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The eruption of multicore processors and several kinds of accelerators has
generalized the interest in parallel programming. The OpenCL standard is very
appealing because it provides code portability across most of these platforms.
It defines a programming model where a host code requests the execution of
kernels in computational devices. Unfortunately, the host API of OpenCL is
quite verbose, which makes the development of its host code tedious and error-
prone. More importantly, OpenCL does not provide automatic performance
portability. As a result, users have to hand-tune OpenCL codes for each specific
device, which implies trying different versions of the kernels and task partition
granularities. As an answer to this situation we present OCLoptimizer, a tool that
automatically generates host codes and optimizes OpenCL kernels for each specific
target device based on a user provided configuration file. This configuration file
describes basic kernel characteristics and annotations in the kernels that indicate
the code transformations to test. Our tool can explore different granularities for
the problem decomposition as well as different alternatives for the kernel. This
exploration is performed by means of an iterative optimization process whose
parameters and search strategy are defined by the user specifications. Support
for OpenCL codes composed of multiple kernels is also provided by the tool.
Experiments performed on multicore CPUs and different accelerators show that
the tool is very effective, generating codes with an average speedup of 2.54 with
respect to baseline hand-tuned implementations, in single kernel codes, and 1.79

in a code with multiple kernels.
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1. INTRODUCTION

The proliferation of several kinds of accelerators,
with very interesting properties in terms of speedup
and power consumption per flop with respect to
traditional multicore processors, has sparked great
interest in heterogeneous computing. The large
variety of accelerators have given rise to different
programming environments [1, 2] particularly adapted
to the characteristics and limitations of each platform,
thereby being specific to one vendor or family of devices.
This restricts the portability of the codes and places
into question the effort needed for their development.
The exception is the OpenCL standard [3], which can
be used to program a wide range of devices, covering
the most important systems used nowadays.

OpenCL provides code portability by breaking
applications into two well defined portions. First,
a host code, which runs in a general purpose CPU.
This code discovers the computational devices available
in the system and interacts with them using a very

generic API provided by the standard. Second, the
computational kernels to run in the devices, which are
compiled at run-time for each specific device under
the request of the host. A weakness of OpenCL is
that its host API is intended for low-level purposes,
which coupled with the large number of items that the
host has to manage (devices, kernels, memory objects,
command queues, etc.), gives place to verbose and
error-prone host codes [4]. Recently, new higher level
APIs such as Computing-Language-Utility (CLU) or
the SYCL specification [5] have emerged to facilitate
the access to OpenCL capabilities. However, the largest
shortcoming of OpenCL is that while its programs
enjoy code portability, this is not the case for the
performance. OpenCL provides a framework that
enables performance portability on top of it, but this
is not accomplished automatically. In fact OpenCL
applications that perform adequately on a given device
often require major changes even to just perform
reasonably well in another device [6, 7, 8]. As a result,
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the current situation is that users must hand-tune and
write different kernels for different devices. These
optimizations affect not only the kernel codes, but also
the host code, as this is the one in charge of defining
the workspace for each kernel run. This workspace
consists of two index spaces, one for the global number
of threads to use and another one for the number of
threads in each work-group. A work-group is a set of
threads that can cooperate. Both index spaces control
the granularity of the parallel executions.

OCLoptimizer [9] is a source-to-source iterative
optimization tool that deals with this situation. This
tool is based on the annotated source code of a kernel,
and a configuration file describing its most important
characteristics. The tool uses this information to
generate an optimized version of the kernel for a
selected device as well as a suitable host code for
it. The annotations in the kernel take the form of
compiler directives that specify code transformations
to test, and ranges of parameters to explore for
those optimizations. OCLoptimizer follows an iterative
compilation process seeking the best combination of
compiler transformations and their parameters for each
specific platform. The preliminary evaluation in [9],
based only on applying the unroll transformation to
the kernels and using a single CPU, yielded promising
results.

In this paper we describe OCLoptimizer, particularly
focusing on its extension to couple the selection of the
best global and work-group index spaces to use in the
kernel runs with the optimization of the annotated
kernel sources. The resulting tool is evaluated on a
multicore CPU (Intel Xeon E5-2660 Sandy Bridge), a
GPU (NVIDIA Tesla Kepler K20m) and the new Intel
Xeon Phi. The tool has also been extended to optimize
OpenCL codes composed of multiple kernels through
an iterative process where each kernel is optimized
independently. Meanwhile, inter-dependent kernels
are optimized taking into account their dependencies.
The experimental results show that OCLoptimizer is
effective for generating optimized OpenCL codes for
all the platforms. Namely, it provides kernels with an
average speedup of 2.54 with respect to baseline hand-
tuned OpenCL implementations, in single kernel codes,
and 1.79 in a code composed of several kernels.

The rest of this paper is organized as follows.
Section 2 describes the OCLoptimizer tool and its
inputs. Section 3 describes the support for OpenCL
codes composed of multiple kernels. Then, Section 4
presents our experimental results, followed by a
discussion on related work in Section 5. Finally,
Section 6 concludes the paper.

2. THE OCLOPTIMIZER TOOL

OCLoptimizer is a source-to-source iterative optimiza-
tion tool for OpenCL. As Fig. 1 depicts, our tool per-
forms three main steps based on an annotated source

code of a kernel and a configuration file, both required
as inputs. First, it generates a suitable host code for the
kernel. Then, it performs two searches driven by the ex-
eenqcution time in order to optimize the OpenCL code
for the platform where the tool is executed. The first
search constitutes the second step of the tool. Its aim
is to select the best global index space for the kernel,
which determines the number of threads that run it in
parallel, and an optimized local index space, which con-
trols the number of threads per work-group. We call the
combination of these two index spaces, which have be-
tween one and three dimensions, the workspace of the
kernel. Finally, in the third step, OCLoptimizer runs an
iterative compilation process driven by the annotations
of the user in the source code, generating an optimized
version of the kernel as a result.

The host generation stage only requires the specifica-
tions in the configuration file, described in Appendix A.
The generated host code is a stand-alone program with
all stages required to run an OpenCL kernel (a short
description of them can be found in [4]). The initializa-
tion of the kernel inputs whose value is not specified in
the configuration file may be random or performed by
means of a code provided by the user, as Appendix A
explains. The host code receives as arguments the pa-
rameters that define the workspace configuration of the
kernel, namely, the global and the local sizes for each di-
mension of the workspace. This facilitates the search of
an optimized workspace configuration, as it eliminates
the need to recompile the host code. We now explain in
detail the two search processes performed by the tool.

Example 1. A vector addition code (A = B + C)
will be used as a running example through this paper.
The input configuration file for this example is shown
in Appendix A. This file indicates that the sizes of
the arrays are 1024, the code must be optimized for a
GPU, the input arrays must be initialized randomly,
the local and global workspaces have one dimension,
and the kernel receives four parameters: an scalar n,
which takes the value of the arrays size, and the three
arrays involved in the computation, A, B and C.

The generated host code, which is not included in the
paper due to space reasons, starts with the initialization
of the inputs of the kernel. Then, all the steps of a usual
OpenCL host code are performed (platforms discovery,
context creation and devices discovery). Once a device
of the type specified in the configuration file is selected,
the kernel is loaded and compiled. Then, the array
inputs specified in the configuration file are transferred
to the device through a command queue. The generated
host code and the kernel are written for a generic
workspace configuration which is passed as a parameter
to the host code. This workspace configuration is used
to enqueue the kernel. Finally, the host code enqueues
the commands to read the results generated by the
kernel �
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FIGURE 1. General workflow of OCLoptimizer

2.1. Workspace optimization

The configuration file described in Appendix A
indicates the number of dimensions of the kernel
workspace as well as the minimum and the maximum
values that the tool has to explore for each dimension
of the global and the local index spaces. OCLoptimizer
chooses the best combination of sizes in each dimension
of both index spaces within these limits by means of
a search process guided by the execution time of the
kernel in the device chosen in the configuration file. The
user can choose between two search strategies for this
process, exhaustive search (ES) or a genetic algorithm
(GA) [10]. We now discuss them in turn.

Figure 2 summarizes the steps followed by the
exhaustive search of an optimized kernel workspace
configuration. First, the tool generates a list of possible
workspace configurations taking into account the ranges
of values specified by the user in the configuration file.
In order to reduce the number of combinations, the
points considered for each dimension i of a given index
space are mi, 2mi, 4mi, 8mi, . . .Mi, where mi and Mi

are the minimum and the maximum value specified for
dimension i of that index space in the configuration file,
respectively. Some of the configurations generated are
impossible and they are thus discarded in advance. For
example, the local workspace must be a divisor of the
the global one in every dimension. Also, some devices
or OpenCL implementations limit the maximum work-
group size and its maximum value for each one of its

dimensions. OCLoptimizer gathers these limitations
using the API provided by OpenCL and discards the
invalid configurations based on them. All the surviving
configurations are evaluated using the execution time
to find out which is the best one. This process can
take a long time because the number of versions to
evaluate is usually large. The tool shortens this process
as the execution of the version associated to a given
configuration is killed when its execution time reaches
the minimum time observed until that moment.

The iterative optimization process guided by a GA
is depicted in Fig. 3. In this case the chromosomes of
the GA, which are potential solutions to our problem,
have one gene per dimension of both the local and
the global size, and this gene stores the size of that
dimension. The initial population of the algorithm
is composed of a configurable number of individuals.
This number has been fixed internally in the tool by
experimentation. The chromosomes are generated using
random combinations of the values that the different
genes can take. If the number of chromosomes randomly
generated is not enough, they are cloned until the
required number of chromosomes is achieved. Then, one
workspace configuration per chromosome is generated.
The execution time of each version, which is the fitness
function of the GA, is measured.

The minimum execution time obtained by a member
of the population is used to evaluate whether the GA
search must finish. The condition for this is that the
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FIGURE 3. Iterative process in OCLoptimizer using a genetic algorithm

fitness function, i.e., the best execution time achieved,
has not improved in the last three generations. In
that case, the workspace configuration associated to
this minimum execution time is provided as the output
of the iterative process. Otherwise, a new population
is generated. Concretely, the best individuals from
the current population are selected to produce the
next generation through reproduction applying the
mechanisms of crossover and mutation [10]. The new
individuals generated will be used to perform a new
iteration/generation of the genetic algorithm. This

process will be repeated until the population achieves
an acceptable value of the fitness function.

In order to implement the mentioned GA search
approach we have used the GAlib genetic algorithm
package [11], written in C++ by Matthew Wall at the
Massachusetts Institute of Technology.

It deserves to be mentioned that since this process of
OCLoptimizer runs the kernel with multiple workspace
configurations, the kernel must be written to support
a generic workspace configuration. OCLoptimizer
provides macros that ease the programming of such
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a generic version. These macros are named GENSTEP,
GENINIT and GENLIMIT and they are declared in a
header file which is automatically included in the kernel
by the tool. The programmer can use these macros
in one or several loops selected to distribute their
iterations among the threads of the workspace. In
multidimensional workspaces, each loop will be assigned
to a given dimension of the workspace. This way,
the three macros receive three parameters: (1) n

the number of iterations of the original loop, (2) an
indication about wether the iterations are distributed
among a number of points of the global (g) or the local
(l) size, and (3) the number of the dimension of the
workspace that is assigned to this loop.

The GENSTEP macro calculates the best step for
the loop while the GENINIT and GENLIMIT macros
calculate the lowerbound and upperbound of the
loop, respectively. These three macros generate the
distribution that fits better to the current platform.
For example, when a GPU is detected the macros give
place to a cyclic distribution of the iterations among the
threads. This way, the access pattern followed by the
references generate interleaved accesses, which improve
the performance in this kind of platforms. In CPUs
or accelerators such as the Xeon Phi, the macros give
place to a consecutive distribution, which favors cache
locality and auto-vectorization.

2.2. Optimized kernel code generation

Once the best global and local index spaces have
been chosen, OCLoptimizer performs an iterative
compilation process in which a series of code
transformations are applied to the kernel code. These
optimizations are suggested by the user by means of
compiler directives inserted in the kernel code. This
stage has been built on top of the CLANG frontend for
LLVM [12]. Our tool works on the Abstract Syntax Tree
(AST) representation of the input kernel, rather than on
the LLVM intermediate representation (IR). The reason
is that this enables us to generate an output optimized
kernel much more human-readable and similar to the
input kernel. An additional benefit is that the resulting
code is easier to maintain than the one that can be
obtained from the LLVM IR, which is very important
for many users.

The input kernel is annotated with special OCLopti-
mizer directives. These annotations precede the piece
of code affected by the transformation and include the
parameters of the technique and the search space. The
general form of an annotation is

#pragma oclopts <name> <params> [tolerance t] [number n]

where <name> is the name of the optimization technique
to be applied and <params> stands for its parameters,
which are different for each technique. They usually
define the range of values to be tested in the iterative
optimization process. The optional field tolerance

establishes that only the versions whose execution times
are below a tolerance t (0 ≤ t ≤ 100) per cent above
the best time found, proceed to the next level of the
iterative process. Finally, the argument number can
optionally set the maximum number of versions that
proceed to the next level of the iterative process.

The current version of OCLoptimizer only applies
the unroll and the unroll-and-jam techniques and it
selects an optimized unroll factor for each annotated
loop. The general form of the pragma associated to
these techniques is

#pragma oclopts unroll init end step [tolerance t] [number n]

where init, end and step are the first, the last and the
step values of the range of potential unroll factors that
the tool has to evaluate, respectively.

Example 2. The input kernel of the vector addition
running example is shown in Figure 4. The kernel
receives the four parameters mentioned in Example 1.
It consists of one isolated loop where the macros
GENINIT, GENLIMIT and GENSTEP are used to calculate
the boundaries and the step of the loop, because
we want to distribute its iterations among the work-
items. Let us notice that the iterations of this loop are
distributed among the work-items of the only dimension
of the global space. This loop is annotated with an
unroll pragma that instructs OCLoptimizer to test all
the unroll factors between 2 and 10 with step 2.

The code of Figure 5 is the output kernel generated
by the tool for the GPU when an unroll factor of 2
is selected. Let us notice that when the tool detects
that it is generating code for a GPU, it generates a
distribution of the iterations among the work-items
that favours interleaving. In the case of a CPU, the
macros would assign consecutive iterations to a thread,
in order to favour locality and auto-vectorization. The
boundaries and the step of the loop are calculated using
an optimized size of the global space selected in the
previous stage �

Just as in the case of the search of an optimized
workspace, OCLoptimizer allows the user to choose be-
tween two strategies to guide the iterative compilation
process that optimizes the kernel code. In this case the
two possibilities are the breadth first search (BFS) and
a genetic algorithm (GA).

The BFS strategy is depicted in Fig. 6. This
strategy processes the pragmas in the kernel one by
one in an iterative process where the processing of
each pragma gives place to a new level of the tree of
versions. The figure shows that each level corresponds
to the processing of one directive and has two stages:
generation and evaluation. In the generation stage
the currently considered pragma gives place to a
number of versions of the kernel. For example, if an
unrolling pragma is found, a version of the kernel using
each unroll factor requested for the associated loop is
generated. In the evaluation stage all the versions are
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__kernel void addvec(const unsigned int n, __global float *a,

__global float *b, __global float *c) {

#pragma oclopts unroll 2 10 2

for(i=GENINIT(n,g,0), i<GENLIMIT(n,g,0);i=i+GENSTEP(n,g,0))

a[i]=b[i]+c[i]

}

FIGURE 4. Input kernel for the vector addition example

__kernel void addvec(const unsigned int n, __global float *a,

__global float *b, __global float *c) {

gid=get_global_id (0);

sid=get_global_size (0);

for(i=gid; i<N; i=i+(sid *2)) {

a[i+(sid *0)]=b[i+(sid *0)]+c[i+(sid *0)];

a[i+(sid *1)]=b[i+(sid *1)]+c[i+(sid *1)];

}

}

FIGURE 5. Output kernel for the vector addition example

timed. If the user has specified the tolerance and/or
number modifiers in the pragma, they are applied
to filter the versions and keep only the fastest ones
according to the criteria indicated. The surviving
versions are used as a base for the next level of the
iterative optimization process, which considers the next
pragma found in the kernel. This process is repeated
until all the pragmas in the kernel have been processed.
Then, the fastest version of the final step is chosen as
the best kernel version.

We must note that BFS can be potentially very
demanding due to the large number of versions that
it can generate, as if there are x pragmas on a code
and the user wants to test y variations for each one
of them, it will generate and evaluate xy kernels. For
this reason the tolerance and/or number modifiers are
very useful to keep the search time for this strategy
within reasonable limits for codes with many directives
and/or when we want to test many possibilities for each
directive.

The GA search for an optimized kernel code follows
the same procedure described for the GA search of
the best workspace configuration in Section 2.1. The
difference is that in this case the chromosomes have one
gene per directive to apply. This gene stores the value
of the parameters of the code transformation designated
in its corresponding directive. For example, in the
case of the unroll optimization, the genes will be the
unroll factors of the corresponding loops. The search
process evolves by generating and evaluating the kernel
versions associated to the chromosomes of the GA. As in
the selection of an optimized workspace, we have used
the GAlib package [11] to implement this GA search
process.

As we will see in Section 4, the GA search is
much faster than BFS. For this reason, and because
it is critical for the GA to keep a population with
a reasonable number of chromosomes, OCLoptimizer
dismisses the tolerance and number modifiers when
this search strategy is applied. It is also interesting
to mention that because BFS only allows to explore
different values for the optimization parameters of the
different code transformations one after another, it can
only consider a limited set of combinations for those
transformations. In contrast, the GA considers all the
directives at once, which enables it to explore a larger
space of kernel versions. For this reason GA can reach
faster kernels than BFS in some situations.

3. SUPPORT FOR MULTIPLE KERNELS
OPENCL CODES

The tool can also optimize OpenCL applications
composed of multiple kernels. In this case, the tool loses
its ability to generate a working host code for the whole
application. Keeping this ability would require a much
more complex configuration file where information such
as the relations and the data flow between the different
kernels should be reflected. Nevertheless, our tool
generates an optimized workspace configuration and
code for each kernel of the application. These outputs
can be integrated by the user in its own code.

The process followed by OCLoptimizer to optimize
codes with multiple kernels, which consists of several
fully automated steps, is now described. Some of the
kernels that compose the application may have to use
the same workspace configuration, while others can use
their own configuration. These two types of kernels are
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FIGURE 6. Iterative process to select the optimized kernel in OCLoptimizer tool using a breadth search first

processed differently by the tool. The kernels that can
use their own workspace configuration are optimized
one by one. The user has to provide a separate
configuration file and an annotated code for each kernel,
and she obtains an optimized workspace configuration
and a kernel code for each one, which can be invoked
by the user from her own host file.

In the case of groups of kernels that have to use the
same workspace configuration, OCLoptimizer follows
a two-step process. In the first step, it is applied
separately to each kernel of the group of inter-dependent
kernels. For each kernel, it requires a configuration file,
an annotated kernel, and if necessary, an initialization
code. In the case of inter-dependent kernels this last
optional parameter is very important, as the inputs of
some kernels are intermediate results of the algorithm
which have to comply with certain characteristics. This
way, the inputs of these kernels must be generated

using a code provided by the user. In addition, the
workspace configuration of this kind of kernels usually
has to match certain conditions. These conditions
can be specified in the workspace restrictions section
of the configuration file associated to each kernel (see
Appendix A). The output of this step is an optimized
workspace configuration for each kernel, while the
optimized kernels generated are discarded.

In the second step, the tool tries, in turn, the
workspace configurations chosen in the first step. In
each turn, one workspace configuration is used for all
the kernels in the group of inter-dependent kernels,
and OCLoptimizer only performs the kernel code
optimization stage (Section 2.2) of each kernel. The tool
finally provides to the user the workspace configuration
and associated optimized kernels that gave place to the
shortest runtime for the group of kernels.
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4. EXPERIMENTAL RESULTS

OCLoptimizer can be used on OpenCL codes composed
of one single kernel or multiple kernels. Section 4.1
shows the validation performed with several OpenCL
codes composed of one kernel, while Section 4.2 shows
the experiments for an OpenCL application composed
of five different kernels.

4.1. Single kernel OpenCL codes

This part of the validation is based on five computa-
tionally intensive single-kernel codes: an N-body sim-
ulation [13] (NBODY), a matrix multiplication (MAT-
MUL), a discretization of the Laplacian operator with
a nine-point stencil [14] (STENCIL), a Sobel Edge De-
tector [15] (SOBEL) and a Direct Coulomb Summa-
tion [16] (DCS). The NBODY kernel has two unrollable
loops and the MATMUL kernel has three unrollable
loops, whereas the STENCIL, SOBEL and the DCS
kernels have four unrollable loops each. Regarding the
worskpace configuration, NBODY has 1-dimensional
(global and local) workspaces, MATMUL, STENCIL
and SOBEL have 2-dimensional workspaces, and finally
the workspaces of DCS have 3 dimensions. Hand-tuned
versions of these kernels, which use local memory and
have been vectorized wherever possible, have been used
as inputs for this part of the validation process. Also,
calculations common to several threads are performed
collaboratively in order to improve the performance.
The experiments were run on three different platforms:

• The CPU: A system with two Intel Xeon E5-2660
Sandy Bridge with eight 2.2Ghz cores and hyper-
threading (8 × 2 threads per processor, for a total
of 32) and 64 GB of RAM. OpenCL runtime: Intel
OpenCL 1.2-3.2.1.16712

• The GPU: An NVIDIA Tesla Kepler K20m 5
GB GDDR5. OpenCL runtime: NVIDIA CUDA
Toolkit 5.0.35

• The Accelerator: An Intel Xeon Phi 5110P with
sixty 1.053GHz cores with 8 GB of RAM. OpenCL
runtime: Intel OpenCL 1.2-3.2.1.16712

The exhaustive search of the workspace in the three
platforms tested all the legal combinations of powers
of two up to the problem size in the dimensions of the
global index space. Those of the local space were tested
up to the maximum size allowed by the device. The GA
search of the workspace configuration used populations
of 5 chromosomes in all the systems. Regarding the
kernel optimization process, the directives used no
tolerance or number modifiers and they were setup to
consider all the possible unrolls. The GA search used
in this case populations with 5% of the total number of
possible chromosomes (combinations of unroll factors
for the loops).

Tables 1 to 6 summarize the performance results
obtained in the three platforms using two combinations

of search processes: that with the longest search time,
which is exhaustive search (ES) for the workspaces
and BFS for the kernel versions (ES+BFS), and that
with the shortest one, which uses GA search for both
optimization processes.

These six tables have the same structure. The first
column contains the name of the code and the second
one is the problem size. Three different sizes were
taken into account for each code. Next, columns 3-
5 contain the speedup achieved in the workspace
optimization process and the global and the local
workspace sizes (WSs) selected by OCLoptimizer for
each dimension of the problem separated by commas,
respectively. The speedup in column 3 has been
calculated respect to the corresponding input baseline
hand-tuned kernel. The size of each dimension of
the global workspace is set to the size of the loop
whose iterations are being distributed among the work-
items and the local worksizes are left to be selected
automatically by OpenCL. Columns 6-8 refer to the
selection of unroll factors. In particular, column 6
shows the speedup achieved, which is calculated with
respect to the optimized code resulting from the
workspace optimization process. As a result, the total
speedup provided by OCLoptimizer is the product of
the speedups in columns 3 and 6 and will be discussed
in Table 7. Finally, columns 7 and 8 contain, separated
by commas, the unroll factors (UFs) selected by the tool
and the maximum ones taken into account, respectively.
Notice that the maximum unrolling of the loops that
iterate on elements to process depends on the workspace
selection performed in the previous stage. The reason is
that the bigger the workspace is in some dimension, the
fewer elements the loop of each thread has to process.

The average global speedup achieved for single kernel
OpenCL codes using ES+BFS is 2.86, compared to
the 2.22 achieved by GA. The tool obtains the largest
speedups in the Xeon Phi (4.46 on average using
ES+BFS) and, in this case, most of the speedup comes
from the workspace optimization and, more precisely,
from the NBODY test case. Since the tool usually
selects large worksizes in all the kinds of devices, the
margin left to the unrolling optimization is narrower in
terms of search space, which can restrict the speedups
obtained from the UFs selection. Nevertheless, the
simplicity of their cores and their management of
branches allow GPUs to remarkably benefit from
unrolling. For example, DCS with size 128 achieves 54%
more performance thanks to the kernel code tuning.

Table 7 summarizes the execution time, the global
speedup and the performance measured in GFLOP/s
achieved in our experiments for each code, problem size,
and platform using the ES+BFS search. The speedup
achieved by the optimized single kernel codes generated
using the configurations selected by ES+BFS search is
on average a 29% better than those generated using the
configurations selected by GA. On exchange, the whole
execution time of the tool is much longer when using
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TABLE 1. Speedups and configurations selected using ES+BFS in the CPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 3.50 8192 16 1.07 1,9,4 16,16,16
32768 1.89 32768 256 1.03 1,8,8 16,16,16
65536 1.02 8192 128 1.03 8,3,8 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.09 1,1,4 1024,1024,256
2048 1.01 1024,1024 256,1 1.14 1,2,7 2048,2048,256
4096 1.86 8,32 8,1 1.20 6,6,8 4096,4096,256

STENCIL
1024 1.63 16,256 1,32 1.00 1,1,1 1024,1024,3
2048 1.51 16,2048 8,2 1.12 1,21,3 2048,2048,3
4096 1.54 2,2048 2,64 1.06 1,5,3 4096,4096,3

SOBEL
1024 1.50 4,256 1,4 1.09 2,3,114,3 3,1024,1024,3
2048 1.28 8,2048 2,4 1.15 3,1,19,3 3,2048,2048,3
4096 1.30 16,4096 4,4 1.14 3,1,17,3 3,4096,4096,3

DCS
64 1.05 32,64,64 4,32,8 1.00 1,1,1,1 64,64,64,64
128 1.00 128,128,128 4,4,4 1.00 1,1,1,2 128,128,128,128
256 1.00 256,256,256 4,16,8 1.00 2,1,1,2 256,256,256,256

TABLE 2. Speedups and configurations selected using the Genetic Algorithm in the CPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 3.52 256 2 1.05 2,10,1 16,16,16
32768 1.90 512 16 1.03 1,13,8 16,16,16
65536 1.00 65536 AUTO 1.06 1,5,5 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.02 1,1,29 1024,1024,256
2048 1.00 2048,2048 AUTO 1.05 1,1,13 2048,2048,256
4096 1.00 4096,4096 AUTO 1.27 1,1,93 4096,4096,256

STENCIL
1024 1.11 512,32 8,2 1.19 16,2,1 1024,1024,3
2048 1.31 1,256 1,2 1.04 1,248,3 2048,2048,3
4096 1.00 4096,4096 AUTO 1.46 1,1,3 4096,4096,3

SOBEL
1024 1.15 128,1024 8,16 1.13 3,1,2,1 3,1024,1024,3
2048 1.16 16,512 8,8 1.07 2,1,91,3 3,2048,2048,3
4096 1.25 256,4096 8,4 1.10 1,1,15,3 3,4096,4096,3

DCS
64 1.05 64,32,16 32,2,16 1.00 1,1,1,1 64,64,64,64
128 1.00 8,128,64 4,1,2 1.00 1,1,16,2 128,128,128,128
256 1.00 256,256,256 AUTO 1.00 1,1,15 256,256,256,256
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FIGURE 7. Search times for NBODY

the ES+BFS search, as we will see now.
Figures 7 to 11 show the time required by the

search processes discussed for NBODY, MATMUL,
STENCIL, SOBEL and DCS, respectively. Each figure
is divided into six sections, one for each combination of a
device (CPU, GPU and Accelerator) and search process
(ES+BFS or GA). Each section shows the search time
for each tested problem size, from the smallest one
to the largest one with bars divided into four stages:
the workspace generation and evaluation times, which
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FIGURE 8. Search times for MATMUL

characterize the first optimization process, and the
kernel optimization generation and evaluation times of
the second search process.

The results show that the execution time of the tool
is usually large because it generates a large number of
versions of the code to be optimized. Unsurprisingly,
ES+BFS requires longer search times than GA, as it
generates more versions. On average, the search time
using ES+BFS is ten times longer than using the GA.
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TABLE 3. Speedups and configurations selected using the ES+BFS in the GPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 1.50 8192 256 1.07 1,4,16 16,16,16
32768 1.69 32768 128 1.07 1,10,16 16,16,16
65536 1.70 65536 128 1.29 1,2,14 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.35 1,1,256 1024,1024,256
2048 1.08 256,2048 64,4 1.11 1,8,32 2048,2048,256
4096 1.06 512,4096 64,2 1.11 1,8,16 4096,4096,256

STENCIL
1024 2.36 64,1024 32,16 1.16 1,1,3 1024,1024,3
2048 2.71 64,2048 32,16 1.16 1,1,3 2048,2048,3
4096 2.87 64,2048 64,16 1.14 2,1,3 4096,4096,3

SOBEL
1024 3.85 64,256 32,4 1.15 1,4,16,3 3,1024,1024,3
2048 4.29 256,512 128,1 1.21 3,4,1,1 3,2048,2048,3
4096 4.53 256,512 128,1 1.25 2,8,1,1 3,4096,4096,3

DCS
64 1.15 32,64,64 32,1,4 1.44 1,1,2,6 64,64,64,64
128 1.00 128,128,128 AUTO 1.54 1,1,1,11 128,128,128,128
256 1.03 128,128,128 16,8,8 1.16 1,2,2,256 256,256,256,256

TABLE 4. Speedups and configurations selected using the Genetic Algorithm in the GPU

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 1.47 8192 64 1.06 1,4,8 16,16,16
32768 1.67 32768 64 1.06 1,2,15 16,16,16
65536 1.22 8192 64 1.07 4,1,16 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.02 1,1,29 1024,1024,256
2048 1.00 2048,2048 AUTO 1.05 1,1,13 2048,2048,256
4096 1.00 4096,4096 AUTO 1.17 1,1,34 4096,4096,256

STENCIL
1024 2.10 128,1024 16,16 1.03 1,4,3 1024,1024,3
2048 2.08 512,64 512,1 1.24 26,3,3 2048,2048,3
4096 2.72 256,2048 64,4 1.08 1,8,3 4096,4096,3

SOBEL
1024 3.66 512,64 128,1 1.16 1,15,2,3 3,1024,1024,3
2048 4.02 512,256 16,32 1.11 3,2,2,3 3,2048,2048,3
4096 2.13 512,16 32,8 1.13 2,2,1,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.06 1,1,1,8 64,64,64,64
128 1.00 128,128,128 AUTO 1.52 1,1,1,6 128,128,128,128
256 1.00 256,256,256 AUTO 1.14 1,1,1,10 256,256,256,256
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FIGURE 9. Search times for STENCIL

Most of the execution time is consumed by the
evaluation process, which is conducted by executing the
different versions generated. In the future, we want to
evaluate the possibility of reducing the evaluation time
by avoiding some or all the executions by means of the
application of analytical models or heuristics. On the
other hand, the generation time is negligible.

The time required by the unrolling optimization is
usually longer that the one required by the workspace
optimization because this second iterative process
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FIGURE 10. Search times for SOBEL

generates a larger number of versions. In some of the
GPU tests the workspace optimization takes more time
as the workspace range to be explored is wider and it
generates a larger number of versions. Moreover, as it
was said previously, the worksizes selected are usually
large, which leaves a narrower margin for the unrolling
technique.

Figures 12 and 13 represent the speedups achieved
using different workspace configurations and unroll
factors, respectively. In both cases, the different
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TABLE 5. Speedups and configurations selected using ES+BFS in the Accelerator

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 14.58 16384 16 1.60 1,1,16 16,16,16
32768 8.14 32768 16 1.60 1,1,16 16,16,16
65536 4.26 65536 32 1.38 1,16,6 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.36 1,1,4 1024,1024,256
2048 1.00 2048,2048 AUTO 1.00 1,1,1 2048,2048,256
4096 1.00 4096,4096 AUTO 1.00 1,1,1 4096,4096,256

STENCIL
1024 1.46 32,512 1,4 1.35 2,8,3 1024,1024,3
2048 1.61 8,2048 1,1 1.69 1,8,3 2048,2048,3
4096 1.69 32,1024 1,1 1.86 2,8,3 4096,4096,3

SOBEL
1024 1.46 16,512 1,1 1.65 2,2,7,3 3,1024,1024,3
2048 1.52 16,512 1,1 2.40 2,1,4,3 3,2048,2048,3
4096 1.51 32,4096 2,2 2.77 3,1,16,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.12 1,1,1,8 64,64,64,64
128 1.00 128,128,128 AUTO 1.07 1,1,1,8 128,128,128,128
256 1.01 256,256,256 4,4,4 1.06 1,1,1,8 256,256,256,256

TABLE 6. Speedups and configurations selected using the Genetic Algorithm in the Accelerator

Code Size
Workspaces optimization Unroll optimization

Speedup Global WS Local WS Speedup Optimized UFs Maximum UFs

NBODY
16384 6.33 8192 128 1.70 2,2,6 16,16,16
32768 7.33 16384 16 1.51 1,2,16 16,16,16
65536 3.58 8192 4 1.68 4,7,4 16,16,16

MATMUL
1024 1.00 1024,1024 AUTO 1.00 1,1,1 1024,1024,256
2048 1.00 2048,2048 AUTO 1.00 1,1,1 2048,2048,256
4096 1.16 256,4096 2,32 1.01 1,2,1 4096,4096,256

STENCIL
1024 1.00 1024,1024 AUTO 1.46 1,1,3 1024,1024,3
2048 1.25 512,1024 256,1 2.00 2,4,3 2048,2048,3
4096 1.60 32,4096 4,4 1.93 1,16,3 4096,4096,3

SOBEL
1024 1.00 1024,1024 AUTO 1.76 1,1,1,3 3,1024,1024,3
2048 1.32 512,1024 4,8 2.27 1,2,4,3 3,2048,2048,3
4096 1.00 4096,4096 AUTO 2.26 1,1,1,3 3,4096,4096,3

DCS
64 1.00 64,64,64 AUTO 1.06 1,1,1,8 64,64,64,64
128 1.00 32,32,64 1,4,1 1.04 2,4,1,8 128,128,128,128
256 1.01 128,128,256 4,4,1 1.03 1,2,1,12 256,256,256,256
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FIGURE 11. Search times for DCS

workspaces and unroll factors have been generated by
OCLoptimizer using ES+BFS for the SOBEL filter and
size 1024×1024 on the CPU. The order of the workspace
configurations and the unroll factors in the x-axis is the
one in which they are generated by the tool. On the
one hand, the results show that, in this example, the
search of the workspace configuration explores a huge
range of combinations for both global and local work
sizes, and how this exhaustive search is done following
a tree-like structure. On the other hand, the amorphous
distributions of the speedups denote that the iterative
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FIGURE 12. Speedups achieved using different workspace
configurations for SOBEL using BFS in the CPU

optimization is adequate to guide these optimizations.

4.2. Codes with several kernels

The tool has been tested on the Integer Sort
(Benchmark) of the NAS Parallel Benchmarks (NPB).
The baseline of these experiments is the (Seoul National
University) SNU OpenCL NPB [17] implementation
of this benchmark, which has 5 different kernels.
There are two versions of this benchmark, one suitable
for CPU and another one suitable for GPU. In

The Computer Journal, Vol. ??, No. ??, ????



12

TABLE 7. Global speedups using ES+BFS

Code Size
CPU GPU Accelerator

Time in ms (Speedup) (GFLOP/s) Time in ms (Speedup) (GFLOP/s) Time in ms (Speedup) (GFLOP/s)

NBODY
16384 178.99 (3.75) (25.50) 29.74 (1.61) (153.46) 143.25 (23.33) (31.86)
32768 704.48 (1.95) (25.91) 87.44 (1.81) (208.76) 510.76 (13.02) (35.74)
65536 2818.35 (1.05) (25.91) 287.46 (2.19) (254.00) 2266.06 (5.88) (32.22)

MATMUL
1024 38.29 (1.09) (56.08) 6.61 (1.35) (324.88) 146.64 (1.36) (14.64)
2048 282.73 (1.15) (60.76) 57.91 (1.20) (296.66) 1537.07 (1.00) (11.18)
4096 15200.90 (2.23) (9.04) 459.04 (1.18) (299.41) 16137.20 (1.00) (8.52)

STENCIL
1024 1.25 (1.63) (15.88) 0.28 (2.73) (71.30) 3.18 (1.97) (6.27)
2048 2.85 (1.70) (27.95) 0.94 (3.16) (84.78) 7.13 (2.73) (11.18)
4096 10.49 (1.63) (30.37) 3.59 (3.27) (88.80) 22.83 (3.14) (13.97)

SOBEL
1024 1.63 (1.63) (26.38) 0.43 (4.41) (100.31) 2.98 (2.41) (14.44)
2048 4.81 (1.47) (35.78) 1.43 (5.21) (120.26) 6.16 (3.66) (27.93)
4096 17.55 (1.49) (39.19) 5.24 (5.64) (131.18) 19.31 (4.17) (35.62)

DCS
64 11.08 (1.05) (15.14) 1.45 (1.65) (115.75) 19.17 (1.12) (8.75)
128 175.92 (1.01) (15.26) 20.81 (1.54) (129.02) 274.23 (1.07) (9.79)
256 2802.33 (1.00) (15.33) 459.93 (1.19) (93.38) 4293.58 (1.07) (10.00)
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FIGURE 13. Speedups achieved using different unroll
factors for SOBEL using BFS in the CPU

both implementations, several kernels use as inputs
intermediate results which have to comply with certain
characteristics, thus, special initialization codes had to
be provided to the tool. In the GPU implementation,
three of these kernels are inter-dependent and they must
use the same workspace configuration, while in the CPU
implementation the number of inter-dependent kernels
is four. The experiments have been run on the same
CPU and GPU used in the experiments of Section 4.1.
SNU NPB CPU version is used as the baseline for the
CPU experiments, and its GPU version for the GPU.
The Accelerator platform has not been used in these
experiments as the SNU NPB suite does not have an
implementation optimized for the Xeon Phi.

Tables 8 and 9 contain the speedups achieved
by OCLoptimizer using the ES+BFS and the GA
search processes respectively. The experiments were
performed for three problem sizes: S, W and A.
The tables show the speedups obtained from the
workspace optimization and the unroll optimization,
both calculated following the same approach as in
Section 4.1. The last column contains the execution
time of the best version of the benchmark generated
and the speedup with respect to the baseline. The
workspace configurations and unroll factors chosen are

not reported because of the large amount of data
they imply given the existence of up to 5 kernels in
the codes. As expected, the ES+BFS search obtains
better results than the GA. The speedups in the CPU
(3.03 on average for ES+BFS) are larger than in the
GPU (1.13 on average for ES+BFS), and most of the
speedup comes from the workspace optimization. These
observations are similar to those made for the single
kernel codes. The main conclusion of this experiment is
that OCLoptimizer not only supports codes with strong
inter-dependencies between their kernels, but it can also
achieve respectable speedups despite working on hand-
tuned state of the art implementations such as these
two IS SNU NPB codes.

5. RELATED WORK

Iterative search techniques based on actual runtime
measurements [18, 19] or analytical models [20, 21]
have been widely used to automatically tune codes
for different architectures. On the other hand, while
performance portability in the context of parallel
languages has been studied for a long time [22], it has
lately regained interest due to the heterogeneity of the
available accelerators.

For example, the elastic computing framework [23]
separates functionality from implementation details
using specialized functions. These functions allow a user
to explore a great variety of alternative implementations
and to select the optimal one for a certain platform.
This work is limited by the fact that the code has to be
expressed using the available specialized functions. This
important limitation is not so strong in OCLoptimizer,
which works on top of native OpenCL code written
using special macros and annotated with #pragmas.

From the point of view of providing an adaptive
scheduling, StarPU [24] automates the efficient map-
ping of tasks in heterogeneous environments, although
it cannot tune the performance of each individual task.
However, OCLoptimizer does tune the performance of
individual tasks.

Iterative compilation is used in [25] to select
the optimal parameters for GPU codes in a given
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TABLE 8. Speedups and execution times for the IS benchmark using the ES+BFS search

Device Size
Workspace optimization Unroll optimization Overall results

Speedup Speedup Time in ms (Speedup)

CPU
class S 3.69 1.08 8.92 (3.99)
class W 1.99 1.04 20.13 (2.07)
class A 1.12 1.15 85.93 (1.29)

GPU
class S 1.03 1.04 1.46 (1.07)
class W 1.12 1.10 5.03 (1.22)
class A 1.10 1.02 49.67 (1.12)

TABLE 9. Speedups and execution times for the IS benchmark using the Genetic Algorithm

Device Size
Workspace optimization Unroll optimization Overall results

Speedup Speedup Time in ms (Speedup)

CPU
class S 2.51 1.24 11.72 (3.11)
class W 1.82 0.97 24.84 (1.77)
class A 1.04 1.00 102.65 (1.04)

GPU
class S 1.03 1.02 1.50 (1.06)
class W 1.08 1.03 5.17 (1.11)
class A 1.09 1.02 50.11 (1.12)

platform according to a set of pre-defined parametrized
templates. This work is specifically focused on
obtaining a portable linear algebra library and selecting
the optimal tile size for the tiling technique for GPUs.
OCLoptimizer targets any OpenCL code and platform,
and it selects optimized workspace configurations and
unroll factors.

VForce [26] provides performance portability in a
transparent way across different kinds of accelerators
to programs written in the VSIPL++ (Vector Signal
Image Processing Library extension), a domain-specific
language focused on image and signal processing.
OCLoptimizer is not domain-specific as it targets any
kind of application.

The auto-tuner presented in [27] uses predictions to
select the best execution plan for the SkePU skeleton
programming framework in multi-GPU systems. The
PARTANS framework [28], which is specifically
designed to express stencil computations in multi-GPU
systems, includes auto-tuning mechanisms to optimize
this kind of computations. One more time, the main
drawback of this work with respect to OCLoptimizer is
the limited scope of application, which is not present in
our tool.

The orCUDA autotuner [29] generates complete
CUDA code using as an input an annotated C loop. The
annotations are introduced in the code as commentaries
and they drive an iterative optimization process to
select the size of the grid of threads, the size of the
the thread blocks and certain parameters of different
optimization techniques, including unrolling. The
search of the best variant of the code is driven using the
execution time. This work is focused on CUDA, so it
cannot be used to tune codes for CPUs or Accelerators,
and, despite they present examples with more complex
codes, the validation only uses small kernels, with
a single loop, which are used in the the resolution
of partial differential equations. OCLoptimizer also
targets non-Nvidia GPUs, CPUs and Accelerators as
it is based on OpenCL, and the codes included in our
experimental results are more complex than those in

this work.
Focusing on OpenCL, uCLbench [30] characterizes

the properties of the target device and the OpenCL
implementation found, seeking to guide programmers
in the hand-tuning of their codes. The main changes
required to port the performance of OpenCL codes
that have been tuned for GPUs to CPUs are discussed
in [7] and [8]. A common point in both papers
is the importance of adapting the granularity of
the parallelism for this port, which is supported by
OCLoptimizer.

GLOpenCL [31] is a unified development framework
which supports OpenCL on different types of multi-
cores. This framework consists of a compiler and a run-
time library. The compiler is based on LLVM and it
performs a set of source-to-source transformations such
as serialization of logical threads, elimination of syn-
chronization operations and variable privatization. The
validation is performed using 5 different kernels on dif-
ferent multicore platforms. The results show that the
performance achieved using GLOpenCL is close to the
performance obtained using the implementations pro-
vided by the vendor of each platform. Unlike OCLopti-
mizer, this work does not select an optimized workspace
configuration.

Finally, Dolbeau et al [32] discuss the different
performance obtained using the same OpenCL code on
different platforms. They use the CAPS compiler to
generate autotuned OpenCL code. This compiler can
select the optimal group size but it does not change the
global size. As we have seen, OCLoptimizer obtains
important performance gains from the selection of both
the global and the local workspace sizes.

6. CONCLUSIONS

Two of the main weaknesses of OpenCL are the low level
of its host API, which makes the development of its host
codes tedious and error-prone, and, more importantly,
the lack of performance portability. This paper
has presented OCLoptimizer, a tool that addresses
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both issues with little programmer effort. Given
a configuration file and a kernel annotated with
indications on the optimizations to try, OCLoptimizer
is able to generate a working host code, find an
optimized workspace configuration and tune the kernel
for the platform where the tool is executed. The tool
also supports the automated optimization of kernels
in applications with multiple inter-dependent kernels,
which is a unique feature as far as we know, although
in this case the current version does not generate the
host code.

Our tool finds an optimized workspace and an
optimized kernel code through search processes based
on measurements of the execution time. While the
workspace search can be exhaustive or guided by a
genetic algorithm (GA), the kernel optimization can be
performed following a breadth first search (BFS) that
considers each optimization directive individually or a
GA that considers all of them at once.

An evaluation performed using a CPU, a GPU
and the new Intel Xeon Phi processor shows that
OCLoptimizer successfully tunes OpenCL codes for the
different platforms. This validation targets both single
and multiple kernel OpenCL codes.

In single kernel OpenCL codes, the achieved speedup
is 2.22 when using the GA in the workspace and kernel
code search processes and 2.86 when using ES+BFS. In
these experiments, the maximum speedup using the GA
is 11.07, while using ES+BFS it is 23.33. Notice that
although the speedups of GA are more modest than
those of ES+BFS, the searches guided by the GA are,
on average, ten times faster than using ES+BFS, which
makes it more attractive in some scenarios. Focusing
on ES+BFS, the average speedups it achieves are 1.59,
2.54 and 4.46 for the CPU, the GPU and the Intel
Xeon Phi, respectively. These speedups show that
all the platforms benefit from the usage of our tool,
the effect being stronger in the accelerators. This is
not surprising, as accelerators are known to be more
sensitive than CPUs to code and workspace changes.
Both kinds of optimizations are very important, as in
every device considered we have found situations in
which one of them gave place to the biggest performance
improvement.

The IS benchmark of of the SNU NPB has been
used to validate the support of the tool for OpenCL
codes composed of several kernels. In this case,
the experiments were run only on the CPU and the
GPU, achieving an average global speedup of 1.79
(2.45 for CPU and 1.19 for GPU). These speedups are
more modest than those observed in the single kernel
benchmarks but the baseline used for these experiments
is a hand-tuned state-of-the-art implementation of
the benchmark. These experiments confirm that the
ES+BFS is more effective than the GA search and
that most of the speedup comes from optimizing the
workspace configuration. However, in this benchmark
the largest speedups are achieved in the CPU.

# common parameters

N =1024

device = gpu

initialization = random

# compiler parameters

mode = system

ocllibpath =/usr/local/lib

oclincludepath =/usr/local/include

# workspace

ndims =1

[ dim0 ]

globalsize =1 , N

localsize =1 ,32

# workspace restrictions

localsize < globalsize

# kernel parameters

nparam =3

[ param0 ]

name = n

size = 1

type = uint

mode = r

value = N

[ param1 ]

name = A

size =N

type = float*

mode = w

[ param2 ]

name = B

size = N

type = float*

mode = r

[ param3 ]

name = C

size =N

type = float*

mode = r

FIGURE A.1. Configuration file for the vector addition
example

We plan to extend our tool to support more
optimization techniques in the kernels. We also want
to integrate the use of analytical models and heuristics
to reduce the search times.
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APPENDIX A. OCLOPTIMIZER CONFIG-
URATION FILE

The OCLoptimizer configuration file defines several
variables that drive the generation of the host code and
the search of the workspace configuration. This file has
five sections that are now described in turn using the
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example file in Fig. A.1.
The common parameters section initializes variables

that will be used through the rest of the file and it
configures some general settings of the OpenCL host
code to generate. In Fig. A.1 this section initializes the
variable N to 1024. Then, it establishes that the host
code has to use a GPU to perform the computation.
Alternatively, the device variable could take the values
CPU, which is used to select the main processor, or
ACC, which is used to select a Xeon Phi if available.
If there are two devices of the same type, the current
implementation of OCLoptimizer selects the first one.
The initialization variable specifies how the kernel
inputs whose value are not specified in the configuration
file should be initialized in the host code. In the
example, the random value indicates that it should be
initialized with random values. In some cases, a random
initialization would not be valid as the contents of the
input data should fulfill certain conditions. In that case,
the initialization variable should be set to code and
the path of the file containing the initialization code
should be provided as the third parameter of the tool.

The compiler parameters section configures the
compilation process. It provides the location of the
library and headers files of the OpenCL implementation
to use, and the compilation mode, which selects the way
the intermediate versions of the host code to optimize
are compiled by the tool. Currently OCLoptimizer only
supports the system compilation mode, which performs
the compilation using a system call to the g++ compiler.

The workspace definition section sets the parameters
related to the workspace configuration. These are
the number of dimensions of the workspace (ndims),
and for each dimension, the global and the local
size. As the optimized global and local size will be
found iteratively, the user has to specify, separated by
commas, the minimum and the maximum value to test
for the sizes of all the local and global dimensions.
The values associated to dimension X are preceded by
a [dimX] clause. In the example of Fig. A.1, the
workspace only has one dimension composed of between
1 and N (globalsize=1,N) work-items and each work-
group is composed of between 1 and 32 work-items
(localsize=1,32).

The workspace restrictions section specifies condi-
tions that must be satisfied by the workspace defini-
tion. Workspace configurations that do not fulfill these
conditions must be discarded. In the example, the
local workspace size must be smaller than the global
workspace size.

Finally, the kernel parameters section defines the
number, the size and the type of each parameter of
the kernel. It must also indicate for each parameter
whether it is a read-only value (r) or a read/write
value (w). Unspecified parameters take a default value.
The information associated to the X-th parameter is
preceded by a [paramX] clause. In the example of
Fig. A.1, the kernel receives four parameters called n,

A, B and C, respectively. The first parameter is a read-
only (mode=r) scalar (size=1) called n of type uint. Its
default value is value=N. Arrays A, B and C (name=A,
name=B, name=C) have size=N elements of type float
(type=float*) and the first one can be modified inside
the kernel (mode=w) while the two others are read-only
(mode=r).
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