
Modeling the Cache Behavior of Codes with

Arbitrary Data-Dependent Conditional

Structures?

Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Universidade da Coruña
Dept. de Electrónica e Sistemas

Facultade de Informática
Campus de Elviña, 15071 A Coruña, Spain

{dcanosa,basilio,doallo}@udc.es

Abstract. Analytical modeling is one of the most interesting approaches
to evaluate the memory hierarchy behavior. Unfortunately, models have
many limitations regarding the structure of the code they can be applied
to, particularly when the path of execution depends on conditions calcu-
lated at run-time that depend on the input or intermediate data. In this
paper we extend in this direction a modular analytical modeling tech-
nique that provides very accurate estimations of the number of misses
produced by codes with regular access patterns and structures while hav-
ing a low computing cost. Namely, we have extended this model in order
to be able to analyze codes with data-dependent conditionals. In a pre-
vious work we studied how to analyze codes with a single and simple
conditional sentence. In this work we introduce and validate a general
and completely systematic strategy that enables the analysis of codes
with any number of conditionals, possibly nested in any arbitrary way,
while allowing the conditionals to depend on any number of items and
atomic conditions.

1 Introduction

Memory hierarchies try to cushion the increasing gap between the processor and
the memory speed. Fast and accurate methods to evaluate the performance of
the memory hierarchies are needed in order to guide the compiler in choosing the
best transformations and parameters for them when trying to make the optimal
usage of this hierarchy. Trace-driven simulation [1] was the preferred approach to
study the memory behavior for many years. This technique is very accurate, but
its high computational cost makes it unsuitable for many applications. This way,
analytical modeling, which requires much shorter computing times than previous
approaches and provides more information about the reasons for the predicted

? This work has been supported in part by the Ministry of Science and Technology
of Spain under contract TIC2001-3694-C02-02, and by the Xunta de Galicia under
contract PGIDIT03-TIC10502PR.



behavior, has gained importance in recent years [2–4]. Still, it has important
drawbacks like the lack of modularity in some models, and the limited set of
codes that they can model.

In this work we present an extension to an existing analytical model that
allows to analyze codes with any kind of conditional sentences. The model was
already improved in [5] to enable it to analyze codes with a reference inside a
simple and single conditional sentence. We now extend it to analyze codes with
any kind and number of conditional sentences, even with references controlled
by several nested conditionals, and nested in any arbitrary way. Like in previous
works, we require the verification of the conditions in the IF statements to follow
an uniform distribution.

This model is built around the idea of the Probabilistic Miss Equations
(PMEs) [2]. These equations estimate analytically the number of misses gen-
erated by a given code in set-associative caches with LRU replacement policy.
The PME model can be applied both to perfectly nested loops and imperfectly
nested loops, with one loop per nesting level. It allows several references per data
structure and loops controlled by other loops. Loop nests with several loops per
level can also be analyzed by this model, although certain conditions need to be
fulfilled in order to obtain accurate estimations. This work is part of an ongoing
research line whose aim is to build a compiler framework [6, 7], which extracts
information from the analytical modeling, in order to optimize the execution of
complete scientific codes.

The rest of the paper is organized as follows. The next section presents some
important concepts to understand the PME model and our extension. Section 3
describes the process of formulation after adapting the previous existing model
to the new structures it has to model. In Sect. 4 we describe the process of
validation of our model, using codes with several conditional sentences. A brief
review of the related work is presented in Sect. 5, followed by our conclusions
and a discussion on the future work in Sect. 6.

2 Introduction to the PME Model

The Probabilistic Miss Equations (PME) model, described in [2], generates ac-
curately and efficiently cache behavior predictions for codes with regular access
patterns. The model classifies misses as either compulsory or interference misses.
The former take place the first time that the lines are accessed, while the lat-
ter are associated to new accesses for which the corresponding cache line has
been evicted since its previous access. The PME model builds an equation for
each reference and nesting level that encloses the reference. This equation esti-
mates the number of misses generated by the reference in that loop taking into
account both kinds of misses. Its probabilistic nature comes from the fact that
interference misses are estimated through the computation of a miss interference
probability for every attempt of reuse of a line.



2.1 Area Vectors

The miss probability when attempting to reuse a line depends on the cache
footprint of the regions accessed since the immediately preceding reference to
the considered line. The PME model represents these footprints by means of
what it calls area vectors. Given a data structure V and a k-way set-associative
cache, SV = SV0

, SV1
, . . . , SVk

is the area vector associated with the access to
V during a given period of the program execution. The i-th element, i > 0, of
this vector represents the ratio of sets that have received k − i lines from the
structure; while SV0

is the ratio of sets that have received k or more lines.

The PME model analyzes the access pattern of the references for each dif-
ferent data structure found in a program and derives the corresponding area
vectors from the parameters that define those access patterns. The two most
common access patterns found in the kind of codes we intend to model are the
sequential access and the access to groups of elements separated by a constant
stride. See [2] for more information about how the model estimates the area
vectors from the access pattern parameters.

Due to the existence of references that take place with a given probability
in codes with data-dependent conditionals, a new kind of access pattern arises
in them that we had not previously analyzed. This pattern can ben described
as an access to groups of consecutive elements separated by a constant stride,
in which every access happens with a given fixed probability. The calculation
of the area vector associated to this new access pattern is not included in this
paper because of size limitations. This pattern will be denoted as Rrl(M, N, P, p),
which represents the access to M groups of N elements separated by a distance
P where every access happens with a given probability p (see example in Sect. 4).

Very often, several data structures are referenced between two accesses to the
same line of a data structure. As a result, a mechanism is needed to calculate
the global area vector that represents as a whole the impact on the cache of
the accesses to several structures. This is achieved by adding the area vectors
associated to the different data structures. The mechanism to add two area
vectors has also been described in [2], so although it is used in the following
sections, we do not explain it here. The addition algorithm treats the different
ratios in the area vectors as independent probabilities, thus disregarding the
relative positions of the data structures in memory. This is in fact an advantage
of the model, as in most situations these addresses are unknown at compile time
(dynamically allocated data structures, physically indexed caches, etc.). This
way, the PME model is still able to generate reasonable predictions in these
cases, as opposed to most of those in the bibliography [3, 4], which require the
base addresses of the data structures in order to generate their estimations. Still,
when such positions are known, the PME model can estimate the overlapping
coefficients of the footprints associated with the accesses to each one of the
structures involved, so they can be used to improve the accuracy of the addition.



DO I0=1, N0, L0
DO I1=1, N1, L1
...

IF cond(D(fD1(ID1), ..., fDdD(IDdD)))

...

DO IZ=1, NZ, LZ
A(fA1(IA1), ..., fAdA(IAdA))

...

IF cond(B(fB1(IB1), ..., fBdB(IBdB)))

C(fC1(IC1), ..., fCdC(ICdC))

...

END IF

...

END DO

...

END IF

...

END DO

END DO

Fig. 1. Nested loops with several data-dependent conditions

2.2 Scope of Application

The original PME model in [2] did not support the modeling of codes with
any kind of conditionals. Figure 1 shows the kind of codes that it can analyze
after applying our extension. The figure shows several nested loops that have a
constant number of iterations known at compile time. Several references, which
need not be in the innermost nesting level, are found in the code. Some references
are affected by one or more nested conditional sentences that depend on the
data arrays. All the structures are indexed using affine functions of the loop
indexes fA1(IA1) = αA1IA1 + δA1. We assume also that the verification of the
conditions in the IF statements follows an uniform distribution, although the
different conditions may hold with different probabilities. Such probabilities are
inputs to our model that are obtained either by means of profiling tools, or
knowledge of the behavior of the application. We assume also the conditions are
independent.

As for the hardware, the PME model is oriented to set-associative caches
with LRU replacement policy. In what follows, we will refer to the total size of
this cache as Cs, to the line size as Ls, and k will be the degree of associativity
or number of lines per set.

3 Miss Equations

The PME model estimates the number of misses generated by a code using the
concept of miss equation. Given a reference, the analysis of its behavior begins



in the innermost loop containing it, and proceeds outwards. In this analysis, a
probabilistic miss equation is generated for each reference and in each nesting
level that encloses it following a series of rules.

We will refer as Fi(R, RegInput, ~p) to the miss equation for reference R in
nesting level i. Its expression depends on RegInput, the region accessed since the
last access to a given line of the data structure. Since we now consider the exis-
tence of conditional sentences, the original PME parameters have been extended
with a new one, ~p. This vector contains in position j the probability pj that the
(possible) conditionals that guard the execution of the reference R in nesting
level j are verified. If no conditionals are found in level j, then pj = 1. When
there are several nested IF statements in the same nesting level, pj corresponds
to the product of their respective probabilities of holding their respective con-
ditions. This is a first improvement with respect to our previous approach [5],
which used a scalar because only a single conditional was considered.

Depending on the situation, two different kinds of formulas can be applied:

– If the variable associated to the current loop i does not index any of the
references found in the condition(s) of the conditional(s) sentence(s), then
we apply a formula from the group of formulas called Condition Independent

Reference Formulas (CIRF). This is the kind of PME described in [2].
– If the loop variable indexes any of such references, then we apply a formula

from the group called Condition Dependent Reference Formulas (CDRF).

Another factor influencing the construction of a PME is the existence of other
references to same data structure, as they may carry some kind of group reuse.
For simplicity, in what follows we will restrict our explanation to references that
carry no reuse with other references.

3.1 Condition Independent Reference Formulas

When the index variable for the current loop i is not among those used in the
indexing of the variables referenced in the conditional statements that enclose
the reference R, the PME for this reference and nesting level is given by

Fi(R, RegInput, ~p) =LRiFi+1(R, RegInput, ~p)

+ (Ni − LRi)Fi+1(R, Reg(A, i, 1), ~p) ,
(1)

being Ni the number of iterations in the loop of the nesting level i, and LRi the
number of iterations in which there is no possible reuse for the lines referenced
by R. Reg(A, i, j) stands for the memory region accessed during j iterations of
the loop in the nesting level i that can interfere with data structure A.

The formula calculates the number of misses for a given reference R in nesting
level i, as the sum of two values. The first one is the number of misses produced
by the LRi iterations in which there can be no reuse in this loop. The miss
probability for these iterations depends on the accesses and reference pattern in
the outer loops. The second value corresponds to the iterations in which there



can be reuse of cache lines accessed in the previous iteration, and so it depends
on the memory regions accesses during one iteration of the loop.

The indexes of the reference R are affine functions of the variables of the loops
that enclose it. As a result, R has a constant stride SRi along the iterations of
loop i. This value is calculated as SRi = αAj

dAj
, where j is the dimension whose

index depends on Ii, the variable of the loop; αAj
is the scalar that multiplies

the loop variable in the affine function, and dAj
is the size of the j-th dimension.

If Ii does not index reference R, then SRi = 0. This way, LRi can be calculated
as,

LRi = 1 +

⌊

Ni − 1

max{Ls/SRi, 1}

⌋

, (2)

The formula calculates the number of accesses of R that cannot exploit either
spatial or temporal locality, which is equivalent to estimating the number of
different lines that are accessed during Ni iterations with stride SRi.

3.2 Condition Dependent Reference Formulas

If the index variable for the curret loop i is used in the indexes of the arrays used
in the conditions that control the reference R, the behavior of R with respect
to this loop is irregular. The reason is that different values of the index access
different pieces of data to test in the conditions. This way, in some iterations
the conditions hold and R is executed, thus affecting the cache, while in other
iterations the associated conditions do not hold and no access of R takes place.
As a result, the reuse distance for the accesses of R is no longer fixed: it depends
on the probabilities ~p that the conditions that control the execution of R are
verified. If the probabilities the different conditions hold are known, the number
of misses associated to the different reuse distances can be weighted using the
probability each reuse distante takes place.

As we have just seen, eq. (2) estimates the number LRi of iterations of the
loop in level i in which reference R cannot explote reuse. Since the loop has
Ni iterations, this means on average each different line can be reused in up to
GRi = Ni/LRi consecutive iterations. Besides, either directly reference R or the
loop in level i + 1 that contains it can be inside a conditional in level i that
holds with probability pi. Thus, piLRi different groups of lines will be accessed
on average, and each one of them can be reused up to GRi times. Taking this
into account, the general form of a condition-dependent PME is

Fi(R, RegInput, ~p) = piLRi

GRi
∑

j=1

WMRi(R, RegInput, j, ~p) . (3)

where WMRi(RegInput, j, ~p) is the weighted number of misses generated by
reference R in level i considering the j-th attempt of reuse of the GRi ones
potentially possible. As in Sect. 3.1, RegInput is the region accessed since the
last access to a given line of the considered data structure when the execution



of the loop begins. Notice that if no condition encloses R or the loop around it
in this level, simply pi = 1.

The number of misses associated to reuse distance j weigthed with the prob-
ability an access with such reuse distante does take place, is calculated as

WMRi(RegInput, j, ~p) =(1 − Pi(R, ~p))j−1Fi+1(R, RegInput ∪ Reg(A, i, j − 1), ~p)+

j−1
∑

k=1

Pi(R, ~p)(1 − Pi(R, ~p))k−1Fi+1(R, Reg(A, i, k − 1), ~p) ,

(4)

where Pi(R, ~p) yields the probability that R accesses each of the lines it can
potentially reference during one iteration of the loop in nesting level i. This
probability is a function of those conditionals in ~p in or below the nesting level
analyzed. The first term in (4) considers the case that the line has not been
accessed during any of the previous j − 1 iterations. In this case, the RegInput
region that could generate interference with the new access to the line when the
execution of the loop begins must be added to the regions accessed during these
j−1 previous iterations of the loop in order to estimate the complete interference
region. The second term weights the probability that the last access took place
in each of the k = 1, . . . , j − 1 previous iterations of the considered loop.

Line Access Probability The probability Pi(R, ~p) that the reference R whose
behavior is being analyzed does access one of the lines that belong to the region
that it can potentially access during one iteration of loop i is a basic parameter
to derive WMRi(RegInput, j, ~p), as we have just seen. This probability depends
not only on the access pattern of the reference in this nesting level, but also in
the inner ones, so its calculation takes into account all the loops from the i-th
down to the one containing the reference. If fact, this probability is calculated
recursively in the following way:

Pi(R, ~p) =































pi if i is the innermost loop
that contains R

piPi+1(R, ~p) if the index of loop i + 1 is
not used in the references
in conditions that control R

pi(1 − (1 − Pi+1(R, ~p))GRi+1 ) otherwise

(5)

where we must remember that pi is the product of all the probabilities associated
to the conditional sentences affecting R that are located in nesting level i.

This algorithm to estimate the probability of access per line at level i has
been improved with respect to our previous work [5], as it is now able to integrate
different conditions found in different nesting levels, while the previous one only
considered a single condition.



posB=1

DO I=1,N

offB(I)=posB

DO J=1,M

IF A(I,J).NEQ.0

B(posB)=A(I,J)

jB(posB)=J

posB=posB+1

ENDIF

ENDDO

ENDDO

Fig. 2. CRS Storage Algorithm

DO I=1,M

DO K=1,N

IF A(I,K).NEQ.0

DO J=1,P

IF B(K,J).NEQ.0

C(I,J)=C(I,J)+A(I,K)*B(K,J)

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

Fig. 3. Optimized product of matrices

3.3 Calculation of the Number of Misses

In the innermost level that contains the reference R, both in CIRFs and CDRFs,
Fi+1(R, RegInput, ~p), the number of misses caused by the reference in the imme-
diately inner level is AV0(RegInput), this is, the first element in the area vector
associated to the region RegInput.

The number of misses generated by reference R in the analyzed nest is finally
estimated as F0(R, RegInputtotal, ~p) once the PME for the outermost loop is
generated. In this expression, RegInputtotal is the total region, this is, the region
that covers the whole cache. The miss probability associated with this region is
one.

4 Model Validation

We have validated our model by applying it manually to the two quite simple but
representative codes shown in Fig. 2 and Fig. 3. The first code implements the
storage of a matrix in CRS format (Compressed Row Storage), which is widely
used in the storage of sparse matrices. It has two nested loops and a conditional



sentence that affects three of the references. The second code is an optimized
product of matrices; that consists of a nest of loops that contain references inside
several nested conditional sentences.

Results for both codes will be shown in Sect. 4.2, but we will first focus on the
second code in order to provide a detailed idea about the modeling procedure.

4.1 Optimized Product Modeling

This code is shown in Fig. 3. It implements the product between two matrix, A
and B, with a uniform distribution of nonzero entries. As a first optimization,
when the element of A to be used in the current product is 0, then all its products
with the corresponding elements of B are not performed. As a final optimization,
if the element of B to be used in the current product is 0 then that operation
is not performed. This avoids two floating point operations and the load and
storage of C(I,J).

Without loss of generality, we assume a compiler that maps scalar variables
to registers and which tries to reuse the memory values recently read in processor
registers. Under these conditions, the code in Fig. 3 contains three references to
memory. The model in [2] can estimate the behavior of the references A(I,K),
which take place in every iteration of their enclosing loops.

Thus, we will focus our explanation on the modeling of the behavior of the
references C(I,J) and B(K,J) which are not covered in previous publications.

C(I,J) Modeling The analysis begins in the innermost loop, in level 2. In this
level the loop variable indexes one of the reference of one of the conditions, so
the CDRF formula must be applied.

As SR2 = P , LR2 = 1 + N , GR2 ' 1 and p2 is the component in vector
~p associated to the probability that the condition inside the loop in nesting
level 2 holds. This loop is in the innermost level. Thus, F3(R, RegInput, ~p) =
AV0(RegInput), then after the simplification the formulation is,

F2(R, RegInput, ~p) = p2PAV0(RegInput) . (6)

In the next upper level, level 1, the loop variable indexes one reference of one
of the conditions, so the CDRF formula has to be applied. Let SR1 = 0, LR1 = 1
and GR1 ' N , then

F1(R, RegInput, ~p) = p1

N
∑

j=1

WMR1(R, RegInput, j, ~p) . (7)

In order to compute WMR1 we need to calculate the value for two functions.
One is P1(R, ~p), which for our reference takes the value p1p2, where pi is the i-th
element in vector ~p. The other one is Reg(C, 1, i), the region accessed during i
iterations of the loop 1 that can interfere with the accesses to C.



Reg(C, 1, i) =Rrlauto
(P, 1, M, 1 − (1 − p1p2)

i)

∪ Rr(i, 1, M) ∪ Rrl(P, i, N, p1) .
(8)

The first term is associated to the autointerference of C, which is the access
to P groups of one element separated by a difference M and every access takes
places with a given probability. The second term represents the access to i groups
of 1 element separated by a distance M . The last element represents the access
to P groups of i elements separated by a distance N . Every access is going to
happen with a given probability p1.

In the outermost level, the loop variable indexes the reference of the con-
dition. As a result, the CDRF formula is to be applied again. Being SR0 = 1,
LR0 = 1 + b(N − 1)/Lsc and GR0 ' Ls, so the formulation is

F0(R, RegInput, ~p) = (1 + b(N − 1)/Lsc)

Ls
∑

j=1

WMR0(R, RegInput, j, ~p) . (9)

As before, two functions must be evaluated to compute WMR0. They are
P0(R, ~p) = 1 − (1 − p1p2)

N and Reg(C, 0, i), given by

Reg(C, 0, i) =Rrlauto
(P, 1, M, 1 − (1 − p1p2)

N )

∪ Rr(N, i, M) ∪ Rl(PN, 1 − (1 − p1)
Ls) .

(10)

The first term is associated to the autointerference of C, which is the access
to P groups of one element separated by a difference M and every access takes
places with a given probability. The second term represents the access to N
groups of i elements separated by a distance M . The last element represents the
access to PN consecutive elements with a given probability.

B(K,J) Modeling The innermost loop for this reference is also the one in level
2. The variable that controls this loop, J, is found in the indexes of a reference
found in the condition of an IF statements (in this case, the innermost one),
one conditional, so a CDRF is to be built. As this is the innermost loop, we get
F3(R, RegInput, ~p) = AV0RegInput. Since SRi

= N , LRi
= P and GRi

= 1 the
formulation for this nesting level is

F2(R, S(RegInput), ~p) = PAV0(RegInput) . (11)

The next level is level 1. In this level the variable of the loops indexes any
of the reference of any of the conditional, so we have to use the CDRF formula.
Being SR1 = 1, LR1 = 1 + b(N − 1)/Lsc and GR1 ' Ls the formulation is

F1(R, RegInput, ~p) = p1

(

1 +

⌊

N − 1

Ls

⌋) Ls
∑

j=1

WMR1(R, RegInput, j, ~p) . (12)



Table 1. Validation data for the code in Fig. 2 for several cache configurations and
different problem sizes and condition probabilities

M N p Cs Ls K ∆MR Tsim Texe Tmod

6200 10150 0.4 32K 8 4 0.001 82 19 0.001

4200 17150 0.1 4K 4 2 0.401 107 18 0.001

16220 7200 0.2 16K 4 2 2.635 152 24 0.044

6200 14250 0.3 32K 8 4 0.005 146 22 0.001

9200 14250 0.1 4K 4 8 2.374 582 50 0.001

1100 15550 0.5 4K 4 8 0.027 2 1 0.001

2900 17250 0.3 32K 16 4 1.847 65 32 0.001

8900 9250 0.1 64K 8 4 3.055 118 46 0.010

4200 12150 0.1 4K 4 2 0.571 64 33 0.001

5000 15000 0.3 32K 8 4 0.183 125 54 0.001

7200 12250 0.1 4K 4 8 0.044 139 64 0.010

We need to know P1(R, ~p) = p1 and the value of the accessed regions
Reg(B, 1, i) in order to compute WMR1:

Reg(B, 1, i) = Rrlauto(P, i, N, p1]) ∪ Rr(i, 1, M) ∪ Rrl(P, 1, M, p1p2) . (13)

The first term is associated to the autointerference of B, which is the access to
P groups of i elements separated by a difference N and every access takes places
with a given probability. The second term represents the access to i groups of
one element separated by a distance M . The last element represents the access
to P groups of one element separated by a distance M , every access takes places
with a given probability p1p2.

In the outermost level, the level 0, the variable of the loop indexes a reference
in one of the conditions, so we have to apply again the CDRF formula. Being
SR0 = 0, LR0 = 1, GR0 ' M , so the formulation is

F0(R, RegInput, ~p) =

M
∑

j=1

WMR0(R, RegInput, j, ~p) . (14)

In this loop, WMR0 is a function of P0(R, ~p = 1 − (1 − p1)
Ls and the value

of the accessed regions Reg(B, 0, i):

Reg(B, 0, i) =Rlauto
(PN, 1 − (1 − p1)

Ls) ∪ Rr(N, i, M)

∪ Rrl(P, i, M, 1 − (1 − p1p2)
N ) .

(15)

The first term is associated to the autointerference of B, which is the access to
PN elements with a given probability. The second term represents the access to
N groups of i elements separated by a distance M . The last element represents
the access to P groups of i elements separated by a distance M , every access
takes places with a given probability.



Table 2. Validation data for the code in Fig. 3 for several cache configurations and
different problem sizes and condition probabilities

M N P p1 p2 Cs Ls K ∆MR Tsim Texe Tmod

750 750 1000 0.2 0.1 16K 8 8 0.808 35 17 0.075

750 750 1000 0.8 0.3 8K 16 16 5.081 164 62 0.053

900 850 900 0.8 0.1 16K 32 2 0.224 78 54 0.795

900 850 900 0.9 0.1 64K 8 8 0.589 136 66 0.523

900 950 1500 0.8 0.3 16K 4 2 2.411 236 159 0.110

900 950 1500 0.1 0.4 32K 8 4 5.408 51 38 0.357

1000 850 900 0.7 0.5 4K 8 2 4.394 98 97 0.054

200 250 150 0.8 0.2 16K 4 2 0.604 1 0 0.690

200 250 150 0.1 0.3 32K 8 4 2.161 0 0 0.145

200 250 150 0.3 0.1 4K 4 8 1.208 0 0 0.008

100 350 90 0.8 0.5 4K 4 8 0.070 0 1 0.042

100 350 90 0.4 0.4 8K 8 4 0.417 0 0 0.324

100 350 90 0.2 0.3 4K 8 2 0.744 0 0 0.218

4.2 Validation Results

We have done the validation by comparing the results of the predictions given
by the model with the results of a trace-driven simulation. We have tried sev-
eral cache configurations, problem sizes and probabilities for the conditional
sentences.

Tables 1 and 2 display the validation results for the codes in Fig. 2 and 3,
respectively. In Table 1 the two first columns contain the problem size and the
third column stands for the probability p that the condition in the code is ful-
filled. In Table 2 the first three columns contain the problem size, while the next
two columns contain the probabilities p1 and p2 that each of of the two condi-
tions in Fig. 3 is fulfilled. Then the cache configuration is given in both tables by
Cs, the cache size, Ls, the line size, and the degree of associativity of the cache,
K. The sizes are measured in the number of elements of the arrays used in the
codes. The accuracy of the model is used by the metric ∆MR, which is based on
the miss rate (MR); it stands for the absolute value of the difference between
the predicted and the measured miss rate.

For every combination of cache configuration, problem size and probabilities
of the conditions, 25 different simulations have been made using different base
addresses for the data structures.

The results show that the model provides a good estimation of the cache
behavior in the two example codes. The last three columns in both tables reflect
the corresponding simulation times, source code execution time and modeling
times expressed in seconds and measured in a 2,08 Ghz AMD K7 processor-
based system. We can see that the modeling times are much smaller than the
trace-driven simulation and even execution times. Furthermore, modeling times
are several orders of magnitude shorter than trace-driven simulation and even
execution times. The modeling time does not include the time required to build



the formulas for the example codes. This will be made automatically by the tool
we are currently developing. According to our experience in [2], the overhead of
such tool is negligible.

5 Related Work

Over the years, several analytical models have been proposed to study the be-
havior of caches. Probably the most well-known model of this kind is [8], based
on the Cache Miss Equations (CMEs), which are lineal systems of Diophantine
equations. Its main drawbacks are its high computational cost and that it is re-
stricted to analyzing regular access patterns that take place in isolated perfectly
nested loops. In the past few years, some models that can overcome some of these
limitations have arisen. This is the case of the accurate model based on Pres-
burger formulas introduced in [3], which can analyze codes with non-perfectly
nested loops and consider reuses between loops in different nesting levels. Still,
it can only model small levels of associativity and it has a extremely high com-
putational cost. More recently [4], which is based on [8], can also analyze these
kinds of codes in competitive times thanks to the statistical techniques it applies
in the resolution of the CMEs.

A more recent work [9], can model codes with conditional statements. Still,
it does not consider conditions on the input or intermediate data computed by
the programs. It is restricted to conditional sentences whose conditions refer to
the variables that index the loops.

All these models and others in the bibliography have fundamental differences
with ours. One of the most important ones is that all of them require a knowledge
about the base address of the data structures. In practice this is not possible or
useful in many situations because of a wide variety of reasons: data structures
allocated at run-time, physically-indexed caches, etc. Also, thanks to the general
strategy described in this paper, the PME model becomes the first one to be
able to model codes with data-dependent conditionals.

6 Conclusions and Future Work

In this work we have presented an extension to the PME model described in [2].
The extension allows this model to be the first one that can analyze codes with
data-dependent conditionals and considering, not only simple conditional sen-
tences but also nested conditionals affecting a given reference. We are currently
limited by the fact that the conditions must follow an uniform distribution, but
we think our research is an important step in the direction of broadening the
scope of applicability of analytical models. Our validation shows that this model
provides accurate estimations of the number of misses generated by a given code
while requiring quite short computing times. In fact the model is typically two
orders of maginute faster than the native execution of the code.

The properties of this model turn it into an ideal tool to guide the opti-
mization process in a production compiler. In fact, the original PME model has



been used to guide the optimization process in a compiler framework [7]. We
are now working in an automatic implementation of the extension of the model
described in this paper in order to integrate it in that framework. As for the
scope of the program structures that we wish to be amenable to analysis using
the PME model, our next step will be to consider codes with irregular accesses
due to the use of indirections or pointers.

References

1. Uhlig, R., Mudge, T.: Trace-Driven Memory Simulation: A Survey. ACM Comput-
ing Surveys 29 (1997) 128–170

2. Fraguela, B.B., Doallo, R., Zapata, E.L.: Probabilistic Miss Equations: Evaluating
Memory Hierarchy Performance. IEEE Transactions on Computers 52 (2003) 321–
336

3. Chatterjee, S., Parker, E., Hanlon, P., Lebeck, A.: Exact Analysis of the Cache
Behavior of Nested Loops. In: Proc. of the ACM SIGPLAN’01 Conference on
Programming Language Design and Implementation (PLDI’01). (2001) 286–297

4. Vera, X., Xue, J.: Let’s Study Whole-Program Behaviour Analytically. In: Proc. of
the 8th Int’l Symposium on High-Performance Computer Architecture (HPCA8).
(2002) 175–186

5. Andrade, D., Fraguela, B., Doallo, R.: Cache behavior modeling of codes with data-
dependent conditionals. In Springer-Verlag, ed.: 7th Intl. Workshop on Software and
Compilers for Embedded Systems, SCOPES 2003. Volume 2826 of Lecture Note in
Computer Science. (2003) 373–387

6. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T., Lee,
J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel Program-
ming with Polaris. IEEE Computer 29 (1996) 78–82

7. Fraguela, B.B., Touriño, J., Doallo, R., Zapata, E.L.: A compiler tool to predict
memory hierarchy performance of scientific codes. Parallel Computing 30 (2004)
225–248

8. Ghosh, S., Martonosi, M., Malik, S.: Cache Miss Equations: A Compiler Framework
for Analyzing and Tuning Memory Behavior. ACM Transactions on Programming
Languages and Systems 21 (1999) 702–745

9. Vera, X., Xue, J.: Efficient Compile-Time Analysis of Cache Behaviour for Programs
with IF Statements. In: 5th International Conference on Algorthms and Archiectures
for Parallel Processing. (2002) 396–407


