This is the case
of the DMR bad triangle cavities, whose extent can only
be known when they are explored, and where the number
of new bad triangles generated can only be known after the
re-triangulation. Another example is Boruvka, whose amount
of work per node is proportional to the number of edges to
be contracted. This number not only depends on the initial
number of edges of each node, but also on the sequence of
nodes contracted before the one considered.

All in all, the best decomposition strategy depends on
the application, the number of cores, and the kind of input
graph, as it can favor a specific partitioning strategy [15].
Given the complexity of the subject, it is difficult to make a
priori selections of the domain decomposition algorithm, and
although the generic algorithms we propose can obtain good
results, a better understanding of the application can allow
users to create domains that can obtain better results.

Boruvka IS DMR ST SSSP mean
10

0

10
1

10
2

s
p

e
e

d
u

p
 (

lo
g

 s
c
a

le
)

cd_l
ctd_l
d2d_l

Fig. 6. Speedups in the experiments with lists using the pool allocator with
respect to the lists using the standard allocator in the runs with 16 cores

The impact of over-decomposition on performance is an-
alyzed in Fig. 7 with experiments using 16 cores. It shows
the relative speedup of each one of the six possibilities tested
in Fig. 4 with respect to their own execution with no over-
decomposition, that is, one in which one bottom level task
is created per core. As we explained in Sect. III, a level of
decomposition i means generating 2i tasks per core, thus for
i = 0 the speedup in the figure is always 1. The -1 level, which
generates 8 tasks, was tried to test if the lower number of task
merges could improve the performance, which happened very
seldom. Over-decomposition, which is very easy to apply with
our skeleton, can largely improve performance, even when we
consider the choices that achieved the best performance in
Fig. 4. This way, d2d v, which was the best strategy for 16
cores for IS, ST and SSSP, further increases its performance

Fig. 7. Speedups using different levels of decomposition with respect to no over-decomposition in runs with 16 cores

by 10%, 30% and 50%, respectively, when 2 tasks per core
are generated.

Overall the skeleton achieves performance similar to that
found in the bibliography for manually-tuned parallel im-
plementations of these applications. This is the case for
example for DMR in [23], although this is only a qualitative
observation given the different hardware and inputs tested.
Regarding the absolute speedups achieved, we must note that
the performance of this kind of applications is more limited by
memory latency and bandwidth than that of applications with
regular access patterns and more CPU operations per input
data item.

V. RELATED WORK

While we have not found any other skeleton-based approach
oriented to the parallelization of this kind of applications, there
are proposals with this aim. The Galois system [3] is a frame-
work for this kind of algorithms that relies on user annotations
that describe the properties of the operations. Its interface
can be simplified though, if only cautious and unordered
algorithms are considered. Galois has been enhanced with
abstract domains [24], defined as a set of abstract processors
optionally related to some topology, in contrast to our concept
of set of values for a property of the items to process. Our
domains are completely configurable and can be related to the
problem at hand, so the programmer can use the better fitted
domain for her program.

Chorus [4] defines an approach for the parallelization of
irregular applications based on object assemblies, which are
dynamically defined local regions of shared data structures
equipped with a short-lived, speculative thread of control.

Chorus follows a bottom-up strategy that starts with individual
elements, merging and splitting assemblies as needed. These
assemblies have no relation to property domains and their
evolution, i.e., when and with whom to merge or split, must
be programmatically specified by the user. We use a top-down
process based on an abstract property, and only a way to
subdivide its domain and to check the ownership are needed.
Also, the evolution of the domains is automated by our library
and it is oblivious to the algorithm code.

Partitioning has also been applied to an irregular application
in [23]. Their partitioned code is manually written and it is
specifically developed and tuned for the single application they
study, Delaunay mesh generation. Additionally, their imple-
mentation uses transactional memory for synchronizations.

The concept of hierarchical partitioning has also been stud-
ied, for example in [25], as a means to improve data locality
through several processing elements, and in the memory
hierarchy of each processing element. But their solution is
only applicable to regular algorithms, and as in the case of
the Galois system, their domain is just an abstraction of the
number of processing elements, and consecutive elements in
the input data, but unlike ours, it is not defined from the
properties of such data and it is not configurable.

VI. CONCLUSIONS

In this paper we have extended and evaluated the con-
figurability of the first skeleton for amorphous data-parallel
applications as far as we know. These applications offer a
large number of implementation possibilities based on the
use of different data structures, levels of work decomposition
and work partitioning algorithms, which are richer than those

of regular algorithms. The ability to easily experiment with
these possibilities is very important for irregular applications
because deriving heuristics to decide the best configuration
for each given algorithm, input and computer to use is much
more difficult than in the case of regular applications, or even
impossible.

Our experience has shown that many alternative configu-
rations can be explored with this skeleton with very little
effort. We have also observed that the impact on performance
of each implementation decision, even taken isolatedly, can
be enormous and that the best alternative depends on the
algorithm and the number of cores available. Also, although
the generic options provided in the library provide reasonable
performance, users can define and use their own decompo-
sition algorithms, data structures, etc. specifically targeted to
their particular problem to achieve better performance.

As for future work, we plan to enable providing more hints
to improve load balancing and performance. Providing more
options is also interesting, as for example, the usage of do-
mains that rely on well-known graph partitioners [26][27] for
their splitting process is a promising approach to explore the
generation of balanced tasks, particularly when the user lacks
information on the structure of the input. Other interesting
possibilities are automating, at least partially, the parameter
tuning of the skeleton, applying techniques such as those used
in behavioural skeletons [28] to manage skeleton parameter
sweeping at run time in case of long running applications,
and developing performance models to support these tasks.

ACKNOWLEDGEMENTS

This work was supported by the Xunta de Galicia under
the Consolidation Program of Competitive Reference Groups,
cofunded by FEDER funds of the EU (Ref. GRC2013/055),
by the Spanish Ministry of Science and Innovation, cofunded
by the FEDER funds of the EU (Ref. TIN2013-42148-P), and
by the FPU Program of the Ministry of Education of Spain
(Ref. AP2009-4752). We also want to thank Prof. Pingali and
his group for the support during the visit of the first author to
the University of Texas at Austin.

REFERENCES

[1] K. Pingali, M. Kulkarni, D. Nguyen, M. Burtscher, M. Mendez-lojo,
D. Prountzos, X. Sui, and Z. Zhong, “Amorphous data-parallelism in
irregular algorithms,” The Univ. of Texas at Austin, Dpt. of Computer
Sciences, Tech. Rep. TR-09-05, Feb. 2009.

[2] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee, “Software transactional memory: Why is it only a
research toy?” Queue, vol. 6, no. 5, pp. 46–58, 2008.

[3] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew, “Optimistic parallelism requires abstractions,” SIGPLAN
Not., vol. 42, no. 6, pp. 211–222, Jun. 2007.

[4] R. Lublinerman, S. Chaudhuri, and P. Cerný, “Parallel programming
with object assemblies,” SIGPLAN Not., vol. 44, no. 10, pp. 61–80,
Oct. 2009.

[5] C. H. González and B. B. Fraguela, “An algorithm template for domain-
based parallel irregular algorithms,” International Journal Parallel Pro-
gramming, vol. 42, no. 6, pp. 948–967, 2014.

[6] M. Cole, Algorithmic skeletons: structured management of parallel
computation. MIT Press, 1991.

[7] S. Gorlatch and M. Cole, “Parallel skeletons,” in Encyclopedia of
Parallel Computing, D. Padua, Ed. Springer US, 2011, pp. 1417–1422.

[8] J. C. Brodman, B. B. Fraguela, M. J. Garzarán, and D. Padua, “New
abstractions for data parallel programming,” in First USENIX Conf. on
Hot Topics in Parallelism (HotPar’09), 2009, pp. 16–16.

[9] M. Danelutto, “Efficient support for skeletons on workstation clusters,”
Parallel Processing Letters, vol. 11, no. 1, pp. 41–56, 2001.

[10] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Münster Skeleton
Library Muesli - A Comprehensive Overview,” Univ. of Münster, Tech.
Rep. Working Papers, ERCIS No. 7, 2009.

[11] M. Steuwer and S. Gorlatch, “SkelCL: Enhancing OpenCL for high-
level programming of multi-GPU systems,” in Parallel Computing
Technologies, ser. Lecture Notes in Computer Science, V. Malyshkin,
Ed. Springer Berlin Heidelberg, 2013, vol. 7979, pp. 258–272.

[12] M. Danelutto and M. Torquati, “Loop parallelism: A new skeleton
perspective on data parallel patterns,” in 22nd Euromicro Intl. Conf. on
Parallel, Distributed and Network-Based Processing (PDP 2014), Feb
2014, pp. 52–59.

[13] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, “A library of construc-
tive skeletons for sequential style of parallel programming,” in Infoscale,
2006.

[14] J. Enmyren and C. Kessler, “SkePU: a multi-backend skeleton program-
ming library for multi-GPU systems,” in 4th Intl. Workshop on High-
level parallel programming and applications (HLPP ’10), 2010, pp. 5–
14.

[15] A. Pothen, “Graph partitioning algorithms with applications to scientific
computing,” in Parallel Numerical Algorithms. Springer Netherlands,
1997, pp. 323–368.

[16] J. Reinders, Intel Threading Building Blocks, 1st ed. O’Reilly &
Associates, Inc., 2007.

[17] M. Leyton and J. Piquer, “Skandium: Multi-core programming with
algorithmic skeletons,” in 18th Euromicro Intl. Conf. on Parallel, Dis-
tributed and Network-Based Processing (PDP 2010), Feb 2010, pp. 289–
296.

[18] C. H. González and B. B. Fraguela, “A generic algorithm template
for divide-and-conquer in multicore systems,” in 12th IEEE Intl. Conf.
on High Performance Computing and Communications (HPCC 2010),
2010, pp. 79–88.

[19] A. de Vega, D. Andrade, and B. B. Fraguela, “An efficient parallel
set container for multicore architectures,” in Intl. Conf. on Parallel
Computing (ParCo 2011), 2011, pp. 369–376.

[20] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms,”
SIGPLAN Not., vol. 46, no. 8, pp. 3–12, Feb. 2011.

[21] L. P. Chew, “Guaranteed-quality mesh generation for curved surfaces,”
in 9th Symp. on Computational Geometry, ser. SCG ’93, 1993, pp. 274–
280.

[22] University of Rome, “Dimacs implementation challenge,”
http://www.dis.uniroma1.it/challenge9/.

[23] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe, “Delaunay
triangulation with transactions and barriers,” in IEEE 10th Intl. Symp.
on Workload Characterization (IISWC ’07), 2007, pp. 107–113.

[24] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew, “Optimistic parallelism benefits from data partitioning,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 2, pp. 233–243, 2008.

[25] J. Meng, S. Che, J. W. Sheaffer, J. Li, J. Huang, and K. Skadron,
“Hierarchical domain partitioning for hierarchical architectures,” Univ.
of Virginia Dept. of Computer Science, Tech. Rep. CS-2008-08, June
2008.

[26] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[27] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs,” in High-Performance Computing and Networking, ser. Lecture
Notes in Computer Science, 1996, vol. 1067, pp. 493–498.

[28] M. Aldinucci, S. Campa, MarcoDanelutto, P. Dazzi, D. Laforenza,
N. Tonellotto, and P. Kilpatrick, “Behavioural skeletons for component
autonomic management on grids,” in Making Grids Work. Springer
US, 2008, pp. 3–15.

