
Guiding the optimization of parallel codes on
multicores using an analytical cache model

Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Universidade da Coruña, Spain
{diego.andrade,basilio.fraguela,ramon.doalllo}@udc.es

Abstract. Cache performance is particularly hard to predict in modern mul-
ticore processors as several threads can be concurrently in execution, and
private cache levels are combined with shared ones. This paper presents an
analytical model able to evaluate the cache performance of the whole cache hi-
erarchy for parallel applications in less than one second taking as input their
source code and the cache configuration. While the model does not tackle
some advanced hardware features, it can help optimizers to make reasonably
good decisions in a very short time. This is supported by an evaluation based
on two modern architectures and three different case studies, in which the
model predictions differ on average just 5.05% from the results of a detailed
hardware simulator and correctly guide different optimization decisions.

1 Introduction

Modern multicore processors, which can execute parallel codes, have complex cache
hierarchies that typically combine up to three private and shared levels [2]. There
is a vast bibliography on the subject of improving the cache performance of mod-
ern multicore systems. Several works have addressed this problem from the energy
consumption perspective [9, 6]. Other works try to enhance the cache performance in
order to improve the overall performance of the system [3, 5, 8].

The Parallel Probabilistic Miss Equations (ParPME) model, introduced in [1], can
estimate the cache performance during the execution of both parallelized and serial
loops. In the case of parallelized loops, this model can only estimate the performance
of caches that are shared by all the threads that execute the loop. This paper presents
the ParPME+ model, an extension of the ParPME model to predict the effect of
parallelized loops on private caches as well as in caches shared by an arbitrary number
of threads, this ability enables the possibility to model the whole cache hierarchy of
a multicore processor. The evaluation shows that the predictions of our model match
the performance observed in a simulator, and that it can be an useful tool to guide
an iterative optimization process.

The rest of this paper is structured as follows. First, Section 2 reviews the existing
ParPME model and Section 3 describes the ParPME+ model presented in this paper.
Then, Section 4 is devoted to the experimental results and finally Section 5 presents
our conclusions and future work.

2 The Parallel PME Model

The Parallel Probabilistic Miss Equations Model [1] (ParPME) is an extension of the
PME model [4] that can predict the behavior of caches during the executions of both

Basilio B. Fraguela
Typewritten Text
This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes on Computer Science (ICCS 2018 proceedings). The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-93713-7_32�

2 Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

parallelized and sequential codes. The scope of application of this model is limited to
regular codes where references are indexed using affine functions. The inputs of the
ParPME model are the Abstract Syntax Tree (AST) of the source code and a cache
configuration. The replacement policy is assumed to be a perfect LRU. This model
is built around three main concepts: (1) A Probabilistic Miss Equation (PME)
predicts the number of misses generated by a given reference within a given loop
nesting level. (2) The reuse distance is the number of iterations of the currently
analyzed loop between two consecutive accesses to the same cache line. (3) The miss
probability is the probability of an attempt to reuse a cache line associated to a
given reuse distance.

Depending on whether the studied reference is affected by a parallelized loop in
the current nesting level, the model uses a different kind of PME. The PME for
non-parallelized loops, introduced in [4], is valid for both private and shared caches
as in both cases all the iterations of the loop are executed by one thread and the
corresponding cache lines are loaded in the same cache, no matter if the cache is
private to each core or shared among several cores.

The modeling of parallelized loop is much more challenging, as the iterations of
this kind of loops are distributed among several threads. In this case, each cache
stores the cache lines loaded by the threads that share that cache and one thread can
reuse lines loaded previously by the same thread (intra-thread reuse) or a different
one (inter-thread reuse). The new PME introduced in the ParPME model [1] only
covers the situation where a cache is shared among all the threads involved in the
computation. However, current architectures include both private and shared caches.
Moreover, many systems include several multicore processors, and thus even if the
last level cache of each processor is shared by all its cores, when all the cores in the
system cooperate in the parallel execution of a code, each cache is only shared by a
subset of the threads.

3 The ParPME Plus model

This section introduces the main contribution of this paper, the ParPME Plus
(ParPME+) model, which extends the existing ParPME model to enable the mod-
eling of all the levels of a multicore cache hierarchy, including both the shared and
private ones. Rather than adding more types of PMEs and extending the method to
calculate the miss probability, our approach relies on transforming the source code
to analyze in order to emulate the behavior of the threads that share a given cache
level. Then, the transformed code is analyzed using the original ParPME model.

Figure 1, shows the general form of the aforementioned transformation. The top
part of the figure shows the original loop, and the bottom part shows the transformed
one that is associated to the representation used to analyze the behavior of a cache
shared by a subset of tsi threads. The index variable of the parallel loop that is being
modeled can be used in the indexing functions of one or more dimensions of one or
several data structures. The first step of the transformation eases the identification of
which parts of a data structure are referenced by the iterations assigned to a subset
of the threads that share the cache. With this purpose, each dimension of an array
that is indexed by the index variable of a parallelized loop i multiplied by a constant

Guiding the optimization of parallel codes using the ParPME+ model 3

. . .
#pragma omp for schedu le (static , b i)
for (i =0; i<Mi ; i++)

. . .
array [. . .] [i ∗k] [. . .] ;
. . .

. . .
#pragma omp for schedu le (static , 1)
for (i 1 =0; i1<t s i ; i 1++)

for (i 2 =0; i2<Mi/(t i ∗ bi) ; i 2++)
for (i 3 =0; i<bi ; i 3++)

. . .
array [. . .] [i 2] [i 1] [i 3 ∗k] [. . .] ;
. . .

Fig. 1. Generic transformation to model cache shared among a subset of threads. Original
code (top) and transformed code (bottom)

value k is split into three dimensions. If the split dimension has size Ni, the three
resulting dimensions, defined from the most to the least significant one, have sizes
Ni/(ti × bi × k), ti and bi × k respectively, ti being the number of threads among
which the iterations of loop i are distributed and bi is the block size used to distribute
the iterations of the loop among the threads. Since the product of the sizes of these
three new dimensions is equal to the size of the original dimension, this modification
changes the way the data structure is indexed but not its size or layout. In the case
that Ni is not divisible by ti×bi×k, the most significant dimension must be rounded
up to dNi/(ti × bi × k)e, slightly increasing the size of the data structure by up to
ti × bi − 1 × k elements. For big values of Ni this will not affect significantly the
accuracy of the predictions.

The second step of the transformation modifies the parallel loops so that (a) in-
dexing functions can be generated for all the new dimensions defined and (b) such
indexings give place to access patterns identical to those of the original code in the
considered cache. For this latter purpose the transformation of each parallel loop i
must take into account a new parameter, tsi, which is the number of threads that
share the cache that is being modeled at this point out of the ti threads that partic-
ipate in the parallelization of the loop. This transformation replaces each considered
parallelized loop i of Mi iterations with three different consecutively nested ones of
tsi, Mi/(ti×bi) and bi iterations respectively, where the first one is the outermost one
and the last one the innermost one. Out of them, only the outermost one is parallel,
being each one of its tsi iterations executed in parallel by a different thread, while
the two inner ones are executed sequentially by the same thread. This transformation
also implies using the loop indexes of these loops for indexing the new dimensions
defined in the first step. The mapping is always the same. Namely, the most signif-
icant dimension is indexed by the index of the middle loop, the next dimension is
indexed by the index of the outermost (and parallel) loop, and the least significant
dimension is indexed by the innermost loop.

4 Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

The new code, or actually, its new representation, is almost equivalent to the
original, replicating the same access patterns and work distribution, with a single
critical difference. Namely, it only covers the iterations assigned to the subset of tsi
threads of interest, i.e. the ones that share the cache we want to model at this point,
instead of all the ti threads. Notice that this strategy assumes that if several threads
share a cache, then they get consecutive chunks of the loop to parallelize. While this
may not be always the case, this is a common and very desirable situation, as this
tends to increase the potential cache reuse and reduce the overheads in case of false
sharing. In those situations in which these benefits do not hold, for example when
there is no possible reuse between the data used by different threads, the assumption
is irrelevant, as the cache behavior should be the same no matter the sharing threads
get consecutive chunks of the loop or not.

4 Experimental results

The model has been validated on two Intel platforms with very different features: a
i7-4790 (with 4 physical cores), and a Xeon 2699 v4 (with 22 cores). The experiments
try to prove that the model can accurately predict the cache performance of codes
on real cache hierarchies, and that it can guide cache memory optimizations. With
this purpose, we have built our experiments around three case studies: (1) The loop
fision technique is applied to a code (2) The loop fusion technique is applied to a
code. (3) A matrix multiplication implemented using the 6 possible loop orders (ikj,
ijk, jik, jki, kij, kji).

The ParPME+ model is used to predict the number of misses generated by these
codes in the different levels of the cache hierarchy. These predictions are used to
calculate the memory cost (MemCost) associated to the execution of each given code,
that is, the number of cycles it spends due to the cache hierarchy. This calculation has
been made using the same approach followed in [3]. The predictions of the model have
been compared to the observations made in the SESC cycle-accurate simulator [7]
in order to assess their accuracy. The difference between both values is expressed
as a relative percentage The average difference across all the experiments is just
5.05%, the accuracy thus being remarkable, from the 0.2% obtained for the fusion
benchmarks in the Intel i7, to the 11.6% obtained for the fision benchmark in the
same platform.

As a second step, the optimization choices made by the model are compared to
those made using the guidance of the actual execution time. Figure 2 summarizes the
results for the fision. The figure is composed of two columns with two graphs each.
Each column represents the results for one of the two platforms. The number of
threads used for the experiments is equal to the number of physical cores available in
each platform. We have made sure that each thread is mapped to a different physical
core using the affinity feature of OpenMP 4.0. The iterations of the parallel loop have
been distributed cyclically among the threads in chunks of 16 iterations. This chunk
size has been used in all the experiments of this section. The top graph in each column
shows the memory performance predicted by the model for the versions without fision
(fisionorig) and with fision (fisionopt) for different problem sizes. The bottom graph
of each column make the same comparison using the average execution times of ten
executions. These times and the model predictions lead to the same conclusion, this
optimization is successful in both the i7 and the Xeon.

Guiding the optimization of parallel codes using the ParPME+ model 5

Fig. 2. Results for fision

The results for the fusion case study are shown in Fig. 3, which has the same
structure as Fig. 2. In this case, the model also leads to the right decision, which is
to apply the optimization in all the platforms and for all the problem sizes.

The results for the matrix multiplication case study are shown in Figure 4. In this
case, we have to decide the best loop ordering to perform the matrix multiplication.
The outermost i or j loop is the one parallelized. The results have the same structure
as in the previous cases. According to the actual execution time, the ikj and kij
ordering are the best ones, and this decision is accurately taken using the model.

All the predictions of our model have been obtained in less than one second no
matter the problem size. However, the execution of the real codes or the simulator
took quite longer for the larger problem sizes, ranging from the 3 times longer of
padding in the Intel i7, to the 30 times longer of matmul in the Intel Xeon 2680.
This is a crucial characteristic of our model, as we can evaluate several optimization
choices in a fraction of the time required to execute the real codes.

5 Conclusions

This paper explores the possibility of using an analytical model of the cache behavior
to guide compiler optimizations on parallel codes run on real multicore systems. The
existing ParPME model introduced in [1], supported caches shared by all the threads
participating in the parallelization. Nevertheless, several architectures present caches
that are private to one threads or shared by a subset of the cores/threads participat-
ing in the execution of a parallel application. For this reason, a first contribution in

6 Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Fig. 3. Results for fusion

this paper, leading to the ParPME+ model, has been the development of a procedure
which, by changing the representation of the code to analyze inside the model, allows
it to also accurately predict the behavior of this kind of caches. As a result, the model
can now analyze the behavior of the complete cache hierarchy of a multicore multi-
processor computer. Our experiments using three case studies and two architectures
show that the model is a good guide to choose the most cache friendly optimization
choice. This is not surprising, as the predictions of our model only differ by 5.05% on
average from the observations of a cycle-accurate simulator. In addition, the model
can provide its predictions in less than a second.

In the future, the model can be extended to model any of the missing hardware
features present in some processors. It would also interesting to complement it with
a CPU model.

Acknowledgment

This research was supported by the Ministry of Economy and Competitiveness of
Spain and FEDER funds (80%) of the EU (TIN2016-75845-P), and by the Govern-
ment of Galicia (Xunta de Galicia) co-founded by the European Regional Develop-
ment Fund (ERDF) under the Consolidation Programme of Competitive Reference
Groups (ED431C 2017/04) as well as under the Centro Singular de Investigación de
Galicia accreditation 2016-2019 (ED431G/01). We also acknowledge the Centro de
Supercomputación de Galicia (CESGA) for the use of their computers.

Guiding the optimization of parallel codes using the ParPME+ model 7

Fig. 4. Results for matmul

References

1. Andrade, D., Fraguela, B.B., Doallo, R.: Accurate prediction of the behavior of multi-
threaded applications in shared caches. Parallel Computing 39(1), 36–57 (2013)

2. Balasubramonian, R., Jouppi, N.P., Muralimanohar, N.: Multi-Core Cache Hierarchies.
Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers (2011)

3. Fraguela, B.B., Carmueja, M.G., Andrade, D.: Optimal tile size selection guided by ana-
lytical models. In: Proc. of Parallel Computing. vol. 33, pp. 565–572 (2005), publication
Series of the John von Neumann Institute for Computing (NIC)

4. Fraguela, B.B., Doallo, R., Zapata, E.L.: Probabilistic Miss Equations: Evaluating Mem-
ory Hierarchy Performance. IEEE Trans. on Comp. 52(3), 321–336 (March 2003)

5. Ramos, S., Hoefler, T.: Modeling communication in cache-coherent smp systems: a case-
study with xeon phi. In: 22nd Intl. Symp. on High-performance Parallel and Distributed
Computing. pp. 97–108. ACM (2013)

6. Rawlins, M., Gordon-Ross, A.: A cache tuning heuristic for multicore architectures. IEEE
Transactions on Computers 62(8), 1570–1583 (2013)

7. Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi, S., Sack, P.,
Strauss, K., Montesinos, P.: SESC simulator (January 2005)

8. Schuff, D.L., Kulkarni, M., Pai, V.S.: Accelerating multicore reuse distance analysis with
sampling and parallelization. In: 19th intl. conf. on Parallel Architectures and Compila-
tion Techniques. pp. 53–64. PACT ’10, ACM, New York, NY, USA (2010)

9. Zang, W., Gordon-Ross, A.: A survey on cache tuning from a power/energy perspective.
ACM Computing Surveys (CSUR) 45(3), 32 (2013)

