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ABSTRACT
The increasing success and scaling of Deep Learning models de-
mands higher computational efficiency and power. Sparsification
can lead to both smaller models as well as higher compute effi-
ciency, and accelerated hardware is becoming available. However,
exploiting it efficiently requires kernel implementations, pruning
algorithms, and storage formats, to utilize hardware support of spe-
cialized sparse vector units. An example of those are the NVIDIA’s
Sparse Tensor Cores (SPTCs), which promise a 2× speedup. How-
ever, SPTCs only support the 2:4 format, limiting achievable sparsity
ratios to 50%. We present the V:N:M format, which enables the exe-
cution of arbitrary N:M ratios on SPTCs. To efficiently exploit the
resulting format, we propose Spatha, a high-performance sparse-
library for DL routines. We show that Spatha achieves up to 37×
speedup over cuBLAS.We also demonstrate a second-order pruning
technique that enables sparsification to high sparsity ratios with
V:N:M and little to no loss in accuracy in modern transformers.
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1 INTRODUCTION
The rapid progress of Deep Learning (DL) is revolutionizing Artifi-
cial Intelligence (AI) in areas such as Natural Language Processing
(NLP). Large Language Models (LLMs) are at the forefront of mod-
ern NLP systems [7, 34]; however, their massive growth has led
to unprecedented computational requirements [1, 2, 14, 18]. As a
result, training transformers has become a dominant task in DL,
with costs reaching millions of dollars and significant energy and
carbon emissions [32]. Therefore, it is critical to improve their in-
ference and training performance. One of the most widely used
techniques for this purpose is network pruning [15], which removes
the less significant weights to produce simpler and compressed, yet
accurate models.

There is a plethora of pruning algorithms and sparse formats
focused on accelerating tensor operations such as matrix-matrix
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multiplications (MMMs) by means of specialized hardware like Ten-
sor Core Units (TCUs) [37]. While these algorithms and formats
reduce the number of arithmetic operations andmemory usage com-
pared to their dense counterparts, achieving significant speedup
on these accelerators while maintaining model accuracy is chal-
lenging [16]. Semi-structured pruning can yield practical speedups
at moderate sparsity levels (e.g., 80 − 90%) [4, 5, 25]. However, the
irregularity of the sparse input matrices still limits performance
and makes difficult to reach the theoretical peak considering the
reduction of the number of arithmetic operations [11].

Last generations of NVIDIA GPUs include Sparse Tensor Cores
(SPTCs) that are specifically designed for sparse computation [27].
SPTCs promise to accelerate math operations by up to 2× at 50%
sparsity. The data layout proposed to use SPTCs imposes strict con-
straints (i.e., 2:4 format, where every consecutive 4 elements have 2
nonzero values), but it reduces the irregularity of the sparse input
w.r.t. other performance-aware sparse formats (e.g., vector-wise,
block-wise). This makes the N:M format very suitable to execute
on GPUs since it favors key aspects of the execution of tensor oper-
ations such as inter- and intra-warp load balance. However, there
is an important limitation related to the usage of SPTCs and the
2:4 format: recent models like LLMs commonly have hundreds of
millions to trillions of parameters, making it feasible to prune them
to higher sparsity ratios with little or no loss in accuracy [21]. Un-
fortunately, there is currently no hardware support for executing
arbitrary N:M formats with higher compression ratios, which limits
the total achievable speedup.

Recent research has explored the N:M format [6, 8]. However,
these investigations have been limited to a theoretical perspective,
such as network pruning, or have relied on CPU implementations
due to a lack of hardware support for alternative N:M patterns on
GPUs. To address these limitations, we propose the Vectorized N:M
format, which we refer to as V:N:M1. This format introduces an
abstraction layer over SPTCs, enabling the execution of alternative
N:M formats and arbitrary sparsity ratios. The vectorization aspect
is derived from the selection of vertical vectors of elements that
are stacked together to provide the row-wise N:M pattern. This
approach enables the conversion from generic N:M formats to the

1Pronounced “venom”
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2:4 that is accepted by SPTCs. To efficiently exploit the benefits of
the V:N:M format, we propose Spatha2, a template-based library
dedicated to general matrix-matrix multiplication on half precision
where one of the operands is sparse (SpMM). Spatha serves as
an open-source alternative to cuSparseLt [28] and removes its 2:4
restriction. The main contributions of this paper are:
• A new sparse matrix format V:N:Mwhich enables arbitrary N:M

patterns on SPTCs.
• Highly optimized SpMM kernels to efficiently exploit the V:N:M

format. Specifically, we propose a template-based implementa-
tion that can be tuned depending on the input dynamics, such
as GEMM size or the V:N:M format configuration.

• A second-order pruning technique tailored for the V:N:M format
and scalable to the dimensionality of LLMs. This technique
allows the sparsification to high sparsity ratios with little to
no loss in accuracy (e.g., ∼ 2% drop in BERT F1 score on the
SQuAD dataset with 2:16 sparsity), which is required for the
full exploitation of the V:N:M format.

• Spatha achieves unprecedented speedups w.r.t. its dense coun-
terpart versions (e.g., cuBLAS) yielding up to 37× faster MMMs
on matrices extracted from real-world DL models. Furthermore,
Spatha implementation provides speedups of up to 1.38× over
the vendor library for 2:4 sparsity, cuSparseLt.

• For end-to-end sparse LLMs inference, Spatha shows a GEMM
time reduction of 11× at 2:32 sparsity on real-world models
such as GPT-3.
The source code of VENOM is available at https://github.com/

UDC-GAC/venom.

2 BACKGROUND
This section presents the technical background of the paper, cov-
ering network pruning techniques and the Sparse Tensor Cores of
NVIDIA GPUs.

2.1 Network pruning
In DL, pruning is a technique used to reduce memory usage, which
can also reduce the computational load when combined with com-
pressed storage formats and efficient sparse kernels. Pruning tech-
niques can be categorized based on various criteria, such as the
pruning strategy employed, or the granularity of the pruning.

Pruning schemes are often based on weight saliency metrics,
which directly correlate with the expected impact on accuracywhen
those weights are removed from the network. Various methods exist
to select the candidate weights for removal, including magnitude
pruning [20], which selects weights with lower absolute values, and
gradient-basedmethods that use the gradient applied to eachweight
to identify those that are trending towards to zero faster. Within the
gradient-basedmethods, we can find first-order techniques based on
the first-derivative information [31, 38], and second-order ones [9,
21, 23], which pursue to find the set of weights whose removal
will generate a minimum loss increase in the network. Second-
order methods have proven to be effective in pruning convolutional

2SParse linear Algebra rouTines for High-performance Applications. The name is mo-
tivated by the analogy with the Cutlass library, with the accent on sparse computation
- a sharp and efficient tool to cut through the complexity of sparse routines

networks in the past, but they have recently been optimized for
Large Language Models (LLMs) [21].

As for the granularity of the pruning, unstructured methods [13]
remove weights individually, with gradual magnitude pruning
(GMP) being the most commonly used variant [10]. On the other
end of the granularity spectrum, structured methods [26, 35] prune
complete components like layers, or heads, in the case of trans-
formers networks[36]. In between, semi-structured methods prune
groups of weights. These latter methods aim to balance perfor-
mance and accuracy by defining specific formats that promote the
exploitation of the underlying hardware more efficiently. These
methods often imply the usage of tailored compressed storage for-
mats and custom kernels [11, 22]. The N:M format, which enables
the use of Sparse Tensor Cores (SPTCs) in NVIDIA GPUs, can be
classified in this last group.

2.2 Sparse Tensor Cores of NVIDIA GPUs
The CUDA programming model organizes GPU kernels into three
granularity levels: thread-blocks, warps, and threads. A thread block
is composed of a set of warps, with warps being the basic scheduling
unit in CUDA. Each warp consists of 32 threads.

NVIDIA GPUs consist of an array of Streaming Multiprocessors
(SMs), with all SMs sharing the L2 cache, and a DRAMmemory, also
called Global Memory (GMEM). Each SM is divided in processing
blocks, each one having a Register File (RF), a warp scheduler, and
an L0 instruction cache. All the processing blocks within an SM
share a L1 cache, which is partially used as Shared Memory (SMEM).
Each processing block is also equipped with four types of units:
Floating-Point Units (FPU), Tensor-Core Units (TCU), Int Units
(ALU) and Special Function Units (SFU).
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Figure 1: The 2:4 format and its mapping to SPTCs

Last generations of NVIDIA GPUs have extended their TCUs
to also handle row-wise 2:4 sparsity. These updated TCUs include
hardware support for sparse computation, and are referred to as
Sparse Tensor Cores (SPTCs). To exploit SPTCs, the first argument
in tensor operations must be stored in NVIDIA’s N:M sparse format,
where 𝑁 represents the maximum number of non-zero elements in
a block of 𝑀 values. Figure 1 illustrates this format. The left side
of the figure shows an uncompressed sparse matrix following the
row-wise 2:4 pattern. The compression of that 𝑅×𝐾 matrix requires
two structures: (1) a 𝑅 × 𝐾/2 matrix representing the values of the
non-zero elements, and (2) a metadata structure which contains the
position of each nonzero valuewithin each group of 4 values. Finally,
Figure 1, right side, illustrates the mapping of a 2:4 sparse operation
onto SPTCs. Notice that the metadata structure is also used by the
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hardware to select the corresponding elements in the dense matrix
𝐵 and perform the Matrix Multiply-Accumulate (MMA) operation.

Precision Format Supported shapes

fp32 1:2 𝑘8, 𝑘16
half (fp16) 2:4 k32, k16

uint8 2:4 𝑘32, 𝑘64
uint4 2:4 𝑘64, 𝑘128

Table 1: Matrix Shapes for mma.sp on SPTCs. 𝑀 and 𝑁 di-
mensions are fixed to 16 and 8, respectively (𝑚16𝑛8)

SPTCs can be accessed in CUDA using the NVPTX API which
includes the mma.sp instruction. SPTCs support various shapes of
this instruction depending on the data precision (Table 1). This in-
struction multiplies a𝑚×𝑘 matrix by a 𝑘 ×𝑛 matrix, where𝑚 = 16,
𝑛 = 8 are fixed dimensions, and 𝑘 represents the sparsified dimen-
sion which can vary in size. This paper focuses on half precision
kernels. Instruction shapes define the sizes of the left-hand-side
(LHS) and the right-hand-side (RHS) operands as inputs to TCUs.
For example, 𝑘 = 32 implies that the LHS operand has a shape of
𝑚 × 𝑘 = 16 × 32 while the RHS is 𝑘 × 𝑛 = 32 × 8. It is important to
note that the LHS is 50% sparse, meaning that its real size will be
16 × 16(32/2). NVIDIA’s notation for this instruction is𝑚16𝑛8𝑘32.

3 THE V:N:M FORMAT
This section presents the new V:N:M format, which enables prun-
ing to arbitrary N:M ratios retaining the use of SPTCs, which are
designed to support only 2:4 patterns natively.
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Figure 2: The V:N:M pruning procedure

Sparse compression formats are of great significance in many
HPC areas other than DL. However, the characteristics of the sparse
matrices in DL workloads differ from those in other areas in several
aspects [11]: (1) the sparsity level is generally much lower, (2) the
number of non-zeros per row is higher and (3) the load imbalance
is more pronounced. To address these challenges, ad-hoc solutions
for DL workloads have been developed in two different planes:
compression formats and pruning techniques, often interlinked.
They seek the efficient exploitation of the hardware during the
execution of tensor operations in DL workloads.

A new area of research is focused on enhancing control over the
distribution of non-zero elements in sparse matrices. This involves,
for example, selecting 2D dense groups with size 𝑣 × 𝑣 (Figure 2, 1 )

or 1D groups of length 𝑣 , either row-wise or column-wise 2 . The
aim is to create sparse matrices that are more regular, making them
more suitable for efficient execution on GPUs. Block-based pruning
techniques ( 1 and 2 ) are particularly useful on improving data
reuse on L1 cache or registers during the multiplication of sparse
matrices. Furthermore, optimized sparse formats, which compress
their data, can be designed to facilitate traversal for the access
patterns that arise during matrix multiplication [25, 30].

On the one hand, 1 can be overly aggressive in dropping blocks
of elements, leading to a significant reduction in accuracy as the
sparsity level increases. On the other hand, 2 offers more flexibility
and enables higher sparsification ratios. However, using small vec-
tor lengths is a limiting factor to prevent accuracy loss (e.g., 𝑣 ≤ 8).
Furthermore, in these approaches, the different number of elements
per row can generate load imbalance and inherent negative effects
such as thread divergence, inefficient memory transactions and low
occupancy ratios.

The N:M format 3 provides an alternative that overcomes most
of the weaknesses of other performance-aware methods. Moreover,
NVIDIA GPUs recently included hardware support for this format,
but it is limited to 2:4. This paper introduces the new V:N:M for-
mat 4 which combines block-wise storage, and vector-wise and
N:M pruning to enable the exploitation of SPTCs for arbitrary N:M
patterns, leveraging higher compression ratios and reducing further
the number of arithmetic operations required in MMMs.
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Figure 3: The V:N:M compression format

Figure 2, illustrates how this approach starts by partitioning the
original dense matrix in blocks of 𝑉 × 𝑀 elements (block-wise).
Then, the four most significant columns of each block are selected
(vector-wise pruning), and for each row of four elements in a block,
the two most meaningful weights are kept (2:4 pruning). These two
levels of pruning (vector-wise and N:M) enable the exploitation of
SPTCs for matrices with arbitrary levels of sparsity, as the vector-
wise pruning stage diversifies the sparsity level, and N:M pruning
imposes the restrictions required later by SPTCs. That is, in 4 ,
the SPTC vector is 2:4, but it belongs to a 6-columns row, where 2
columns were fully pruned. It is actually an implementation of a
2:6 sparsity pattern that it is mapped onto SPTCs as the required
2:4.

Finally, the data is represented using a new block-wise com-
pression format shown in Figure 3. As for the NVIDIA 2:4 layout
(Figure 1), the format requires an array with the non-zero values,
and a 2-bit metadata index per non-zero (m-indices). Notice that
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now, each 2-bit metadata index refers to one of the 4 columns
that we have selected in each block and not to each column of the
original dense input matrix (see 4 in Figure 2). Furthermore, the
size of these two structures depends on the M value, more specifi-
cally their shape now is 𝑅 × 𝐾/𝑀 × 2. This format requires a third
structure column-loc of size 𝑅/𝑉 ×𝐾/𝑀 × 4, that indicates which 4
columns (out of𝑀) of each block were selected in the vector-wise
pruning stage.

4 SPATHA: A HIGH-PERFORMANCE SPARSE
LIBRARY FOR SPARSE MMM

This section provides an in-depth description of the sparse kernel
implementation associated to the V:N:M format, Spatha. The Sparse
Matrix-Matrix multiplication (SpMM) is an important workload in
DL that serves as the sparse counterpart to Matrix-Matrix Multipli-
cation (MMM). This routine is widely used in various components
of modern DL models. For instance, in the forward pass of a pruned
model, the sparse weight matrix is multiplied by a dense activation
matrix. Similarly, in transformers, the self-attention operation is
performed by multiplying a sparse attention weight matrix by a
dense one. Thus, optimizing this routine is crucial to improve the
efficiency and the performance of our models.
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Figure 4: Mapping a 4:2:8 format onto Sparse Tensor Core
(only native support to 2:4 format)

Figure 4 shows an example of how the new V:N:M format (4:2:8
in the figure) is mapped onto SPTCs, which natively only support
the 2:4 format. It shows how the SPTC is fed with the appropriate
values from a row of the sparse matrix and a column of the dense
matrix. The LHS operand is a 𝑅 × 𝐾/4 dense matrix after having
been pruned with sparsity of 75% (2:8). This pruning reduces the
required multiply-and-add operations by 4 (from 16 to 4), but also
halves the rows loaded from the dense matrix B (selected by the
values contained in column-loc).

4.1 Kernel design
The design of an efficient CUDA kernel mostly depends on three
main stages: (1) the efficient loading of the data to the top lev-
els of the memory hierarchy (i.e., GMEM->SMEM->RF), (2) the

computation, and (3) the storage of the results (i.e. RF->SMEM-
>GMEM). Figure 5 covers stage 1, particularly the data movement
from GMEM to RF, which is divided into 3 steps ( 11 - 13 ). Figure 6
focuses on stage 2, and shows how the data in the RF is mapped
onto SPTCs in three steps ( 21 - 23 ). Finally, Figure 8 illustrates how
stage 3 is performed (steps 31 - 32 ).
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Figure 5: Thread-Block Tile and Warp tile view (stage 1)

Spatha is designed as a template-based library, where several
parameters can be tuned depending on the input properties. Consid-
ering a 𝑅 ×𝐾 ×𝐶 GEMM problem, these parameters are: the thread-
block tile size (𝐵𝑆𝑟×𝐵𝑆𝑘×𝐵𝑆𝑐 ), the warp tile size (𝑊𝑆𝑟×𝑊𝑆𝑘×𝑊𝑆𝑐 ),
the mma instruction shape (𝑀𝑀𝐴𝑟 ×𝑀𝑀𝐴𝑘 ×𝑀𝑀𝐴𝑐 ) and the level
of memory pipelining (batchSize).

4.1.1 Stage 1-Data loading. Figure 5 shows the Spatha procedure to
load the operands from GMEM onto RF. There are two dimensions
to be taken into account: the data location (i.e., GMEM, SMEM,
and RF), and the scope of this data from the NVIDIA programming
model perspective (i.e., thread-block, and warp). Step 11 loads the
column-loc structure from GMEM to SMEM with a two-level pre-
fetching strategy. Note that the column-loc information is used to
select the rows of B to be loaded from GMEM (Figure 5, left side)
to SMEM (step 12 ). Pre-fetching this information breaks the data
dependency with the activation matrix. Furthermore, column-loc is
small, so it is convenient to load the information of multiple tiles
together to maximize memory bandwidth. Next, step 12 loads the
corresponding A and B tiles from GMEM to SMEM. Each thread-
block is responsible for an output block of size 𝐵𝑆𝑟 × 𝐵𝑆𝑐 . More
specifically, 𝐵𝑆𝑟 = 𝑉 , so each thread-block will load only the rows
of B selected by the column-loc structure. In order to avoid memory
stalls due to data dependencies with the next steps, we pipelined
step 12 with step 13 and stage 2 (computation) taking advantage
of CUDA asynchronous copies. The pipelining degree depends on
the batchSize variable previously mentioned. Finally, in 13 , each
warp is responsible for an output block of size 𝑊𝑆𝑟 ×𝑊𝑆𝑐 , so
the corresponding tiles are loaded from SMEM to RF. Emphasize
that all the previously mentioned memory transactions have been
optimized to use 128-bit instructions. At this point, we also load
directly to the RF the m-indices information.

4.1.2 Stage 2-Computation. . When all the data is loaded in the RF,
stage 2 starts, which performs the Matrix Multiply-Accumulate
(mma.sp) on this data using SPTCs. Figure 6 shows a detailed view
of stage 2 , depicting how the data in the RF is mapped onto SPTCs
to be executed. Each warp has to break down the warp tile into
instruction tiles, which depends on the instruction shapes available
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on SPTCs, in this example m16n8k32. The first step 21 , selects
𝑀𝑀𝐴𝑘 = 16 elements from the warp tile and maps this data to
SPTCs following step 22 layout. This layout represents the LHS
fragment to the mma.sp instruction. That means that, if𝑊𝑆𝑟 =

32, we will need to iterate twice over the rows of A’s warp tile.
Similarly, the next step maps the B’s warp tile information into
SPTCs following step 23 layout, which represents the RHS fragment
to the mma.sp instruction. At this point, the mma.sp instruction is
executed.
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Figure 6: SPTCs view

Storage order. Related to stage 1 and 2 , we propose a specific
order to store the non-zero values and the m-indices structure of
the V:N:M format, which merges, once again, the block-wise and
the N:M principles. This order is represented in Figure 7, and it
seeks to optimize the data traversal during the data loading and
computation. In this representation, half of the non-zero structure
shows the access pattern followed to store the data, while the other
half shows how the second half-warp is mapped into this structure.
This storage order enables 128-bit memory transactions, ensures
memory coalescence, and can dispense with the ldmatrix instruc-
tion, which is known to cause bank conflicts and can require more
Shared Memory transactions to sequentially serve the memory
access [33].

T16 T17 T18 T19

T16 T17 T18 T19

T16 T17 T18 T19

T16 T17 T18 T19

T20 T21 T22 T23

T20 T21 T22 T23
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MMAk=32
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values m-indices

<WSm=32

<WSk

32 bits

128 bits 16 bits

Figure 7: Storage order

4.1.3 Stage 3-Result storage. Once the product is calculated, we
have towrite the output tiles back to GMEM (stage 3 ). This requires
storing the intermediate partial results in SMEM. On NVIDIA GPUs,
shared memory is partitioned into banks, each one of 32 bits. Each
bank can only address one position at a time, so if a quarter-warp
(128-bit instructions) tries to access the same bank, the instruction
will be serialized. This effect is known as bank conflict. An example
of thread mapping to SMEM with 𝐵𝑆𝑐 = 64 is shown in Figure 8.
The left side of the figure shows how the threads in a warp are
mapped to SMEM banks during the storage of their partial results
(step 31 ). These stores are performed with 128-bit instructions.
Padding elements have been added to avoid bank conflicts. In this
specific example, each thread has accumulated 8 partial results
(𝐵𝑆𝑐/𝑀𝑀𝐴𝑐 = 64/8), so the thread mapping is repeated 8 times,
meaning that each thread needs 8 iterations to store its partial
results. Each color represents a quarter-warp, so we can see that
each group of 8 consecutive threads accesses a different memory
bank in the same iteration.

0 1 4 5 8 9 12 13
16 17 20 21 24 25 28 29
PAD PAD PAD PAD 2 3 6 7
10 11 14 15 18 19 22 23
26 27 30 31 PAD 0 1 4
5 8 9 12 13 16 17 20
21 24 25 28 29 PAD PAD PAD
PAD 2 3 6 7 10 11 14
15 18 19 22 23 26 27 30
31 PAD
... ... ... ... ... ... ... ...
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9 12 13 16 17 20 21 24
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x8
times 
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7 7 15 15 23
23 31 31 7 7 15 15 23
23 31 31 PAD PAD PAD PAD 7
7 15 15 23 23 31 31 7
7 15 15 23 23 31 31 PAD

128 bytes 128 bytes

Bank 0~3
31 32

Figure 8: Conflict-free accesses for output tiles on SMEM

The right side of Figure 8 shows step 32 , that is, the SMEM thread
mapping designed to read the previously stored intermediate results,
and finally, write them back to GMEM. The loads from SMEM and
the stores to GMEM are performed with 128-bit instructions. Once
again, each thread will need to access SMEM 8 times to read all the
data. We have colored the accesses related to the first quarter-warp,
what depicts a conflict-free layout.

Ablation study - Spatha performance and column-loc over-
head. In Figure 9, we present the results of a microbenchmark
study on matrices of fixed outer dimensions (corresponding to the
size of one BERT𝑙𝑎𝑟𝑔𝑒 weight linear layer), but varying the inner
(sparsified) one, 𝐾 (1024 × 𝐾 × 4096). The study was conducted
using different sparsity levels, specified by different N:M combina-
tions (from 2:10 to 2:100), while the vector size𝑉 was kept constant
at 128. Furthermore, to measure the effect of using the column-
loc mechanism, we tested the performance with and without this
structure. In the latter we used fixed indexes to simulate an ideal
situation with no memory accesses. These experiments are per-
formed on an NVIDIA RTX 3090 GPU, equipped with SPTCs. The
results show that Spatha achieves speedups for sparse computation,
approaching theoretical peak performance for a given sparsity level
considering the operation count reduction w.r.t. the dense counter-
part version. This effect becomes more pronounced as the GEMM
problem size increases, as it tend to have higher arithmetic intensity.
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different V:N:M configurations

For instance, at a sparsity level of 80% (2:10 format), the speedup
is approximately 4.5×, where 5× is the ideal scenario. Then, the
speedups reported are 8.5×, 17.5×, and 37× for sparsity levels of
90% (2:20), 95% (2:40) and 98% (2:100), whose theoretical caps are
10×, 20× and 50×, respectively. It can be observed that, for every
sparsity ratio, the column-loc structure’s overhead has a negligible
effect on the overall time, despite being a software approach to
support arbitrary N:M ratios. However, the impact of column-loc
becomes slightly more noticeable when dealing with 2:100 sparsity,
which is not practical for DL applications in real-world scenarios.

Scaling study - Impact of V and output layout format. The
𝑉 variable in our V:N:M format can be used to define trade-offs
between performance and accuracy in the same way that the block-
size in block-wise pruning, for example. To study this, we performed
a second ablation study on one matrix from 𝐵𝐸𝑅𝑇𝑙𝑎𝑟𝑔𝑒 (size 1024 ×
4096× 4096). Figure 10 shows the performance results of Spatha on
this matrix using three different vector lengths: 32, 64 and 128. This
test is conducted for different sparsity levels, in practice, the test
explores different configurations of the V:N:M values. Furthermore,
in order to study the impact of the previously proposed layout for
writing back results (Figure 8), it is compared the effect of using
such layout, enabling 128-bit SMEM stores instead of 32-bit ones. As
we can see in Figure 10, the difference in terms of speedups between
the three selected vector lengths is noticeable, the value of 𝑉 being
conditioned by the accuracy loss. The effect of using 128-bit stores
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Figure 11: Energy evaluation study on the V:N:M format

instead of 32-bit ones is noticeable in this problem size, bringing
up to a 2× difference in the final speedup. We performed a similar
ablation test for a matrix of a GPT-3model (size 36864×12288×4096)
and the effect of using 128-bit stores was attenuated, as the weight
of the output phase in the total execution time is smaller.

5 ENERGY EVALUATION OF V:N:M
DL pruning techniques aim to achieve the highest possible spar-
sity levels in the pruned models while ensuring little to no loss
in accuracy. This becomes especially challenging when the target
sparse format requires a specific pruning scheme, and when high
sparsity levels are targeted. In these scenarios, the percentage of
non-zero values is low, and their location is heavily influenced by
the format. Therefore, it is crucial to demonstrate the effectiveness
of new sparse formats, to ensure its applicability with minimal or
no impact on accuracy.

The energy evaluation metric is employed to measure the flexi-
bility of a format by comparing the total magnitude of the model
(sum of the individual weights) before and after pruning to a spe-
cific format. Let us assume a well-optimized dense model𝑤∗ ∈ R𝑑 ,
where 𝑑 is the total number of weights. We wish to prune𝑤∗ to a
target sparsity 𝑠 ∈ (0, 1] by zeroing out 𝑠 × 𝑑 weights. The result is
a sparse model𝑤 ∈ R𝑠×𝑑 . The energy metric is defined as follows:

𝑒𝑛𝑒𝑟𝑔𝑦 =

∑𝑠×𝑑
𝑖=0 |𝑤𝑖 |∑𝑑
𝑖=0 |𝑤∗

𝑖
|
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This metric yields a normalized score between 0 ∼ 1, the higher
the better.

Figure 11 presents the energy evaluation study for a weight ten-
sor extracted from an encoder layer of BERT𝑏𝑎𝑠𝑒 . This figure com-
pares three weight selection policies: unstructured (ideal), V:N:M
with different 𝑉 values, and vector-wise pruning with several vec-
tor lengths 𝑙 (𝑣𝑤_𝑙). The evaluation is done for different sparsity
levels, whose value in the V:N:M format is controlled by the N:M
ratio.

Unstructured pruning represents the ideal non-zero selection
policy, as it does not impose any restrictions on the location of non-
zero values. Vector-wise pruning can accelerate sparse routines
on GPUs. However, if the vector length is greater than 8, it can
significantly reduce the accuracy [4, 5, 25]. The results demonstrate
that the V:N:M format occupies an intermediate position between
unstructured and vector-wise pruning. Moreover, it is highly robust
to changes in the vector length, allowing the usage of 𝑉 = 128
while consistently preserving more energy than 𝑣𝑤_8 and 𝑣𝑤_4.

Additionally to the previous conclusions, independently of the
selected pruning method, we can also see the tremendous impact
on the energy of magnitude-based weight selection policies. At 50%
of sparsity, unstructured pruning already lost 20% of the original
dense matrix energy. At the other side, at 95% only 20% of the
original energy remain in the pruned dense matrix. Thus, we can
conclude that, in order to achieve moderate to high sparsity ratios
in models with the dimensionality of BERT, more sophisticated
pruning methods must be used. Second-order pruning offers an
alternative to these problems.

6 SECOND-ORDER PRUNING
Magnitude-based pruning techniques provide a straightforward
approach to reducing the size of our models without requiring
model evaluation for weight selection. However, while magnitude
pruning can be effective at moderate sparsity levels, it becomes
more challenging to select the "least significant" weights to remove
when aiming for high sparsity ratios, and this can significantly
impact network accuracy.

In contrast, second-order pruning methods offer a more sophis-
ticated approach to select weight candidates for removal, by con-
sidering the difference in loss relative to the current model. Hence,
they target to find the set of weights whose removal will generate
a minimum loss increase. In this context, the Hessian matrix is
a key component of second-order pruning methods which repre-
sents the matrix of second-order derivatives of the loss function
w.r.t. the weights, mathematically expressed as 𝐻 = ∇2

𝑤𝐿, for a
twice-differentiable loss 𝐿. The Fisher matrix is very similar to the
Hessian matrix but in the probabilistic setting, used to estimate the
curvature of the loss function around the current value. As a result,
this approximation allows to identify the weight parameters that
have less impact in the loss function, and therefore are candidates
to be pruned [15].

6.1 The V:N:M format in 2nd order methods
This section introduces a new second-order pruning method based
on [21] and tailored for the V:N:M format. This type of approach

yields state-of-the-art results in LLMs for unstructured and semi-
structured (block) compression.

Let us assume we have a well-optimized dense model𝑤∗ ∈ R𝑑 ,
where 𝑑 is the total number of weights. Our target is to identify a
set of weights 𝑄 that we can prune with a minimum loss increase.
Te following saliency score function is defined to rank groups of
weights [21]:

𝜌𝑄 =
1
2
(𝐸𝑄𝑤∗)𝑇 (𝐸𝑄𝐹−1 (𝑤∗)𝐸𝑇𝑄 )

−1𝐸𝑄𝑤
∗

where,
• 𝐹−1 (𝑤) ∈ R𝑑×𝑑 is the Fisher matrix.
• 𝐸𝑄 ∈ R |𝑄 |×𝑑 is a matrix composed of the corresponding

canonical basis vectors for a set of 𝑄 weights.
Thus, the set of canonical basis vectors 𝐸𝑄 depends on the spe-

cific sparse format we are using. For instance, in 2:4 sparsity, the
canonical vectors are:

𝐸𝑄 = [[1,1,0,0], [1,0,1,0], [1,0,0,1], [0,1,1,0], [0,1,0,1], [0,0,1,1]]

As observed, 𝐸𝑄 encompasses all possible correlations between
2 weights, in a set of 4 elements. In general, for an N:M format, this
approach requires evaluating

(𝑀
𝑁

)
combinations to determine the

best one, which can turn into an intractable combinatorial problem.
Furthermore, in the V:N:M format, the addition of a new dimension
𝑉 amplifies the complexity as it requires finding the optimal set of
𝑉 × 𝑁 weights, leading to a combinatorial explosion.

To address these challenges, we adopt a similar approach as [21]
between sets of 𝑄 elements, which involves disregarding correla-
tions between rows within 𝑉 ×𝑀 blocks. This simplification drops
the number of combinations to evaluate. Additionally, to mitigate
combinatorial issues that may still arise within 1 ×𝑀 groups, we
propose a pair-wise approach where correlations are calculated
between pairs of elements, that is:

𝐸𝑄 = [[1, 0], [0, 1], [1, 1]]

Depending on the 𝑁 and 𝑀 values, we can modulate the com-
plexity of the problem to be solved by dynamically selecting the
m-combinatorial or the pair-wise approach.

6.1.1 Gradual pruning definition. The N:M format prunes a model
to a target sparsity 𝑠 ∈ (0, 1]. Typically, the 𝑠 × 𝑑 weights are
removed in one step (one-shot pruning). For 50% (2:4) sparsity,
this approach can be applied in most cases and the models still
recover the original accuracy. However, for higher sparsity ratios,
one-shot pruning reduces severely the model performance and
makes hard to recover the original accuracy using additional fine-
tuning steps. This negative effect on accuracy also happens in
second-order methods, where one-shot pruning can result in worse
Taylor approximations of the function. We propose a structure
decay scheduler for the V:N:M format, which performs N:M pruning
across different 𝛽 steps, for increasing sparsity levels. This scheduler
starts with a high initial value of 𝑁0 >> 𝑁𝛽 (lower sparsity), where
𝑁𝛽 is our target 𝑁 value, and gradually decreases 𝑁 (conversely
increasing sparsity) until it reaches the 𝑁 target value. This gradual
pruning approachmitigates the adverse effects on network accuracy
and improves the recovery of the accuracy in subsequent fine-
tuning processes.
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7 EVALUATION
We evaluate the performance on an NVIDIA RTX 3090 GPU of the
Ampere architecture equipped with SPTCs. We compare the perfor-
mance of Spatha with different sparse libraries (cuSparseLt, CLASP,
Sputnik) and also with a dense counterpart version (cuBLAS). We
build our benchmarks on matrices from real-world LLMs. Addition-
ally to these micro benchmarks, we also conduct a case study on
real-world applications. At this point, we demonstrate the proposed
second-order pruning technique, and we benchmark the end-to-end
performance of Spatha on different LLM models (BERT, GPT-2, and
GPT-3).

7.1 Comparison with existing dense and sparse
libraries

Firstly, we evaluate our baseline implementation for 1:2:4 spar-
sity (50%). Since higher N:M ratios will depend on this baseline’s
performance, it is crucial to have good speedup results in this con-
figuration. We selected cuBLAS GEMM as our dense counterpart,
and for exploiting the 2:4 format on SPTCs, we used the cuSparseLt
SpMM implementation, which represents the reference library on
this format. Our experiments involve varying sizes of a 𝑅 × 𝐾 ×𝐶
GEMM problem, where 𝑅 and𝐶 are predetermined values from two
BERT’s weight linear layers (768 and 4096 for BERT𝑏𝑎𝑠𝑒 , 1024 and
4096 for BERT𝑙𝑎𝑟𝑔𝑒 ). The inner dimension 𝐾 of the product, which
is the sparsified one, is variable in these experiments. Note that the
inner dimension is usually scaled up to enhance the network accu-
racy. For instance, GPT-3 uses a hidden size of 12288 [3]. Figure 12
reports the performance of the three contending implementations
(cuBLAS, cuSparseLt and Spatha) and the speedups of the selected
sparse libraries w.r.t. cuBLAS. The results show that the perfor-
mance of the sparse implementation improves with the GEMM
size, as larger GEMMs tend to have larger arithmetic intensity. In
these microbenchmarks, BERT𝑙𝑎𝑟𝑔𝑒 matrices (right side) increase
the computation intensity w.r.t. BERT𝑏𝑎𝑠𝑒 (left). Notably, for larger
GEMM sizes, the performance of cuSparseLt and Spatha is similar,
while our implementation shows better performance on smaller
sizes, which constitutes an interesting feature, since Spatha can
probably cover a more variety of network architectures. Overall,
Spatha achieves up to 1.38× speedup over the vendor library for
2:4 sparsity, cuSparseLt.
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Figure 12: Baseline performance at 50% sparsity (2:4 format)

Figure 13 compares the performance of Spatha to other dense
and sparse libraries for higher levels of sparsity. The benchmarks

are built using sparse matrices from weight-pruned linear layers
extracted from BERT with different sparsity levels ranging from
50 ∼ 98%. In this context, cuSparseLt SpMM implementation is
the reference library to exploit the 2:4 format on SPTCs. Since
there are no SpMM GPU implementations for arbitrary N:M spar-
sity levels, we have considered in the evaluation the following
third-party libraries that support half-precision: Sputnik [11], and
CLASP [4] which extends vectorSparse [5] to the latest generations
of NVIDIA GPU architectures. While [11] has been designed for
non-structured sparse matrices, [4] is focused on semi-structured
sparse input matrices following the column-vector sparse format,
which supports vector lengths 𝑙 = 2, 4 and 8. This configurations
has been referenced in the columns of Figure 13 with the notation
𝑣𝑤_𝑙 .

The first row of Figure 13 shows the speedup results on sparse
matrices extracted from BERT𝑏𝑎𝑠𝑒 while the second one reports
that performance on BERT𝑙𝑎𝑟𝑔𝑒 . The y-axis is represented in a loga-
rithmic scale to make the results more readable. First of all, existing
implementations for sparse computation are usually able to outper-
form the dense counterpart version (e.g., cuBLAS) at sparsity levels
above 80%. However, the speedup they can achieve is usually up
to ∼ 3×. Furthermore, these implementations are usually designed
considering as a reference sparse matrices extracted from small
models (e.g., ResNet) where the left operand can be a tiny matrix
(e.g., 64 × 64) [12]. That influences the SpMM design, since they
can afford to load the data directly into registers, for example. But
when we evaluate these implementations on medium or big matri-
ces extracted from larger models (e.g., LLMs), the performance is
even worse, and they only outperform cuBLAS at sparsity levels
above 90%.

The fact that Spatha reaches 2× speedup at 50% sparsity enables
the achievement of high speedups as the sparsity increases, yielding
up to 27× in BERT-like matrices. We can also appreciate that the
best performance in our implementation is reached as the arithmetic
intensity increases, peaking for BERT_𝑙𝑎𝑟𝑔𝑒 with batch size 16.

7.2 Case study: sparse LLMs
LLMs have revolutioned the NLP field with their unrivaled per-
formance in various domains. Nowadays, these models are widely
used in everyday technologies, such as ChatGPT. Transformer LLMs
typically consist of multiple transformer layers with self-attention.

There are two major sub-components inside a transformer archi-
tecture: the multi head attention (MHA), and the fully connected
feed forward network (FFN). At a higher level, the model size is
determined by different configurable components, such as the head
dimension, the number of heads and the number of layers, depend-
ing on the specific architecture used.

This case study focuses on weight pruning, and explores the on
computational speedups achievable with Spatha. In LLMs weight
tensors are present in Linear Layers, which can be found in both the
MHA and the MLP sub-components. Figure 14 illustrates a pruned
MHA where four GEMM instructions are converted to SpMMs
by sparsifying the corresponding weight tensors. In this study we
demonstrate the efficiency of Spatha on different LLMs. However, it
is important to note that without an efficient implementations of the
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Figure 14: Simplified view of a pruned MHA

SpMM instruction, the final performance of the pruned model can
significantly decrease compared to the dense counterpart version.

7.2.1 Second-order pruning at LLMs scale. We used our 2nd order
pruning approach following the V:N:M format to demonstrate its
applicability to the size of LLM models. Specifically, we focused on
BERT𝑏𝑎𝑠𝑒 , one of the most commonly used LLMs, which comprises
12 transformer layers with 110M parameters. As per community
standards [21], we pruned the encoder’s weights of the model (85M).
We evaluate the performance on the SQuAD v.1.1 task, which is
a widely-used benchmark to measure model compression. Table 2
shows the F1 score metric for different pruning techniques includ-
ing: traditional N:M format (1:N:M), V:N:M format with 𝑉 size of
64 and 128, and vector-wise pruning with dense vertical vectors of
size 8 (𝑣𝑤_8).

LLMs have been shown to be susceptible to minor model per-
turbations that can cause model collapse [19]. However, in these

experiments we considered 75% and 87.5% sparsity levels, repre-
sented by 2:8 and 2:16 ratios, respectively, to demonstrate that our
pruning approach produce robust results on this kind of networks.

Sparsity 1:N:M 64:N:M 128:N:M vw_8

75% (2:8) 88.61 88.47 87.94 88.55
87.5% (2:16) 87.73 86.50 85.01 86.90

Table 2: F1 score of BERT𝑏𝑎𝑠𝑒 on the SQuADv1.1. Densemodel
F1=88.43

As we can see, 1:N:M, 64:N:M and 𝑣𝑤_8 slightly improve the
original model accuracy at 2:8 sparsity, while the 128:N:M format
presents a 0.005% accuracy loss. For 2:16 sparsity, the four methods
suffer a slight accuracy loss. Specifically, the plain 2:16 format is
able to recover 99% of the original accuracy, while 64:2:16 and
𝑣𝑤_8 pruning recover 98%. In these terms, the 128:2:16 approach
is slightly more restrictive, but is still able to recover 96% of the
original accuracy.

7.2.2 Integration with Pytorch. In order to perform the end-to-end
evaluations, we have streamlined the adoption of Spatha into the
PyTorch training pipeline by integrating it with the STen library
[17]. This integration allows for easy addition of sparsity to existing
models such as BERT and GPT with just a few lines of code. Users
can specify a list of weights to be made sparse in their custom
models, making the process straightforward. To facilitate this, we
have defined a VNMSparsifier class that performs pruning while
adhering to the V:N:M format constraints. Additionally, we have
introduced a VNMTensor class that serves as a container for tensors
in the V:N:M format. When using SpMM with VNMTensor, STen
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automatically dispatches it to the efficient implementation in Spatha.
A pseudocode example of this integration is shown in Listing 1.
1 import sten

2 import spatha

3

4 @sten.register_sparsifier_implementation(

5 sparsifier=spatha.VNMSparsifier ,

6 inp=torch.Tensor , out=spatha.VNMTensor)

7 def torch_tensor_to_vnm(sparsifier , tensor , grad_fmt):

8 return sten.SparseTensorWrapper \

9 .wrapped_from_dense(

10 spatha.vnm_sparsifier(

11 sparsifier.n, sparsifier.m,

12 sparsifier.v, tensor),

13 tensor , grad_fmt)

14

15 class Spmm(torch.nn.Module):

16 def __init__(self , original: torch.nn.Linear):

17 self.bias = original.bias

18 w = original.weight.wrapped_tensor

19 self.values = w.values

20 self.columns = w.columns

21 self.metadata = w.metadata

22 def forward(self , input):

23 return spatha.spmm(self.values , self.columns ,

24 self.metadata , input , self.bias , ...)

Listing 1: Pseudocode example of using Spatha and the
V:N:M sparsifier

7.2.3 Sparse Inference. Webenchmark the end-to-end performance
of Spatha on the inference task for different real-world LLMmodels:
BERT (336M), GPT2-large (774M), and GPT-3 (175B), obtained from
HuggingFace. Since GPT-3 is not a public trained model, we have
created a model with the same configuration than this LLM. The
target of this experiment is measuring time performance, thus, we
initialized the weights of the GPT-3 model with random values.
The time results on BERT and GPT2-large have been obtained over
the inference of the entire model, while the results of GPT-3 were
obtained by measuring the inference time of a single encoder to fit
it on a single GPU.

Figure 15 shows the end-to-end evaluation results on the in-
ference of these models. As we have seen in the previous micro
benchmark experiments, increase the arithmetic intensity of the
MMMs improves the utilization of the GPU resources, and also the
final performance of the SpMM. We configured the three models to
the larger configuration possible before achieving out-of-memory
issues. In the case of BERT𝑙𝑎𝑟𝑔𝑒 , this implied the selection of a batch
size (𝑏𝑠) of 32. For GPT2-large, the𝑏𝑠 is 8, and in the case of GPT-3, it
is 1. However, 𝑏𝑠 only affect the𝐶 dimension of the GEMM problem
(𝑅 × 𝐾 ×𝐶), while the two others, 𝑅 and 𝐾 , depend on the model
characteristics. Regarding these sizes, BERT has smaller weight
tensor sizes (the ones sparsified) than GPT2-large, while GPT-3 is
formed by weight tensors much larger than the two other models.
Due to the previously described reasons, we can see that the best
performance is obtained in the case of GPT-3, where the GEMM
computation contributes to around 80% of the total execution time.

In the case of BERT, tensor contraction time is improved up to
9.95×, while in terms of the whole model, the end-to-end latency is
improved up to a 72%. For GPT2-large, the GEMM time is improved
in 10.84×, since someweight tensors are slightly bigger, but the total
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Figure 15: Latency of LLMs inference using Spatha

GEMM time is around 50%, so the general improvement is limited
by this factor. However, when we move to GPT-3, the tensor time
contraction is improved up to 11×, but the GEMM time represents
a much higher percentage, meaning a time reduction of up to 3.20×
of the total execution time of a GPT-3 encoder.

8 RELATEDWORK
Semi-structured pruning techniques are a hot research topic. The
column-vector-sparse-encoding [5] seeks to accelerate sparse ker-
nels, and it achieves a speedup between 1.71× and 7.19× over cuS-
PARSE without exploiting SPTCs, and limited to the Volta archi-
tecture. The same authors target the SPTCs in [6] proposing DFSS,
a dynamic N:M sparse attention mechanism and a tailored im-
plementation of the sparse kernels, but limited to the 2:4 format.
The unaligned group-level pruning proposed in [24] increases the
accuracy of this kind of semi-structured pruning techniques by
providing additional flexibility.

NVIDIA cuSparse [29] is a library from NVIDIA that implements
several linear algebra routines for sparse matrices stored in different
compressed formats (COO, CSR and Blocked-Ellpack). It was origi-
nally created to target scientific applications. The cuSparseLt[28]
library from NVIDIA adds support for the exploitation of Sparse-
Tensor Cores (SPTCs) following the N:M format, and giving support
to 1:2 ad 2:4 sparsity patterns (50% of sparsity).

Sputnik [11] library has been specifically designed for DL work-
loads. It uses only the CSR compressed format, and it focuses on
gaining flexibility on the scheduling of workloads by defining a one-
dimensional tiling scheme. This library evolved toVector-Sparse [5]
adding support for the exploitation of Tensor-Core Units. It is based
on using semi-structured 1D pruning, and a special compressed
format called Column-Vector Sparse Encoding. As a continuation,
CLASP [4] offers an SPMM implementation which extends the
support of Vector-Sparse to the Ampere architecture.

In the same line, Magicube [25] is an implementation of the
SPMM and SDDMM routines for quantized sparse matrices. The
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kernels are complemented with en efficient online method to trans-
pose the dense matrix.

9 DISCUSSION
a) Spatha application to other tasks. The integration of the Spatha
library into STen, and the implementation of a specific 2nd order
pruning technique to exploit the V:N:M format, enables distributed
sparse training as a direct application of the previously mentioned
contributions. Furthermore, notice that the Spatha library repre-
sents a tool to perform general Sparse Matrix-Matrix Multiplica-
tions, so can be extended to other domains other than DL.

b) Distributed deep learning systems. In this work, we have fo-
cused on large-scale models based on LLMs. However, the Spatha
library represents a generic tool for sparse MMMs. To achieve ef-
ficient large-scale DL on distributed systems, data, operator, and
pipeline parallelism are often combined. In this context, Spatha can
serve as a third-party implementation to accelerate the execution
of these operators in the backend, and mitigate the computation
bottleneck on these systems.

10 CONCLUSION
This paper opens the possibility to use Sparse Tensor Cores (SPTCs)
for arbitrary sparsity levels and N:M patterns. In order to do so, we
defined a new sparse format (V:N:M), a new library to efficiently
exploit the proposed kernel (Spatha), and a second-order pruning
technique that demonstrated the applicability of the proposed for-
mat on real-world deep learningmodels. The experiments show that
this three-fold approach yields up to a 37× speedup over cuBLAS
at the kernel level. Furthermore, the proposed pruning technique
offers a solution scalable to the dimensionality of LLMs, and is
able to achieve high sparsity ratios with minimum impact in loss
(∼ 2% at 2:16 sparsity on BERT models). Finally, we demonstrate
the performance on end-to-end sparsity, achieving speedups on
GPT-3 encoder of up to 3.20× at 2:32 sparsity, what is translated
into a tensor contraction improvement of up to 11×.
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