
Noname manuscript No.
(will be inserted by the editor)

Numerical simulation of pollutant transport in a shallow
water system on the Cell heterogeneous processor

Carlos H. González · Basilio B. Fraguela ·
Diego Andrade · José A. Garcı́a ·
Manuel J. Castro

the date of receipt and acceptance should be inserted later

Abstract This paper presents an implementation, optimized for the Cell processor,
of a finite volume numerical scheme for 2D shallow water systems with pollutant
transport. A description of the special architecture and programming required by the
Cell processor motivates the methodology to develop optimized implementations for
this platform. This process involves parallelization, data structure reorganization, ex-
plicit transfers of data and computation vectorization. Our implementation, tested
using a realistic problem, achieves very good speedups with respect to the sequential
execution on a standard CPU.

Keywords High Performance Computing, Finite Volume Method, Vectorization,
Parallelism, Heterogeneous Architectures

1 Introduction

This paper addresses the optimized simulation on the Cell processor [12] of the trans-
port of an inert pollutant on a one-layer homogeneous fluid governed by a shallow-
water system. More precisely, the fluid is modeled by a system of shallow water equa-
tions in two dimensional domains and the pollutant transport is modeled by a trans-
port equation. These coupled equations constitute a hyperbolic system of conserva-
tion laws with source terms, that can be discretized using finite volume schemes [15].

Carlos H. González · Basilio B. Fraguela · Diego Andrade
Computer Architecture Group, Electronics and Systems Dept., Univ. of Coruña, Spain
E-mail: {cgonzalezv, basilio.fraguela, diego.andrade}@udc.es

José A. Garcı́a
Applied Mathematics Area, Mathematics Dept., Univ. of Coruña, Spain
E-mail: jagrodriguez@udc.es

Manuel J. Castro
Mathematical Analysis Dept., Univ. of Málaga, Spain
E-mail: castro@anamat.cie.uma.es

basilio
Typewritten Text
The final publication is available at http://link.springer.com
with DOI 10.1007/s11227-012-0862-y here

http://dx.doi.org/10.1007/s11227-012-0862-y

2 Carlos H. González et al.

Finite volume schemes solve the integral form of the shallow-water equations in
computational cells. Therefore, mass and momentum are conserved in each cell, even
in the presence of flow discontinuities. Numerical finite volume schemes, for solving
the shallow water equations have been developed in many works [4] [1] [13] [14]
[17] [18]. The pollutant transport problem in the context of shallow water systems
has been studied in [2][5][3][21].

These models have many applications to geophysical flows, being of interest for
the study of rivers, channels, ocean currents, estuarine systems, or dambreak prob-
lems, for example. The simulations of these problems have very large computing
requirements which grow with the size of the space and time dimensions of the do-
main. This has given place to the development of parallel implementations of numeri-
cal schemes to simulate shallow-water systems in reasonable times mainly in clusters
of PCs [8] and GPUs [6][9][16][20]. There are few studies however of shallow-water
system implementations [11][19] on the Cell heterogeneous processor [12], a distinc-
tive architecture that requires special programming techniques to be fully exploited,
different from those used in GPUs or homogeneous multicore architectures. Also,
none of these works considers a pollutant transport model with wet-dry fronts. This
allows to present an application using real topography data of a complex sea region.
This way, this paper is the first one to study the optimized implementation of such
model on the Cell architecture as far as we know. Other important differences are
that [19] is written on a high-level library instead of at low level, which can miss im-
portant optimizations, and that [11] uses an standard double buffering approach that
allows to eliminate most memory access delays, while we implemented a more ambi-
tious multibuffering, discussed in Section 3.3 that completely avoided them. With the
optimal use of the resources available in the Cell processors of a BladeCenter QS20,
our implementation of the algorithm runs 46 times faster in this system than in our
baseline general-purpose CPU.

The rest of this paper is organized as follows. Section 2 describes the physical
model and the numerical scheme. Section 3 overviews the Cell architecture and de-
scribes the optimized implementation of our model on it, followed by a validation and
a performance evaluation in Section 4. Finally, Section 5 presents our conclusions and
ideas for future work.

2 Mathematical model and numerical scheme

2.1 Coupled model: 2d shallow water equations with pollutant transport

A pollutant transport model consists in the coupling of a fluid model and a transport
equation. In this work, to model the fluid dynamics we consider the two dimensional
one layer shallow water equations. The pollutant transport evolution is modelled by
a transport equation. These four coupled equations form a system that can be written
as a system of conservation laws with source terms in the following compact form:

∂W
∂ t

(xxx, t)+div FFF(W) = S(W) ·∇H(x)+Sf , (1)

Numerical simulation of pollutant transport on the Cell 3

where W =
[

h, qx, qy, hC
]T

, is the vector of unknowns. The unknowns of the prob-
lem are: the vertically averaged height of the water column h(x, t); the flux q(x, t) =
(qx(x, t),qy(x, t)) = h(x, t) ·x(x, t), where u(x, t) = (ux(x, t),uy(x, t)) is the verti-
cal averaged velocity of the fluid, at each point xxx= (x,y) of the computational domain
and at time t; and the pollutant concentration C(x, t), with h(xxx, t)C(xxx, t) the amount of
pollutant dissolved in the fluid. H(x) is a data: the function that describes the bottom
bathimetry, measured from a fixed reference level and g is the gravitational constant.

In equation (1) FFF = (F1,F2) is the flux function given by:

F1(W) =
[

qx,
q2

x
h

+
1
2

gh2,
qxqy

h
, qxC

]T
, F2(W) =

[
qy,

qxqy

h
,

q2
y

h
+

1
2

gh2, qyC

]T
.

The source term due to the bathimetry is S(W) = (S1(W),S2(W)) with

S1(W) =
[

0, gh, 0, 0
]T

, S2(W) =
[

0, 0, gh, 0
]T (2)

and S f is the source term due to friction forces, given by a Manning Law

Sf =
[

0, ghS f ,x, ghS f ,y, 0
]T

, S f ,α = n2 uα‖u‖
h1/3 , α = x,y (n, roughness coefficient).

(3)
Given an unitary vector η = (ηx,ηy), we define the matrix

A(W,η) = A1(W)ηx +A2(W)ηy,

where Ai(W) = ∂Fi
∂W (W) is the jacobian matrix of Fi(W), i = 1,2. A(W,η) is diago-

nalizable, with eigenvalues λ1 = λ4 =u ·η, λ2 =u ·η−
√

gh, λ3 =u ·η+
√

gh, and
thus, if h(x, t)> 0, the system (1) is hyperbolic.

2.2 Finite volume numerical scheme

Therefore, to discretize system (1) we use a finite volume scheme. More details can
be found in [7][10]. Let us remark that the term Sf is discretized in a semi-implicit
way as detailed in [10], thus in what follows we focus in the discretization of system
(1) where Sf is supposed to be zero.

To discretize the system (1), we split the computational domain in cells or control
volumes, Vi ⊂ R2, i = 1, . . . ,L. In our case we will consider a structured mesh given
by squares. We will use the following notation: given a finite volume Vi, xxxi is its center,
|Vi| its area, Ni is the set of indexes j such that Vj is the neighbor of Vi, Ei j is the edge
shared by two neighbor cells Vi and Vj and |Ei j| its length and ηi j = (ηi j,x,ηi j,y) is
the unitary vectorial normal to edge Ei j and that points towards the cell Vj. Finally,
we call Vi j the triangular subcell with one edge given by Ei j and the opposite vertex
given by xxxi. In finite volume schemes, constant approximations of the solution at each
of the previous cells are computed. More precisely, if W (x, t) is the exact solution at
point xxx and at time t, we will denote by W n

i an approximation of the average of the

solution on the volume Vi at time tn, W n
i ' 1/|Vi|

∫
Vi

W (x, tn)dx.

4 Carlos H. González et al.

Integrating the equation (1) over each finite volume Vi, dividing by |Vi| and ap-
plying the Divergence Theorem:

∂

∂ t

(
1
|Vi|

∫
Vi

W (xxx, t)dV

)
=− 1
|Vi|

(∑
j∈Ni

∫
Ei j

F(W) ·ηηη i j dγ−
∫

Vi

S(W) ·∇H(x)dV).

(4)
To discretize equation (4) we will use the finite volume numerical scheme pre-

sented in [10]: once the approximation of Wi is known at time tn, W n
i , the approxima-

tion at time tn+1 is given by:

W n+1
i =W n

i −
∆ t
|Vi| ∑

j∈Ni

|Ei j|F−
i j (W

n
i ,W

n
j ,ηi j), (5)

with

F−
i j (W

n
i ,W

n
j ,ηi j) = Pn,−

i j

(
F (W n

j) ·ηi j−F (W n
i) ·ηi j−Sn

i j

)
−
F (W n

j) ·ηi j−F (W n
i) ·ηi j

2
+Fα(W n

i ,W
n
j ,ηi j)−Sn

α,i j,

(6)

where the projection matrix, Pn,−
i j , is given by:

Pn,−
i j =

1
2

Kn
i j

(
I− sgn (Dn

i j)
)
(Kn

i j)
−1, (7)

being I is the identity matrix and Kn
i j the matrix whose columns are the eigenvectors

related to the Roe matrix An
i j given by

An
i j = A(W n

i j,ηηη i j) = A1(W n
i j)ηi j,x +A2(W n

i j)ηi j,y, (8)

where
W n

i j =
[

hn
i j, hn

i ju
n
i j,x, hn

i ju
n
i j,y, hn

i jC
n
i j
]T

, (9)

is the intermediate Roe’s state, satisfying F (W n
j) ·ηi j−F (W n

i) ·ηi j = An
i j(W

n
j −W n

i).
Dn

i j the diagonal matrix whose elements are the eigenvalues of An
i j, and sgn Dn

i j is
the diagonal matrix that results from taking the sign of the elements of Dn

i j. The term
Sn

i j is given by

Sn
i j =

[
0, ghn

i j(H j−Hi)ηi j,x, ghn
i j(H j−Hi)ηi j,y, 0

]T
. (10)

FFFα(W n
i ,W

n
j ,ηηη i j) =

FFF(W(1−α)i+α j) ·ηi j +FFF(Wαi+(1−α) j) ·ηi j

2
, (11)

where we denote W(1−α)i+α j = (1−α)W n
i +αW n

j , with α ∈ [0,1], a convex combi-
nation of W n

i and W n
j , and finally,

Numerical simulation of pollutant transport on the Cell 5

Sn
α,i j =



0

g
2

(
h(1−α)i+α j +hn

i

2
(H(1−α)i+α j−Hi)+

hαi+(1−α) j +hn
j

2
(Hαi+(1−α) j−H j)

)
ηi j,x

g
2

(
h(1−α)i+α j +hn

i

2
(H(1−α)i+α j−Hi)+

hαi+(1−α) j +hn
j

2
(Hαi+(1−α) j−H j)

)
ηi j,y

0


, (12)

where Hαi+(1−α) j = αHi +(1−α)H j, is again a convex combination of Hi and H j.
The expressions (11) and (12) are used to avoid entropy corrections needed by

Roe scheme in critical points [10]. The authors propose different values of the pa-
rameter α . In practice, the value α = 1/8 gives good results [10], so here we take
α = 1/8. Note that in the case α = 0 we obtain the usual Roe Scheme [10].

The previous numerical scheme is exactly well-balanced for the stationary solu-
tion corresponding to water at rest (see [10]) and linearly L∞ under the usual CFL
condition:

∆ t = min
i=1,...,L

{
∑ j∈Ni |Ei j|‖Dn

i j‖∞

2γ|Vi|

}
where γ , 0 < γ ≤ 1, is the CFL parameter and ‖Dn

i j‖∞ the infinite norm of the matrix
Dn

i j, that is, the maximum eigenvalue of the matrix An
i j.

The resulting time step can be tiny, what gives raise to a great number of time iter-
ations for simulations that happen in big time scales, which is the case of geophysical
flows. Thus from the computational point of view, the solution of the problem is
reduced to a huge number of matrix operations and vectors of size 4×4.

Remark (Wet-dry fronts): It must be remarked that this numerical scheme cor-
responds to the case where the fluid occupies the whole domain. If this numerical
scheme is applied without any modification to a case with dry-wet fronts (situations
with emerging bottom), the obtained results have no physical meaning. In those cases
it is necessary to modify the scheme, as is proposed in [10]. Let us remark that to
avoid errors due to working with single precision, the velocities and concentration
are desingularized following the technique suggested in [14], and taking ε = 10−6 the
simple precision limit. Also, if the thickness of the layer of fluid becomes tiny at both
cells Vi and Vj, then the fourth component of the numerical flux F−

i j (W
n
i ,W

n
j ,ηi j) is

defined as follows:

F−
i j [4]

=

F−
i j [1]
·C j if uuui j ·ηηη i j < 0,

F−
i j [1]
·Ci if uuui j ·ηηη i j > 0,

where F−
i j [l]

, denotes the l-th component of the vector F−
i j .

3 Optimized implementation on the Cell Broadband Engine

The Cell Broadband Engine (CBE) Architecture is an heterogeneous design charac-
terized by the presence of two kinds of cores in the chip, the PowerPC Processing

6 Carlos H. González et al.

Unit (PPU) and the Synergistic Processing Units (SPUs). The PPU is a a general-
purpose PowerPC core who is in charge of the task management in the chip. Most
computational tasks should be run in separate threads in the eight SPUs available
in the processor, which are computing cores based on SIMD instructions attached to
256KB of software managed local memory. An SPU can only access directly its local
memory. Thus programmers must explicitly code transfers between this memory and
main memory by means of DMA operations, which results in high performance in
exchange of a harder programming.

We programmed the system at very low level using the IBM CellSDK in order
to obtain optimal performance. This way, process creation and assignment to SPUs
was done via pthreads and libspe2, which implements basic task control routines.
Compiler intrinsics were used for operation vectorization. Regarding communica-
tions and data transfers, they can be done in two ways: (1) DMA commands can be
used to move data between main memory and the local stores, or between different
local stores. Memory addresses must be 16 byte aligned, and preferably 128 byte
aligned. (2) Using mailboxes, which are 32 bits registers exposed by each SPU and
addressable by the PPU. They are mainly used for process synchronization and very
small data communications between the PPU and the SPUs.

The Cell version of the algorithm was derived from an implementation [8] for x86
processors. The adaptation to the Cell architecture requires several stages which may
also be applied to obtain Cell implementations in other areas of scientific computing:

– Parallelism identification: The algorithm is analyzed and the hotspots where the
application consumes most of the time are identified. The execution time of these
hotspots is reduced by extracting loop, task and/or data-parallelism. Thus, the
code of these hotspots is modified to be executed by the SPUs. The PPU executes
the rest of the code and coordinates the work of the SPUs.

– Work distribution: As a consequence of the previous stage, the computation is
distributed among the PPU and SPUs. The data and code handled by each SPU
must fit in the constrained space of its local storage (256 KB). Small data struc-
tures which are frequently used by the SPU reside permanently in the local storage
while large or less frequently used data structures are cached or streamed in or out
the local storage. In addition, the base addresses, the size and other characteristics
of the data structures must be adapted to optimize DMA transfers.

– Code optimizations: The processing performed by the PPU and each SPU is op-
timized using the vector instructions available in these units and minimizing the
overhead imposed by the data interchanges. Recursive functions must be rewrit-
ten as iterative functions, the number of branches must be minimized to the extent
possible and basic-loop optimizations (e.g. loop unrolling) must be applied.

The application of each stage to our application is now described in turn.

3.1 Parallelism identification

Figure 1 shows a flowchart of the algorithm. First in {1}, the domain of the simulated
problem is decomposed into finite volumes. Then a loop iterates on time, from the

Numerical simulation of pollutant transport on the Cell 7

Fig. 1 Algorithm flowchart

Fig. 2 Structured mesh

initial to the final time configured in the problem. Each iteration of this loop is a
step of the simulation, and does three steps: in {2}, the flux between two volumes
that passes through each edge is calculated. After these calculations each volume has
a particular ∆ t given by the stability condition, and in {3} the minimum of them
is obtained. This value is used to advance the simulation to the next step in {4},
updating the values of the variables of the volumes.

In the Cell architecture, the domain is decomposed into disjoint subsets, and the
processing of each subset is assigned to one different SPU. Thus, the algorithm con-
tains a lot of data-parallelism in these steps that can be exploited using the SPUs. The
reduction of the minimum time step is coordinated by the PPU, which provides the
global minimum time step to each SPU to transit its volumes to the next state.

3.2 Work distribution

Before the work is distributed among the SPUs, the data structures used must be
adapted to improve the performance in the Cell architecture. A general implemen-
tation of a finite volume method solver stores the data of volumes, edges and their
connectivity in a graph in order to support unstructured grids. But most problems
can be represented using a structured grid of rectangular volumes of the same size,
which can be stored in a two dimensional matrix, and neighbors are obtained just
by looking at the adjacent columns and rows. This structure has also lower memory
requirements and, in the case of the Cell, eases the transfer of blocks of volumes that
fit in the 256KB local memory of the SPUs. This can be done through DMA transfers
of big consecutive data sets, which is more efficient than smaller transfers required to
work with individual volumes in non-structured meshes. Data structures are forced to
start at 128-byte boundaries and their size is rounded up to a multiple of 128 bytes in
order to optimize DMA transfers.

Figure 2 shows an example of a structured mesh. Each cell of the matrix is a
volume and the arrows represent the liquid flowing between the volumes. Step 2 of
Figure 1 is done iterating in this volume array. For each volume, the flow between it
and its left and bottom neighbours is computed.

8 Carlos H. González et al.

Fig. 3 Transfers using shadow regions (darker volumes)

Data-parallelism is exploited by executing the algorithm on a different set of vol-
umes in each SPU. The matrix of volumes is distributed among the SPUs in blocks
of columns. With this distribution, the volumes of the first and the last columns of
the block assigned to a SPU miss the information about their left and right neigh-
bors, respectively. This is solved using shadow regions in each SPU consisting of the
rightmost column of the block to the left and the leftmost column of the block to the
right. The usage of shadow regions implies that some calculations are duplicated, but
its impact on the performance is only 0.21% of the execution time.

The code and the data size cannot exceed the 256 KB of local storage available
in each SPU. This way, each SPU has to fragment its block of columns in smaller
sub-blocks that fit in this space. The shadow region of each sub-block includes the
volumes of the top and bottom neighboring rows, besides the volumes of the left and
the right neighboring columns. The blocks are transferred to the SPU by rows, whose
size is adjusted to fit the maximum limit of 16 KB transferrable per DMA request.

Figure 3 shows how these transfers are done step by step. Each sub-block is read
adding a shadow region that includes the column to the right and the row to the
bottom, as shown in steps 1 and 4. The exceptions are obviously the last subblocks of
each group of columns (steps 3 and 6), where there are no bottom rows. The values
computed for the volumes of the shadow regions are incomplete. Their final values
will be calculated after the processing of the next sub-blocks. The shadow row of one
sub-block is not sent back to the main memory when the processing of the sub-block
finishes. Rather, it is relocated at the beginning of the buffer, as can be seen in steps
2 and 5 in the figure, so it can be reused during the processing of the next sub-block.

Communications between SPUs are avoided, which simplifies the program and
minimizes the overheads. In order to compute the minimum ∆ t, each SPU computes
it local minimum, and stores it in its mailbox. The PPU reads all the mailboxes,
reduces their values, and puts the result in the input mailboxes of each SPU.

3.3 Code optimizations

Once the tasks have been distributed between the PPU and the SPUs, three aspects of
the code must be improved: (1) different optimizations must be applied to the code
executed in the SPU such as loop unrolling or the minimization of the number of

Numerical simulation of pollutant transport on the Cell 9

branches, (2) the SIMD instructions available in the Cell cores must be used, and
(3) the overhead due to the data transfers between main memory and the SPUs local
memory must be minimized. These aspects are now explained in turn.

Loop optimizations: Several optimizations have been applied to the code that will
be executed on each SPU. First, the code size is important because data, code and
stack must fit in the 256KB available on each SPU. Thus, the code has been modified
looking for a balance between code size and performance. The reason is that there
are optimization techniques that increase the code size. An example is loop unrolling,
which is applied to facilitate vectorization. Besides, the operations that are the core of
the algorithm are implemented using as few conditional instructions as possible. The
reason is that mispredicted branches incur in a heavy performance penalty in SPUs,
while their branch predictor is very simple, as it simply assumes that branches are
never taken. The best approach to remove branches in this architecture is to replace
them with vector comparisons and logical operations.

Vectorization: The fundamental vector and matrix operations are implemented using
the vector instructions available in the PPU and SPUs. These instructions work with
128 bits wide vector registers, which can thus store 4 single precision floating point
numbers. In the simulation, each volume is characterized with 4 variables –depth,
pollutant concentration, and flow on x and y axes–, which can be represented using
4x4 matrices and 4 dimensional vectors. This enables their associated operations to
be executed four at once using SIMD instructions.

Data transfers overhead minimization: Data transfers between the SPU local storage
and the main memory are done through asynchronous DMA transfers. The latency of
these transfers can be hidden by overlapping them with the computation. The multi-
buffering technique has been used to define several buffers in the local storage of
each SPU. This way, some buffers are used to store data that is being transferred
from or to main memory, while the SPU computes on data of other buffers. The
number of buffers has been adjusted experimentally to allow full overlapping between
computation and communications in each SPU. Namely, 10 buffers are used, and each
one stores 256 volumes with 54 bytes each. This uses 135KB of local memory, so a
bit below one half of the memory is left for the heap, stack and program code. Our
measurements indicate that this multibuffered implementation completely removed
the memory access delays from our overall computation runtime.

4 Results

The solver has been tested with an academic problem and a realistic problem in two
systems. The x86 version was tested in a server with a Xeon E5440 processor at
2.83GHz and a 6MB L2 cache. The code was compiled using GCC 4.1.2. For the Cell
implementation, a BladeCenter QS20, which provides two 3.2GHZ Cell processors
with shared memory and 8 SPUs each, with GCC 4.1.1 was used. Exploiting the two
Cell processors in this system led to adding a new level of parallelization by splitting

10 Carlos H. González et al.

Fig. 4 Pollutant drop Fig. 5 Pollutant after 5 and 1/2 days Fig. 6 Pollutant after the seventh day

the computations on them using pthreads. In both systems the compiler was invoked
with the highest optimization level available.

The academic problem simulates the transport of a pollutant within a rectangular
channel of 75× 30 m. whose bottom has a bump. Free boundary conditions were
imposed at the entrance and at the outlet of the channel and wall conditions were im-
posed on the sides. The problem was simulated with CFL=0.9 and a simulation time
of 200 s. yielding the same results for five meshes with sizes from 9000 to 2304000
volumes. It was also used for checking the error of the usage of single precision com-
putations in our implementation For this purpose we developed a double-precision
version of our x86 code. The value of the L1 norm for T = 100 seconds for the sim-
ulation using a mesh of 150× 60 volumes was 2.7e− 4 for h, 3.72e− 5 for qx and
4.01e−6 for c. This way, the error measured for single-precision data is negligible.

The realistic problem simulates the transport of a pollutant with a radius of 400
m in a 94 km2 area of an actual estuary called rı́a de Arousa with 7 days of simulated
time. The bottom and left boundary conditions are fixed using the equation of the tide
in that area, while wall conditions are used in the top and right borders. Figures 4 to 6
show the evolution of the simulation from the pollutant drop to the final snapshot.

Figure 7 reflects the execution times of the x86 version and the Cell implementa-
tion using a varying number of SPUs for several mesh sizes. For example, the runtime
for the largest mesh decreases from 5.8× 106 s. for the x86 version to 0.24× 106 s.
using the 8 SPUs in a Cell or 0.13× 106 using all the resources in the QS20. The
Cell achieves with 16 SPUs between 496.7 units of real time simulated per unit of
simulation time for the smallest mesh tested, and 4.7 for the largest mesh tried. This
way it can perform the simulations in real time with a high level of detail, even allow-
ing to evaluate different scenarios in the event of a contaminant spill. The speedups
of the Cell with respect to the x86 are shown in Figure 8. As can be seen, the Cell
implementation using a single SPU is between 2 and 4 times faster than the x86, and
its performance improves linearly with the number of SPUs, achieving a maximum
speedup of 46x with respect to the x86 version. These results are possible thanks to
the minimization of the communications, the high level of exploitation of the SPU
SIMD units of our code, and the efficient application of cell-specific optimizations
such as branch elimination and the overlapping of the computations with the data
transfers between main memory and the local storage. Another important reason is
that the Cell processor clock rate is 13.1% higher than that of the x86 system. Fig-
ure 9 shows the speedups for 2, 4, 8 and 16 SPUs with respect to using one SPU.
These speedups are almost perfectly linear but for the smallest mesh on 16 SPUs, in

Numerical simulation of pollutant transport on the Cell 11

40.000 90.000 250.000 360.000 640.000 810.000 1.000.000
10

0

10
2

10
4

10
6

10
8

Number of volumes

lo
g(

tim
e(

se
co

nd
s)

)

CPU
1 SPU
2 SPUs
4 SPUs
8 SPUs
16 SPUs

Fig. 7 Running times for the realistic problem in the
Xeon and Cell processors

1 2 4 8 16
0

5

10

15

20

25

30

35

40

45

50

SPUs

S
pe

ed
up

40 000 vol
90 000 vol
250 000 vol
360 000 vol
640 000 vol
810 000 vol
1 000 000 vol

Fig. 8 Cell speedups using 1, 2, 4, 8, and 16 SPUs
against Xeon for the realistic problem

1 2 4 8 16
0

2

4

6

8

10

12

14

16

18

of SPUs

S
pe

ed
up

40 000 vol
90 000 vol
250 000 vol
360 000 vol
640 000 vol
810 000 vol
1 000 000 vol

Fig. 9 Cell speedups using 1, 2, 4, 8, and 16 SPUs
against 1 SPU for the realistic problem

1 2 4 8 16
0

0.5

1

1.5

of SPUs

E
ffi

ci
en

cy

40 000 vol
90 000 vol
250 000 vol
360 000 vol
640 000 vol
810 000 vol
1 000 000 vol

Fig. 10 Cell efficiencies using 1, 2, 4, 8, and 16 SPUs
for the realistic problem

which the overhead of synchronizing the two Cell processors is large in relation to
the reduced computing time in each time step for this problem size. This can be also
seen in the efficiency graph for the runs with different numbers of SPUs with respect
to the usage of a single one in Figure 10. Except for this point, the efficiency is very
high thanks to the minimal parallelization overhead, with an average of 97.6%.

5 Conclusions

This work presents the implementation for the Cell architecture of a shallow water
system model with transport of pollutants, which uses the finite volume method. The
development followed well-defined steps that constitute a method which could be
used to create applications for the Cell architecture in other areas of scientific com-
puting. The implementation was tested with an academic and a realistic problem.

The evaluation shows a considerable performance gain of the Cell implementa-
tion with respect to an x86-based one. This was accomplished by exploiting data
parallelism and using many low-level optimizations targeted to the Cell processor,
achieving up to a 46x speedup with respect to the x86 version. The Cell implementa-
tion takes advantage efficiently of an increasing number of SPUs thanks to the mini-
mization of the communications and the lack of data dependences.

12 Carlos H. González et al.

Regarding future work, a relevant contribution would be to incorporate support
of non-structured meshes. Furthermore, a high order scheme could be implemented,
which would allow more precision using coarser meshes.

Acknowledgements

This work was partially supported by the Science and Innovation Ministry of Spain
(Projects TIN2010-16735, MTM2010-21135-C02-01 and MTM2009-11923), Xunta
de Galicia CN2012/211 (partially supported by FEDER funds), and the FPU program
of the Spanish Government (ref AP2009-4752). We thank Prof. Xavier Martorell and
BSC for providing access to the MariCel system, and the PRACE prototype access
program.

References

1. Audusse, E., Bouchut, F., Bristeau, M., Klein, R., Perthame, B.: A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comp. 25 (6), 2050–
2065 (2004)

2. Audusse, E., Bristeau, M.O.: Transport of pollutant in shallow water. a two time steps kinetic method.
M2AN 37, 389–416 (2003)

3. Benkhaldoun, F.I., Elmahi, I., Seaid, M.: Well-balanced finite volume schemes for pollutant transport
on unstructured meshes. Journal of Computational Physics 226, 180–203 (2007)

4. Bermúdez, A., Vázquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms.
Comput. and Fluids 23, 1049–1071 (1994)

5. Bristeau, M.O., Perthame, B.: Transport of pollutant in shallow water using kinetic schemes. ESAIM
Proceedings 10, 9–21 (2001)

6. Brodtkorb, A.R., Sætra, M.L., Altinakar, M.: Efficient shallow water simulations on gpus: implemen-
tation, visualization, verification and validation (2010)

7. Castro, M., Garcı́a-Rodrı́guez, J., González-Vida, J., Parés, C.: A parallel 2D finite volume scheme
for solving systems of balance laws with nonconservative products: Application to shallow flows.
Computer methods in applied mechanics and engineering 195, 2788–2815 (2006)

8. Castro, M., Garcı́a-Rodrı́guez, J., González-Vida, J., Parés, C.: Solving shallow-water systems in 2D
domains using Finite Volume methods and multimedia SSE instructions. Journal of Computational
and Applied Mathematics 221, 16–32 (2008)

9. Castro, M.J., Ortega, S., de la Asunción, M., Mantas, J.M., Gallardo, J.M.: Gpu computing for shallow
water flows simulation based on finite volume schemes. C.R. Mecanique (2010)

10. Castro-Dı́az, M.J., Chacón, T., Fernández Nieto, E.D., González-Vida, J.M., Parés, C.: Well-balanced
finite volume schemes for 2d non-homogeneous hyperbolic systems. application to the dam break of
Aznalcóllar. Computer Methods in Applied Mechanics and Engineering 197, 3932–3950 (2008)

11. Geveler, M., Ribbrock, D., Göddeke, D., Turek, S.: Lattice-boltzmann simulation of the shallow-
water equations with fluid-structure interaction on multi- and manycore processors. In: Lecture Notes
in Computer Science, vol. 6310, chap. Facing the multicore-challenge, pp. 92–104. Springer-Verlag
(2010)

12. IBM, Sony, Toshiba: Cell Broadband Engine Architecture. IBM (2006)
13. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind schemes for hyperbolic conser-

vation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)
14. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme

for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)
15. LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press (2002)
16. Lobeiras, J., Viñas, M., Amor, M., Fraguela, B.B., Arenaz, M., Garcı́a, J., Castro, M.: Paralleliza-

tion of shallow water simulations on current multi-threaded systems. International Journal of High
Performance Computing Applications (2012)

Numerical simulation of pollutant transport on the Cell 13

17. Noelle, S., Xing, Y., Shu, C.: High order well-balanced finite volume WENO schemes for shallow
water equations with moving water. J. Comp. Phys. 226, 29–58 (2007)

18. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo
38, 201–231 (2001)

19. Rostrup, S., Sterck, H.D.: Parallel hyperbolic PDE simulation on clusters: Cell versus GPU. Computer
Physics Communications 181(12), 2164–2179 (2010)

20. Viñas, M., Lobeiras, J., Fraguela, B.B., Arenaz, M., Amor, M., Garcı́a, J., Castro, M., Doallo, R.: A
multi-gpu shallow-water simulation with transport of contaminants. Concurrency and Computation:
Practice and Experience (2012)

21. Xu, Z., Shu, C.W.: Anti-diffusive finite difference weno methods for shallow water with transport of
pollutant. SIAM J Numer. Analysis 46, 1012–1039 (2006)

