
Address Independent Estimation of the Boundaries of
Cache Performance

Diego Andradea,∗, Basilio B. Fraguelaa, Ramón Doalloa

aDept. of Electronics and Systems, University of A Coruña, Spain. Tel.: +34-981-167-000 ext. 1298, Fax:
+34-981-167-160}

Abstract

Worst-case (WCET) and best-case (BCET) execution times must be estimated in real-
time systems. Worst-case memory performance (WCMP) and best-case memory per-
formance (BCMP) components are essential to estimate them. These components are
difficult to calculate in the presence of data caches, since the data cache performance
depends largely on the sequence of memory addresses accessed. These addresses may
be unknown because the base address of a data structure is unavailable for the analy-
sis or it may change between different executions. This paper introduces a model that
provides fast and tight valid estimations of the BCMP, despite ignoring the base ad-
dress of the data structures. The model presented here, in conjunction with an existing
model that estimates the WCMP, can provide base-address independent estimations of
the BCMP and WCMP. The experimental results show that the base addresses of the
data structures have a large influence in the cache performance, and that the model esti-
mations of the boundaries of the memory performance are valid for any base addresses
of the data structures.

Keywords: Real-time systems, BCET, WCET, cache memory

1. Introduction

Execution time must be bounded [1] in real-time systems. Namely, the worst-case
execution time (WCET) estimates an upper limit of the execution time of a task and it
may be used to perform any schedulability analysis, to ensure meeting deadlines and
to assess resource needs for real-time systems. The best-case execution time (BCET)
estimates the lower limit and it may be used to assess code quality and resource needs
for non- or soft real-time systems, and to ensure that live lines and minimum sampling
intervals are met. The presence of data caches [2] complicates the estimation of the
memory performance components of the WCET and the BCET, which are the worst-
case (WCMP) and best-case memory performance (BCMP), respectively. The reason
is that the memory performance in the presence of caches depends largely on the exact

∗Corresponding author
Email addresses: diego.andrade@udc.es (Diego Andrade), basilio.fraguela@udc.es (Basilio

B. Fraguela), doallo@udc.es (Ramón Doallo)

Preprint submitted to Elsevier

sequence of memory addresses accessed by the program, and these addresses determine
the placement of each piece of data in the cache. This sequence may be unavailable
at compile-time due to the lack of the base address information of the data structures
and/or the presence of irregular access patterns. The base addresses may also not be
obtainable because of the usage of program modules or libraries compiled separately,
stack variables or dynamically allocated memory. Furthermore, these addresses may
change between different executions of the program.

The model presented in [3] is, to our knowledge, the only one to tackle a base
address-independent prediction of the WCMP in the presence of data caches. It is
based on the Probabilistic Miss Equations (PME) model [4] and it can estimate rapidly
and precisely the WCMP of codes with strided accesses (regular codes). This paper
complements [3] with the ability to provide base address independent predictions of
the BCMP. This would turn the model, if integrated with a CPU model, into a powerful
tool to perform statically a thorough timing analysis.

The rest of this paper paper is organized as follows. Section 2 describes the basics
of the PME model and its scope of application. The following two sections explain
the changes required to estimate the BCMP. Namely, Sections 3 and 4 contain the
core contribution of the paper as they are devoted to describe the method to calculate
the BCMP. Section 5 highlights the main differences between the BCMP approach
presented in this paper, and the WCMP approach presented in [3]. Then, Section 6
shows some experimental results, Section 7 is devoted to the related work and Section 8
concludes.

2. The Probabilistic Miss Equations model

The Probabilistic Miss Equation (PME) model [4] predicts the behavior of set-
associative caches following a Least Recently Used (LRU) replacement policy. Before
the model is introduced, let us start with some notions on cache memories. Caches
are associative memories [5], located in the top levels of the memory hierarchy, that
contain a subset of the data present in the lower levels and that are searched by the
memory address provided by the processor. Caches are divided into cache lines, a
line corresponding to the minimum amount of information that can be placed in the
cache. Cache lines are grouped in cache sets, each set having the same number of
lines, which is called the cache associativity. Under a CPU request only the lines in a
set are searched. Also, a line can only be placed in a predetermined set, although any
of the set lines is eligible for its placement.

The basic operation of a cache memory starts with the processor emitting a memory
address, which may need to be translated into a physical address before accessing the
cache if we consider a system with virtual memory and a physically-indexed cache.
A part of this memory address, called index, is used to select the cache set where the
cache line containing the requested address should be located. Another part of the
address, called tag, is used to find out if the line is in the cache set. If it is present, the
access turns into a cache hit. Then the cache retrieves the data associated to the address
requested inside the line using another part of the address called displacement and it
sends this data item to the processor. If the line is not present, the access turns into a

2

miss and the data must be brought from the lower levels of the memory hierarchy to
the corresponding cache set. Then, the access is treated as a hit.

When a new line is loaded into its corresponding cache set, the cache set may be
full. In that case, one of the lines of the cache set must be replaced by the new line.
The selection of which line is replaced is taken by the replacement policy. The most
popular replacement policy is the Least Recently Used (LRU) one, that selects the line
that has not been accessed for a longer time.

The PME model estimates the number of cache misses generated by the execution
of a code. The model processes the static references of the analyzed code one by
one. For each reference and each nesting level containing it, a separated Probabilistic
Miss Equation (PME) is generated. Each static reference generates several dynamic
accesses. Each access affects one data item which is located in a given memory line.
This access can result in a cache hit if the line is already loaded in the cache or a
miss otherwise. Cache misses take place compulsorily the first time a memory line
is accessed. The remaining accesses to memory lines are reuse attempts, given that
a preceding access already loaded the line of interest in the cache. A reuse attempt
on a memory line results in a miss if the lines brought to the cache during the reuse
distance have evicted the line. This eviction happens with a given probability, called
miss probability, which depends on the reuse distance. A PME formula classifies the
accesses generated by the reference it models within the considered loop according
to their reuse distance and computes the miss probability associated to each one of
the reuse distances found. Then, this PME estimates the number of misses generated
by the reference in the loop by adding the number of accesses with each given reuse
distance weighted by their associated miss probability.

FRi(RDinput) = NAcc(RDinput)×MissP(RDinput) +

NRD∑
i=1

NAcc(RDi)×MissP(RDi) (1)

Equation 1 represents the general form of the PME associated to reference R and
nesting level i. NRD is the number of different reuse distances found. NAcc(RD)
is the number of accesses generated by reference R whose reuse distance is RD and
MissP(RD) is the miss probability associated to that reuse distance. The PME also
considers the first-time accesses of R to lines during one execution of the loop. While
these accesses cannot exploit a RD within the loop, they may enjoy reuse with respect
to accesses to the same line which took place in previous iterations of outer or preceding
loop nests. Since such RDs cannot be found in the analysis of loop i, every PME FRi

has an input. The number of misses generated by these accesses is accounted by the
first term of the formula.

Example 2.1. Let us consider a simple code like the following

for(ind=0; ind<16; ind++) {

a[ind] = b[ind];

}

and a direct-mapped cache that can store 16 elements of any of both arrays which is

3

If ind < 16

access ind

access b[ind]

access a[ind]

access ind

Yes

No END

BEGIN

Figure 1: Control flow of the accesses of Example 2.1

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11] a[12] a[13] a[14] a[15]

First-time accesses Reuse attempts Reuse distance

{ { { {Line 0 Line 1 Line 2 Line 3

iteration: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: First-time accesses and reuse attempts of the acccess to a[ind] in Example 2.1

divided into 4 lines that can store 4 elements of the arrays each. Figure 1 contains a
control flow of the accesses generated by the example code. Let us assume that scalar
accesses are usually mapped to processor registers, even if it is not the case, that is a
reasonable best-case assumption. Thus, only the accesses to arrays a and b have an
impact on the cache.

Let us see how Eq. 1 applies to the modeling of reference R ≡ a[ind] in the scope of
this loop at nesting level i = 0. Figure 2 represents the positions of a accessed through
this reference. Accesses to positions located in the same cache line are grouped and,
first-time accesses, reuse attempts and reuse distances are identified. The first position
of the array a[0] is located at the beginning of one line, thus, the loop accesses exactly
16/4 = 4 different cache lines. So, NAcc(RDinput) = 4 because 4 accesses visit a line
for the first time in this loop and its associated reuse distance is RDinput, which is the
RD for the first-time accesses of R in the loop. The remaining 12 iterations are reuse
attempts of a line accessed in a previous iteration of the loop. In fact since the access is
sequential, the reuse attempts always take place on the immediately previous iteration
of the loop. So, all the reuse attempts are associated to a single reuse distance, thus,
NRD = 1. This reuse distance RD0 is concretely one iteration of the loop 0 we are
considering, denoted as Iter0(1). This way, FR0(RDinput) = 4 × MissP(RDinput) + 12 ×
MissP(RD0).

The example can be completed intuitively although the method to calculate the miss

4

probability associated to a given reuse distance has not been explained yet. If the lines
from array a have not been accessed in a previous loop, the miss probability associated
to the RDinput reuse distance is 1, which means that these NAcc(RDinput) = 4 accesses
turn into misses. Regarding the 12 accesses with reuse distance RD0 =Iter0(1), during
one iteration of the loop one line from array a and one line from array b are accessed.
The line from a is the reused line, so it does not interfere with itself. The line from b

is going to be placed in one of the 4 sets of the cache, each one of them consisting of
a single line. If it is placed in the same set as the reused line from a, it will eject it
from the cache; otherwise there will be no interference. This way on average, there is
a probability of 1/4 = 0.25 that the reused line is ejected from the cache, and this is
conversely the miss probability associated to the reuse distance RD0 we are consider-
ing. As a result, the average number of misses generated by the studied reference is
FR0(RDinput) = 4 × 1 + 12 × 0.25 = 7 �

Let us notice that this model has two main stages. The first one consists in esti-
mating which is the reuse distance for each access of a reference in order to build the
PMEs. The second one estimates the miss probability associated to each reuse distance.

The pseudo-code of Fig. 3 gives an overview of the PME model. In the top-level
function, analyze code, the references that appear in each loop nest of the source code
are studied one by one. The function number o f misses computes the formula that
calculates the number of misses produced by that reference in each nesting level. The
pseudo-code of the number o f misses function, and the remaining functions included
in this pseudo-code, will be explained later.

The aim of the model in [4] is to estimate an average expected number of misses
for the execution of a code. Therefore its formulas and heuristics estimate the aver-
age reuse distance associated to each access and the average miss probability for each
reuse distance. The model extension presented here for BCMP prediction estimates the
smallest possible number of misses a code could generate. Thus it estimates best-case
reuse distances, i.e., reuse distances guaranteed to be not larger than those in the actual
executions. This extension also computes best-case miss rates for those reuse distances,
rather than the average miss probabilities of the original model. This way, Section 3
deals with the construction of best-case PMEs based on best-case reuse distances, and
Section 4 with the estimation of the best-case miss rate for a reuse distance.

2.1. Scope of Application
The scope of application of the model introduced in this paper is limited to set-

associative caches. The BCMP model introduced in this paper, just as those in [3][4],
requires as inputs a representation of the source code to analyze and the cache configu-
ration. The only restriction on the cache is that it must have a LRU replacement policy.
The representation of the code can be the source, or if there are optimization steps in-
volved in the generation of the executable, the Abstract Syntax Tree (AST) generated
by the compiler after those transformations. This AST reflects the final structure of the
executable and contains also all the information required by the model. If the analy-
sis is not performed within the compiler and no such internal representation could be
made available for the analysis, optimizations would have to be disabled to ensure the
safeness of the prediction.

5

function analyze code() {
1 foreach loop nest of the code {
2 foreach re f erence in the loop nest {
3 misses+ = number o f misses(re f erence, outermost loop(loop nest),R f ull)

4 }
5 }
6 return misses

}

function number o f misses(re f erence, loop, region) {
1 if is innermost loop containing(loop, re f erence) {
2 return LR(loop) ∗ bmiss rate(region) + (Nloop − LR(loop)) ∗ bmiss rate(inter f erence region(loop, 1))

3 } else {
4 misses=0.0

5 foreach inner loop in inner loops containing(loop, re f erence) {
6 misses+ = LR(loop) ∗ number o f misses(re f erence, inner loop, region)

7 +(N(loop) − LR(loop)) ∗ number o f misses(re f erence, inner loop, inter f erence region(loop, 1))

8 }
9 return misses

10 }
}

function inter f erence region(loop, its) {
1 region set = ∅

2 foreach re f erence in the loop {
3 case ... {
4 ...→ region set = region set ∪ Regs(M)

5 ...→ region set = region set ∪ Regr(NR ,TR , S R)

6 ...

7 }
8 }
9 return region set

}

function bmiss rate(region set) {
1 global AV = empty AV()

2 union AV = empty AV()

3 foreach region in the region set {
4 case region {
5 Regs(M) → minUnionAV(global AV,AVs(M), union AV)

6 Regr(NR ,TR , S R) → minUnionAV(global AV,AVr(NR ,TR , S R), union AV)

7 ...

8 global AV = copy(union AV)

9 }
10 }
11 return union AV0

}

Figure 3: The PME model algorithm

6

The model supports codes with any number of perfectly or non-perfectly nested
loops with an arbitrary number of references, which must be indexed using affine func-
tions of the loop indices. There may be several references to the same data structure at
any nesting level. Actually, any memory reference can be found at any nesting level.
The number of iterations of the loops, or at least a lower bound for the BCMP predic-
tion, must be known to perform the analysis. This information can be inferred from the
code, provided by the user, or found through profiling. Inter-routine cache effects are
modeled using inlining, either symbolic or actual.

Conditional statements may appear in the code analyzed when they guard accesses
to registers or to the latest data item accessed before the branch. In these cases the
data-dependent flow does not alter the cache behavior. Similar restrictions are found in
other analytical models of the data cache behavior [6][7][8]. Pieces of code containing
irregular access pattern, due to the usage of pointers, indirections or more complex con-
ditional statements, can be analyzed by locking the cache during its execution. Cache
locking can be used to improve cache predictability, which is necessary to estimate
a safe WCET [7]. In multitasking environments, predictability can be improved by
dividing the cache into disjoint partitions which are assigned to different concurrent
tasks [9]. As a proof of the large applicability of the method proposed in this paper
in real-world situations, these are exactly the same assumptions of the original PME
model [4], which sufficed to model complete SPECfp95 and Perfect Benchmarks ap-
plications, or at least their most significative and time-consuming routines.

The approach presented in this paper calculates the best-case behavior of the cache
independently of the performance of the rest of the system. The success of this ap-
proach depends on that the architecture is fully timing compositional [10], as the model
does not take into account those timing anomalies [11] where a cache hit may result
in longer execution times than a miss for a given path due to overlapped structural
resource conflicts.

3. Best-case PME construction

Our model builds a PME FRi to estimate the number of misses that each static
reference R generates during one execution of each loop i that encloses it. Building
a PME consists in multiplying the number of dynamic accesses generated by R that
can enjoy each potential reuse distance (RD) within loop i by the miss probability
associated to that RD, as Eq. 1 summarized.

Let us now explain the construction of PMEs. Loops are normalized for the analysis
to have step 1 and they are numbered from 0, the outermost one, to Z, the innermost
loop containing reference R. In order to simplify the explanation, all the strides and
sizes will be expressed in number of elements of the data structure considered rather
than in bytes. As we have explained, the PME for each nesting level captures all the
reuse distances within that level. In particular, the construction of FRi discovers the
reuse distances that are specifically associated to loop i. If i is not the innermost loop
containing R, the PME is written in terms of the PME for the immediately inner level
FR(i+1), which carries the reuse distances within the inner loops. In the innermost loop
Z containing R, we define FR(Z+1)(RDinput) as the PME for an individual access of R.
So, it is in this PME where the recursion finishes, being FR(Z+1)(RDinput) equal to the

7

miss probability associated to RDimput, MissP(RDinput). This way, although PMEs
are built recursively, their final appearance is that of the general form explained in
Eq. 1. In the calculation of the BCMP, rather than miss probabilities, best-case miss
rates are computed following the function developed in Section 4. This way, in the
BCMP model FR(Z+1)(RDinput) = BMissR(RDinput), the best-case miss rate associated
to RD. This best-case miss rate is calculated by considering the placement of the data
structures in the cache which minimizes the miss rate.

The first step to build FRi in each loop containing R, 0 ≤ i ≤ Z, is to verify whether
R can exploit reuses with a RD associated to this loop with respect to other refer-
ences to the same data structure (inter-reference reuses) or not. The model can analyze
inter-reference reuse among uniformly generated references, that is, references with
the same affine indexing functions except possibly an added constant (i.e. A[i][2*j]
and A[i][2*j+5]). The techniques used to model best-case inter-reference reuse are
analogous to those employed in [3] in the calculation of the WCMP. If there is no
inter-reference reuse, the PME is built taking into account the potential reuses of R
with respect to its own accesses (intra-reference reuses). The subsequent explanation
focuses on these reuses.

The PME is built based on the fact that R has a constant stride S Ri with respect
to any enclosing loop i. The reason is that each dimension j of R is indexed by an
affine function αR j·Im + δR j of the control variable of loop m, Im, where αR j and δR j

are constants. Therefore,

S Ri =

{
0 if Ii does not index R
|αR j| · Da j if Ii indexes dimension j of R (2)

where a is the data structure referenced by R and Da j is the cumulative size of dimen-
sion j of array a. If a is a n-dimensional array of size da1×da2×· · ·×dan with row-major
layout (as in the C language), Da j =

∏n
i= j+1 dai. Notice that S Ri is non-negative because

the absolute value of αR j is used to compute it. This simplifies the treatment for nega-
tive strides. Table 1 depicts these parameters and others that will be referenced during
the explanation of the model.

The concept of iteration point of reference R at level i is crucial to understand the
rest of the explanation.

Let A be the memory address accessed by R during the first iteration of loop i
for a given IPRi. Then, since R has constant stride S Ri with respect to loop i, in the
subsequent iterations of loop i the addresses accessed by R for this IPRi will be A+S Ri,
A + 2 · S Ri, . . . , A + (Ni − 1) · S Ri, where Ni is the number of iterations of loop i. This
reasoning holds for any IPRi. Thus, the minimum number of different lines that R can
access in any IPRi during the execution of loop i is

LRi = 1 + b(Ni − 1)/max{Ls/S Ri, 1}c , (3)

Ls being the size of a cache line in elements of the considered access. The actual
number of lines accessed depends on the alignment of the first address accessed (A)
with a cache line. Expression (3) assumes that this address is mapped to the beginning
of a cache line, that is, A mod Ls = 0. This assumption minimizes the number of
different lines accessed. This is one of the differences between the BCMP and the

8

Cs Cache size
da j size of the j-th dimension of array a

Da j cumulative size of the j-th dimension of an n−dimensional array a, Da j =
∏n

l= j+1 dal

DRi minimum # of different lines an iteration point of a reference R can potentially
access during the execution of the loop at nesting level i

k Associativity of the cache
LRi minimum # of different lines accessed by an iteration point of a reference R during

the execution of the loop at nesting level i
Ls Line size
Ni minimum # of iterations of loop at nesting level i, whose index is Ii

S Number of cache sets
S Ri stride of reference R with respect to the loop at nesting level i, S Ri = αR j · da j,

where j is the dimension of array a referenced by R indexed by Ii

Z innermost loop containing reference R

Table 1: Notation used (all the strides and sizes are expressed in number of elements of the data structure
considered rather than in bytes).

WCMP approaches. In the WCMP approach, this equation assumes the alignment that
maximizes the number of different lines accessed. In each iteration of the innermost
loop containing the reference, one iteration point is accessed in each iteration of the
loop. In the remaining nesting levels, a set of iteration points are accessed in each
iteration of the loop. In LRi iterations all the IPRi access a line different from that
accessed by the corresponding iteration point of the previous iterations of loop i. Thus,
the potential reuse distance RD for such accesses is unknown in this nesting level. They
may reuse lines already accessed in previous iterations of outer loops or they become
cold misses.

When LRi < Ni, in the remaining Ni − LRi iterations of loop i, each IPRi attempt
to reuse a line accessed by the corresponding iteration point of the previous iteration
of loop i. This is necessarily the case because R has a constant stride with respect to
loop i. This implies that the RD for these accesses is one iteration of the loop at nesting
level i. As a result,

FRi(RDinput) = LRi · FR(i+1)(RDinput) + (Ni − LRi) · FR(i+1)(IterRi(1)) (4)

where IterRi(1) is a reuse distance of one iteration of the loop at nesting level i. Now
we can see why this is a best-case PME. The longer a RD is, the larger the miss rate it
generates is. Since the RDinput for the first-time accesses within the loop, which is the
input argument of the PME, is necessarily longer than IterRi(1), our minimization of LRi

ensures associating the minimum possible number of reuses to the longest RD. Let us
notice that this PME matches the general form presented in Eq. 1, once the PMEs for
the inner nesting levels have been composed and FR(Z+1)(RDinput) has been substituted
by BMissR(RDinput) in the innermost loop containing the reference.

The number o f misses function in the pseudo-code of Fig. 3 provides an imple-

9

for(ind=0; ind<4; ind++) // Level 0

for(j=0; j<4; j++) // Level 1

for(i=0; i<4; i++) // Level 2

a[j][i] += b[i][j] + c[ind][i]

Figure 4: Example code

mentation for the construction of the PMEs based on the recursive form of Eq. 1 .
For simplicity, this pseudo-code only considers intra-reference reuses but the model
also supports inter-reference reuses. The two remaining functions (bmiss rate and
inter f erence region) will be explained later.

Example 3.1. Let us analyze reference b[i][j] in the code in Fig. 4. Let us consider
a direct-mapped (k = 1) which can store 32 elements of any of the matrices (Cs = 32)
and where each line can store 2 elements (Ls = 2). The matrices are 4 × 4, and they
are stored by rows. First, the equation FR2 for the innermost loop for that reference is
derived. Since N2 = 4 and Eq. 2 yields S R2 = 4, then according to Eq. (3) we have
LR2 = 4. The resulting equation is obtained substituting these values in Eq. 4

FR2(RDinput) = 4 · FR3(RDinput) + 0 · FR3(IterR2(1)) (5)

that is, the reference accesses new lines in the four iterations of this loop. As for loop
in nesting level 1, since here N1 = 4 and S R1 = 1, then from Eq. (3) LR1 = 2 and

FR1(RDinput) = 2 · FR2(RDinput) + 2 · FR2(IterR1(1)) (6)

that is, in the best case, this loop generates accesses to two different lines as well as
two reuses for each iteration point within loop 1. In the outermost loop, N0 = 4 and
S R0 = 0, and from Eq. (3) LR0 = 1. Thus,

FR0(RDinput) = 1 · FR1(RDinput) + 3 · FR1(IterR0(1)) (7)

that is, in the best case, this loop generates accesses to one line and three reuses for
each iteration point within loop 0. When the equations are composed and FR3(RD)
is replaced by BMissR(RD), the final number of misses for reference b[i][j] can be
calculated as

FR0(RDinput) = 8 · BMissR(RDinput) + 24 · BMissR(IterR0(1)) + 32 · BMissR(IterR1(1))
(8)

This equation indicates that 8 of the accesses of b[i][j] in this loop cannot exploit
reuses within the loop. Thus their reuse distance RDinput depends on previous loop
nests. Other 24 accesses attempt to reuse a line accessed in the previous iteration of
loop 0. Thus their miss rate depends on the memory regions accessed during such
iteration IterR0(1). Finally, the remaining 32 accesses try to reuse a line accessed in
the previous iteration of loop 1 and its associated reuse distance is IterR1(1) �

10

Best-case

miss rate

Best case
area vector 1

Area

Vector 1
Access

patte
rn 1

Access

pattern

identification

Enclosing

loops info

Reuse

distance

Reference

indexes

Best-case

cache

impact

Access

pattern 2

Best-case

cache

impact

Access
pattern n Best-case

cache

impact

Best-case

overlapping

adjustment

Area

Vector 2

Best-case

overlapping

adjustment

Area

Vector n

Best-case

overlapping

adjustment

Best-case

union

Best
 c

ase

are
a v

ect
or n

Best case

area vector 2

Figure 5: Best-case miss probability estimation for a reuse distance

4. Best-case estimation of the miss rate for a reuse distance

As Section 2 explains, the estimation of the BCMP requires calculating a lower
bound of the miss rate associated to each reuse distance (RD) found in a PME. This
miss rate corresponds to the minimum rate of the lines to reuse that may have been
evicted from the cache by other lines loaded during the RD. The estimation of the
best-case miss rate consists of several steps: the access pattern identification, the best-
case cache impact estimation, the best-case overlapping between the reused and the
interfering regions and the best-case area vectors union. These steps are illustrated in
Figure 5 and they are now discussed in turn.

4.1. Access pattern identification
Let us define in advance the concepts of access pattern and memory region that

will be used throughout this section. This step derives in 3 stages the access patterns
followed by the references found within the RD from the indexing functions of these
references and the shape of the loops enclosing them:

1. The first stage computes for each reference and for each dimension of the data
structure the reference it refers to, the number of elements accessed during the
RD, as well as the stride between each two consecutive elements. As a result,
this stage computes the memory region accessed by each reference.

2. When there are several references to the same data structure, the regions they ac-
cess often overlap. Regions that overlap are merged in order to avoid considering
the overlaps several times as source of interference.

3. From the shape of each memory region, an associated access pattern is inferred.
From this point we will use indistinctively the terms memory region and access
pattern: the shape of a memory region defines an access pattern, and an access
pattern defines the memory region comprised by the elements it accesses. Two
access patterns have been found in the codes considered in [4] and in this pa-
per: the sequential access to M elements, denoted as Regs(M), and the access to
NR groups of TR consecutive elements each, separated by a constant stride S R,
denoted as Regr(NR,TR, S R).

The estimation of the BCMP instead of the average-case memory performance or
the WCMP does not require changes for this step. A more detailed description of this
step is found in [12].

11

The pseudo-code of the inter f erence region function in Fig. 3 shows a simplified
implementation of the access pattern identification step described in this section. As
the details of this method, already explained in [12], have been omitted in this paper,
the implementation of this function also omits the corresponding parts of the method.
The function explores each reference in the reuse distance and it identifies the access
pattern followed by that reference in that context. These access patterns are stored in
the region set data structure in Fig. 3.

Example 4.1. Example 3.1 derived Eq. 8 to estimate the number of misses generated
by reference b[i][j]. The only unknown quantities of this equation are BMissR(IterR0(1))
and BMissR(IterR1(1)), the best-case miss rate associated to one iteration of loops 0
and 1 respectively. The calculation of this miss rate requires to find out the access
patterns followed by references to matrices a, b and c during one iteration of loops 0
and 1 respectively. Let us recall that the three matrices have 4 × 4 elements.

Regarding the reuse distance IterR1(1), the reference a[j][i] generates the access
to 4 consecutive elements. This way, it implies a sequential access to 4 elements,
Regs(4). Reference b[i][j] generates the access to 4 elements of a column, and this
access is identified as Regr(4, 1, 4) because Ls ≤ 4, that is, the access to 4 groups of
1 element each, separated by a constant stride 4. Finally, the reference c[ind][i]

generate the access to 4 consecutive elements, Regs(4).
Regarding the other reuse distance IterR0(1), references a[j][i] and b[i][j]

generates the access to the 16 elements of matrices a and b respectively. So, both
access patterns are identified as Regs(16). Let us notice that although one access
is performed by columns and the other by rows, the impact of both matrices on the
cache is similar. Finally, reference c[ind][i] generates the access to 4 consecutive
elements, Regs(4) �

4.2. Best-case cache impact estimation
This second stage quantifies the impact of the cache lines loaded by each access

pattern on the miss rate associated to a reuse distance by means of a vector of ratios
called area vector (AV). This is a generic definition of the concept of AV. The group
of lines considered depends on the kind of estimation to obtain. For example, in the
model presented in [4], the average-case AV is calculated considering the group of all
the existing memory lines. This is equivalent to calculating the ratio of cache sets that
receives a given number of lines from the studied access pattern. The reason is that all
the memory lines are uniformly distributed along all the cache sets. The best-case miss
rate presented used for the BCMP estimation requires considering a more limited group
of lines. Namely, the lines accessed by the access pattern associated to the reference R
for which the PME is calculated. In a first stage, explained in this section, the group of
all the existing memory lines and the best-case alignment are considered. Section 4.3
processes this AV to take into account only the limited group of lines associated to R.
So, it selects the best-case placement of the access pattern considered with respect to
the lines of R.

Section 4.1 explained that the two most common access patterns found in regular
codes were: the access to consecutive elements (sequential access), and the access to
groups of consecutive elements, separated by a constant stride (strided access). The

12

estimation of the best-case cache impact for these two access patterns expressed as an
AV is explained now in turn.

� Best-case cache impact estimation for the sequential access . The best-case AV as-
sociated to the access to M consecutive elements, Regs(M), must reflect the alignment
of the M elements with respect to the cache lines that involves fewer lines. This is
another part of the model where the BCMP and WCMP approaches differ. The WCMP
approach reflects the alignment that involves more lines, and thus, it maximizes the
impact of these regions on the cache. In the best-case approach, the placement that
involves fewer lines as in the case of the LRi value discussed in Section 3, is the one
where the first of the M elements accessed is the first of a cache line. This way, the
access to the M elements involves dM/Lse cache lines. The average number of lines
placed in each set for this best-case alignment is l = min

{
k, dM/Lse

S

}
since there are S

sets in the cache and each one of them cannot hold more than k lines (the associativity).
Based on this, the best-case area vector AVs(M) for this access pattern can be computed
as

AVs(k−blc) (M) = 1 − (l − blc)
AVs(k−blc−1) (M) = l − blc
AVsi (M) = 0 0 ≤ i < k − blc − 1, k − blc < i ≤ k

(9)

where the i-th element of the AV is the ratio of sets that have received k − i lines of this
access pattern. The exception is the component 0, which is the ratio of sets that have
received k or more lines. These values can be also interpreted as the ratio of all the
memory lines that must compete with a given number of lines of the considered access
pattern. As l is not necessarily an integer, there is a ratio of l − blc cache sets that have
received blc + 1 lines from this pattern, and the remaining sets (a ratio of 1 − (l − blc))
receive blc lines from this pattern. The remaining components of the AV are zeroed, as
they do not correspond to any ratio of lines.

� Best-case cache impact estimation for the strided access. The best-case AV as-
sociated to the access to NR groups of TR consecutive elements each, separated by a
constant stride S R, Regr(NR,TR, S R), is calculated using a method analogous to the one
described in [3] for the worst-case AV. This method considers all the possible relative
offsets of the first element of the access pattern in a line and calculates its associated
AV. All these AVs are tried in the next stages of the miss rate calculation. Finally, the
AV of the relative offset with the largest miss rate is selected. The best-case AV is cal-
culated analogously, but the offset that gives place to the smallest miss rate is selected.
So, this is other part of the model where the BCMP and the WCMP approaches are
different.

Example 4.2. The Example 4.1 continued Example 3.1 and it identified the access
patterns of the references accessed during the IterR0(1) and IterR1(1) reuse distances.

Let us focus in the IterR0(1) RD (one iteration of the outermost loop). During
this RD, 16 consecutive elements of matrices a and b are accessed (Regs(16)), and 4
consecutive elements of matrix c (Regs(4)).

As both access patterns are sequential, their impact on the cache can be estimated
using Eq. 9. Let us consider the cache configuration used in Example 3.1. The cal-
culation of the impact of the access to 4 consecutive elements, Regs(4) starts with

13

REUSED REGION ON CACHE (Reg)

 MAPPING 1

MAPPING 2
THREE POSSIBLE MAPPING OF THE

INTERFERENCE REGION ON CACHE (Reg')
MAPPING 3

(0,1)

(0.5,0.5)

(1,0)

Reg' ACTUAL AV

WITH RESPECT

TO Reg

{
Figure 6: AV depending on the relative positions of the reused and the interfering memory regions

the calculation of the average number of lines placed on each set for this best-case
alignment l = min

{
k, dM/Lse

S

}
, k being 1 (the cache associativity), M = 4, Ls = 2 and

S = Cs/(Ls × k) = 16. Thus, l = min
{
1, d4/2e16

}
= 0.125. Then, when l is replaced in

Eq. 9 the resulting AV is (0.125, 0.875).
In the case of the estimation of the impact of Regs(16), l = min

{
1, d16/2e

16

}
= 0.5 as

now M = 16 and when l is replaced in Eq. 9 the resulting AV is (0.5, 0.5) �

4.3. Best-case overlapping between reuse and interfering regions
The success of an attempt of reuse of several lines, which we will call reuse region

Reg in what follows, depends on the relative placement of these lines with respect to
those of each interfering region Reg’ found in the considered reuse distance (RD). The
procedures described in Section 4.2 provide an AV for each Reg’ where its components
are ratios of all the memory lines that compete with a given number Y of lines from this
region, no matter these sets contain lines from Reg or not. This is a fair average estima-
tion, as the relative placement in the cache of the lines from different memory regions
is unknown to the model. Nevertheless, the actual ratios of interference between Reg

and Reg’ can be much smaller depending on the actual placement, and corresponding
overlapping, of both sets of lines on the cache. Thus, the components of the AV asso-
ciated to each region Reg’ must be processed to contain the ratio of lines of the group
compounded by the lines of Reg that compete in their cache sets with Y lines from
Reg’.

Example 4.3. Figure 6 represents the mapping on a one way (direct mapped) cache
with four cache sets of a reuse region Reg and three possible mappings of an inter-
ference region Reg’. Since Reg’ fills two of the four cache sets and leaves empty the
other two, its AV is (0.5, 0.5). This suggests an average 50% rate of conflict. How-
ever, the actual interference with the lines of Reg depends on the relative mapping of
both sets of lines in the cache and is represented by the AV placed on the right side of
each mapping in the figure. In this AV, component 0 is the ratio of lines of Reg that
collide with Reg’ for this mapping, and component 1 is the ratio of lines that do not
collide. This way, the first mapping does not interfere with the reuse of Reg, the second
mapping only interferes with the reuse of one of its lines, and the third one avoids both
reuses, which leads to 0, 50 and 100% miss rate, respectively �

As we see the AVs must be modified to provide conflict rates, i.e., ratios of lines of
the reuse region Reg that collide in their set with a given number of lines from Reg’.
These conflict rates must be computed considering the best-case overlapping of both

14

1function bestAV(sim[n] , AVReg′[k+1]) {
2 inter f S etsi = AVReg′ i ∗ S , 0 ≤ i ≤ k

3 lines =
∑n−1

i=0 simi .nsets ∗ simi .nlines

4 i=j=0

5 while (i < k and j < n) {
6 tmp = min(inter f S etsk−i , sim j .nsets)

7 AVbcReg′(k−i)
= AVbcReg′(k−i)

+ (tmp ∗ sim j .nlines)/lines

8 inter f S etsk−i = inter f S etsk−i − tmp

9 sim j .nsets = sim j .nsets − tmp

10 if sim j .nsets = 0 then j = j + 1

11 if inter f S etsk−i = 0 then i = i + 1

12 }
13 AVbcReg′k

= 1 −
∑k−1

i=0 AVbcReg′i
14 return AVbcReg′

15 }

Figure 7: Calculation of best-case AV

regions in the cache. So, this part of the model is performed differently in the BCMP
and the WCMP approaches, as the WCMP one considers the worst-case overlapping.
The best-case will be the one in which the largest possible number of lines from Reg

have to compete with the smallest possible number of lines from Reg’ in their cache
set. That is, it is the situation in which the largest possible number of lines from Reg

are mapped to the AVReg′k · S sets that receive 0 lines from Reg’, where AVReg′ is the
AV associated to Reg’, k is the associativity, AVReg′k the k−th component of AVReg′

and S is the number of sets in the cache. Component k of AVbcReg′ , the AV for Reg’
considering this best-case alignment, is then the ratio of lines of Reg mapped to these
sets without lines of Reg’. Once those sets without lines from Reg’ are exhausted,
then the largest possible number of lines from Reg are mapped to the AVReg′(k−1)

· S sets
that receive 1 line from Reg’. These lines contribute to the AVbcReg′1 component. The
remaining lines from Reg are processed analogously. As we see this algorithm requires
AVReg′ as well as the distribution of lines of Reg per set in order to match them with the
lines from Reg’. Unfortunately AVReg does not suffice for this because its component
0 does not provide the exact number of lines per set, just that there are k or more lines,
which is not enough to estimate the ratios. Let us see this with an example. In Fig. 6
if region Reg had occupied three sets with a single line each, its AV would have been
(0.75, 0.25), and since one of its lines would have collided in the best case with Reg’,
AVbcReg′ would have been (0.33, 0.66). Now, if Reg had mapped two lines to set 0,
another two to set 1 and another line to set 2, its AV would have also been (0.75, 0.25),
but since 1 out of its 5 lines could collide with Reg’ in the best case, AVbcReg′ would
have been (0.2, 0.8). Thus the calculation of AVbcReg′ requires a simulation of the
distribution of the lines of Reg on the cache. The simulation output is a vector of pairs
sim where each pair i has two components simi.nsets and simi.nlines, such that nsets
cache sets received nlines cache lines from region R. The elements of the vector are
sorted in decreasing order of simi.nlines.

The algorithm bestAV in Fig. 7 calculates AVbcReg′ from vector sim and AVReg′

following the procedure explained. In this function, array indexing is 0-based and the
input vectors are subindexed with their size. This way, n is the size of vector sim while

15

k stands for the associativity of the cache, k + 1 being the size of the input AV. The
algorithm matches the cache sets that receive the maximum number of lines of the
reuse region, as sim is processed in decreasing order of simi.nlines, with the cache sets
that receive the minimum number of lines from the interference region, as AVReg′ is
processed from component k to component 0.

If the reuse region Reg changes its relative position in the cache in different itera-
tions of outer loops, it may be impossible that the best-case overlapping takes place in
all the iteration of those loops. The same holds if the interfering region is the one to
change its position with the iterations of outer loops. Thus tightness could be improved
taking into account the freedom of placement of Reg and Reg’ due to the change of
their relative position in the cache in different iterations of outer loops. However, the
experimental results showed that the tightness of the BCMP prediction is already very
good without taking into account this freedom of movement, therefore it has not been
considered in the model.

Example 4.4. The example 4.2 calculated the impact of the references accessed during
the RD corresponding to one iteration of the outermost loop (IterR0(1)). This RD is one
of those identified in example 4.1 when the PME associated to references b[j][i] was
derived. The AVs obtained in this process were (0.5, 0.5) for the a[i][j] and b[j][i]
references, and (0.125, 0.875) for the c[ind][i] reference. Now the AVs derived in
this previous example must be turned into AVs that reflect the best-case overlapping
between the reused region and the interference region. This conversion is done using
the algorithm in Fig. 7.

Let us see how this process is done for the region associated to reference a[i][j],
whose AV is (0.5, 0.5). Let us consider the cache configuration used in Example 3.1.
The reused region (generated by reference b[j][i]) is composed of 16 consecutive
elements. In the best-case, these 16 elements are spread along 8 cache lines, thus, the
structure sim has two components n = 2. In the first component, sim0.nsets = 8 and
sim0.nlines = 1, and in the second component sim1.nsets = 8 and sim1.nlines = 0. The
other input of the algorithm is the AV of the interfering region, AVReg′ = (0.5, 0.5).
Each component of this AV is multiplied by the number of cache set (S = 16) in line 2
of the algorithm yielding a vector inter f S ets = (8, 8). The number of lines occupied
by the reused region, calculated in line 3, is 8. As the cache has 16 cache sets (or lines
as it is direct-mapped), the loop between lines 5 and 12 matches the 8 cache sets (or
lines) containing one line of the the reused region and the 8 sets containing no lines
from the interfering region. As a result, the final AVbcReg′ is (0, 1).

In the case of reference c[ind][i], its AV is (0.125, 0.875). Vector sim has the
same contents as the reused region is the same and AVReg′ = (0.125, 0.875). As a
result, inter f S ets = (2, 14). In this case, the 2 cache sets that receive 1 line from the
interfering region are matched with two of the 8 cache sets receive no lines from the
reused region. Out of the 14 cache sets that do not receive any line from the interfering
region, 8 are matched with the 8 sets that receive the region to reuse (generating no
interference, as they have no lines), while the other 6 are matched with the remaining 6
cache sets that receive no lines from the reused region. As a results, the final AVbcReg′

is (0, 1) �

16

4.4. Best-case area vectors union
The previous steps for calculating the best-case miss rate for a reuse distance (RD)

generated one AV per memory region accessed during that RD. Those AV represent
the contribution of each region to the miss rate associated to the RD. This final step of
the process summarizes the effects of all the memory regions defined by the accesses
found within the RD by merging their AVs into a global one. Then, component 0 of
this AV will be the ratio of lines to reuse located in a set where k or more lines (from
other memory regions) have been placed during the RD, k being the associativity of
the cache. Since in a k-way cache with LRU replacement, a line is evicted from its
set before a subsequent reuse if and only if k or more different lines are placed in
its set before such reuse, component 0 of the global AV is the miss rate associated
to the RD. The process to compute the global AV considers how the different memory
regions involved may overlap in the cache and it varies depending on the purpose of the
model. The model in [4] uses a method based on independent probabilities to calculate
the average-case miss probability. This method processed the AVs two by two but
it is not suitable to calculate the best-case miss rate, because it simply computes the
probability that a given set receives certain number of lines. In the method to calculate
the worst-case miss rate presented in [3], all the AVs had to be considered at the same
time to generate the largest interference. This approach, or an analogous one, is not
valid to calculate the best-case AVs union. Instead, we present a novel approach which
combines the AVs in groups of two untill one global best-case AV is obtained. This
way, again, this part of the model is different in the BCMP and the WCMP approaches.

Example 4.5. Let us consider a 1-way cache and a reuse distance in which two mem-
ory regions have been found, the AVs for both being (0.5, 0.5). This means that, for
both regions, half of the lines to reuse collide in their set with one or more of their
lines. Now, depending on the relative position of both interfering memory regions and
the lines to reuse, there are two extreme scenarios. In the WCMP situation, one of the
memory regions collides with one half of the lines to reuse, and the other region with
the other half. This would mean that it would be impossible to reuse any line. The
global AV would be (1, 0) and the miss rate, 1 (100%). In the BCMP situation the lines
of the two interfering regions would be mapped to the same cache sets, colliding then
with the same half of the lines to reuse. As a result the other half could be successfully
reused. The global AV would be (0.5, 0.5) and the miss rate 0.5 (50%).

4.4.1. Operation minUnionAV

We have developed a minUnionAV operation that combines the components of two
input AVs in order to estimate the best-case resulting global AV. This will be the AV
with the smallest possible component 0, i.e., miss rate. The operation is commutative
and associative, and it is applied repetitively on the AVs found within a RD when there
are more than two. We first explain the rationale for the algorithm and illustrate it with
an example.

The strategy to derive the best-case global AV of two input AVs A and B is to
process the elements of these AVs one by one. Since the AVs are defined on the same
cache, each component of A has to overlap (i.e, correspond to the same cache sets) with
some component(s) of B that add up the same ratio and viceversa. Each one of these

17

RA,RB

RBRA,RB

RARA,RB

RB

RB

RB

Set 0 Set 1 Set 2 Set 3

} k=3

RA,RB RB

RB

RBRB

RB

RB

RB

RB

Set 0 Set 1 Set 2 Set 3

RB RB

RA

RA

RARA

Set 0 Set 1 Set 2 Set 3

RA

Region RA Region RB Best-case Union Region

Figure 8: Example of mapping considering the best alignment

overlapped ratios will be added to a component of the resulting AV that represents the
combined effect of the AVs A and B, which we will call U through this explanation.
This way, if a ratio of cache sets p of A j overlaps with the same ratio of cache sets of Bt,
this ratio p must be subtracted from both A j and Bt. According to the definition of area
vector, the ratio of cache sets that hold s lines is located in the component max(k− s, 0)
of the AV. Since A j and Bt provide k − j and k − t lines respectively to that ratio p of
cache sets, a total of 2k − j − t lines are mapped to each one of those sets. As a result
this ratio p must be attributed to component max(k− (2k− j− t), 0) of the resulting AV
U.

The best-case algorithm must find the overlapping that minimizes the component
0 (ratio of full cache sets) of the resulting AV U. The strategy to achieve this is to
process the ratios of each input AV starting from the leftmost one to the rightmost one
in two stages. The first stage tries to avoid contributing to U0 by overlapping the ratio
considered with the righmost components of the other AV, that is, those that represent
sets with the fewer possible number of lines. Concretely, during the processing of the
component in position j in an AV, we first consider its overlap with the ratios in the
components k to k − j + 1 in the other AV, which bring to the set from 0 to l − 1 lines,
respectively. The overlappings are performed beginning with the rightmost component
and proceeding leftwards in order to contribute ratios to the rightmost possible com-
ponents in U. That is, we promote overlappings that generate sets with the minimum
possible number of lines. In the second stage, what is left from the ratio considered has
to be overlapped with ratios from the other AV placed to the left of component k− j+1,
that is, ratios representing cache sets that hold j or more lines of the region represented
by the other AV. These overlappings will necessarily contribute to U0. In this case we
consider the overlapping with ratios from the other AV starting with component 0 and
proceeding right till component k− j. The rationale is that since this stage cannot avoid
contributing to U0, it does it in such a way that it consumes the rightmost ratios from
the other AVs. This reduces sets of lines with many lines to be processed in later steps,
and thus the ratio of lines that contribute to U0.

Example 4.6. Figure 9 shows a step-by-step example of the union operation of the
AVs associated to the regions represented in Fig. 8 that leads to a global AV with
the minimum first component, i.e, miss rate generated, which is also shown in Fig. 8.
Each step represents the processing of a component of one of the input AVs and its
overlapping with one or several components of the other input AV. Each step shows the
state of each AV before it is processed and the state afterwards in a smaller italic font.
The arrows labeled with the ratio to be overlapped start at the processed element and
finish at the element of the resulting AV where the corresponding ratio will be added.
The component of the other input AV used in that overlapping is highlighted using a

18

A=(0, 0, 0.25, 0)
A'=(0, 0, 0, 0)

B=(0, 0.25, 0.25, 0)
B'=(0, 0, 0.25, 0)

U=(0, 0, 0, 0)
U'=(0.25, 0, 0, 0)

A=(0.25, 0, 0.5, 0.25)
A'=(0, 0, 0.5, 0.25)

B=(0.5, 0.25, 0.25, 0)
B'=(0.25, 0.25, 0.25, 0)

A=(0, 0, 0.5, 0.25)
A'=(0, 0, 0.25, 0.25)

U=(0.25, 0, 0, 0)
U'=(0.5, 0, 0, 0) Step 1

0.25 0.25

A=(0, 0, 0.25, 0.25)
A'=(0, 0, 0.25, 0)

U=(0.5, 0, 0, 0)
U'=(0.5, 0.25, 0, 0)

Step 2

0.25

B=(0, 0, 0.25, 0)
B'=(0, 0, 0, 0)

U=(0.5, 0.25, 0, 0)
U'=(0.5, 0.5, 0, 0)

Step 3

0.25

Step 0

B=(0.25 ,0.25, 0.25, 0)
B'=(0, 0.25, 0.25, 0)

Figure 9: Example of the algorithm union operation considering the best alignment

bold font.
Step 0: This step shows the processing of A0. The cache sets represented by A0

are already full, thus, this ratio must be overlapped with those of the other AV (B) that
contain the maximum number of lines (leftmost components). As this ratio of cache sets
is already filled by lines of A, the target is to overlap it with those cache sets of B that
contains the highest number of lines. This way, they do not contribute in later overlaps
to increase the resulting ratio of full sets. Thereby, the A0 = 0.25 is overlapped with a
0.25 ratio from B0. The 0.25 ratio must be subtracted from A0 and B0 respectively, and
contribute to the component 0 of the resulting AV U0, as it stands for cache sets that
are full.

Step 1: This step shows the processing of the remaining 0.25 of B0. Again, the
cache sets represented by B0 are already full and they must be overlapped with a 0.25
of A1 as it is the non-zero component of A that contains the highest number of lines
(leftmost non-zero component), following the same strategy than in step 0. That 0.25
ratio is subtracted from B0 and A1 and added to U0.

Step 2: The processing of component 1 of A is skipped in this example as it is
already 0. This step shows the processing of B1. Since B1 = 0.25, that means that 25%
of the cache sets receive 2 lines from B, so they are not full. Then, it is overlapped with
the ratio 0.25 of cache sets represented in A3, as they hold 0 lines. This overlapping
contributes with a ratio of 0.25 to U1. The overlapping with any other ratio from A
would contribute at least one extra line to the sets, resulting in full sets that would
increase U0, the ratio of full sets.

Step 3: The processing of components 2 of both input AVs, represented in this step,
is quite simple, as they are the only remaining non-zero values in their respective AVs.
They must be overlapped and added to U1 since those sets receive two lines: one from
A and another one from B. As a result, the final joint AV is U=(0.5,0.5,0,0) which could
be depicted as the mapping shown in Fig. 8.

4.4.2. The minUnionAV algorithm
The strategy just described to calculate the best-case union operation is imple-

mented by the minUnionAV algorithm in Fig. 10(a), which combines two input AVs
A and B in order to estimate the best-case resulting global AV U. This is the AV with
the smallest possible component U0, the portion of cache sets that have received k or
more lines. The algorithm is written assuming the indexing of the vectors and arrays
begins at 0. The vectors that are input to a routine are subindexed with their size. All

19

1 routine minUnionAV(A[k+1] , B[k+1] ,U[k+1]) {
2 for j = 0 to k − 1 {
3 overlap(A j , j, B,U, k, k − j + 1,−1)

4 overlap(B j , j, A,U, k, k − j + 1,−1)

5 overlap(A j , j, B,U, 0, k − j, 1)

6 overlap(B j , j, A,U, 0, k − j, 1)

7 }
8 Uk = Ak

9}

(a) Main function

1 routine overlap(r, j, E[k+1] ,U[k+1] , init, end, s) {
2 for i = init to end step s {
3 maxovlp = min(r, Ei)

4 Ei = Ei − maxovlp

5 r = r − maxovlp

6 Umax(0, j+i−k) = Umax(0, j+i−k) + maxovlp

7 }
8 }

(b) Helper function overlap

Figure 10: Best-case area vector union algorithm

the routine arguments are passed by reference. In our algorithm, each pair of compo-
nents A j and B j of the input AVs are processed in each iteration of the loop in lines
2 − 7 in Fig. 10(a), with the exception of the last components Ak and Bk.

The ratio of cache sets represented in A j must be overlapped preferably with the
ratios in those components of B in conjunction with which they do not fill any cache
set. These are the components Bk to Bk− j+1, in this order. If j = 0 no overlapping
takes place. This strategy minimizes the final number of lines in the ratio of cache sets
targeted by the overlapping. Line 3 of Fig. 10(a) updates the values of A j, B and U
performing that overlapping using the helper function overlap shown in Fig. 10(b).
Line 4 performs the symmetric operation for B j. This is the strategy followed in steps
2 and 3 of Example 4.6.

The ratio of cache sets represented in A j not yet processed at this point, has to be
unavoidably overlapped with ratios of components of B in conjunction with which they
fill cache sets. These components are those from B0 to Bk− j, in this order. Following
this order leaves unprocessed the ratios of sets with the smallest numbers of lines,
which have better chances of generating non full sets, when combined with ratios of
other AVs. Line 5 of Fig. 10(a) updates the values of A j, B and U performing this
overlapping strategy using the helper function overlap shown in Fig. 10(b). Line 6
of Fig. 10(a) performs the symmetric operation for B j. Steps 0 and 1 of Example 4.6
correspond to this part of the algorithm.

After the components 0 to k−1 are processed in the input AVs, only Ak and Bk may
be nonzeros, and they will have the same value. This is a ratio of cache sets that are
empty, so, it is stored in component Uk in line 9 of Fig. 10(a).

The helper function overlap, shown in Fig. 10(b), overlaps a ratio r from compo-
nent j of one of the input AVs with ratios of the other input AV, which is the parameter
E. The components of E are processed one by one from positions init to end using step
s (lines 2-6). Line 3 calculates the ratio of r that can be overlapped with component i
of E. Lines 4 and 5 update Ei and r subtracting this ratio. Line 6 updates the position
of the resulting AV where the ratio processed in this iteration will be added.

4.4.3. Validity of the union operation
This algorithm ensures the generation of the smallest possible U0 component by

construction. We will reason on how A j contributes to U0 in Fig. 10(a). The reasoning

20

is analogous for B j. Each ratio r added to U0 results from overlapping a ratio r from
A j and the same ratio r from Bi, i ≤ k − j, in line 5. A smaller U0 could be obtained
only if A j were overlapped with ratios from Bi, i > k − j, but that is exactly what line 3
has already done, depleting A j as much as possible.

The other source of concern is whether Bi, i > k− j, have the largest possible values
after the processing in the previous iterations of the algorithm, as this minimizes the
contribution of A j to U0 thanks to the mentioned overlapping in line 3. Each Bi may
have lost part of its ratio in each iteration l < j of the main loop either in line 3 or in
line 5. In the first case, that ratio was used to avoid Al contributed to U0, so saving it for
A j would have made no difference. In the second case, it had to be overlapped with Al

to contribute to U0 after exhausting the overlap of Al with Bi, i > k− l, in line 3. Line 5
overlaps what is left of Al with B processing it from left to right. Thus it only resorts
to Bi if all the Bi′ , i′ < i have already been overlapped and Al is still nonzero. This way
line 5 only overlaps Bi if it is absolutely necessary, and it maximizes the value of the
rightmost components of B not overlapped because of the order in which it processes
B.

The pseudo-code of the bmiss rate function in Fig. 3 provides an implementation
for the last two steps of the best-case miss rate calculation process. Namely, the cache
impact estimation and the area vector union steps. The AVs associated associated to
each access pattern identified in the previous inter f erence region function are com-
bined using the minUnionAV function to obtain one final global AV . Component 0
of this global AV is the best-case miss rate that will be used by the PMEs in the in-
nermost level containing the reference. The calculation of the best-case overlapping
between reuse and interfering regions described in Section 4.3 is not reflected in this
pseudo-code by simplicity.

It is important to clarify that while the union operation guarantees the generation of
the smallest possible U0 component, and thus a safe lower bound for the best-case miss
rate, this value may be below the actual value generated by the best-case alignment of
the data structures involved in the union operation. The reason is that an AV reflects
the distribution of the lines of a given access pattern on the cache sets but it does
not encode the information about the relative positions of cache sets, and thus neither
does the union algorithm. The best-case union operation overlaps ratios of cache sets
of one of the AVs with ratios of cache sets from the other AV, but the combination
of ovelappings generated by the union operation may not reflect accurately the actual
relative positions of the cache sets.

The example in Figure 11 illustrates this situation. It shows the union of two AVs
representing the impact of two regions, RA and RB, on a 3-way associative cache with
4 cache sets. Both regions fill two cache sets with their cache lines, but in one region
the full cache sets are contiguous and in the other one they are not. When the best-case
union operation is performed, our algorithm overlaps the 0.5 ratio of full cache sets in
both AVs and the overall miss rate is 0.5, as half of the cache sets are full. But this
situation does not reflect accurately the relative positions observed in the input regions,
as in one region both full cache sets are contiguous and in the other region they are
not contiguous, so the actual best-case situation is represented in the figure where the
actual overall miss rate is 0.75, since 3 out of the 4 sets are full.

Regarding the scalability, a more precise method would require that the informa-

21

RA,RB

RA,RB

RA,RB

RA,RB

Set 0 Set 1 Set 2 Set 3

} k=3

RA,RB RA,RB
RB

RB

RB

RB

Set 0 Set 1 Set 2 Set 3

RB RB

RA

RARA

RA

Set 0 Set 1 Set 2 Set 3

RARA

Region RA Region RB

Calculated best-case Union Region

RA,RB

RARA,RB

RARB

RB

Set 0 Set 1 Set 2 Set 3

} k=3

RARA,RB RB

Actual best-case Union Region

Figure 11: Example of mapping considering the best alignment calculated by the union operation and the
actual best alignment

tion about the relative positions of the cache sets would be encoded in each AV, which
would generate extra memory requirements. The best-case union of two AVs could
not be derived analytically as once a couple of cache sets from two different AVs are
overlapped by the union algorithm, this would determine the overlapping of the re-
maining cache sets represented in those AVs. Thus, the miss rate calculation process
should be performed, starting at the best-case overlapping step, taking into account
all the possible overlappings among all the memory regions, and then, the overlap-
ping that would derive the lowest miss rate would be selected. The scalability of that
method would be very poor as the addition of larger caches and more references to the
analyzed code would increase largely the memory requirements of the model and the
number of combinations of overlappings to be tested. The precise results reflected in
Section 6, obtained in less than one second each, shows that our approach provides a
good balance between precision and scalability.

5. BCMP vs WCMP

This section summarizes the differences between the model presented in [3] to cal-
culate the WCMP and the model for the estimation of the BCMP introduced in this
paper in order to emphasize the contribution of the current paper. The pseudocode of
Figure 3 in Section 2 shows that the PME model processes the references of the an-
alyzed code separately. Algorithm 1 summarizes the algorithm followed to estimate
the number of misses generated by a reference R in loop i. The algorithm highlights
in a bold font the four parts of the model where the BCMP and WCMP model differ.
In line 1 the algorithm computes the number of accesses generated by reference R in
loop i associated to each possible reuse distance RD. The BCMP model is designed to
ensure that the actual distance for a reuse will be greater than or equal to the one used
in the estimation. The WCMP model however is designed to ensure that it is shorter or
equal.

Lines 3-9 describe the process to calculate the miss rate associated to a given reuse
distance. This process is divided into four steps.

The first step (line 4) identifies the access pattern followed by a given reference and
presents no differences in both models.

The second step (line 5) calculates the impact of that access pattern on the cache us-
ing a mathematical representation called area vector. The methods used for the WCMP
and BCMP estimations are different. For sequential accesses patterns the worst-case

22

1 Compute worst/best-case number of accesses of reference R in loop i associated
to each possible reuse distance RD ;

2 forall reuse distance RD found do
3 forall reference R′ in RD do
4 Indentify access pattern AP of R′ in RD;
5 Compute AV for worst/best-case cache impact of AP;
6 Adjust AV for worst/best-case overlapping of AP with the reuse region

of R;
7 end
8 Merge all the AVs computed into a single one considering the

worst/best-case situation;
9 Take as miss rate for the RD element 0 of the final AV;

10 end
11 Evaluate PME with the miss rate of each RD;

Algorithm 1: Worst/best-case construction of the PME for reference R in loop i

approach maximizes the number of lines covered by the pattern, while the BCMP ap-
proach minimizes it. In the strided access pattern, the impact on the cache can be
represented by one of Ls (Ls being the cache line) area vectors. Each area vector is
calculated assuming that the first position accessed by the pattern has a different offset
with respect to the beginning of one cache line. The miss rate is calculated assuming
each possible AV and the minimum miss rate is selected in the BCMP approach, or the
maximum in the WCMP approach.

The area vectors obtained in the previous step represent the impact of a given access
pattern on all the cache sets, but the estimation actually depends on its impact on the
cache sets where the lines of the reused region are placed. The worst/best-case overlap-
ping step (line 6) turns the area vector obtained in the previous step into an area vector
that represents the impact of a given pattern on the cache sets occupied by the reused
region. These algorithms are different between the BCMP and the WCMP cases, as the
WCMP one promotes that the lines of the pattern are placed in the cache sets occupied
by the reused region, while the BCMP promotes that the lines of the pattern are placed
in different cache sets from those occupied by the reused region.

Finally, the area vectors union algorithm (line 8) is very different in the WCMP and
the BCMP models. Although the targets pursued by both approaches are conceptually
complementary the algorithms used to accomplish them are totally different. For ex-
ample, the BCMP algorithm needs to consider area vectors in groups of two, while the
WCMP approach merges all the area vectors at the same time following a completely
different strategy thoroughly motivated and described in [13].

Example 5.1. Example 3.1 derived the PME that predicts the number of misses gen-
erated by reference b[i][j] in the code in Fig. 4,

FR0(RDinput) = 8 · BMissR(RDinput) + 24 · BMissR(IterR0(1)) + 32 · BMissR(IterR1(1))

23

This best-case PME can be compared to the worst-case PME that would be derived
following the strategy described in [3],

FR0(RDinput) = 12 · BMissR(RDinput) + 40 · BMissR(IterR0(1)) + 12 · BMissR(IterR1(1))

This latter result is very different because it ensures that the reuse distances exper-
imented by each access are smaller or equal than those predicted by the model.

Example 4.2 calculated the impact of two memory regions, Regs(16) and Regs(4),
on the cache described in Example 3.1. The best-case AV associated to the Regs(4)
access pattern is (0.125, 0.875). If the worst-case approach is followed to obtain this
AV, the result is (0.1875, 0.825). In the case of the AV associated to the Regs(16) access
pattern, the best-case AV is (0.5, 0.5), while the worst-case one is (0.5625, 0.4375).
The differences observed are due to the fact that the methods used in the worst-case
maximizes the impact of these access pattern on the cache.

Example 4.4 continued example 4.2 to calculate the best-case overlapping between
the interfering regions whose impact on the cache is represented by these AVs and the
reused region. This process turned the (0.125, 0.875) AV associated to the Regs(4)
access pattern into a (0, 1) AV which represented the impact of this region on the cache
sets occupied by the reused region. It also turned the (0.5, 0.5) AV associated to the
Regs(16) into (0, 1). Following the worst-case approach, however, the (0.1875, 0.825)
is turned into (0.33, 0.67) and (0.5625, 0.4375) becomes (1, 0). The large difference
observed between the results obtained using both strategies, is due to the fact that the
worst-case strategy promotes that the cache lines from the interfering region are placed
in the same cache sets than the reused region.

Example 4.6 shows a step by step example where the best-case union of the AVs
(0.25, 0, 0.5, 0.25) and (0.5, 0.25, 0, 0.25) is performed. The resulting AV is (0.5, 0.5, 0, 0),
which implies a best-case miss rate of 50%. If the worst-case approach described
in [13] is applied the resulting AV is (1, 0, 0, 0), with an associated miss rate of 100%.
The difference between the results obtained using both models is because the worst-
case strategy ensures that the interfering regions fill the maximum number of cache
sets among those where the reused region is placed.

6. Experimental results

We have validated our model using trace-driven simulations. The model is inte-
grated in a compiler framework and provides its predictions always in less than one
second. It was applied automatically to ten codes: the average, sum and difference of
the values stored in two arrays (ST); a 1D stencil calculation (STENCIL); the sum of
all the values in a matrix (CNT); a matrix transposition (TRANS); the calculation of
the first N fibonacci numbers (FIBONACCI) and five codes from the DSPStone bench-
mark suite [14]: convolution, fir, lms, matrix1 (a matrix product) and n real updates.
Pointer-based memory accesses were replaced with equivalent array accesses and func-
tions were inlined. These codes have been gathered from similar works in the bibli-
ography [3, 15, 7, 16] and they include perfectly and non-perfectly nested loops, uni-
formly generated references to the same data structure and references following both
sequential and strided access patterns.

24

System Cs Ls k Hit Miss
MicroSPARC II-ep 8KB 16B 1 1 10
PowerPC 604e 16KB 32B 4 1 38
MIPS R4000 16KB 16B 1 1 40
IDT79RC64574 32KB 32B 2 1 16

Table 2: Characteristics of the caches used in the experiments: Cs cache size, Ls line size, k associativity,
and Hit and Miss are the hit and miss time in cycles, respectively.

The experiments were performed for each code considering a data size of 500 el-
ements per dimension. The complexity of the matrix1 code, and thus its simulation
time, is O(n3), so a smaller number of elements per dimension (200) was used in this
case. Each code was tested using the cache configurations present in a MicroSPARC II-
ep [17], a PowerPC 604e [18], a MIPS R4000 [19] and a IDT79RC64574 [20], which
have been used in [7] too. Table 2 summarizes the main characteristics of these caches,
including the cache hit and miss times.

The purpose of our model is the estimation of a base address-independent WCMP
and BCMP. Thus its validation is based in simulating each code for each cache configu-
ration using all the possible combinations of relative positions with respect to the cache
of its data structures. Our simulation environment facilitates this, as it allows to specify
the base addresses of the data structures and it is highly optimized. The variations in
the cache behavior in the simulations are due exclusively to the changes in the base
addresses of the data structures, since the data-dependent conditionals modeled cannot
modify the cache behavior, as Section 2.1 explains. The number of combinations of rel-
ative cache offsets of the data structures in a code is very large (for example, in a direct
mapped cache of 16 KB, each vector of elements of 4 bytes can present 16 KB/4=4096
different offsets) and it grows exponentially with the number of data structures. Thus
two kinds of validations have been performed. For the codes with up to three data
structures, all the relative address combinations were simulated systematically. For ST
and n real updates, the only codes including more data structures, simulations using
random offset combinations were run for 3200 hours (≈4 and 1/2 months) in a 1.6 GHz
Itanium Montvale processor, since the simulations considering all the possible relative
address combinations are not feasible. These two codes appear in the validation tables
with an asterisk.

Table 3 contains for each code and cache configuration, the average memory perfor-
mance observed along the simulations expressed in cycles, MP, the BCMP estimated
by the model presented in this paper, BCMPmod, and the BCMP observed in the simula-
tions, BCMPsim. The memory performance is calculated as NM×mt+(ACCS −NM)×
ht, NM being the number of misses, ACCS the number of accesses, and ht and mt the
hit cycles and miss cycles of the studied cache, extracted from Table 2. The BCMPmod
value is always smaller than BCMPsim, which supports the validity of the prediction,
while the difference between both values is small which shows the tightness of the
prediction.

Table 4 shows similar statistics to Table 3 but referred to the WCMP prediction. The
MP column is the same, while WCMPmod and WCMPsim reflects the WCMP estimated

25

Code MicroSPARC II-ep PowerPC 604e
MP BCMPmod BCMPsim MP BCMPmod BCMPsim

ST∗ 8256 8125 8125 14155 14044 14044
STENCIL 4286 4250 4259 6699 6625 6662
CNT 812500 812500 812500 1406250 1406250 1406250
TRANS 2045300 1972625 2036129 6151565 5078824 6145312
FIBONACCI 1625 1625 1625 2794 2794 2794
convolution 3276 3250 3250 5689 5625 5662
fir 4276 4250 4259 6689 6625 6662
lms 8244 8125 8125 14386 14044 14229
matrix1 44290990 42220000 43993684 61416512 61410000 61410000
n real updates∗ 6618 6500 6500 11365 11250 11324

Code MIPS R4000 IDT79RC64574
MP BCMPmod BCMPsim MP BCMPmod BCMPsim

ST∗ 27159 26875 26875 7225 7180 7180
STENCIL 11867 11750 11789 3905 3875 3890
CNT 2687500 2687500 2687500 718750 718750 718750
TRANS 6292982 5375000 6266111 1762070 1506875 1754705
FIBONACCI 5375 5375 5375 1430 1430 1430
convolution 10836 10750 10750 2901 2875 2890
fir 11836 11750 11789 3901 3875 3890
lms 27280 26875 26875 7318 7180 7210
matrix1 107316817 102820000 106660135 39195460 39190000 39190000
n real updates∗ 22045 21500 21500 5799 5750 5780

Table 3: MP, BCMPmod and BCMPsim for four different cache configurations.

by the model in [3] and observed in the simulations respectively. The WCMPmod value
is always greater than WCMPsim, which supports the validity of the prediction, while
the difference between both values is small which shows the tightness of the prediction.
Observe that for the TRANS code the predictions of the WCMP are not very tight in
two of the caches. The reason is that the overlapping adjustments applied by the model
consider worst-case overlappings that actually do not take place for these specific data
sizes and cache configurations.

Our model is the only one to our knowledge that can provide safe and tight esti-
mations when the base addresses of the data structures are unknown. As a result, it
is not possible to make a comparison of the estimations of our model with those of
previous works in the bibliography. We will review the most related work in Section 7.
In this situation, the other models can only predict the WCMP/BCMP for one specific
possible combination of the base addresses of the data structures in the cache out of the
millions that are possible. The actual memory performance for a given base-address
combination can be very far from the one obtained with other combinations. This is in-
dicated by the large difference between memory worst/best-case memory performance
in Tables 3 and 4 (BCMPsim and WCMPsim) for some codes. Other codes may not have
shown a high variability between the results of Tables 3 and 4, but the behavior of some
of these codes can vary largely when different problem sizes or cache configurations
are used. For example, Table 5 shows the best-case (BCMPsim), worst-case (WCMPsim)
and average-case (MP) memory performance for the TRANS and matrix1 codes of the

26

Code MicroSPARC II-ep PowerPC 604e
MP WCMPmod WCMPsim MP WCMPmod WCMPsim

ST∗ 8256 25000 25000 14155 95000 95000
STENCIL 4286 12134 12134 6699 6736 6736
CNT 812500 820285 812500 1406250 1434000 1406250
TRANS 2045300 2057000 2054597 6151565 7242769 6156560
FIBONACCI 1625 1634 1625 2794 2868 2794
convolution 3276 10000 10000 5689 5736 5736
fir 4276 12125 12125 6689 6736 6736
lms 8244 25000 25000 14386 14636 14525
matrix1 44290990 46095742 45142507 61416512 62904800 61417474
n real updates∗ 6618 20000 20000 11365 11953 11435

Code MIPS R4000 IDT79RC64574
MP WCMPmod WCMPsim MP WCMPmod WCMPsim

ST∗ 27159 100000 100000 7225 40000 40000
STENCIL 11867 45914 45914 3905 3935 3920
CNT 2687500 2714098 2687500 718750 730000 718750
TRANS 6292982 6350000 6347972 1762070 2076305 1768985
FIBONACCI 5375 5414 5375 1430 1460 1430
convolution 10836 40000 40000 2901 2935 2920
fir 11836 45875 45875 3901 3935 3920
lms 27280 100000 100000 7318 40000 40000
matrix1 107316817 114865150 111699325 39195460 41404540 40318000
n real updates∗ 22045 80000 80000 5799 32000 32000

Table 4: MP, WCMPmod and WCMPsim for four different cache configurations. Results already published
in [3]

Table 5: BCMPsim, WCMPsim and MP of the TRANS and the matrix1 benchmarks for 20 × 20 matrices in
the MicroSPARC II-ep cache

Code BCMPsim WCMPsim MP
TRANS 2600 3158 2663
matrix1 27100 41554 28162

validation working on 20 × 20 matrices in the MicroSPARC II-ep cache. The memory
performance is 21% worse in the WCMP than in the BCMP for TRANS code and a
53% for matrix1. A single execution of our model, which takes less tan one second, can
provide a base-address independent prediction of the WCMP and the BCMP. However,
such a prediction could only be provided by the other models by making the individual
predictions for all the possible base-address combinations.

7. Related work

The simultaneous calculation of the WCET and the BCET in the presence of data
caches has been studied by several authors. Wegener and Mueller [21] presented a
code-based static analysis that uses the control-flow information, the calling structure
and the cache configuration to produce instruction and data categorizations which de-
scribe the cache behavior of each instruction an data reference. The data addresses ac-

27

cessed are calculated using an address calculator. Petters [22] proposed a measurement-
based method that uses information about the memory hierarchy configuration, the
used access modes and the access cycles to calculate the BCET/WCET in an Intel P6
by subtracting/adding a safety margin to the measured values.

However, most works have focused only in the calculation of the WCET in the
presence of data caches. Several of them have used analytical methods to calculate
the WCMP in the presence of caches. The modeling of instruction-caches [23, 24]
has had a lot of success, even recently in multicore systems with shared L2 instruction
caches [25]. There are also many works devoted to the study of data caches. White et
al. [16] bounds, using an static analysis, the worst-case performance of set-associative
instruction caches and direct-mapped data-caches. The analysis of data caches needs
to determine the base addresses of the involved data structures. Relative address infor-
mation is used in conjunction with control-flow information by an address calculator to
obtain this information. The analysis classifies the accesses in one of four categories:
always miss, always hit, first miss and first hit. The validation is performed considering
only one cache configuration.

Lundqvist and Stenström [26] distinguish between data structures that exhibit a pre-
dictable cache behavior, which is automatically and accurately determined, and those
with an unpredictable cache behavior, which bypass the cache. Only memory ref-
erences, whose address reference can be determined statically, are considered to be
predictable. The predictability of a reference is determined considering the storage
type (global, stack or heap) and the access type (scalar, regular, irregular or input data
dependent). Nevertheless, they do not present an experimental results section.

Ramaprasad and Mueller [15] use the cache miss equations (CMEs) [6], which
need the data addresses for their predictions, as a basis for the WCMP estimation.
Non-perfectly nested and non-rectangular loops are covered using loop transforma-
tions like the forced loop fusion which involves the insertion of loop index-dependent
conditionals in the code. Loop index-dependent conditionals are modeled using an ex-
tra analysis stage. The validation shows almost perfect predictions of the WCMP but
only two (direct-mapped) cache configurations are considered.

Vera et al. [7] use also the data address-dependent cache miss equations (CMEs)
to predict the WCMP in a multitasking environment. This work combines the static
analysis, provided by the CMEs, with cache partitioning, for eliminating intertask in-
terferences, and cache locking, to make predictable the cache behavior of those pieces
of code outside the scope of application of the CMEs. Good predictions of the WCMP
are achieved for codes that use the cache locking in order to improve the WCMP pre-
dictability.

More recently, Hahn and Grund [27] introduce the concept of symbolic names to
predict the cache behavior in the absence of the base addresses information by means
of a relational cache analysis. They identify three classes of programs whose worst-
case execution time analysis can take advantage of this approach and they success-
fully validate their technique against the Ferdinand’s analysis using one representative
benchmark per class for small data and cache sizes.

28

8. Conclusions

This paper presents a model to predict a tight lower bound of the cache perfor-
mance whose main novelty is that it is the only one that can be applied without the
base addresses of the data structures; only the cache configuration and the source code
are needed. This model may be used in conjunction with the WCMP model in [3]
to delimit the boundaries of the memory performance in the absence of base address
information. This property is very interesting, since base addresses are sometimes un-
available at compile time, and they can even change between different executions. The
BCMP predictions have been extensively validated using trace driven simulations for
ten codes and four cache configurations that required more than 30000 hours of CPU
time showing that this approach yields tight and safe estimations of the BCMP. The ex-
perimental results show also the estimations of the WCMP which are validated using
trace driven simulations and the same test set.

In the future, we plan to integrate our model in an existing BCET/WCET tool such
as [28]. Finally, we will consider the possibility of using as an optional additional
input the base addresses of the data structures involved in the code, whenever they are
available, in order to provide tighter predictions.

Acknowledgments

This work has been supported by the Galician Government (Xunta de Galicia) un-
der the Consolidation Program of Competitive Reference Groups, cofunded by FEDER
funds of the EU (Ref. GRC2013/055) and project INCITE08PXIB105161PR and the
Ministry of Education and Science of Spain, FEDER funds of the European Union
(Project project TIN2010- 16735). We also want to acknowledge the Centro de Super-
computacion de Galicia (CESGA) for the usage of its computers.

References

[1] R. Wilhelm, et al., The worst-case execution-time problem - overview of methods
and survey of tools, ACM Trans. Embedded Comput. Syst. 7 (3).

[2] K. D. Bosschere, et al., High-performance embedded architecture and compila-
tion roadmap, Trans. on HIPEAC 1 (3) (2006) 5–29.

[3] B. B. Fraguela, D. Andrade, R. Doallo, Address-independent estimation of the
worst-case memory performance, IEEE Transactions on Industrial Informatics
6 (4) (2010) 664 –677.

[4] B. B. Fraguela, R. Doallo, E. L. Zapata, Probabilistic Miss Equations: Evaluating
Memory Hierarchy Performance, IEEE Trans. on Comp. 52 (3) (2003) 321–336.

[5] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 4th Edition, Morgan Kaufmann Publishers, 2006.

29

[6] S. Ghosh, M. Martonosi, S. Malik, Cache Miss Equations: A Compiler Frame-
work for Analyzing and Tuning Memory Behavior, ACM Trans. on Programming
Lang. and Sys. 21 (4) (1999) 703–746.

[7] X. Vera, B. Lisper, J. Xue, Data cache locking for tight timing calculations, ACM
Trans. Embedded Comput. Syst. 7 (1).

[8] J. Xue, X. Vera, Efficient and accurate analytical modeling of whole-program data
cache behavior, IEEE Trans. Comput. 53 (5) (2004) 547–566.

[9] F. Mueller, Compiler support for software-based cache partitioning, in: Proc. of
the ACM SIGPLAN 1995 workshop on Languages, compilers, & tools for real-
time systems, ACM, New York, NY, USA, 1995, pp. 125–133.

[10] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, C. Ferdinand,
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 28 (7) (2009) 966–978.

[11] S. Mohan, F. Mueller, Merging state and preserving timing anomalies in pipelines
of high-end processors, in: Proceedings of the 2008 Real-Time Systems Sympo-
sium, RTSS ’08, IEEE Computer Society, pp. 467–477.

[12] D. Andrade, B. B. Fraguela, R. Doallo, Precise automatable analytical model-
ing of the cache behavior of codes with indirections, ACM Trans. Archit. Code
Optim. 4 (3) (2007) 16.

[13] D. Andrade, B. B. Fraguela, R. Doallo, Static prediction of worst-case data cache
performance in the absence of base address information, in: IEEE Real-Time and
Embedded Technology and Applications Symposium, 2009, pp. 45–54.

[14] Zivojnović, et al., DSPSTONE: A DSP-oriented benchmarking methodology, in:
ICSPAT, 1994.

[15] H. Ramaprasad, F. Mueller, Bounding worst-case data cache behavior by analyt-
ically deriving cache reference patterns, in: IEEE Real-Time & Embedded Tech.
and Applications Symp., 2005, pp. 148–157.

[16] R. White, C. Healy, D. Whalley, F. Mueller, M. Harmon, Timing analysis for data
caches and set-associative caches, in: IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, 1997, pp. 192–202.

[17] S. Microelectronics, microSPARC-IIep User’s Manual, Tech. rep. (1997).

[18] M. Inc, PowerPC 604e RISC Microprocessor Technical Summary, Tech. rep.
(1996).

[19] M. Technologies, MIPS32 4Kp- Embedded, MIPS Processor Core, Tech. rep.
(2001).

[20] I. D. Technologies, 79RC64574/RC64575 Data Sheet, Tech. rep. (2001).

30

[21] J. Wegener, F. Mueller, A comparison of static analysis and evolutionary testing
for the verification of timing constraints, Real-Time Systems 21 (3) (2001) 241–
268.

[22] S. M. Petters, Bounding the execution time of real-time tasks on modern proces-
sors, in: Int. Workshop on Real-Time Comp. and App., 2000, pp. 498–502.

[23] M. Alt, C. Ferdinand, F. Martin, R. Wilhelm, Cache behavior prediction by ab-
stract interpretation, in: SAS ’96: Proceedings of the Third International Sympo-
sium on Static Analysis, Springer-Verlag, London, UK, 1996, pp. 52–66.

[24] C. Healy, et al., Bounding pipeline and instruction cache performance, IEEE
Trans. Computers 48 (1) (1999) 53–70.

[25] J. Yan, W. Zhang, Wcet analysis for multi-core processors with shared l2 in-
struction caches, in: IEEE Real-Time & Embedded Technology and Applications
Symp., Vol. 0, 2008, pp. 80–89.

[26] T. Lundqvist, P. Stenström, A method to improve the estimated worst-case perfor-
mance of data caching, in: Proc. of the 6th International Workshop on Real-Time
Computing and Applications Symposium, 1999, pp. 255–262.

[27] S. Hahn, D. Grund, Relational cache analysis for static timing analysis, in: Real-
Time Systems (ECRTS), 2012 24th Euromicro Conference on, 2012, pp. 102–
111.

[28] J. Engblom, A. Ermedahl, Modeling complex flows for worst-case execution time
analysis, in: IEEE Real-Time Systems Symposium, 2000, pp. 163–174.

Diego Andrade received the M.S. and the Ph.D. degrees in com-
puter science from the University of A Coruna, Spain, in 2002
and 2007, respectively. He is a lecturer in the Department of Elec-
tronics and Systems of the University of A Coruña since 2006.
His research interests focuses in the fields of performance evalu-
ation and prediction, analytical modeling and compiler transfor-
mations.

31

Basilio B. Fraguela received the M.S. and the Ph.D. degrees
in computer science from the University of A Coruna, Spain,
in 1994 and 1999, respectively. He is an associate professor in
the Department of Electronics and Systems of the University of
A Coruna since 2001. His primary research interests are in the
fields of performance evaluation and prediction, analytical mod-
eling, programmability of parallel systems, design of high perfor-
mance processors and memory hierarchies, and compiler trans-
formations.

Ramón Doallo, Ph.D in Physics (Univ. Santiago de Compostela)
is a Full Professor in Computer Architecture and Technology,
and the Head of the Computer Architecture Research Group at
University of A Coruña, Spain. He has 22 years of experience
in research and development in the area of High Performance
Computing (HPC), covering a wide range of topics such as com-
pilers and programming languages for HPC, parallel and dis-
tributed algorithms and applications, management of HPC in-
frastructures, cluster and grid computing, processor architecture,
computer graphics, and distributed Geographic Information Sys-
tems. He has published more than 120 technical papers on these
topics.

32

