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Abstract

Nowadays, computers include several computational devices with parallel capacities, such as multicore processors and Graphic
Processing Units (GPUs). OpenCL enables the programming of all these kinds of devices. An OpenCL program consists of a
host code which discovers the computational devices available in the host system and it queues up commands to the devices,
and the kernel code which defines the core of the parallel computation executed in the devices. This work addresses two of the
most important problems faced by an OpenCL programmer: (1) hosts codes are quite verbose but they can be automatically
generated if some parameters are known; (2) OpenCL codes that are hand-optimized for a given device do not get necessarily a
good performance in a different one. This paper presents a source-to-source iterative optimization tool, called OCLoptimizer,
that aims to generate host codes automatically and to optimize OpenCL kernels taking as inputs an annotated version of the
original kernel and a configuration file. Iterative optimization is a well-known technique which allows to optimize a given code
by exploring different configuration parameters in a systematic manner. For example, we can apply tiling on one loop and the
iterative optimizer would select the optimal tile size by exploring the space of possible tile sizes. The experimental results
show that the tool can automatically optimize a set of OpenCL kernels for multicore processors.
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1. Introduction

Current computers include a heterogeneous set of computational devices, such as multicore processors and
Graphic Processing Units (GPUs). Different technologies have been used to extract parallelism from different
kinds of devices. For example, OpenMP [1] or Intel TBBs [2] are used to extract parallelism from multicore
processors, while CUDA [3] is widely used for GPUs. OpenCL [4] is a standard that allows to write programs that
can be executed on a wide range of devices, such as multicores, GPUs or heterogenous processors like the Cell.
However, the performance of programs written in OpenCL is not portable, thus, an OpenCL program can obtain a
good performance in one device but a poor one in a different device, and vice-versa. As a consequence, OpenCL
programs have to be hand-tuned for each device where they may be executed.

Iterative optimization has been widely used to automatically tune a code for a given architecture [5, 6]. Ad-
ditionally, the performance portability in the context of parallel languages has been studied for a long time [7].
However, lately, it has regained interest due to the heterogeneity of the available accelerators. For example, Du
et al [8] use iterative compilation to select the optimal parameters for an OpenCL code in a given platform. This
work is focused in the obtention of a portable linear algebra library and in the selection of the optimal tile size
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for the tiling technique. Moore et al [9] introduce VForce, which allows the efficient usage of accelerators. The
performance portability is completely transparent to the programmer. The work is focused in the field of the image
and signal processing as the input is a program written in a domain-specific language called VSIPL++ (Vector Sig-
nal Image Processing Library extension). Wernsing et al [10] introduce the elastic computing framework, which
allows to separate functionality from the implementation details using specialized functions. These functions al-
low to explore a great variety of alternative implementations and to select the optimal for a certain platform. The
main limitation is that the code has to be expressed using the available specialized functions. Finally, Augonnet
et al [11] present StarPU, which automates the efficient mapping of tasks in heterogeneous environments. The
problem is that while this tool efficiently dispatch tasks, it does not tune the performance of each task individually.

This work introduces OCLoptimizer, a source-to-source iterative optimization tool that automatically opti-
mizes an OpenCL program for the platform where the tool is executed. The election of OpenCL serves our
purpose to execute the same kernel code on a wide range of platforms. Iterative optimizers are used to explore a
wide range of possible optimization decisions. Namely, we can try to apply tiling on one loop and the tool would
select the optimal tile size. The search space can consist of all the possible tile sizes, or a representative subset that
will likely contain the optimal value. The version of the code built using each possible tile size can be evaluated
by means of an analytical model, heuristics or by executing the resulting code.

As an use case, the version of OCLoptimizer presented in this work can apply the unroll and unroll-and-jam
optimization to one or several loops in an OpenCL kernel. All the possible unroll factors in a range are tested
and the decision is taken based on the execution time obtained using each unroll factor. The space of possible
unroll factors can be explored using an exhaustive search or it can be guided using genetic algorithms [12]. This
second alternative improves the quality of the generated version when the code contains several unrollable loops
and it dramatically reduces the total execution time of the tool, as it explores the search space in a more intelligent
manner.

The OCLoptimizer is executed on the target platform for which the code has to be optimized and it takes two
inputs: (1) an annotated OpenCL code, where the programmer has included a set of directives that indicate the
parts of the code that must be optimized and the techniques to apply to each one, and (2) a configuration file that
includes information to generate automatically a working host code. The output of the tool is the working host
code and an OpenCL kernel highly optimized for the target platform. The host code generated contains a random
initialization of the data structures that appear in the code, which can be easily replaced by the programmer with
its own initialization. The automatic generation of the host code releases OpenCL programmers from the painful
task of generating it manually. Experimental results show the effectiveness of the tool to automatically optimize a
set of different OpenCL kernels.

This paper is organized as follows. Sections 2 and 3 give an overview of OpenCL and CLANG, the two
technologies on top of which OCLoptimizer is built. Section 4 describes how the OCLoptimizer tool works and
how it is internally organized. Section 5 presents the experimental results and Section 6 concludes.

2. OpenCL

The Open Computing Language (OpenCL) is an open industrial standard for the programming of heteroge-
neous platforms, including multicore processors, GPUs, Digital Signal Processors (DSPs) or Field Programmable
Gate Arrays (FPGAs). The standard consists of a framework composed of a C99-based programming language for
writing kernels and a set of application programming interfaces (APIs). The hardware manufacturers that support
the standard provide access to their hardware accelerators on their own implementations of the standard.

OpenCL distinguishes the host system and the devices (accelerators) available in that host system. An OpenCL
device is logically composed of one or more computing units (CUs) which are divided into one or more processing
elements (PEs).

OpenCL programs run on the host system, which discovers the OpenCL platforms available in that host system,
then it finds the devices that can be accessed through each platform, it creates a queue associated to each device
and it queues up commands through these queues. The host orders the execution of kernels, which are the core
of the parallel computation, to the devices. Host and devices have separated memory spaces, so data must be
explicitly transferred to the devices. In addition, the synchronization of data transfers and kernels may be explicitly



Jorge F. Fabeiro et al / Procedia Computer Science 00 (2013) 000–000

managed in the queue associated to each device. Thus, the kind of commands enqueued to the devices include:
data transfers, synchronization operations and kernels.

The host defines a workspace which is composed of several work-items. An instance of the kernel is generated
by each work-item. These instances are executed by the PEs of the device. The workspace can have one or several
dimensions, this way, each work-item is identified by a sequence of identifiers, one per dimension. The number
of points of each dimension in the global workspace is the global size.

Work-items are grouped into work-groups. The number of points per dimension of a work-group is called
the local size. These work-groups are composed of work-items that can be synchronized and they share a special
memory region, called local memory. All work-items in one work-group are executed on the same CU.

This way, work-items are identified in the workspace using one identifier per dimension, called global iden-
tifiers, and they are identified inside their work-group using one identifier per dimension, called local identifiers.
As it was said, each instance of the kernel is associated to a work-item. Inside each instance of the kernel the
values of the global and local identifiers can be obtained, thus, they can be used to exploit data-parallelism easily.
For example, a vector addition can be easily programmed with OpenCL by defining a one-dimensional workspace
where the number of work-items is equal to the number of elements of the vectors to be added. The kernel would
perform the addition of two individual elements, and the global identifier would be used to select the pair of
elements to be added.

3. CLANG and the LLVM compiler infraestructure

The Low Level Virtual Machine (LLVM) [13] project is a compiler infrastructure designed for compile-time,
link-time and idle-time optimization of programs. CLANG is a C and C++ frontend for LLVM. It translates C or
C++ code, with support for OpenCL to the LLVM intermediate representation (IR). CLANG and LLVM are often
used by most programmers to compile OpenCL codes.

The OCLoptimizer is a source-to-source tool as, this way, programmers can inspect the resulting code and
maybe make some final adjustments on it. This goal can be achieved using two alternative methods:

• We can transform the C code into LLVM IR, make some transformations on top of the LLVM IR and
generate back the transformed C code.

• We can transform the C code into an Abstract Syntax Tree (AST) and make some transformations on top of
the source code using the information included in the AST, to generate a transformed version of the original
source C code.

The first alternative can be implemented using CLANG to generate the LLVM IR and then the LLVM infrastruc-
ture to transform the LLVM IR. The resulting C code can be generated using the LLVM static compiler (llc).
The problem with this alternative is that the C code generated by llc is difficult to understand by the programmer.

The second alternative can be built on top of CLANG as its architecture includes the following components:

• A syntatic analyzer (Parser) and lexycal analyzer (Lexer).
• An Abstract Syntax Tree (AST) generator (using a C or C++ as an input).
• An LLVM intermediate representation generator (using an AST as an input).
• Source code managing support. Specifically, the librewrite module can be used to know the source code file

range where the source code associated to a given node of the AST is located. These ranges can be used to
modify the source code.

The AST generator can be used to generate the AST, while the source code managing support can be used to
transform a program on top of the source code. This approach suits our purposes better, as it generates a human-
readable C code and it seems the most natural way to implement source-to-source transformations.

4. The OCLoptimizer tool

The OCLoptimizer tool is a source-to-source iterative optimization tool for OpenCL programs. The inputs
of the tool are a configuration file and an OpenCL kernel. The OCLoptimizer generates a working OpenCL host
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Fig. 1. General workflow of OCLoptimizer

# common p a r a m e t e r s
N=1024 ,2048
d e v i c e=gpu
# c o m p i l e r p a r a m e t e r s
mode=sys tem
o c l l i b p a t h =/ u s r / l o c a l / l i b
o c l i n c l u d e p a t h =/ u s r / l o c a l / i n c l u d e
# workspace
ndims=1
[ dim0 ]
g l o b a l s i z e =N
l o c a l s i z e =1
# k e r n e l a rgumen t s
n a r g s =1
[ a rg0 ]
name=A
s i z e = N
t y p e= f l o a t ∗
mode=w

Fig. 2. Configuration file example

code for the kernel, and it optimizes the kernel for the platform where the tool is executed. The rest of this Section
is organized as follows. First, Section 4.1 introduces the workflow of the tool, then, Section 4.2 summarizes its
main components, after that, Section 4.3 describes the inputs of the tool and Section 4.4 introduces the two search
algorithms that can be used to driver the iterative optimization process and finally Section 4.5 describes the outputs
generated by the tool.

4.1. Workflow of OCLoptimizer
Figure 1 shows the general workflow followed by the tool. As it was said, the tool receives as inputs: an

annotated OpenCL kernel and a configuration file. The configuration file is mainly used to drive the generation
of a working host code and to define the different problem sizes that must be taken into account by the tool in the
optimization process. This working host code contains a random initialization, that the user of the tool can replace
with its own initialization. This host code is internally used by the tool to execute the intermediate versions of the
kernel generated. The annotated kernel contains pragmas that indicate the parts of the code that must be optimized
and the techniques to apply to each one. Pragmas are processed in an iterative process that gives place to an
optimized version of the kernel. In OCLoptimizer, this iterative process can be guided by a breadth first search
(BFS) or a genetic algorithm (GA). In BFS, pragmas are processed one by one in an iterative process where the
processing of each pragma gives place to a new level of the process. In each level, a set of versions of the kernel are
generated as a result of the application of a pragma, these versions are ordered and filtered to decide which ones
proceed to the next level. In the GA, several versions of the kernel are generated by applying the transformations
associated to all the pragmas present in the code at the same time, if one of these versions is satisfactory, then it
is selected as the output version of the kernel, else, the GA generates a new population by reproduction, crossover
and mutation.
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4.2. Internal structure of OCLoptimizer
The OCLoptimizer is written in C++ on top of the libraries provided by the CLANG front-end. The code is

organized in four packages:

• The PragmaPreprocessor package contains the classes that scan the input kernel file searching for the
pragmas introduced by the user. The relevant information from these pragmas is extracted and maintained
in a separate structure.

• The OcloptsGenerator package contains the classes that implement the code generation phase of the iter-
ative process. They generate the AST associated to the input kernel using CLANG and they process each
annotation found in the code to generate a number of transformed versions. These versions are generated
using the librewrite module of CLANG, which allows to locate the string of the source code associated to
each part of the AST. This module provides a natural method to perform source-to-source transformations.

• The HostGenerator package contains the classes that parse the configuration file and generate a working
host code that can be used in the evaluation phase of the iterative process.

• The VersionSelector package contains the classes that implement the evaluation stage of the iterative pro-
cess. It executes each version of the code using each problem size specified in the configuration file. The
classes in this package also manage an ordered list of versions, a score system used when several problem
sizes have to be taken into account, and the versions filtering when the tolerance and number parameters
appear in a pragma.

4.3. Inputs of OCLoptimizer
The OCLoptimizer has two input files, the configuration file and the annotated kernel, whose content is covered

separately. The configuration file contains the definition of several variables which will be used mainly to drive
the generation of the host code. This file has four sections:

• The common parameters section initializes the values of some variables that will be used through the rest
of the configuration file and it configures other general settings of the OpenCL host code to be generated.
Figure 2 contains a configuration file example. In this example, this section contains the initialization of the
variable N to an array with two values 1024 and 2048. This means that the tool has to take into account two
possible values 1024 and 2048, whenever this variable appears. Finally, it establishes that the host code has
to use a GPU to perform the computation. Alternatively, the device variable could take the value CPU.

• The compiler parameters section sets several values related to the compilation process, like the location of
the library and headers files of the OpenCL implementation to be used, or the compilation mode which sets
the way the intermediate versions of the code are compiled by the tool. The current version of OCLoptimizer
only supports the system compilation mode, which performs the compilation using a system call to the
g++ compiler. In the example of Figure 2, the compilation mode is set to system, while the locations of the
library and header files are provided.

• The workspace definition section defines the workspace. Namely, the number of dimensions of the workspace
(ndims), and for each dimension, the global and the local size. The values associated to dimension X are
preceded by a [dimX] clause. In the example of Figure 2, the workspace has only one dimension composed
of N work-items and each work-item is in a different work-group. As N has two possible values (1024 and
2048) the tool has to consider two different problem sizes. These problem sizes will be evaluated separately
to select the optimal version of the kernel.

• The kernel arguments section defines the number, the type and the size of each argument of the kernel. The
information associated to the argument X is preceded by a [argX] clause. In the example of Figure 2, the
kernel has only one argument called A (name=A) which is an array of N elements (size=N) of type float
(type= float *) that can be modified inside the kernel (mode=w).

The other input of OCLoptimizer is an OpenCL kernel containing annotations of the user. These annotations
are pragmas that mark regions of the code with the optimization techniques to apply to them. The annotations
include the parameters of the technique and the search space. The general form of an annotation is

# pragma oclopts <name> <params> [ tolerance <0 - 100>] [ number n]
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. . .
# pragma o c l o p t s u n r o l l 2 16 2 number 2
f o r ( i n t i =0; i <1000; i ++) {

a [ i ] = a [ i ] + s ;
}

. . .

Fig. 3. Annotated kernel
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Fig. 4. Iterative process in OCLoptimizer tool using a breadth search first

The keyword <name> must be replaced by the name of the optimization technique to be applied. <params> is
replaced by the parameters, which are different for each technique. They usually define the range of values to
be tested in the iterative optimization process. The field tolerance, when it is defined, establishes that only the
versions whose execution times are less than a tolerance per cent above the average value, proceed to the next
level of the iterative process. Finally, the argument number can optionally set the maximum number of versions
which proceed to the next level of the iterative process. These two fields, (tolerance and number), are only used
by BFS. As it was said previously, this version of the tool can only apply automatically the unroll and unroll-and-
jam technique and it selects the optimal unroll factor. The general form of the pragma associated to this technique
is as follows.

# pragma oclopts unroll [init end step] [ tolerance <0 - 100>] [ number n]

The parameters associated to this technique (init, end and step) set the first, the last and the step value of
the range of potential unroll factors that the tool has to evaluate.

Figure 3 contains a section of an OpenCL kernel in which a loop is annotated with an unroll pragma. All the
possible unroll factors between 2 and 16 with step 2 must be tested and at most the best two versions of the kernel
has to proceed to the next stage of the optimization process.

4.4. Search algoritms used by OCLoptimizer

The iterative process performed by the tool can be guided by a breadth first search (BFS) or a genetic algorithm
(GA). These two alternatives are commented separately in Sections 4.4.1 and 4.4.2.
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Fig. 5. Iterative process in OCLoptimizer tool using a genetic algorithm

4.4.1. Breadth First Search
The BFS is illustrated in Figure 4. This search has two main stages: optimization and evaluation. The

annotations in the kernel are processed one by one. In the optimization stage, one of the annotations of the
kernel is processed giving place to a number of versions of the kernel. For example, if an unrolling pragma is
found, a version of the kernel using each unroll factor requested is generated.

In the evaluation stage, the tool creates a list of versions ordered in increasing order of their execution time. The
tolerance argument of the pragma is used to remove from the list those versions with an excessive execution
time. Then, if the processed pragma has also a number(n) argument, only a maximum of n versions will be
maintained in this list of versions. The resulting list of versions will be used as a base for the next level of the
iterative optimization process.

The configuration file can define a set of different problem sizes (see parameter N in Figure 2). In that case, a
separate ordered list must be generated for each problem size. Each per-size list is filtered using the tolerance

and number parameters of the pragma. The tool composes a new list using the versions that are at least in one of
the lists. This new list of versions will be used as a base for the next level of the iterative process. This process
will be repeated until all the pragmas in the kernel have been processed. In this final step of the process, each
version gets a score equal to its position in each per-size list. Then, we add the scores obtained by each version in
the different per-size lists and we create a final list of versions ordered in increasing order of their overall scores.
This way, when different problem sizes have to be taken into account, the versions that perform better for more
problem sizes occupy the first positions in this final list. Then, the first version of the final list generated after the
processing of the last pragma will be picked as the overall winner.

The problem of BFS is that if there are several loops to be unrolled in a kernel, the number of versions to be
evaluated experiments a combinatorial explosion. For example, if 4 loops are annotated to be unrolled and the
number of possible unroll factors to be tested in each loop is 10, then the final number of versions to be evaluated is
104. This number of versions can be reduced using the tolerance and number pragma parameters which reduce
the number of versions that proceed to the next level. However, the problem of the BFS search is that either a
limited subset of the search space is evaluated or, if the search space is explored exhaustively, the execution time
of the tool is very large. As a consequence, this approach may not lead to an optimal solution as the unroll factors
selected for each loop may be interdependent if several unrollable loops are part of the same loop nest.
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4.4.2. Genetic Algorithm Search
Figure 5 gives an overview of the iterative optimization process guided by a GA. First, the chromosomes of

the GA, which are potential solutions to our problem, have one gene per pragma in the input kernel. In the current
version of the tool, the chromosome has one gene per loop to be unrolled, and this gene stores the unroll factor to
be used by this chromosome for the particular loop.

The initial population of the algorithm is composed of a configurable number of individuals. This number
has been fixed internally in the tool by experimentation. These chromosomes are generated using random com-
binations of the values that the different genes can take (different unroll factors). If the number of chromosomes
randomly generated is not enough, they will be cloned until the required number of chromosomes is achieved.

One version of the kernel per chromosome is generated. These versions are evaluated and their speedup with
respect to the original kernel is calculated. The maximum speedup obtained is used to evaluate if the current
generation meets the minimum criteria and thus, it is a valid solution to our problem. In that case, the kernel
version associated to this maximum speedup is provided as the output of our tool with the working host code.

If the algorithm has not yet achieved an acceptable solution, then, a new population is generated. The best
individuals from the current population are selected to produce the next generation through reproduction. This
new population of individuals is generated using two different operators:

• Crossover: The genes of two parent chromosomes are combined to generate a new child chromosome which
will be incorporated to the next generation. A random cross point is selected which divides the chromosomes
into two halves. The genes of the first half of the first parent chromosome and the genes of the second half
of the second parent chromosome give place to the new child chromosome.

• Mutation: One random gene of the chromosome changes its status. This mutation gives place to a new
individual of the next generation.

The new individuals generated will be used to perform a new iteration/generation of the genetic algorithm.
This process will be repeated until the population achieves an acceptable value of the fitness function. In our
tool this fitness function is obtained by calculating the speedup of the best generated version with respect to the
original kernel. The GA finishes when the speedup obtained has not improved in the last three generations.

When several loops have to be unrolled in the same loop nest, this method, unlike BFS, evaluates a limited
number of the possible combinations of unroll factors and it takes into account the unrolling of all the unrollable
loops simultaneously. This approach may lead to a better solution than using BFS.

4.5. Outputs of OCLoptimizer
The OCLoptimizer has two outputs: a kernel highly-optimized for the platform where the tool has been exe-

cuted and a working host code. The kernel is an optimized version of the input kernel where all the loops marked
as unrollable have been unrolled and the optimal unroll factor have been selected. The working host code can be
used to execute the output kernel, without any modification, it contains a random initialization of the data struc-
tures that can easily be replaced by the user of the tool with its own initialization. The user of the tool has to make
sure that the algorithm works correctly with a random initialization. Still, the tool will be extended in the future to
read an initialization code or directly the contents of the data structures from user provided files, as the user may
want that the tool uses its own initialization during the iterative optimization.

The host code is generated automatically and it is ready to use the kind of device specified in the configuration
file, it creates a workspace with the characteristics specified in the configuration file, it compiles the kernel, it
enqueues the data to be used by the kernel and the kernel itself, and it gathers the results generated by the kernel.

5. Experimental results

The validation is based in three computationally intensive codes: a matrix multiplication (MATMUL), a Sobel
Edge Detector [14] (SOBEL) and a Direct Coulomb Summation [15] (DCS). The OpenCL kernel that implements
MATMUL has three unrollable loops while the kernels that implement the SOBEL and the DCS algorithms have
four unrollable loops each. The experiments were run on an Intel Xeon E5620 CPU with eight 2.4 Ghz cores and
16 GB of RAM.
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Table 1. Speedups achieved and optimal and maximum unroll factors (UFs) using a BFS or a GA for the three codes and using thee different
problems sizes

Code Size BFS GA
Speedups Optimal UFs Speedups Optimal UFs Maximun UFs

MATMUL
1024 1.34013 1,3,3 1.16928 2,3,65 3,3,154
2048 1.63384 1,1,93 1.24247 2,3,139 3,3,154
4096 1.41205 1,2,71 1.36228 3,1,79 3,3,154

SOBEL
1024 1.02336 6,3,3,3 1.04856 1,10,1,3 13,13,3,3
2048 1.03579 1,1,3,3 1.03958 1,1,3,3 13,13,3,3
4096 1.19674 4,2,1,3 1.13234 7,4,1,3 13,13,3,3

DCS
64 1.39748 1,1,1,8 1.26691 1,2,2,41 2,2,2,64
128 1.04998 1,1,1,5 1.02554 1,1,1,26 2,2,2,64
256 1.01123 2,1,1,12 1.00635 2,2,1,7 2,2,2,64

Table 2. Tool execution times for CPU performance tuning

Code Size
BFS GA

Time #ver Percentages Time #ver Percentages
Generation Evaluation Generation Evaluation

MATMUL
1024 2793.11 1386 30.94% 69.06% 181.063 79 0.84% 99.16%
2048 19971.4 1386 4.32% 95.68% 2127.52 133 1.44% 98.56%
4096 324506 1386 0.08% 99.92% 16252.3 69 1.92% 98.08%

SOBEL
1024 1546.76 1521 57.52% 42.28% 120.599 75 44.58% 55.42%
2048 3595.92 1521 26.09% 73.91% 151.791 76 43.20% 56.80%
4096 11686.5 1521 8.03% 91.97% 652.53 222 31.58% 68.42%

DCS
64 1262.21 512 25.02% 74.98% 70.6902 42 13.08% 86.92%
128 11421.6 512 2.76% 97.24% 216.242 25 5.81% 94.19%
256 173117 512 0.18% 99.82% 2979.13 25 3.98% 96.02%

Table 1 summarizes the results obtained using either the BFS or the GA search. For each unrollable loop, a
range of possible unroll factors (UFs) has been taken into account. The values in these ranges are generated always
starting at 1 and using step 1, the maximum value for each case is contained in the Maximum UFs columns. Each
cell of these columns contains one maximum unroll factor per loop separated by commas. The BFS search has
been tested generating all the possible versions of the kernel considering the ranges established in the pragmas,
without filtering the number of versions using the number or tolerance parameters. The GA search has been
tested using populations with one gene per unrollable loop where each gene can take values inside the range of
possible UFs. Thus, this table contains two groups of columns, one for the BFS and another one for the GA. Each
one of these groups contain the speedup with respect to the original OpenCL version obtained by the tool, and the
unroll factors for each loop (separated by commas) that gave place to this speedup. The results of the table show
that the tool can generate a tuned version of the kernel.

The results of Table 1 shows that the tool when guided by BFS provides a better solution than when guided
by GA, as expected, now we will see at which cost. Table 2 contains the execution time of the tool for each case
tested in Table 1. The results are provided separately for the BFS and the GA search. For each case, it is provided
the total execution time of the tool, the number of intermediate versions generated (#ver), and which percentage
of the execution time is due to the generation of the intermediate versions and which percentage is due to the
evaluation of each version generated. The results of the table shows that the tool guided by BFS generates many
more versions of the kernel than when guided by GA and as a consequence it increases largely the total execution
time of the tool. Most of the tool execution time is devoted to evaluate each version generated. Let us notice that
in the current version of the tool, the evaluation of each version is performed by executing the code generated,
which is a very time-consuming approach. This evaluation could be performed using heuristics or performance
models, which would allow to reduce drastically the total execution time of the tool.

6. Conclusions

This paper has introduced OCLoptimizer, a tool that performs two valuable actions for OpenCL programmers:
it generates automatically a working host code and it tunes the performance of a kernel for the platform where
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the tool is executed. The tool receives as inputs a configuration file and an annotated version of the kernel to be
optimized. The annotations are introduced by the user of the tool and they mark regions of the code with the
optimization techniques to apply to them.

The version of this tool presented in this paper automatically applies the unroll and unroll-and-jam technique
on the loops annotated by the user. The tool selects the unroll factors, or combinations of unroll factors, that
generate the shortest execution time. Two different methods are used to explore the search space: a breadth first
search (BFS) and a genetic algorithm (GA). The experimental results show that the tool can tune automatically
the performance of a set of OpenCL kernels for multicore processors. The speedup achieved is 19% on average
with a peak speedup of 63%. The tool, when is guided by the BFS search, maximizes the speedup achieved but
the execution time of the tool is a 2400% greater that using a GA, on exchange, the solution provided by BFS is a
64% better than the one provided by GA.

As future work, the tool will be extended to automatically select the optimal workspace configuration and
to apply a wider range of optimization techniques. We also plan to extend OCLoptimizer so that the evaluation
of the different versions generated can be also made using heuristics or analytical models rather than execution
times [16]. This way, the tool will be faster and will be able to optimize code for a platform different from where
the tool is executed.
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