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Abstract Biclustering is a data mining technique that

allows us to find groups of rows and columns that are

highly correlated in a 2D dataset. Although there exist

several software applications to perform biclustering,

most of them suffer from a high computational com-

plexity which prevents their use in large datasets. In

this work we present ScalaParBiBit, a parallel tool to

find biclusters on binary data, quite common in many

research fields such as text mining, marketing or bioin-

formatics. ScalaParBiBit takes advantage of the spe-

cial characteristics of these binary datasets, as well as

of an efficient parallel implementation and algorithm,

to accelerate the biclustering procedure in distributed-

memory systems. The experimental evaluation proves

that our tool is significantly faster and more scalable

that the state-of-the-art tool ParBiBit in a cluster with

32 nodes and 768 cores. Our tool together with its ref-
erence manual are freely available at https://github.

com/fraguela/ScalaParBiBit.

Keywords Biclustering · High Performance Comput-

ing · Multicore Clusters · MPI · Master-Slave

1 Introduction

Data mining techniques are extensively used in many

scientific fields to discard non interesting data from

large input datasets, extract valuable information, and
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transform it into an understandable structure. In these

fields data is usually stored in 2D matrices where rows

and columns represent attributes and individuals, re-

spectively. Moreover, many scientific areas only need

to work with binary data, where the possible values

are 0 or 1 and only need one bit to be represented.

Some examples of research fields that can work with bi-

nary data are gene expression analyses [13, 30], where a

value equal to one indicates that a gene is differentially

expressed in an individual; marketing [9], to represent

whether people have access to a certain product or shop;

or social networks [10], where those values equal to one

indicate relationships among users.

Clustering techniques have been traditionally widely

used to extract useful information from large datasets [23,

26]. For instance, clustering is useful in genetic and ge-
nomic analyses in order to find groups of genes with

influence in the phenotype of all samples. However,

clustering techniques fail when trying to find patterns

that are only present in a group of individuals. In this

common scenario we should use biclustering algorithms,

which discriminate not only by rows but also by columns [19,

22].

There exist many alternatives for biclustering, each

one with its own advantages and drawbacks, but they

have in common a computational complexity signifi-

cantly higher than that of clustering techniques. Al-

though some approaches are able to reduce the runtime

necessary for biclustering thanks to taking into account

the binary representation of their data [20, 24], their ex-

ecution time is still prohibitive for large datasets. In

this paper we present ScalaParBiBit, a parallel tool

to accelerate binary biclustering in multicore clusters

that exploits both thread-level and process-level par-

allelism in order to provide high scalability when in-

creasing the number of nodes. Our software package

https://github.com/fraguela/ScalaParBiBit
https://github.com/fraguela/ScalaParBiBit
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is derived from ParBiBit [6], a high performance tool

also targeting these kinds of clusters, but offering much

lower performance and scalability while having much

greater memory limitations, as our experiments show.

As we will see, the development of ScalaParBiBit not

only involved typical sequential and parallel optimiza-

tions, but also a strong redesign of the algorithm. This

way, the key contributions and observations from this

paper are:

– A sequential optimization of the biclustering algo-

rithm that increases its performance by 78.6% in

single core executions.

– A novel strategy for the storage of the initialized

biclusters that reduces by one half the memory re-

quirements of the algorithm, thus enabling the pro-

cessing of much larger datasets.

– A novel full redesign of the algorithm that allows

overlapping its most expensive stages, so that it is

on average 5.93 times faster than the original design

in executions with 764 cores.

– We identify the best values for most critical param-

eters in terms of performance within our new design

(the number of processes per node and the size of

the chunks of initialized biclusters), so that users

can apply them directly.

– The code is made publicly available under an open

source license so that all the scientific community

can benefit from it.

Altogether, these contributions turn our proposal

into not only the fastest cluster-based alternative for

biclustering but also the one with the capacity to pro-

cess the largest datasets, thus resulting in a strong ad-

vancement over the state of the art.

The remainder of the paper is organized as follows.

The related bibliography is discussed in Sect. 2, which

is followed by a description of the ParBiBit tool on

which our package is inspired in Sect. 3. The develop-

ment of ScalaParBiBit went through several stages of

optimization that gave place to several versions, all of

which are described in Sect. 4. Our developments are

then evaluated together with the original ParBiBit im-

plementation in Sect. 5. Finally, Sect. 6 is devoted to

our conclusions and future work.

2 Related work

Data mining has become a target field for accelera-

tion through High Performance Computing (HPC) [3,

29]. Among the different data mining algorithms, there

has been a special focus on biclustering methods due

to their high computational cost and wide adoption.

Therefore, there already exist parallel versions of biclus-

tering algorithms, and some of them can be executed on

the same hardware as ScalaParBiBit (multicore clus-

ters). For instance, P-bicluster [28] presents an MPI

implementation of a biclustering method for gene ex-

pression data based on the anti-monotones property of

these datasets. Another MPI-based work, but using the

barycenter heuristic, was described in [1]. Other alter-

natives are implemented with MapReduce approaches.

Although they can be executed on multicore clusters,

they are more focused on distributed hardware such as

grid or cloud systems. Some examples are the biclus-

tering with topological map organization implemented

with Spark and presented in [25], the Parallel Large

Average Submatrix (PLAS ) biclustering method de-

veloped with Hadoop [14], the Evolutionary Bicluster-

ing Approach using MapReduce (EBA-MR) [21], or a

Spark-based version of the Large Sum Submatrix (LSS )

biclustering algorithm [15].

As mentioned in Sect. 1, many researchers and sci-

entists work with binary data. Knowing this informa-

tion in advance can help to accelerate and make more

accurate the biclustering of these datasets [2]. More-

over, a recent experimental evaluation of several biclus-

tering tools has shown that binary-based approaches

can also be useful for quantitative data if a binary dis-

cretization has been previously applied [18]. However,

all the previously mentioned works are focused on quan-

titative datasets and they are not able to take advan-

tage of the binary representation of the information.

Up to our knowledge, ParBiBit [6] is the only MPI-

based biclustering tool specifically designed for binary

data and publicly available to download. It is a par-

allel version of BiBit [24], a tool that obtains accu-

rate results for gene expression data, especially on cases

with many large biclusters [18]. ParBibit provides the

same accurate results as the original tool but with sig-

nificantly lower time. However, it presents two draw-

backs that prevent its use on large infrastructures. For

one, the memory requirements are high and it runs

out of memory in many modern clusters when work-

ing on large datasets. Second, the scalability is quite

low when increasing the number of nodes, as there are

important parts of the code that can only be executed

in one node. ScalaParBiBit overcomes these problems

using a novel hybrid MPI/multithreading master-slave

approach that overlaps sequential and heavily-parallel

parts of the code.

Additionally, there are other parallel tools for bi-

nary biclustering but focused on cloud systems [17] (not

publicly available) or GPUs [7, 16].
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Fig. 1 Example of a binary matrix with two biclusters.

3 Background: the ParBiBit approach

As previously mentioned, ScalaParBiBit is an extensive

redesign and rewrite of ParBiBit that provides higher

performance and scalability in multicore clusters thanks

to a modification of its parallel structure and imple-

mentation. In this section we provide details about the

algorithm and implementation of the previous tool, as

they are necessary to understand these modifications.

ParBiBit is a command line tool that receives as

arguments some configuration parameters. The most

important ones are the path to the input and output

files, the minimum number of rows (mnr) and columns

(mnc) required for the biclusters, and the number of

processes and threads. The main component of the in-

put file is the matrix on which the biclustering is per-

formed. Without loss of generality, we will refer in this

paper to the rows of the input matrix as attributes or

characteristics, while we will consider the columns to

be the samples or individuals. ParBiBit identifies as

biclusters the subsets of rows (attributes) that show a

common pattern with respect to a subset of the columns

(samples) of the input matrix. This way, since the appli-

cation operates on binary data, if we consider a binary

matrix M of size m×n, a bicluster is a set of rows R and

columns C such that ∀i ∈ R,∀j ∈ C,Mij = 1. Figure 1

shows an example of binary matrix with two biclusters.

The program relies on the concept of bit pattern to

identify the biclusters of a binary matrix that have a

minimum number of rows mnr and columns mnc spec-

ified by the user. The common pattern p to a subset of

rows r1, . . . , rn is given by the binary boolean operation

AND on them, that is, p = r1 ∧ . . .∧ rn, where ∧ repre-

sents the AND operation. The pattern of a bicluster is

the common pattern to all the rows that constitute it.

The execution of ParBiBit is divided into the fol-

lowing five phases illustrated in Fig. 2:

1. Input reading. All processes read the 2D input

expression matrix from a file and discretize the data

in case that it is not binary (in this case the user

must specify the number of bins for discretization).

Input matrixParameters

Input reading

Non 

compressed 

binary matrix

Data 

compression

Compressed 

binary matrix

Bicluster 

initialization

Bicluster 

completion

Output writing

Output file

Completed 

biclusters

Initialized 

biclusters

Fig. 2 ParBiBit algorithm. Stages are shown as rounded
boxes, while datasets are represented as ellipses.

Each process stores a copy of the binary matrix,

as all of them need the whole dataset to complete

the biclusters (Step 4). Nevertheless, this memory

overhead is almost negligible.

2. Data compression. Instead of storing in memory

a matrix with one integer per element during the

whole execution, every process compresses this in-

formation using only one bit per element. Every in-

teger (32 bits) stores 32 elements. This compression

allows saving memory and to accelerate later calcu-

lations, as every integer operation works in parallel

over 32 elements.

3. Bicluster initialization. This step evaluates all

possible gene-pairs and stores in a C++ set struc-

ture, namely a std::set object of the standard li-

brary, the initial information of a bicluster only for

those pairs whose genes have at least mnc bits equal
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Table 1 First patterns created for the matrix of Fig. 1.

Pair id rx ry Pattern N. of ones
0 0 1 01110000 3
1 0 2 00000001 1
2 0 3 00000001 1
3 0 4 00000000 0
4 0 5 01110000 3
5 0 6 00000000 0
6 0 7 00000000 0
7 1 2 00000000 0
8 1 3 00000000 0
9 1 4 00000000 0
10 1 5 01110000 3
11 1 6 00000000 0
12 1 7 00000000 0
13 2 3 00000111 3
14 2 4 00000000 0
15 2 5 00000000 0
16 2 6 00000000 0
17 2 7 00000000 0
... ... ... ... ...
27 6 7 00000000 0

to one. For this purpose the application considers

every possible different pair of rows rx y ry, and

(a) It creates a bicluster with the pattern p = rx∧ry.

(b) If the number of ones in the pattern p is equal to

or greater than mnc, and the pattern has not yet

been used by another bicluster, then it is inserted

into the set of initial biclusters. Otherwise it is

discarded.

For instance, when applying this step to an eight-

row matrix as the one in Fig. 1, ParBiBit creates 28

patterns (one for each possible pair of rows). Table 1

shows the ∧ patterns of some pairs.

The tool searches by default for biclusters with at
least two rows and two columns. As the number of

ones in the pattern represents the number of columns

shared by the rows, only four pairs in our example

fulfill that condition (pairs with ids 0, 4, 10 and

13). Moreover, pairs 4 and 10 are discarded as the

pattern is exactly the same as that of pair 0. Conse-

quently, two biclusters are initialized in this exam-

ple: those with ids 0 and 13, which represent pairs

of rows (0,1) and (2,3), respectively.

As the information of all the initial biclusters must

be stored in a central C++ set in order to efficiently

verify the condition of non-repetition of bicluster

patterns, only one process works in this step. This

process can however launch several threads and dis-

tribute the evaluation of the different gene pairs

among them, carefully coordinating their operations

on the shared set using a mutex, as it is not a thread

safe data structure.

4. Bicluster completion. For all the biclusters ini-

tialized in the previous step, ParBiBit has to find

which other matrix rows besides the pair (rx, ry)

with which it was discovered may belong to the bi-

cluster. For this, the application has to check ev-

ery row rz different from rx and ry, comparing it

with the pattern p. Those for which p ∧ rz = p are

included in the bicluster. If after this process the

bicluster ends up with fewer than mnr rows, it is

discarded. Otherwise it is stored as part of the re-

sult.

Let us use again the example of Fig. 1, where two

biclusters had been initialized. Since the pattern

01110000 had been identified when considering the

pair of rows (0,1), all rows different to 0 and 1 must

be compared to this pattern in this step. The out-

come of the completion step for this pattern is that

row 5 is included in the bicluster, as it is the only one

in Fig. 1 that fulfills the condition. In the case of the

second bicluster, no other row is included. There-

fore, ParBiBit provides the two biclusters that are

illustrated in Fig. 1.

This was originally the most computationally de-

manding step, and thus ParBiBit applies a hybrid

parallelization to accelerate it. Namely, once the bi-

cluster initialization stage finished in the master, the

initial biclusters were distributed among all the pro-

cesses using MPI 3 remote memory access facilities,

as they have been shown to provide better perfor-

mance than traditional two-sided MPI communica-

tions [8]. In order to try to maximize the load bal-

ancing, the biclusters were distributed as evenly as

possible among the processes. Having received the

initial biclusters, each process then created threads

in order to process them in parallel.

5. Output writing. Once all processes have finished

the completion of their assigned biclusters, they send

the information to Process 0, which writes it into the

output file.

It deserves to be mentioned that the multithreading

mechanism used in stages 3 and 4 of the application

relies on the native C++11 threading facilities [27] in

order to maximize portability and performance.

As mentioned in the previous section, the scalabil-

ity of ParBiBit is not high, especially because the third

step (bicluster initialization) is only parallelized in a

single process with C++11 threads. In sequential com-

putation, most of the runtime is spent in the fourth

step (bicluster completion). However, when increasing

the number of nodes, the runtime of this step is drasti-

cally reduced, and the bottleneck moves to the bicluster

initialization step. Furthermore, the thread-based par-

allelization of this third step in ParBiBit is not able to

fully exploit the resources of a one node because it re-

quires many thread synchronizations to add biclusters
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to the C++ set, which is a non thread-safe structure.

More information about the ParBiBit approach and its

bottlenecks is available in [6].

4 ScalaParbibit implementation

While the performance of ParBiBit was much better

than that of its predecessor BiBit, we suspected that

it was possible to improve not only its absolute perfor-

mance, but also its scalability. Another objective of our

work was to reduce its memory requirements in order

to enable the processing of larger datasets. This second

goal is as important as the first one given that main

memory is often becoming the performance bottleneck

of current systems because of the large growth of the

problem sizes compared to the capacity of main mem-

ory [12].

For this, we had to choose the right programming

tools for the development of the application and then

we had to focus on stages 3 and 4, as they are the ones

that consume the overwhelming majority of the run-

time of the application, which is in fact the reason why

they were the steps parallelized in [6]. From the results

in that paper it was also clear that while stage 4 en-

joyed a scalable parallelization able to exploit all the

resources in a multicore cluster, this was not the case

for stage 3, which despite consuming a relevant portion

of the runtime, could only be performed by a single

MPI process. In addition, our own analysis of the code

revealed that there were several optimization opportu-

nities missing that could be exploited. This way, after

selecting the best components, we worked in two stages.

First, we applied optimizations at the process level, in

which the structure of the algorithm and the paralleliza-

tion strategy remains unchanged. In the second stage

we introduced changes to the parallelization strategy,

which in addition to largely changing the structure of

the algorithm, led themselves to new additional opti-

mizations. We now justify the components used in the

development of our application and then describe the

work developed in the two optimization stages.

4.1 Choosing the right tools

A first element to decide when developing an applica-

tion is the programming language to apply. Since we

were seeking high performance, low level control and

portability, interpreted languages and languages that

run on virtual machines were less attractive than tra-

ditional compiled languages. Among the latter, C and

C++ were the obvious choices because of their capabil-

ity to manipulate the machine at low level and the large

set of parallel programming tools available for them.

Among them, C++ was chosen because (a) it provides

much higher level expressivity than C at a negligible

cost and (b) the C++ language includes direct support

for multithreading since the C++11 standard.

The second decision to take regarded the mechanism

used to exploit shared-memory parallelism within each

process on top of multithreading. The two most popular

approaches in this field in C++ are by far OpenMP and

the direct management of threads on top of the facilities

provided by the language mentioned before. This latter

approach was chosen for two reasons. First, the manual

manipulation and synchronization of the threads en-

sures the minimum possible overheads and total control

of the execution compared to the higher level approach

represented by OpenMP. Second, relying on OpenMP

would imply requiring users to install a compiler that

supports this standard, and while OpenMP is widely

adopted, as observed in [5], there are important toolsets

that do not implement it. As a result, the manual ma-

nipulation of threads based on the language facilities

improved both the portability and the potential perfor-

mance to attain.

The last decision involved choosing the mechanism

for launching and communicating the processes in a

distributed memory environment. The standard in this

field for languages such as C and C++ has been MPI for

many years, the result being that it enjoys both large

portability and highly optimized implementations for

every platform. This way, user surveys such as [11] reg-

ularly show that MPI is clearly the most widely used

approach in HPC for this purpose. As a result, MPI

was the component chosen for this purpose.

Let us finally remark that given these decisions, the

components chosen for our implementation were also

the ones used in ParBiBit. This has the additional ben-

efit that it ensures that the performance and memory

usage gains observed in ScalaParBiBit are only the re-

sult of our work, and not due to using potentially better

software tools. This makes the straight comparison be-

tween both approaches fair.

4.2 Optimizations that do not alter the top level

structure of the algorithm

In this stage we can distinguish three substages, one

centered on purely sequential optimizations and two

focused on reducing the contention among the threads

that parallelize the biclustering initialization stage. These

three substages are now described in turn.
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1 if(!patternsSet.count(v)) {
2 mutex.lock();
3 patternsSet.insert(std::move(v));
4 m.unlock();
5 }

Listing 1 Original insertion.

4.2.1 Sequential optimizations

We found many typical sequential optimizations that

could be applied in the code. They can be summarized

as follows:

– Several variables that were repetitively created and

destroyed within loops were changed so that a sin-

gle creation and destruction per loop is needed. This

also reduces the number of dynamic memory allo-

cations and deallocations.

– Functions whose invocations showed non negligible

overheads were changed to enable their inlining.

– An integer protected by a mutex used in the bi-

cluster completion stage was replaced by an atomic

integer.

– The insertion of new unique patterns in the set used

in the initial bicluster creation stage was changed

to use C++11 move semantics rather than copy se-

mantics. This reduces the insertion cost, as rather

than making a deep copy of the object and then

destroying the original object, now the application

moves the pointers that hold the data of the original

object, which becomes empty.

– The insertion of completed biclusters from several

parallel threads was originally performed on a shared

vector protected by a mutex. Now each thread stores

the completed biclusters in a private vector, which

thus requires no synchronizations. When a thread

completes its computations, it synchronizes on a

mutex only once in order to add its completed bi-

clusters to the shared vector.

4.2.2 Reducing the contention on the shared std::set

In the second substage we turned our attention to the

main source of contention among the threads during

the bicluster initialization. The reason for focusing on

this issue is that, since contrary to the bicluster com-

pletion, bicluster initialization is performed in a single

process and its performance is critical for the scalability

of the application. The contention happens in the inser-

tions of new bicluster patterns in the shared std::set,

which must be protected by a mutex to avoid corrupt-

ing this non thread safe data structure. When ParBiBit

generates a new bicluster, it first checks whether it has

at least mnc ones, as otherwise it is discarded. Nev-

ertheless, if this condition holds, the thread proceeds

to search for the bicluster pattern in the shared pat-

tern set in order to check whether the pattern has al-

ready been found, in which case the bicluster is also

discarded. Only if the pattern does not appear in the

set does the thread synchronize on the mutex that pro-

tects the set before inserting the pattern. Of course the

insertion makes sure there are no replicated patterns

in the set, which is automatically provided by the se-

mantics of the C++ std::set class. Listing 1 shows

a simplified version of this latter part of the process

where v is the pattern and patternsSet is the shared

set of patterns. Here member function count returns

the number of elements in the set with the given value.

Since a std::set does not hold replicated values, it can

only return either 0, if not present, or 1 if present. No-

tice how the insertion in line 3 uses the move semantics

optimization commented in the first substage.

We realized that in addition to the insert(value)

member function that just inserts a new value in a

std::set if it does not exist, this C++ class also pro-

vides a member function insert(hint, value), where

the hint is an iterator (basically a pointer inside the

set object, in C++ terminology) that is used as hint for

the place where the new element is to be inserted. Prior

to C++11, for the hint to be effective it had to point to

the element that would precede the inserted element.

Nevertheless, since C++11, which is the standard we

are targeting, this member function optimizes the in-

sertion time if the hint iterator points to the element

that would follow the inserted element, or to the end of

the container, if the new element would be the last one.

As a result, in order to minimize the insertion time, and

thus the contention among the threads, we changed the

original count invocation used to decide whether an in-

sertion should be attempted by a lower bound invoca-

tion. This kind of search returns an iterator pointing to

the first element that is not less than the one searched.

This way, it can point either to an identical element or

to the immediately following one in the order of the set,

which is appropriate as hint for insert(hint, value)

since C++11. While this can speedup the insertion, the

usage of this search also has a disadvantage. Namely,

in order to verify whether the considered pattern ex-

ists in the set or not, we not only have to test whether

the search was unsuccessful, which happens when the

returned iterator points to the end of the set, but also

whether the element obtained in a successful search is

identical to the one provided for the search. This situ-

ation is reflected in the code in Listing 2, which illus-

trates the application of this optimization.
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1 auto its = patternsSet.lower_bound(v);
2 if( ( its == patternsSet.end() ) || ( *its != v ) ) {
3 mutex.lock();
4 patternsSet.insert(its, std::move(v));
5 m.unlock();
6 }

Listing 2 Improved insertion using a hint.

4.2.3 Replacing std::set by a highly optimized fast

set

While, as we will see in Sect. 5, the results of the op-

timization just discussed were positive, this part of the

application continued to limit the maximum perfor-

mance for two reasons. The most obvious one is the

huge restriction that only one thread at a time can

modify the set, which also means that all other threads

must wait on the mutex before being able to try to in-

sert a new value. The second cause is that while C++

standard allocators are highly optimized for sequential

processing, these mechanisms are inefficient in multi-

threaded environments [4]. The main reasons for this

are that allocators suffer from heavy internal locking

and that the cache lines that hold the main elements of

their structure often have to be transferred from cache

to cache in order to keep them in a coherent state for

all the cores involved.

Another limitation is that both the standard data

structures and the standard allocator mechanisms of

C++ must support a wide variety of operations, which

forces their implementation to be necessarily generic.

For example, the fact that ParBiBit only needs to search

or insert elements in the shared set but never erase any

item can be exploited to implement a simpler more ef-

ficient data structure and also a simple associated al-

locator. If in addition these elements are written in a

careful way based on C++11 atomic operations rather

than mutexes and locks, it will be possible to reduce

the waiting times associated to these synchronization

primitives and thus maximize concurrency. Therefore,

as final and third optimization substage before modify-

ing the high level structure of the application, we wrote

our own set class and an associated allocator. Both are

written in a generic way, so that they can be used for

different kinds of datatypes, their only noticeable lim-

itation is that they do not support the removal of ele-

ments, in the case of the set, or their deallocation, in

the case of the allocator.

Our optimized set internal implementation is based

on a hash table rather than on an ordered tree, which

is the structure used by std::set. This allows to have

more control on the number of comparisons used in the

set searches, as the larger the hash table, the fewer the

potential comparisons. Indeed, while the complexity of

insertions and searches in an std::set, which is usually

implemented as a red-black tree, is O(log(n)), the aver-

age complexity in a hash table with enough entries and

a reasonable hash function is just O(1). Each bucket

of our table contains a list that links all the elements

that collide in that bucket. This results in a sequen-

tial search on collisions in the same bucket. Also, our

class is thread-safe by construction, so that the user

does not need to worry about concurrent operations

on it. As suggested above, our class achieves its thread-

safeness exclusively relying on atomic operations, which

strongly reduces the potential for synchronization over-

heads compared to locks and mutexes.

The policy on thread-safeness based on atomic oper-

ations was also followed in the design and implementa-

tion of our memory allocator, which provides the stor-

age for the set elements. As an additional optimization,

in our allocator each thread obtains chunks of memory

from the system periodically and then stores the new

entries it creates in those locally owned chunks. This

has three advantages. First, it avoids requiring synchro-

nization with other threads in the allocation of each

bicluster pattern because the chunk is exclusive to the

thread. In fact, the fast atomic-based synchronizations

only take place when a thread fills its chunk and it has

to allocate a new one, which seldom occurs. Chunk allo-

cation is also extremely efficient, as it is based on direct

interaction with the OS trough mmap. Second, this strat-

egy also minimizes cache line transfers between cores, as

each thread stores contiguously in sequence in its mem-

ory chunks the new patterns it generated. The third

benefit is that this storage, thanks to being strictly se-

quential, favors locality and has minimal overheads.

It should be mentioned that while, as discussed above,

the consecutive storage of the bicluster patterns within

large chunks was key to obtain the large memory sav-

ings that will be seen in Sect. 5, there are other two

factors that explain it. The first is related to the link-

ing of the elements in the container. In a tree structure

such as the one typically used for the implementation of

a std::set every node needs to store two pointers, so

that it can point to its potential left and right children.

In our hash table, however, each node only needs a sin-

gle pointer in order to link the items that collide in the

same bucket. The second is that the usage of our own

allocator for the objects of our fast set allowed us to

replace the std::vector<uint32 t> used by ParBiBit

to represent the patterns stored in the set by just the

raw sequences of uint32 t elements that encode each

pattern. This implies saving the storage associated to

three pointers per pattern because a std::vector, in
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Bicluster
B6 

Hash
function

Hash table

Thread 0
storage

Thread 1
storage

B B3 B B4

B2 B5

Thread 2
storage

Thread 3
storage

B B1 B B

B0 B

B6

B

Fig. 3 Fast set implementation and example of usage. A new
bicluster pattern B6 is inserted.

addition to the raw elements stored, needs a pointer to

the first one of these elements, another one to the last

element stored, and a third one to the end of the re-

gion allocated where the data resides. The reason for

this latter pointer is that std::vector objects allow

allocating space for more objects than those actually

stored at a given point so that the insertion of new

elements in the vector does not necessarily require a

memory reallocation. Notice that this never happens in

our application because once initialized, the bicluster

patterns have a fixed length. Finally, it is worth men-

tioning that since in the typical 64 bit machines used

nowadays each pointer is 8 bytes wide, these last two

optimizations imply savings of 32 bytes per pattern.

The structure of our fast set and related allocator

and an example of its usage in the insertion of a new

bicluster pattern B6 created by the thread with id 2 out

of 4 threads sharing the set are shown in Fig. 3. As first

step, the hash function points to a given element in the

hash table, which happens to be full, so that there is

a collision. This implies that the implementation must

follow the linked list conformed by the elements that

have collided in that entry. Our example assumes that

there are 4 threads in our application, and thus the fig-

ure shows on the right the pre-allocated chunk owned

by each thread in which it allocates consecutively the

entries it pushes into the set. The entries are linked in

the order in which the different threads tried to insert

them in this same entry of the hash table. If while fol-

lowing the list one of the entries happens to be identical

to B6, it is not inserted. In this example this does not

happen, and thus the inserting thread 2 allocates space

in its local chunk for the bicluster pattern and it links

it at the end of the list followed. This is represented by

the dotted link line and box for B6 in the thread 2 local

storage.

T1
T2

P0

P1

P2

P3

Bicluster initialization Bicluster completion
T0

Fig. 4 High level execution of ParBibit.

4.3 Optimizations to the high level structure of the

algorithm

The optimizations discussed in Sect. 4.2 remove many

inefficiencies in the application, focusing mainly in the

most expensive part of the tool: the bicluster initial-

ization. This makes a lot of sense since in ParBiBit

this algorithm stage is only performed in a single pro-

cess, and all the other processes remain idle until its

completion. This is illustrated in Fig. 4, which repre-

sents an execution with four processes, P0 to P3, and

three threads per process, T0 to T2. Each empty box

to the left represents the time required by a thread to

generate a given amount of initialized biclusters in the

master process P0, while each colored box surrounded

by a thick line to the right represents the time taken by

the 3 threads in a process to complete the biclusters in

that chunk. A red line identifies the generation of a first

group of initialized biclusters and its later completion.

As we can see, this strategy in which initializations and

completions cannot be overlapped severely limits the

absolute performance and the scalability of the appli-

cation when more than one process is used in the exe-

cution. This is the situation whenever the application

uses more than one node in the cluster, either for per-

formance reasons or simply because a single node does

not have enough memory to hold the working set of

the problem. Therefore, in this second high level stage

of the optimization we focus on raising this limitation,

which involved changing the structure of the algorithm.

Rather than first initializing all the biclusters, and

then scattering them among all the processes in order

to complete them, our proposal consists in overlapping

both stages. In our proposal, just as in the original

ParBiBit, a single process, which we call the master,

performs the bicluster initialization stage, described as

stage 3 in Sect. 3. The difference is that whenever a

thread has generated a chunk of biclusters, it tries to

send this chunk to another process for its completion,
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P3

Bicluster initialization
T0

Bicluster completion

Fig. 5 High level execution of ScalaParBibit.

described as stage 4 in Sect. 3, before continuing with

the generation of new biclusters. For this, the master

keeps the state of each one of the other processes, called

slaves. When the master sends a chunk of biclusters

for completion to a slave, it marks the slave as busy.

Slaves are responsible for notifying the master when

they have finished the processing of the assigned chunk

so that they can be have new chunks assigned. If the

master finds no idle slaves, the simplest solution is that

the thread that generated the chunk performs the com-

pletion of the biclusters involved before resuming the

initialization of new biclusters. Fig. 5 shows the exe-

cution of the same problem considered in Fig. 4 using

this new strategy, thus illustrating the large potential

for performance and scalability improvement that it of-

fers.

This new strategy gives place to interactions be-
tween the threading and the MPI components of the

application that did not occur in ParBiBit. The reason

is that it introduces overlaps between these elements,

which was not the case in [6]. Indeed, in ParBiBit all

the bicluster initializations are first performed by mul-

tiple threads in the master, and only once they finish

the MPI communications are performed by the mas-

ter thread of each process. The completion of these

communications leads to the last stage, parallelized by

multithreading within each process. With our proposal,

however, any thread in the master can create a chunk of

biclusters in any moment and then require to commu-

nicate with a slave in order to assign to it the comple-

tion of the chunk. And this will happen while the other

threads of the master work on their chunks, which can

give place to other chunk creations, thus also requiring

the usage of MPI.

This new situation implies that ScalaParBiBit must

initialize MPI in its processes with MPI Init thread in

order to require a certain level of thread support from

this library. The easiest alternative would have been to

require a MPI THREAD MULTIPLE level of support, which

allows multiple threads to invoke MPI in parallel. How-

ever this is the most demanding level of support for

MPI and, as observed in [5], important MPI distri-

butions are not compiled by default to support this

level, while others do not even support it, at least in

all the environments. Therefore we chose to require a

MPI THREAD SERIALIZED multithreading level, in which

multiple threads may make MPI calls, but only one

thread can make it at a time, so that there can be no

concurrent invocations from different threads. This lat-

ter condition is satisfied by encapsulating the MPI invo-

cations that can be performed simultaneously by differ-

ent threads in critical sections implemented by means

of C++11 mutexes.

Two further optimizations have been explored for

this new implementation, achieving positive results as

we will see:

– Rather than forcing the master to compute the chunks

whenever there are no idle slaves, the master could

keep a buffer of unprocessed chunks and only com-

plete the chunks if (1) there are no idle slaves and

(2) this buffer is also full. If all the slaves were busy

but the buffer were not full, the thread would just

leave the chunk in the buffer and it would proceed

to generate new biclusters. In order to empty the

buffer, whenever a thread succeeds in assigning a

chunk of biclusters to a slave, it also tries to as-

sign chunks stored in the buffer to other potentially

available idle slaves.

– Whenever a slave obtains a chunk, it launches one

thread per each core assigned to the slave in or-

der to parallelize the processing of the chunk. How-

ever, thread creation and destruction is known to

be expensive. A better although more complex al-

ternative consists in using a thread pool that al-

lows building and destroying the set of threads once

only, dynamically reusing and synchronizing these

threads as many times as desired.

5 Evaluation

The tests were performed with configurations analogous

to the ones used in [6] in order to facilitate the compar-

ison. Namely, we used sets of 12800, 25600 and 51200

attributes, considering sets of 100 and 200 samples and

rates of ones of 10% and 15% (percentage of elements

equal to one within the input binary dataset). Simi-

larly, we searched for biclusters with at least 2 samples

and 1% of the attributes, that is, 128, 256 and 512 for
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Table 2 Experimental environment.

Feature Value

#Nodes 32
CPUs/Node 2 x Intel Xeon E5-2680 v3
CPU Family Haswell
CPU Frequency 2.5 GHz
#cores/CPU 12
Total #cores 32× 2× 12 = 768
Memory/node 64GB DDR4
Network Infiniband FDR@56Gbps
Compiler g++ 6.4
MPI Intel MPI 2018.4.274

the datasets with 12800, 25600 and 51200 attributes,

respectively.

The experiments were performed in the Linux clus-

ter described in Table 2, which consists of 32 nodes with

24 cores each, totaling 768 cores. The optimization level

O3 was used in all the compilations.

In the graphs we will follow this terminology:

– “original” is the ParBiBit implementation.

– “basics” corresponds to that implementation after

applying the sequential optimizations explained in

Sect. 4.2.1.

– “insertionhint” applies in addition the hint opti-

mization described in Sect. 4.2.2 when inserting in

the set.

– “fast set” replaces altogether the standard C++ set

with its allocator by the ones explained in Sect. 4.2.3.

This way, this version covers all the optimization de-

scribed in Sect. 4.2, except the insertion hint, which

does not apply in our fast set.

– “dyn+xx” is the label for the versions that dynami-

cally scatter chunks of initial biclusters to complete
to the slaves proposed in Sect. 4.3. These versions

are suffixed by combinations of the abbreviations

bf and tp depending on whether they include the

optimizations based on buffering and thread pools,

respectively. Unless otherwise stated, the dynamic

versions use chunks of 1024 initialized biclusters,

and when buffering is used, they reserve a buffer

position per slave available. This configuration pro-

vides a more than acceptable performance in all sce-

narios, as will be shown later.

5.1 Evaluation in a single core

In this Section we will first evaluate the performance

improvements obtained by the different optimization

stages applied in sequential executions in a single core.

In a second step, we will analyze these versions from

the point of view of their memory consumption.
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Fig. 6 Sequential execution time of the versions developed as
a percentage of the runtime of the original implementation.

5.1.1 Performance evaluation

The influence of the optimizations proposed on the se-

quential runtime is illustrated in Fig. 6. Namely, the

graph shows the sequential execution time for all the

versions and problem sizes considered as the fraction of

the runtime of the original version for the same prob-

lem size. The last group of bars represents the average

obtained for each version. Each problem size is labeled

as a − s − p in the figure, where a is the number of

attributes, s is the number of samples, and p is the per-

centage of one values. Only one bar is provided for the

whole family of dynamic implementations, as its op-

timizations only come into play when more than one

process is in use, thus when using a single process they

yield the same runtime regardless of whether the thread

pool and the buffering optimizations are used or not.

This experiment reflects that the basic optimiza-

tions applied in the first step are by far the most critical

ones for the sequential performance, as they remove on

average 35.5% of the execution time. The other versions

are also useful, as the versions that also apply the in-

sertion hint optimization, the usage of the fast set and

the dynamic completion of biclusters interleaved with

their initialization have on average 35.85%, 41.85% and

43.2% shorter execution times than the original version,

respectively. Nevertheless, as we can see, while they also

benefit the runtime, their impact is noticeably smaller

than that of the basic optimizations at this point. This

makes sense because they were designed mostly with

thread contention reduction and scalability in mind.

5.1.2 Memory evaluation

Despite our previous conclusions, the usage of our fast

set class may have a crucial impact on the algorithm
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Fig. 7 Resident set size (RSS) of several program versions as
a percentage of the RSS of the original implementation.

even in sequential executions. The reason is that it re-

quires significantly less memory than the original ver-

sion, thus enabling the processing of much larger datasets

in memory. Figure 7 shows the process Resident Set Size

(RSS) of the basic, fast set and dynamic implementa-

tion with its two optimizations as a percentage of the

RSS of the original version when using a single process.

All our sets fit in memory using the original ParBiBit

version, as otherwise the disk accesses would totally dis-

tort the time measurements. Also, this way measuring

the RSS, which can be done with extremely low over-

head, provides a good estimation of the total memory

required by the processes. The version that relies on the

insertion hint optimization uses exactly the same data

structures as the version with basic optimizations, and

thus it has not been included in the plot. We can see

that, despite their large impact on the sequential run-

time, the basic optimizations do not modify the mem-

ory footprint of the algorithm. The usage of our highly

optimized fast set and related allocator, however, re-

duces on average by a whopping 50% the memory re-

quired by the algorithm, the reduction reaching 60% in

the best cases.

The 51200−100−10 problem presents a different be-

havior, as the use of our fast set requires more memory

than the original implementation. The reason is related

to the fact that, as explained in Sect. 4.2.3, our fast set

is based on a hash table, and creating this table with

a sizable number of entries helps reduce the number

of conflicts, and thus also the search times within our

set. Our implementation currently heuristically creates

a2/20 entries in the table where a is the number of at-

tributes in the problem, thus estimating a ∼ 10% of at-

tribute combinations leading to initialized biclusters be-

fore generating conflicts. In the case of the experiments
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Fig. 8 Resident set size (RSS) of the sequential execution of
three program versions.

with 100 samples and 10% of ones the actual number of

different biclusters that are initialized is much smaller

than the heuristic estimation because of the small num-

ber of samples and ones, and thus the preallocation of

the fast set table wastes space. However, this only re-

quires more memory than the initial implementation

in the test with 51200 attributes because the heuris-

tic is quadratic on this parameter, and in the tests with

fewer attributes the other storage advantages of our im-

plementation, such as the optimized consecutive stor-

age of the patterns, offset this fact. This way, we only

consume more memory in some scenarios that initial-

ize relatively small numbers of biclusters and, as Fig. 7

shows, in the vast majority of the cases the fast set re-

quires noticeably less memory. This is particularly true

in the case of problems that require the largest working

sets. This is illustrated in Fig. 8, which shows the RSS

using a logarithmic scale so that they are all visible.

Notice that the fact that the scale is logarithmic also

implies that a short relative visual difference actually

implies a large practical one in terms of memory. Also,

more advanced heuristics could be followed to estimate

the size of the fast set hash table.

Regarding the dynamic implementation, it uses some-

what more memory than the fast set version. The main

reason is the partition in chunks of the storage of the

initialized biclusters, as this generates more fragmen-

tation, and thus more memory consumption, than the

consecutive sequential storage in a single buffer used by

the non-dynamic versions. It deserves to be mentioned

that the measurements were performed using chunks

of 1024 initialized biclusters, which is a heuristic value

derived from extensive experimentation as we will see

soon. A straightforward way to reduce the fragmenta-

tion and thus the memory consumption would be to
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simply increase the chunk size. Still, as in the case of

our fast set, the additional memory overheads of the

dynamic implementation only play a relevant role for

small problem sizes, being minimal for the large ones.

The two stages of the algorithm that consume more

memory are, with a very large difference over the other

ones, the bicluster completion, followed by the bicluster

initialization. Nevertheless, only the memory consumed

in the bicluster initialization limits the applicability of

the tool to larger problems. One reason is that, while

the whole set of completed biclusters can require more

memory than the set of initialized biclusters and dif-

ferent bit patterns found, the former are distributed

among all the processes used in the execution, while

the latter only reside in the master process. Another

and even more important reason is that while the mas-

ter process needs to have access to all the bit patterns

in order to verify whether a newly initialized bicluster

provides a new bit pattern not previously found, there

is no need at all for the completed biclusters to be kept

in the memory of the processes that complete them.

Rather, since the completed biclusters are just the out-

put of the algorithm, it is perfectly feasible to period-

ically dump them to disk and then deallocate them in

each process. This could be easily done using a sepa-

rate file per MPI process and joining all the files in a

single one in a post-processing stage once the algorithm

finishes. For this reason, the reduction of the memory

footprint provided to the bicluster initialization stage

by our fast set and its allocator is indeed the critical

improvement needed to enable the application of the

algorithm to larger datasets.

5.2 Multicore and multinode evaluation

When performing parallel executions our application

requires choosing two critical parameters. The first one,

which is in common with ParBiBit, is the number of

processes per node. The second one is the chunk size

used in the new proposed dynamic high level structure

of the algorithm described in Sect. 4.3, which overlaps

the initialization and the completion of the biclusters.

For this reason, this experimental section is divided into

two parts. While the first one is primarily devoted to

the analysis and selection of these parameters, it will

also allow us to make important observations on the

performance in parallel executions of the different ver-

sions developed, since it will be the first contact with

these kinds of executions in this paper. The second

part of the evaluation consists in a detailed parallel

performance evaluation of all the versions developed in

this manuscript once the critical parameters mentioned

above have been settled.

5.2.1 Selection of parameters for the parallel

executions

In order to learn the best number of processes per node,

we started with experiments based on the two datasets

of 12800 attributes and 200 samples, which differ in the

ratio of one values (10% or 15%), and we considered

executions using a single node, four and sixteen nodes.

For each combination we run all our versions measur-

ing the execution time when using p = 1, 2, 4, 12 and

24 processes per node. Also, since our nodes have 24

physical cores, 24/p threads were always assigned to

each process. The results are displayed in Fig. 9, where

the program versions are labelled according to the ter-

minology introduced at the beginning of Sect. 5. The

family of non-dynamic implementations, i.e., those that

operate at the high level as the original ParBiBit ap-

plication, present the behavior observed in [6]. Namely,

they consistently offer the best performance when two

processes are used per node. The behavior of the dy-

namic versions (dyn+xx) is clearly different from that

of the first family of versions with respect to the number

of processes per node:

– When a single node is used, they always achieve

the shortest runtime using a single process. There

are two reasons for this. First, the dynamic imple-

mentation never uses MPI communications when a

single process is used, as the process detects that

there are no slaves and thus the threads that gener-

ate the chunks of initialized biclusters also perform

their completion. Second, the threads that are busy

completing biclusters do not compete for the use

of the shared fast set, thus reducing the contention

during the initialization stage.

– When four nodes are used, however, the versions

that do not reuse threads (dyn and dyn+bf) per-

form better with the largest numbers of processes

per node, which allow them to create and join fewer

threads, while the versions that incorporate a thread

pool (dyn+tp and dyn+tp+bf) continue to perform

better using a single process. We must realize that

when we have 4 nodes with p processes per node, the

master has 24/p parallel threads generating chunks

that must be processed as soon as possible by 4p−1

slave processes, as otherwise we run the risk of hav-

ing to process them in the master. As a result, for

small values of p the response time of the slaves,

which can only accept new chunks when all their

threads have finished processing the previous as-

signed chunk, is critical in order to have slaves avail-

able whenever the master threads generate new work.

– Finally, at sixteen nodes the best actual runtime

is always achieved using 2 processes per node, al-
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Fig. 9 Influence on the number of processes per node for the execution on datasets of 12800 attributes and 200 samples
considering datasets with 10% and 15% one values on 1, 4 and 16 nodes. Each process uses 24/#processes per node threads.

though using only one provides a remarkably simi-

lar performance to the versions that incorporate the

thread pool. The change in the behavior comes from

the fact that now the threads of the master have

16p− 1 slaves available, so that now it is much eas-

ier to find a slave available.

The results displayed in Fig. 9 also show that the

insertion hint, fast set and dynamic versions of the al-

gorithm present much clearer improvements than those
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observed in Fig. 6 with respect to the implementation

that only relies on our initial basic optimizations, now

that we consider parallel executions. For example, we

can see how the insertion hint optimization was indeed

a very good idea given its very reduced programming

cost, often impacting on the parallel runtimes much

more than all the basic optimizations together. As a

final comment on the non-dynamic versions, Fig. 9 also

demonstrates that, despite the good results achieved

by the insertion hint optimization, the complex work

involved in the development of our own fast set class

and its associated memory manager paid off with large

additional performance gains in the parallel runs. In

fact this change is the one that contributes the most to

the improvement of the original implementation of the

algorithm. Also, as one would expect, the dynamic ver-

sions can achieve even better performance thanks to the

ability to overlap the initialization and the completion

stage of the biclusters. The two optimizations proposed

for this second family of implementations (buffering and

thread pool) are of interest, as the version that incor-

porates both is the one that systematically achieves the

best performance.

Figure 10 explores the selection of the chunk size

of the dynamic versions relying on the most optimized

implementation of this family, the one that uses both a

thread pool and buffering for the chunks (dyn+tp+bf).

We used the same problem sizes as in Fig. 9 and we

measured the performance achieved when using 1, 4

and 16 nodes and 1, 2, 4, 12 and 24 processes per node

considering chunks of 22i initialized biclusters, for 3 ≤
i ≤ 12. The figures mark with a thick point the best

runtime achieved, and their z axis is cut at 300 seconds

in order to focus on the area of interest. Figure 10(d)

had to be rotated in order to avoid hiding the best time

behind the peaks in the graph. We see that a chunk size

of 1024 initialized biclusters combined with the usage of

a single process per node is the best option when using

a single node, and while not optimal, it is a reasonable

configuration in the other experiments. In fact, it is at

most 10% slower than the optimal point, which occurs

in the experiment using 10% one values and 4 nodes.

A general tendency is that, if we dismiss very large

chunk sizes, the graphs become flatter as the number of

nodes increases. This makes sense because this increases

the number of slaves, making increasingly feasible that

the master finds idle slaves when it generates a new

chunk. Another tendency is that large chunk sizes are

negative when combined with large number of processes

per node, and thus, slaves. This occurs because using

large chunks gives place to infrequent and costly gen-

erations of new chunks in the master, and thus these

numerous slaves may remain idle more often during ex-

ecution. Using large numbers of processes per node has

two more potentially negative consequences because it

reduces proportionally the number of threads per pro-

cess. First, since only the master process performs bi-

cluster initialization, it reduces the parallelism in this

stage, and thus the ability of the master to feed all

the slaves, particularly when the chunk sizes are large,

as we have just explained. Second, bicluster comple-

tion can be quite unbalanced, and while slaves can bal-

ance the workload among their threads, each slave is

solely responsible for the completions of the chunks it

has been assigned. Thus, while the increase of processes

per node increases the number of slaves among which

to distribute chunks, it can also increase the unbalance

in their workload in unpredictable ways. Despite these

disadvantages, at moderate number of nodes above 1,

such as 4, large numbers of processes per node can give

place to the best runtimes, although they are similar to

those obtained using the heuristic suggested of one pro-

cess per node and chunks of 1024 initialized biclusters.

While the previous experiments clearly point that,

at least for our dyn+tp+bf version, using one process

per node is a reasonable heuristic, we wanted to ob-

tain a more detailed global evaluation of this heuristic

on all the dynamic versions and for all the problem

sizes. With this purpose we run all the dynamic ver-

sions of ScalaParBiBit for all the problems considered

on 1, 2, 4, 8, 16 and 32 nodes, trying executions with

1, 2, 4, 12 or 24 processes per node and the default

chunk size of 1024. Then we measured the slowdown
obtained when using a single process per node in each

execution with respect to the time associated to the us-

age of the optimal number of processes per node. The

results, shown in Fig. 11, which represents the average

slowdown for the executions using different numbers of

nodes for each problem considered, are consistent with

our previous more limited experiments. This way, once

the thread pool implementation is incorporated in the

dynamic versions, the heuristic of using one process per

node is on average 1.5% slower than using the optimal

number of processes per node when the buffering opti-

mization is also incorporated and just 0.6% slower when

the buffering optimization is not used. Notice that these

values are about the typical runtime variation observed

among different runs that use the same configuration or

smaller. When thread pools are not used, however, the

heuristic is not as good, as it can lead to runtimes that

are on average 16% slower than those achieved using

the optimal number of processes per node, or 19.8% if

the buffering optimization is used.
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Fig. 10 Influence on the chunk size combined with different numbers of processes per node for the execution on datasets of
12800 attributes and 200 samples considering datasets with 10% and 15% one values on 1, 4 and 16 nodes for the dyn+tp+bf
version.

5.2.2 Final parallel evaluation

Figures 12 to 14 show the speedup of all the versions

when using 1, 2, 4, 8, 16 and 32 nodes taking as baseline

the execution of the original version in a single node for

the working sets of 12800, 25600 and 51200 attributes,

respectively. These results illustrate not only the scal-

ability, but also the comparison of the performance of

the different versions developed in this paper as well

as ParBiBit. The versions of the first family were run

using 2 processes per node, as this always gives place

to the best runtime. For the dynamic versions, the left
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nodes.

column of each figure plots the best performance ob-

tained using either 1, 2, 4, 12 or 24 processes per node,

while the right column plots the performance obtained

using one process per node. In all the cases, chunks of

1024 initialized biclusters were used. We have decided

to provide the plots of the two columns in order to

clearly demonstrate that the dynamic versions that use

a thread pool executed with a single process per node

are consistently the best ones, and that, as a result,

it is safe to recommend the usage of dyn+tp+bf with

one process per node as the best version. Without these

plots, given the results in the previous experiments it

would have been very reasonable to doubt whether the

dynamic versions without thread pool could actually

be better if the user searches for the optimal number

of processes per node for them. In fact we can see that

when the best number of processes per node is searched,

the performance of these versions trails but is not so far

from dyn+tp+bf, and they do sometimes overperform

dyn+tp.

These graphs show that, not only the original ver-

sion, but also the first improved versions presented in

this paper present a very limited scalability. They also

clearly illustrate how our highly optimized set class

based on hash tables, atomic operations and a careful

memory management is undoubtedly the most bene-

ficial change performed in the implementations of the

first family. While its use alone increases the scalabil-

ity of the algorithm noticeably, the modification of the

structure to enable overlapping of the initialization and

the completion of biclusters in the dynamic versions

further increases the scalability. Also, although all the

versions of this second family scale pretty well, the us-

age of the thread pool and/or buffering give place to

improvements that tend to be more noticeable as the

number of nodes used grows.

As mentioned before, Figs. 12 to 14 take the run-

time of the original ParBiBit in one node as common

baseline for all the speedups so that they provide a re-

liable comparison among all the versions. This also im-

plies however that they are not proper speedup lines

for each version, which would have required to take as

baseline the runtime of that version. In this regard, it

is remarkable that despite being much faster than Par-

BiBit in a sequential execution, our versions also scale

much better in an absolute way. This way, while our fi-

nal version dyn+tp+bf is on average 78.6% faster than

ParBiBit when executed in a single core, the average

speedup (with respect to itself) when using the 764

cores in our cluster across all the problem sizes tested is

244.38, which is roughly 3.7 times the average speedup

of 66.2 achieved by ParBiBit.

6 Conclusions

As the amount of available data and the possibilities

to extract meaningful information from them grow day

by day, so does the need for tools that allow us to ef-

ficiently perform the related processing. In this paper

we have tackled the problem of raising the computa-

tional capacity to apply the biclustering data mining

technique, widely used in many fields of knowledge, to

binary data. For this, we analyzed and improved the

high-performance tool ParBiBit [6], which already pro-

vided very good performance thanks to its development

on a compiled language such as C++ and the hybrid

parallelization for distributed and shared memory on

top of MPI and C++ threads, respectively.

Our new version, called ScalaParBiBit not only of-

fers much better scalability on multicore clusters, as

its name implies, but it also provides shorter execu-

tion times and it makes more efficient usage of memory,

thus allowing to process larger datasets. This way, the

average speedup achieved by ScalaParBiBit in a cur-

rent multicore cluster with respect to ParBiBit across

the set of problems considered in our experiments goes

from 78.6% when both use a single core to 492.8% when

both take advantage of the 764 cores of our system.

The source code of our tool, together with building

and usage instructions are freely available at https://

github.com/fraguela/ScalaParBiBit under an open

source license.

Possible future lines of work are porting the most

time consuming portions of the application to hardware

accelerators in order to further speedup the processing

https://github.com/fraguela/ScalaParBiBit
https://github.com/fraguela/ScalaParBiBit
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Fig. 12 Speedups of the experiments using 12800 attributes taking as baseline the execution of the original implementation in
a single node. The figures in the left column show the best result for the dynamic version when using 1, 2, 4, 12 or 24 processes
per node, while the right column reflects the usage of 1 process per node for these versions.
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Fig. 13 Speedups of the experiments using 25600 attributes taking as baseline the execution of the original implementation in
a single node. The figures in the left column show the best result for the dynamic version when using 1, 2, 4, 12 or 24 processes
per node, while the right column reflects the usage of 1 process per node for these versions.
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Fig. 14 Speedups of the experiments using 51200 attributes taking as baseline the execution of the original implementation in
a single node. The figures in the left column show the best result for the dynamic version when using 1, 2, 4, 12 or 24 processes
per node, while the right column reflects the usage of 1 process per node for these versions.
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and developing a version of the application for non-

binary biclustering.
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