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Preface

The general subject of this thesis is the parallelization of algorithms for sparse
matrices, that is, matrices with many zero entries.

To be more specific, we present in this work techniques for parallelizing sparse
algorithms, following four different (but interconnected) approaches that depend
on the programming efforts of the user. Thus, we first analyze parallelization
techniques completely carried out by the programmer; in a second stage, the
programmer is assisted by a library of routines to make the development of pa-
rallel sparse algorithms easier. Regarding the third approach, the user reduces
programming efforts, in a data-parallel programming context, using compiler di-
rectives to aid the compiler in generating efficient parallel code (semi-automatic
parallelization). Finally, we point out some ideas about fully automatic para-
llelization techniques for sparse codes.

As a unifying example of all these different approaches, we have focused on
sparse QR factorization algorithms, although the ideas presented in this disser-
tation may be applied, without losing generality, to a wide variety of sparse
algorithms.

The thesis is composed of two parts. In the first part (Chapters 1-4) we discuss
the manual parallelization of sparse QR algorithms, paying special attention to
sparse data structures and distributions. The second part (Chapters 5-7) takes
advantage of the user parallelization experiences obtained in the first part and
tries to incorporate those techniques into a parallel library and into a parallel
compiler, with the purpose of releasing the user from annoying parallelization
tasks.

The first chapter is a brief description of the context of the thesis, including
multiprocessor architectures and their corresponding programming environments.

Chapter 2 introduces QR factorization algorithms: Modified Gram-Schmidt,
Householder reflections and Givens rotations, with application to least squares
problems. Data storage structures for the sparse versions of these algorithms and
a strategy to reduce the fill-in during the factorizations are also described.

Chapter 3 discusses the techniques used to parallelize the factorizations des-
cribed in Chapter 2 and shows data distribution schemes suitable for sparse al-
gorithms.

Chapter 4 presents an experimental evaluation on the target machines (dis-

xvii
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tributed memory multiprocessors) of the parallel algorithms described in Chap-
ter 3, focusing on execution times, efficiencies, numerical accuracies and fill-in
results. Experiments on a vector processor were also included.

Chapter 5 details the routines of the parallel library we named LM, whose
aim is to facilitate the programming of parallel sparse algorithms, specially fac-
torizations with pivoting operations and fill-in. This chapter begins the second
part of the thesis and may be considered as a transitional and linking chapter
between the two parts of the dissertation.

Chapter 6 proposes the extension of the syntax of a data-parallel language
(High Performance Fortran) to incorporate data structures and distributions sui-
table for sparse matrix computations.

Chapter 7 covers all the compiler and run-time technical features necessary to
support the data-parallel extensions proposed in Chapter 6. The good behaviour
of these language extensions to generate efficient parallel code is justified experi-
mentally. A brief overview about automatic parallelization of sparse codes is also
included.

The results of this research work have been published in [7] [28] [29] [30] [31]
[37] [94] [95] [97] and [98] (spanish conferences and technical reports were not
included).
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Chapter 1

Introduction

1.1 Scope and Motivation

Supercomputing has become an essential tool for scientific and industrial research.
The application of high-performance computing for numerically intensive pro-
blems brings several new issues that do not appear in standard computing. The
process of mapping or transforming abstract problems into concrete solutions
that execute rapidly on high-performance computers is a difficult task. New
algorithms, programming tools and compilers are required to effectively exploit
the power of supercomputers.

Among the great variety of mathematical areas suitable for high-performance
computing, linear algebra is an area of considerable interest because it is the
computational core of many computational scientific and engineering problems;
for instance, several applications require solving large systems of linear equations.
As the scope of linear algebra is very broad, this thesis focuses on parallelization
techniques for matrix factorization algorithms and, more specifically, for the QR
factorization (with application to linear least squares problems), although many
of the fundamental ideas expressed in the dissertation can be applied to other
kinds of problems.

Many codes for dense factorizations on parallel computers have been pro-
posed and analyzed. But sparse factorizations occur in a variety of applications.
Therefore, our scope is even more specific: we consider that the matrix to be
factorized has many null entries, which requires a special treatment, as well as
specific parallelization techniques. This way, significant gains in execution time
and memory usage, sometimes decisive for the possibility of solving large pro-
blems, can be made.

In order to delimit the context of the thesis, in this introductory chapter we
describe, without getting bogged down in details, current multiprocessor archi-
tectures, as well as the programming models for writing parallel codes in these
machines. An overview of linear algebra libraries for dense and sparse computa-
tions is also provided.
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1.2 Multiprocessor Architectures

The increasing demand of memory and CPU resources by computational appli-
cations has caused the development of faster architectures for high-performance
computing.

The technological advances in processor design has led to the exploitation
of instruction-level parallelism, which reduces the mean number of clock cycles
to execute an instruction or that execute several instructions in parallel, using
several independent functional units. Examples of this kind of parallelism are
the superscalar and VLIW (Very Long Instruction Word) architectures. The
performance of this kind of processors is strongly influenced by the ability of the
compiler to restructure the machine code to maximize the number of functional
units working in parallel. However, the increase in the performance of a processor
due to instruction-level parallelism is limited; for instance, nowadays a processor
architecture that executes eight or more instructions in parallel is not profitable.
Besides, the real performance is very far from the theoretical one due to the
characteristics of the codes and the use of inefficient compilers.

Another approach is to exploit a coarser grain parallelism. This fact justi-
fies the relevance of multiprocessors, computers with a set of processors which
work together on the solution of complex computational problems (mainly Grand
Challenge scientific applications). When they are made up of a large number of
processors, the denomination of MPP (Massively Parallel Processor) systems is
employed.

Detailed and updated information about multiprocessors can be found in the
following recent computer architecture bibliography: [27][54, Chapter 8][64] and
[89].

Basically, multiprocessors can be classified into two main groups:

e Shared memory multiprocessors. In this model, there is a global memory and
all the processors can have direct access to all the memory positions (global
address space); consequently, the programming model of these machines is
not complex. Data written in memory by one processor are accessible by
any other processor; therefore, the communication among processors takes
place through the global memory. The main drawback of this architecture
is the lack of scalability because the common memory only supports the
connection of a reduced number of processors. Examples of shared memory
machines are the SGI Power Challenge, Cray Y-MP, Cray C-90.

e Distributed memory multiprocessors. 'The processors have local memo-
ries and the communication and synchronization operations are performed
through message-passing routines. Therefore, the access to non-local data is
highly penalized compared to a local access. These machines are more diffi-
cult to program than the shared memory computers, but in contrast they
present a good scalability. Well-known examples of this kind of supercom-
puters are the IBM SP2, CM-5 (Connection Machine), Fujitsu AP1000/3000,
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Intel Paragon.

The current trend in multiprocessors leads to an architectural concurrence
which tries to join the advantages of both models: scalability and ease of pro-
gramming. As a result, we have the so-called distributed-shared memory architec-
tures, in which the memory is physically distributed (distributed memory), but
there is a software or a software/hardware support that allows a global address
space (shared memory) and, in some cases, cache coherence management. That
is, they are distributed memory machines, but they can virtually be programmed
as shared memory machines, in a transparent way for users.

The distributed-shared memory supercomputers can be classified into two
groups:

e NUMA (Non-Uniform Memory Access) machines or multiprocessors with a
static physical address space. We find different architectures in this group
depending on the cache coherence mechanism:

— Without cache coherence: for instance, the Cray T3D.
— With partial cache coherence: Cray T3E.

— With cache coherence (CC-NUMA, Cache Coherent NUMA): SGI Ori-
gin 2000.

e COMA (Cache Only Memory Access) machines or supercomputers with a
dynamic physical address space, where the local memories are converted
into caches. This is a particular case of a NUMA architecture in which
there is no memory hierarchy in each processor. An example is the KSR-1
(Kendall Square Research).

As can be observed, we have used the term multiprocessor only for MIMD
(Multiple Instruction Multiple Data) architectures, where the processors can
execute programs independently. We have not considered SIMD (Single Instruc-
tion Multiple Data) supercomputers, also known as array processors, in which
each instruction is executed, in a synchronous way, on all the processors. Exam-
ples of SIMD machines are the CM-2 (Connection Machine) and the MasPar
MP-2.

A network of computers can be considered a distributed memory multipro-
cessor and it represents a cheap and attractive alternative for those research
groups that cannot have access to supercomputers. This cluster can also be
used to debug parallel programs (programmed using portable message-passing
libraries) before porting them to a supercomputer.

The Fujitsu AP1000, Cray T3D and Cray T3E multiprocessors and a cluster
of workstations were the target machines used in our experiments, as will be
shown in Chapters 4, 5 and 7.
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1.3 Multiprocessor Programming Environments

A multiprocessor is programmed in order to exploit parallelism, dividing the
problem into the available processors. The parallelism can be obtained at several
levels according to the granularity:

e [Instruction-level (fine grain), as we mentioned in the previous section, for
the superscalar and VLIW processors (obviously, this kind of parallelism is
at the microprocessor level).

e Loop-level (medium grain), in which the iteration space of the program
loops without dependences is distributed among the different processors.
Numerical applications are good candidates for exploiting loop-level pa-
rallelism.

e Tuask-level (coarse grain), which can be applied when there are semi-inde-
pendent tasks that can be executed simultaneosly on several processors.
The simplicity of this model is very adequate for operating systems, such
as Solaris, Windows NT or OS/2, to exploit this kind of parallelism on a
shared memory machine with few processors. The communications among
these tasks or threads (multithread model) takes place through the shared
Iemory.

In this thesis, we well focus on the second kind: the extraction of loop-level
parallelism in our algorithms. In order to achieve this goal, we will describe in the
next subsections the three programming paradigms, in descending order of pro-
gramming difficulty and flexibility, we have used to program our target machines:
message-passing programming model, data-parallel paradigm and automatic pa-
rallelizing compilers.

Although in an MIMD environment each processor could have a different
program running, we have used for all our algorithms the SPMD (Single Program
Multiple Data) programming paradigm. Under this model each processor runs
the same program but executes different code depending on its processor identifier
and the data held in its local memory. It is, basically, an SIMD style on an MIMD
computer.

1.3.1 Message-Passing Programming Model

The message-passing environment provides the primary mechanism for program-
ming multiprocessor applications, tipically MIMD distributed memory multipro-
cessors and networks of computers (even heterogeneous systems, composed of
different processor architectures).

Message-passing provides read/write access for each processor to the local
memory of all the other processors (no other access is allowed) and synchroniza-
tion of processes. The main advantage is the high flexibility and the absolute
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control of the program, although it also represents the main drawback because
the user is responsible for data and computation distribution on the processors,
communications, synchronizations and program optimizations (for instance, to
minimize communications by exploiting data locality using the owner-computes
paradigm, in which all computations updating a given datum are performed by
the processor owning that datum). Therefore, this programming model has a
high cost of development and debugging; to make a comparison, writing messa-
ge-passing codes in a multiprocessor can be compared with the assembly pro-
gramming of a monoprocessor.

Initially, message-passing libraries were only machine specific and, therefore,
incompatible. Examples of these libraries are CROS (Crystalline Operating Sys-
tem) of the Caltech Hypercube; NX1/NX2, to program the Intel iPSC family;
PSE (Parallel Software Environment), a set of communication primitives of the
nCUBE; EUI (External User Interface), the message-passing system for the IBM
SP MPP computer series; Thinking Machines CMMD, for the CM-5, etc., as
well as the native communication calls of the Fujitsu AP1000 [38], which were
used to program our algorithms (see Section 4.1). We have also employed the
SHMEM [11] native low-level libraries of the Cray T3D/T3E in the experimental
results obtained in Section 7.3.

As the services provided by the message-passing libraries are basically the
same, several groups (usually vendor independent) have tried to overcome the
machine specificity of the message-passing libraries by developing portable messa-
ge-passing environments. Examples of such efforts are the portable libraries EX-
PRESS, PARMACS, Zipcode and mainly PVM (Parallel Virtual Machine) [40]
and MPI (Message Passing Interface) [71], which are the two portable message-
passing libraries we have used in our codes (PVM codes in Sections 4.1, 5.1 and
7.4 and an MPI implementation in 7.3).

PVM and MPI are composed of the C or Fortran 77 uniprocessor programming
languages, along with message-passing routines. MPI is prevailing as message-
passing standard, defined by the MPI Forum, a committee composed of ven-
dors, universities and research laboratories in the field of parallel computing.
MPI intends to include the major features of all vendor systems in an efficient
way. Although MPI includes a complete set of message-passing routines, in
our opinion it is oversized (mainly after the MPI-2 Forum [72]). PVM, deve-
loped by the Oak Ridge National Laboratory, was initially conceived to allow
a heterogeneous network of parallel and serial computers to appear as a single
concurrent computational resource and, afterwards, efficient implementations for
programming supercomputers were designed. PVM does not provide as many
features as MPI, but its generality and its simplicity of design makes PVM be
widely used.

McBryan [69] presents an interesting and complete review of native and porta-
ble message-passing interfaces, including references about the libraries mentioned
in this subsection.



8 CHAPTER 1. INTRODUCTION

1.3.2 Data-Parallel Paradigm

The data-parallel programming model, which inherits the SIMD style, arises prin-
cipally to simplify the programming of distributed memory message-passing sys-
tems. In this approach, the programmer writes a sequential program (that is,
using a global address space) in a standard language (C, Fortran 77, Fortran 90)
and guides the compiler in its work of generating parallel code by means of a set of
compiler directives or annotations to indicate, for instance, the appropriate data
distribution for a specific program. The data array and computation distribution
(loop-level parallelism) is the core of this paradigm.

Basically, for an MIMD multiprocessor architecture (including workstation
networks), a data-parallel compiler transforms the program into an SPMD code
by partitioning and distributing its data as specified, allocating computation to
processors according to the locality of the data references involved, and inserting
any necessary data communications by message-passing or by a shared memory
mechanism at appropriate points in the program. Besides, in a distributed me-
mory architecture, the compiler is in charge of the tedious low-level details of
translating from an abstract global address space to the local memories of indivi-
dual processors. As accesses to local memory data are much faster than non-local
accesses, it is important, for efficiency reasons, that users choose (by means of
compiler directives) the adequate data and computation partitions in a way that
the compiler minimizes communications and maximizes data parallelism; that is,
the programmers will need a good understanding of the code and of the meaning
of the data-parallel directives to obtain efficient codes.

Although some control of the program is lost and the efficiency of the ge-
nerated parallel code is, in general, not as good as the manual parallel codes
programmed using the message-passing model, the data-parallel codes are shorter,
clearer and easier to develop and modify than their message-passing equivalents.
Besides, it is easier to experiment with different data distributions by simply
changing the corresponding directives in the data-parallel code than by recoding
a message-passing program.

Nevertheless, in some occasions, the parallel code generated by a data-parallel
compiler can be better than the manual one because the implementation of the
communications in a data-parallel compiler is usually based on native machine
instructions (for instance, the Craft compiler of the Cray T3D/T3E, uses SHMEM
routines) instead of slower message-passing portable libraries (PVM, MPI), em-
ployed in the manual codes.

Well-known data-parallel languages are CM Fortran (Connection Machine
Fortran) [93], Vienna Fortran [110], Fortran D [36], Craft [76] and, specially, the
standard High-Performance Fortran (HPF) [56][57], which allows writing portable
data-parallel programs across a wide variety of parallel machines. We will discuss
the data-parallel paradigm again in Chapter 6, where we propose the inclusion of
directives for processing irregular codes (more specifically, sparse matrix codes)
in the HPF compiler.
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1.3.3 Automatic Parallelizing Compilers

This is the simplest programming model for users, as the compiler automati-
cally generates the equivalent parallel version of the sequential code written in a
conventional language (C, and particularly Fortran 77, the dominant language in
high-performance computation), so that multiprocessor parallelism is transparent
to programmers. These compilers mainly focus on the transformation (automatic
restructuring) of numerical programs for large-scale scientific and engineering
applications. However, this is a very complex task, specially to automatically
determine a suitable data and computation distribution, because it requires a
global analysis of the program’s data access patterns and often this information
cannot be determined statically.

The books of Zima [111] and Wolfe [106] are interesting bibliography about
techniques associated with automatic code restructurers (for instance, data de-
pendence analysis to determine if the statements of a loop can be executed con-
currently). Wolfe also focuses on techniques to generate optimized parallel code
depending on the target architecture.

A parallelizing compiler can have success for certain well-known access pat-
terns, but real codes present complex loops, calls to procedures, complicated
data structures, etc. which make these compilers fail. Besides, the compiler does
not usually have the semantic knowledge of the user about the behaviour of the
program and, therefore, the output parallel code generated is, in general, very
inefficient.

Outstanding pioneer restructuring tools to analyze and transform sequential
code into parallel code are Parafrase, developed at the University of Illinois at
Urbana-Champaign (the current version is Parafrase-2 [77]), and SUPERB (Bonn
University) [109], although this last one is, in fact, a semi-automatic paralleliza-
tion system. More recent restructurers are SUIF (developed at the Stanford
University) [50] and Polaris (University of Illinois at U.C.) [16], which are further
detailed in Subsection 7.5.1.

Nowadays, automatic parallelization is still the domain of universities and
research institutions. Many research efforts are being carried out in the develop-
ment of new compiling techniques for parallelizing compilers, which is an active
research area, and much work has to be done to obtain satisfactory results with
real numerical scientific codes and thus, to bring into general use this kind of
compilers to program supercomputers efficiently. The semi-automatic approach
provided by data-parallel compilers (explained in the previous subsection), which
are aided by the programmer using directives, is the cost users must pay to
make the efficient parallel code generation easier in relation to fully automatic
compilers.

In general, code restructuring works properly when the codes to be parallelized
have regular data access patterns, but the automatic parallelization of irregular
codes is much more complicated. We will describe automatic parallelization tech-
niques for our sparse codes in Section 7.5.
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1.4 Numerical Libraries

As the general application scope of this thesis is linear algebra problems, it would
be interesting to review existing numerical libraries for linear algebra. They are
usually Fortran 77 libraries (although there are C, C++ and Fortran 90 ones).
Much of the work in developing portable linear algebra software for advanced
architecture computers is motivated by the need to solve large problems on the
fastest computers available.

BLAS (Basic Linear Algebra Subprograms) [63] represents the beginning of
this kind of libraries. BLAS was originally designed to encapsulate basic vector
operations highly tuned and optimized for a given computer architecture (for
instance, by means of an adequate management of the memory hierarchy), while
the high-level routines that call them remain portable. There are three BLAS
sets of routines (or levels): level 1 (vector operations), level 2 (matrix-vector
operations) and level 3 (matrix-matrix operations).

Among the wide variety of linear algebra libraries, we must point out LIN-
PACK [32], which is a standard library of Fortran subroutines that analyze and
solve systems of linear equations (dense systems and those having special proper-
ties, such as symmetric, triangular or banded) and linear least squares problems.
These high-level routines are based on lower-level BLAS.

LAPACK (Linear Algebra Package) [4] is a more recent library that updates
the entire LINPACK collection and the EISPACK library (routines for eigenvalue
and eigenvectors calculation) for higher performance on modern computer archi-
tectures (for instance, shared memory computers). It also includes many new
capabilities. The LAPACK90 software library is the Fortran 90 version of LA-
PACK. ScaLAPACK [23] extends the LAPACK library to run scalably on MIMD
distributed memory computers, exploiting loop-based parallelism. Following this
approach, in Chapter 5, we will describe our $LM library, developed to support
sparse matrix operations on distributed memory multiprocessors.

LINPACK and LAPACK include routines for calculating the QR factorization,
mainly for solving linear least squares problems, which is the application of QR
factorization we will focus on (consult Section 2.5). A complete list of numerical
software that solves dense least squares problems through QR factorization is
presented in [52, Chapter 3|.

The software described above are dense linear algebra libraries, not for general
sparse matrices, which are our main subject. The books of Zlatev [112] and Duff et
al. [33] are useful references to plunge into the sparse linear algebra realm. Many
sparse numerical libraries were mainly developed to solve sparse linear systems of
equations using iterative methods. The report of Meier et al. [70] cites software
for these sparse computations, such as ITPACK, SPARSKIT, NSPCG, RPPACK,
etc., as well as the sparse library of the authors, SPLIB.

SPARSPAK (The Waterloo Sparse Matrix Package) is a collection of For-
tran subroutines for solving large sparse systems of equations and large sparse
least squares problems. HSL (Harwell Subroutine Library) [1] is a wide suite of
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Fortran 77 subroutines and Fortran 90 modules for scientific computation which
include sparse linear algebra algorithms to solve a great variety of sparse linear
systems, sparse least squares, etc. Finally, NIST Sparse BLAS [82] is a C library
(although a Fortran version is being developed) which provides, in the same way
as BLAS for dense matrices, sparse matrix computational kernels (for instance,
sparse matrix or sparse vector products, solution of triangular systems - --) and
supports many storage formats for the sparse matrices.

We can find abundant public domain linear algebra software, both for dense
and sparse matrices in software servers such as netlib (at http://www.netlib.org)
and the guide to available mathematical software of the National Institute of
Standards and Technology, NIST (at http://gams.nist.gov).
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Chapter 2

Dense and Sparse Sequential QR
Algorithms

2.1 QR Algorithms

QR factorization is a direct method in linear algebra based on orthogonalization.
It involves the decomposition of a matrix A€ R™*™ (m > n) into the product
of two matrices: A = QR, where @ is an orthogonal matrix (QT = Q') and
R is upper triangular. The good numerical behaviour of the orthogonal trans-
formations, low sensitivity to rounding errors and good numerical stability are
important advantages of the QR factorization when compared to other techniques
for the solution of problems in linear algebra. Another important characteristic
of QR decomposition is the large variety of applications it has, as will be shown
in Section 2.5.

There are several methods for calculating this factorization, compiled in [42,
Chapter 5] and [52, Chapter 3]: the Modified Gram-Schmidt procedure (MGS),
Householder reflections or transformations and Givens plane rotations. There
are also hybrid algorithms, which employ both Householder transformations and
Givens rotations in different phases, such as the one described by Pothen and
Raghavan in [80]. QR algorithms adapted to certain structured matrices were
also developed; for instance, Chun et al. [24] present a family of new fast QR
algorithms for Toeplitz matrices [42, Chapter 4].

While LU factorization (Gaussian elimination) is widely used and researched,
QR decomposition is used less frequently in applications because it is generally
more expensive to compute than the LU factorization. However, there are many
applications that produce rank-deficient matrices or that require least squares
solutions, for which Gaussian elimination is unsuitable. Moreover, many of these
applications generate sparse matrices, a property that can be exploited to reduce
the cost of computation.

The QR algorithms we will describe in the next sections are rank-revealing
QR factorizations with column pivoting, for both approaches: dense and sparse.

13
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rank = n;
for (7=0; j<n; j++)
m—1
norm; = Y az; (2.1)
i=0
for (k=0; k<n; k++) {
Find p, k < p < n, such that norm, = Jmax norms; (2.2)
<j<n
if (norm, < ¢) { (2.3)

rank = k;  break;

}

swap (normk, A0:m—1,k> To:n—l,k) and
(normp, afO:m—l,pa TO:n—l,p); (24)

Tk = /NOTTI; (2.5)

for (i=0; i<m; i++)

Uik = Gik/Thk; (2.6)
for (;=k+1; j<n; j++){
m—1
Tkj = Z Aik * Qijs (2-7)
i=0
norm; = norm; — i j; (2.8)
for (i=0; i<m; i++)
A5 = Q5 — Qik " Tkj; (2-9)

}
}

Figure 2.1: MGS algorithm

2.2 Modified Gram-Schmidt Algorithm

The MGS algorithm is a rearrangement of the Classical Gram-Schmidt (CGS)
algorithm with better numerical properties, because CGS presents a loss of ortho-
gonality among the computed columns of ). The MGS method obtains matrices

@ € R™" and R € R™*".

Matrix A is overwritten by matrix @ (in-place algorithm). Figure 2.1 presents
the sequential algorithm with column pivoting in order to consider those situa-
tions in which the rank of matrix A is not maximum (rank-deficiency cases) and
to provide numerical stability (from now on, for all our C algorithms, we assume
that the arrays begin in index 0).
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NORM

Figure 2.2: Column swap (pivoting)

Figure 2.3: Process of updating matrices ¢) and R
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In (2.1) the squares of the euclidean norms of the columns of matrix A are
calculated and stored in vector norm. Then, a loop of n iterations (if the rank
of A is maximum) is performed. This consists of the following actions: the pivot
column (p) and the pivot element (norm,) are selected (2.2); the pivot element
is the maximum of the norms of the columns whose index is >k. If the pivot
is close to 0 (¢ is the precision required, if x € ® < ¢, x is considered zero),
the rank of the matrix is k& and the factorization ends (2.3); otherwise, a swap
of column k with the pivot column in matrices () and R, as well as a swap of
their norms are performed (2.4), as shown in Figure 2.2. The use of orthogonal
transformations is numerically stable and, in practice, the rank of the matrix
can be determined accurately when column permutations are performed during
factorization (rank-revealing QR factorization).

In (2.5-2.9) we update matrix A entries ao.m—1kn—1 (2-6),(2.9) and matrix R
entries 7 g:n—1 (2.5),(2.7). We avoid undesirable divisions by a value close to 0 in
(2.6) thanks to the pivoting. The shaded sections of Figure 2.3 show the entries
which are updated in iteration k. The corresponding norms are also updated in
expression (2.8).

Once the algorithm has ended, what we really obtain is an A x 1= x R
factorization, where II is a permutation n x n, made up of the product of rank
elementary permutations: Il = my X m; X ... X Tpank—1, €ach m;, with j=0,...,rank-1,
being the identity matrix or a matrix resulting from swapping two of its columns.
This is due to the pivoting carried out in (2.4).

2.3 Householder Reflections

In the Householder algorithm, matrix A € R™*" is overwritten by matrix R € R™*"
(in-place factorization, in which the entries of the last m — n rows are zero), and
matrix @ € R™*™ is not explicitly obtained. The Householder algorithm with
column pivoting, shown in Figure 2.4, is similar to MGS, substituting in Figu-
re 2.1 expressions (2.5-2.9) by (2.10-2.14). Moreover, only matrix A (which is
matrix R once the factorization is completed) and its norms are involved in the
column pivoting stage (2.4).

Let us describe the sequential algorithm: in (2.10), the Householder vector
v € R™* is calculated, so that the product between P= (I —2vv” /v"v) and the
subcolumn ay.,—1 % is zero in all the components except for the first one; I'is the
identity matrix and P, an orthogonal matrix, is called a Householder reflection or
transformation (P and I € R™—#)x(m=k))  The first entry of v, vy, is normalized
to a value of 1. In (2.11-2.13) a Householder reflection is applied to submatrix
S € RM=k*(n=k) ‘made up of entries ap.m 1 4:n 1, SO that the original submatrix
S is substituted by the product PxS in order to zero entries @y4i:m—14. This
product is obtained by performing the operation S + vw” (2.13), where vector
w = BSTv € R* % (2.12) and the scalar 3 = —2/vTv (2.11). Norms are updated
in (2.14). Thus, once all the iterations (n at most) of the algorithm have been
carried out, the upper triangular matrix R is obtained, as shown in Figure 2.5.
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Vi = 10,
for (i=k+1; i<m; i++)
v; = aix/(agk + sign(agg) - /normy);

B=-2 /mivf;
1=k

for (=k; J<n J++){

=4- Zazg v;;

for (z—k z<m i++)
Qi5 = Qg5 + V; - Wy;
normj = norm; — az j;

}

(2.10)

(2.11)

Figure 2.4: Householder algorithm

As in MGS, this is an A x [I=@ x R factorization. Besides, the algorithm we
have considered here is a column-oriented algorithm, but there are also row-orien-
ted Householder transformations, which zero a designated subrow of matrix A.
Another version of these algorithms is the block Householder QR factorization,

in which the matrix to be decomposed is divided into blocks (this procedure is

described in [42, Chapter 5]).

\

Figure 2.5: Process of obtaining matriz R from the original matriz A

In general, obtaining matrix ) in an explicit manner is not necessary. It can
be obtained by previously storing it in a factorized format. This consists of sto-
ring the Householder vectors as they are obtained, in the lower triangular part
of matrix R. And, from this factorized format, an algorithm (backward accumu-
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for (i=m-1; i>k; i--)
Apply Givens rotation to subrows a; 1 g1 and @; gm—1;  (2.15)

for (j=k+1; j<n; j++)
norm; = norm; — az ;; (2.16)
Givens rotation:
Gak Caktr " Gan-1 | [ 9COS —gsin \ ( Gak Gakt1 ** Gan-1
0 g1 °°" Ggp—1 gsin gcos agk QBk+1 **° Ggn—1

. —agg
where gcos = ——ab——_ gsin = —5=2— 2.17
908 = oo 9= Vo (247

Figure 2.6: Pseudo-code for Givens rotations

lation) can be applied to get @ in an explicit way (see [42, Chapter 5] for more
details).

2.4 Givens Rotations

Using Givens plane rotations, matrix ) is not explicitly calculated and matrix
A is overwritten by matrix R (the same as in Householder). As we will show
in Section 3.5, it is not necessary to calculate matrix @) to solve least squares
problems by means of the QR decomposition.

Givens algorithm with column pivoting is built by substituting expressions
(2.5-2.9) of the MGS algorithm (Figure 2.1) by the pseudo-code expressions (2.15)
and (2.16) of Figure 2.6. As in Householder, note that only matrix A and column
norms are involved in the pivoting (2.4).

Givens rotations are applied in (2.15) to zero the subdiagonal elements of co-
lumn k. A Givens rotation involving two rows named «, # of matrix A consists
of performing the update described in expression (2.17). The rotation is clearly
orthogonal and it is not necessary to perform inverse trigonometric functions. As
we can see, Givens rotations allow us to annihilate entries of matrix A more selec-
tively and in a more flexible order than the other two QR algorithms. Finally, the
norms of the updated columns are calculated in (2.16). Due to column pivoting,
itisan A x [I=0 x R decomposition.

The Givens algorithm considered here is the Classical Givens; there is another
version named Givens-Gentleman (also known as fast Givens) [42, Chapter 5].
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‘n[2m-n-1]/4

Figure 2.7: Sequential Givens rotations

The latter is more economic with regard to floating point operations, but it
requires some kind of pivoting and scaling operations in order to prevent from a
possible overflow. This overhead can degrade performance.

The Classical Givens algorithm upper triangularizes matrix A by introducing
zeros column by column, as shown in Figure 2.7. The numbers in this figure
indicate the number of rotations which have been necessary to achieve the corres-
ponding stage shown by each picture.

There is another version which introduces zeros in A row by row [42, Chap-
ter 5|. In this case, if we implement a pivoting mechanism, it should be a row
pivoting.

2.5 QR Applications: Linear Least Squares Pro-
blems

The main use of QR decomposition algorithms lies in the various applications
they have in linear algebra to solve linear systems of equations, least squares
problems, eigenvalue and eigenvector problems, coordinate transformations, pro-
jections, linear programming, optimization problems, etc. It is necessary to
solve these problems in many scientific areas, such as fluid dynamics, structural
analysis, circuit simulation, device simulation, quantum chemistry - - - Therefore,
high-quality software is necessary for those scientific numerical computations; for
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example, a sparse QR factorization implementation in Matlab is described by
Matstoms in [67].

The bibliography for QR applications is very extensive. Kaufman [60] presents
an efficient parallel QR algorithm for determining all the eigenvalues of a sym-
metric tridiagonal matrix; Haag and Watkins [49] describe hybrid codes that
combine QR and LR [42, Chapter 7] algorithms to calculate the eigenvalues and,
optionally, eigenvectors of real, nonsymmetric matrices; Watkins [104] discusses
the numerical stability of the QR factorization applied to the calculation of eigen-
values; Chandrasekaran and Ipsen [20] present an algorithm for computing the
singular value decomposition of a real upper triangular matrix R that is based
on the repeated QR decomposition of R; the work of Schreiber et al. [87] des-
cribe an efficient parallel QR-based algorithm to obtain all eigenvalues and all
eigenvectors of a matrix, which can be applied to quantum mechanical calcula-
tions.

Regarding linear systems problems, there are many QR-based approaches; we
just cite two for sparse matrices: [74][81]. Interesting references for sparse least
squares problems are the papers of Matstoms [66][67]. There are also constrained
and weighted least squares problems; in [48], an error analysis of this kind of
problems is performed. Bendtsen et al. [12] describe, as an alternative to the
classical simplex method, a new algorithm for linear programming based on a
QR factorization.

As an application example of the QR decomposition, we approach a standard
problem in linear algebra: the least squares problem. It consists in calculating
a vector z € R™ that minimizes ||Az — b||» (euclidean norm), where A € R™*"
(m >n) and b € R™. If the rank of A is maximum (n), the least squares problem
has one unique solution (x;5). Otherwise, it has an infinite number of solutions
Tset, Oone of them with minimum norm and which we will also denote as zy,
Tys = T € Tge such that ||z||2 is minimum. If m=n, the least squares problem
is equivalent to solving a linear system of equations Az = b, as ||Az — bl = 0
(minimum norm). Sparse linear least squares problems appear in several techni-
cal and scientific areas such as geodesic survey, structural analysis, tomography,
photogrametry, molecular structure - - -

Several methods have been developed to solve this problem [41]: the augmen-
tation method, the Peters-Wilkinson method, the method of normal equations
and iterative methods. This problem can also be solved by adapting the al-
gorithm that carries out the QR decomposition of a matrix A. In particular,
the least squares problem is equivalent to solving the upper triangular system
RIITxz = Q"b, by means of a back-substitution and a permutation of the entries
of the solution vector z (due to the column pivoting) . This approach is adequate
due to the good numerical stability of the QR factorization. If rank(A) = n,
this algorithm calculates the one unique solution to the least squares problem. If
rank(A) < n, only one of the infinite solutions is obtained, the one called basic
solution, which has a maximum of rank nonzero elements and that, in general,
does not coincide with the minimum norm solution x;,.
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2.6 A Sparse Approach: Data Storage Structures

A matrix is sparse if many of its elements are zero. The percentage of null
elements a matrix must present in order to be considered sparse depends on the
model or pattern of the nonzero elements, the algorithm to be carried out over the
matrix, and even on the computer architecture. In general, we say that a matrix
is sparse if it is advantageous to exploit its null elements with the development
of a sparse version of an algorithm, instead of a dense one. Although a sparse
QR factorization could be treated with a QR dense program, the cost of ignoring
sparsity, both in storage and execution time, would erase the benefits of a sparse
approach.

The choice of the storage scheme to support the sparse matrix is very impor-
tant. Many different ways of storing sparse matrices have been developed to take
advantage of the matrix pattern or the characteristics of the problems from which
they arise [10][70][85]: Compressed Row/Column Storage (CRS/CCS), Block
Compressed Row Storage, Compressed Diagonal Storage, Coordinate Format,
Jagged Diagonal Format, Skyline Storage, Quadtree Representation [105], etc.

The main factor we have taken into account in the selection of the data sto-
rage structure has been the nature of the QR algorithms. As in the sparse QR
factorizations the pattern of the matrix varies due to the fill-in (the appearance
of new nonzero entries), it is convenient to use dynamic data structures (lists,
trees - --) for the storage of the nonzero entries that support the changes in the
pattern of the non-null elements. Thus, if we analyze the data flow of the algo-
rithms, we only need column access to the matrix (except for Givens); this fact
leads to a column-oriented data structure.

The CCS format is a column-oriented structure. It represents a sparse matrix
A as a set of three vectors (DATA, ROW and COL); DATA stores the nonzero
entries of A, as if it were traversed in a column-wise fashion, ROW stores the
row indices of the entries in DATA, and COL stores the locations in DATA that
start a column. By convention, we store in position n (in a C array) of COL
the number of nonzero entries of A plus one. Due to the characteristics of our
algorithms this data structure could be suitable for storing the sparse matrix A,
but it is very costly to support the fill-in of the factorization with this structure:
we would have to re-copy (using a buffer) the corresponding updated submatrix
in each iteration k of our algorithms, which eliminates all the advantages in com-
putation times of the sparse approach. Besides, we have to estimate the amount
of memory necessary to perform the factorization, because these three vectors
must be declared at compile-time.

To solve this drawbacks, we have chosen two data structures that are basically
variants of the CCS format, and which are based on one-dimensional linked lists
and packed (or compressed) vectors, respectively, as shown in Figure 2.8, together
with their corresponding C declarations.

The lists could be singly-linked or doubly-linked. The use of doubly-linked lists
accelerates the management of the data structure when carrying out operations
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Figure 2.8: Data structures for sparse matrices: doubly-linked lists and packed
vectors

such as insertions and deletions, but at the cost of more memory usage; besides,
it allows list traversing in both directions. As there is currently a large amount
of memory available in distributed memory parallel computers, we assume this
larger memory usage in order to decrease the computational times. Consequently,
we have chosen to use doubly-linked lists, each one of them represents one column
of the matrix. As we can see in Figure 2.8, each item of the list stores the row
index i, the matrix element a, and two pointers previ, nezt: to the previous and
to the next entry of the list, respectively. Lists are arranged in growing order of
the row index; cols is an array of pointers to the beginning of each column (it has
the same function as vector COL of the CCS format). Although it is not shown
in this figure, there are also, for the doubly-linked list data structure, pointers to
the end of each column, in order to allow traversing the columns of the sparse
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matrix in reverse order. Obviously, this array is not necessary for the packed
vector structure because the end of each packed vector can be reached by means
of a sum operation of the corresponding entries of arrays cols and size.

The fact that we only require efficient access by columns (except for the Givens
algorithm, as will be discussed in Section 3.4) implies large memory savings. Thus,
a sparse LU decomposition [8][90] accesses data both by rows and columns, and
row and column pivotings are performed; it requires a more suitable data struc-
ture, such as two-dimensional linked lists (see Figure 6.4). This structure stores,
in addition to what we have indicated for one-dimensional lists, the column index
of each element and two additional pointers (one to the previous row element and
another to the next one). On the other hand, the time needed for managing this
structure would increase. For instance, Stappen et al. [90] use two-dimensional
linked lists, both ordered and unordered.

Our data structure based on linked lists has also severe drawbacks. The
dynamic memory allocation/deallocation for each new entry is time consuming,
causes memory fragmentation and spatial data locality loss, which makes traver-
sing lists expensive due to cache misses.

Packed or compressed vectors eliminate the disadvantages of the lists. This
structure is similar to the linked list one, but without the pointers previ and
nexti. Therefore, this structure requires only around half as much memory space
as the doubly-linked list, considering the fact that the int and double data types
in C take up 8 bytes both (this is true for the C compilers we have used for our
programs) and disregarding the space occupied by vector size. In addition to the
array of pointers cols, we require the array named size which contains the number
of nonzero elements of each column.

Using packed vectors, the elements of the columns are stored in adjacent me-
mory positions. This exploits the locality, increases the cache hit ratio, reduces
memory fragmentation and avoids having to go through the links of the lists to
gain access to the elements; note that, using packed vectors, memory allocations
and releases are performed once per every processed column, whereas by using
linked lists these operations are performed once per every inserted or erased en-
try, respectively. Consequently, execution times are reduced, as we will test in
Section 4.2.

We have programmed versions of the three algorithms using both data struc-
tures, except for Givens, which is only implemented with lists. It is important to
remark that the linked list structure is more flexible and general than the packed
vector structure, which can be used specifically for the MGS and Householder
algorithms due to their characteristics but, in general, it is not always possible
to use packed vectors for sparse factorizations involving fill-in. For instance, it is
not possible to apply the packed vector approach described above in our Givens
algorithm because there is a column swap, but fill-in is generated row by row
(column by column in MGS and Householder), which makes a data structure
(linked lists) that allows the insertion of an entry in the middle of each column
necessary. We will return to this subject in Section 3.4.
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2.7 A Strategy to Preserve Sparsity

Fill-in is a serious problem in our sparse QR algorithms because it can greatly
reduce the advantages of the sparse approach in relation to the dense one. A
high fill-in is not a desirable situation due to the increase in storage cost and
computation time.

The factors that influence the fill-in of a sparse matrix are the following:
the dimensions and rank of the matrix, the sparsity rate (percentage of null
elements) and a factor of great importance but difficult to model, the pattern of
the matrix, that is, the location of the nonzero entries. Thus, fill-in may vary
significantly between two matrices with the same dimensions, rank and sparsity
rate, depending on how nonzero elements are located. Given the pattern of the
matrix A to be decomposed by means of the MGS procedure, the structure of
the resulting matrices () and R is determined in [51] by Hare et al.

There are reordering methods, as a first stage before the factorization, to avoid
the increase in the sparsity rate of the matrix. For instance, Ostromsky et al. [75]
have designed a parallel sparse Givens-based QR factorization algorithm, where
matrix reorderings are applied in such a way that most zero entries are located in
the lower triangular part of the matrix. Raghavan [81], on the other hand, utilizes
a variant of the CND (Cartesian Nested Dissection) algorithm as a reordering
heuristic with the aim of reducing fill-in in its row-oriented Householder-based
sparse parallel algorithm. A row ordering strategy for Givens rotations, based on
pairing rows to minimize fill-in, is described in [83]. There are similar reordering
strategies for other factorizations (for instance, [62] for Cholesky factorization).
Many of these strategies based on reorderings are sequential by nature (that is, it
is not possible to parallelize them), or are specific for a concrete family of sparse
matrices, or are highly algorithm-dependent.

Usually, the reordering strategies for sparse matrices imply the use of graphs
and are closely tied to multifrontal techniques [33, Chapter 10], which basically
consist in a statement of sparse numeric computations as a sequence of dense
matrix operations (that is, small dense submatrices are exploited) and can be
applied to many problems (LU and Cholesky factorizations, for instance). This
approach was later used for orthogonal factorizations (Householder and Givens):
[65][66][81]. As an example, the second reference consists in a multifrontal House-
holder procedure which uses an elimination tree to efficiently describe the struc-
tural relationships between the columns of the coefficient matrix A. The multi-
frontal methods for the QR factorization are not considered in this work.

2.7.1 A New Column Pivoting Criterion

It would be of interest to implement a simple method to preserve sparsity during
factorization in the sparse QR algorithms. The most common heuristic strategy
used for maintaining the sparsity rate in the LU factorization is the Markowitz
criterion [33, Chapter 7]. In addition, numerical stability must be ensured in the
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LU factorization by avoiding the selection of those pivots with a low absolute
value. Since QR decomposition is more expensive than LU factorization, it must
be carefully implemented to be competitive as a general solution technique.

We propose a general heuristic to preserve sparsity in the QR decomposition
by taking advantage of column pivoting. This is, in contrast to reordering me-
thods and symbolic preprocessings, a dynamic strategy, which is applied as the
factorization is carried out. Besides, it is applicable to our three QR algorithms
and to any kind of large sparse matrices (which often arise in scientific applica-
tions): symmetric or unsymmetric; random, band or block-structured, etc. Let
us analyze our algorithms to justify this criterion.

In MGS each element of row k of matrix R (ry;) is, basically, a dot pro-
duct between the normalized pivot column (which becomes column & due to the
swapping) and column j of matrix A (see Figure 2.1, expression (2.7)). If the
pivot column has few nonzero elements, the probability of r; being 0 raises and,
consequently, fill-in in R is reduced, as well as in matrix (), because row k of
matrix R is used to update matrix ¢ (expression (2.9)).

Therefore, in order to decrease fill-in, we propose a new criterion to select the
pivot column, instead of the pivoting strategy commonly used in dense factoriza-
tions and described in expression (2.2). The new pivoting strategy is expressed
as follows:

Find p, k£ < p < n, such that

{e (#‘%) +(1—¢) (mg;"i%)} is maximum and norm, > ¢ (2.18)
k<j<n

k<j<n

where zero; is the number of zero elements in column j (@g.m—1,;), zero, is the
number of zero entries in column p (ag.m-1p)and €, 0 < € < 1, is a prefixed fill-in
parameter.

The first term of the sum refers to fill-in reduction, whereas the second one
relates to numerical stability. Obviously, for ¢ = 0, the pivot column selection
criterion is equivalent to the one described in (2.2) for dense matrices. Although
we try to reduce fill-in as much as possible by choosing a pivot column with few
nonzero elements (by setting € ~ 1), we shall always maintain a reasonable degree
of numerical stability in the algorithm by discarding as pivot columns those with
the square of the norm close to zero (that is, norm, < ¢).

With regard to Householder reflections, we should select a pivot column p
with many zero entries in subcolumn ag.,_1, (subdiagonal entries), since the
Householder vector v, which is used to upper triangularize matrix A (see Figu-
re 2.4, expression (2.13)), is obtained by dividing that subcolumn by a certain
value (2.10). This way, v is a very sparse vector, and the probability of entries of
vector w being 0 increases, as w is calculated using vector v (2.12); and, finally,
if vectors v and w have many zero entries, as matrix A is updated using both
vectors (expression (2.13)), fill-in may be reduced in this matrix.
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Matrix Origin mxn #A % #A
SHL400 Linear programming problems 663 %663 1712 0.39%
JPWH991 Circuit physics modelling 991x991 6027 0.61%
SHERMANI1 Oil reservoir modelling 1000x1000 3750  0.37%
MAHINDAS Economic modelling 1258x1258 7682  0.49%
ORANIG78 Economic modelling 2529%2529 90158 1.41%
SHERMANS5 Oil reservoir modelling 3312x3312 20793 0.19%

Table 2.1: Harwell-Boeing sparse matrices

We should also choose, in Givens rotations, a pivot column p with many
null elements in subcolumn ay.,,—1, because it is not necessary to rotate the rows
corresponding to the zero elements of this subcolumn (see Figure 2.7). That is, the
purpose of one rotation is to annihilate one entry of the matrix and, if this entry is
zero, it is not necessary to apply this rotation; this fact saves a lot of computations
and avoids the fill-in which could appear in the entries aq kt1:n-1, @8 g+1:n—1 if the
rotation were applied (see Figure 2.6, expression (2.17)).
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SHL 400 JPWH991 SHERMAN1
\\\ I ?E\ \éé“, ________________ N = \\ .
AN 1 Ei \i\ \\
NNl = N S
NN NN G T NN N
N NV N NN AN ]
= N \. N \\\
e AN S
\[ N N 1 \\\ T .
h N | AN iy
N | AN \
[ O NE | ™ \\\
\\ N NN - S
b \ . 3 N
MAHINDAS ORANI678 SHERMANS

Figure 2.9: Patterns of the Harwell-Boeing test matrices

As a conclusion, the strategy to preserve sparsity described in (2.18) can be
applied indistinctly to the three QR algorithms, but for Householder and Givens
factorizations the term zero; refers to the number of zero elements in subcolumn
J, defined as ay.,—1,; and zero, is the number of zero entries in subcolumn
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Qk:m—1p- 10 [94], we focus on this strategy.

With the aim of testing this criterion, we have run the sparse sequential al-
gorithms on a SPARC workstation, using six matrices from the Harwell-Boeing
sparse matrix collection [34], whose patterns are shown in Figure 2.9. These ma-
trices have different patterns, in order to show that the criterion (2.18) fits well
any kind of sparse matrix. A description of these matrices is presented in Ta-
ble 2.1, where Origin indicates the scientific discipline in which the corresponding
matrix was obtained; m x n are the dimensions of the matrix, #A is the number
of nonzero elements of matrix A and %# A is the percentage of these elements,
that is, the sparsity rate.

Figures 2.10, 2.11 and 2.12 show fill-in in matrix R after the factorization
(note that the scale of these graphs is logarithmic), for MGS, Householder and
Givens, respectively, with ¢ = 0, ¢ = 0.85 and € = 1 in expression (2.18). As
can be observed, if we follow the common strategy of pivoting in dense matrices
(e = 0), fill-in is very high. This situation eliminates all the advantages of a sparse
approach because storage costs and computation times are high. As € increases,
fill-in is greatly reduced, and we obtain acceptable results for ¢ = 1. As we can
see, by making e = 1, fill-in decreases with respect to e = 0 by 77% (MGS), 65%
(Householder) and 78% (Givens) on average for this set of sparse matrices, which
is a very noteworthy reduction. The percentage of reduction, matrix by matrix
is: SHL400 (99% for MGS, 99% for Householder and 99% for Givens), JPWH991
(59%, 40% and 59%), SHERMAN1 (55%, 24% and 56%), MAHINDAS (94%,
90% and 94%), ORANI678 (89%, 83% and 89%), SHERMANS (68%, 55% and
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Householder reflections
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Givensrotations
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69%, respectively).

In general, we can assert that MGS and Givens are the algorithms which
produce the least fill-in (both algorithms remain at very similar levels), whereas
Householder produces the highest fill-in.

As the fill-in of the coefficient matrix increases during the factorization, there
are techniques based on switching to a dense factorization at a certain point.
Hence, a sparse factorization code is initially executed, but when the switch point
is reached, a dense code continues the factorization (the corresponding submatrix
is scattered to a dense array). This strategy is described in [33, Chapter 9] for
an LU factorization.

2.7.2 Numerical Analysis

Next, we will discuss the effect of this reduction of fill-in on the accuracy of
the results obtained in solving the least squares problem by means of QR facto-
rization. As we described in Section 2.5, if the coefficient matrix A is square, the
problem of solving least squares is equivalent to solving the linear equation sys-
tem Az=b. If the rank of A is maximum, then there is only one unique solution.
To measure the accuracy of the results, we used the matrices of Table 2.1 (which
are maximum-rank square matrices), as well as a vector b chosen so that the
exact solution of the system is a vector = whose components are all one (z = 1).

Let us define the error as oI?a<X |1.0 — z4,|, where x4, is the solution of the sys-
<j<n

tem, obtained by means of QR factorization. We used double precision floating
point numbers, and those elements with an absolute value of less than ¢ = 10720
were considered null. Raghavan [81] implemented programs for orthogonal fac-
torization in single precision. Nevertheless, the use of numbers in single precision
draws, for our algorithms, very inaccurate results and can also cause the rank
of the matrix to be determined incorrectly. Ostromsky et al. [75] use, for their
Givens algorithm, a threshold ¢ = 27° and the solution to the least squares pro-
blem is refined by means of an iterative method, such as the Conjugate Gradient
method [10].

In MGS and in Householder the norm of the column being processed is used
as a divider in Figure 2.1, expression (2.6) and in Figure 2.4, expression (2.10),
respectively. This norm is calculated in each iteration as noted in (2.8) and (2.14),
and may lead to a loss of accuracy. For this reason, in these two algorithms, we
recalculate in each iteration the norm of the column & being processed with the
aim of obtaining greater accuracy in the results. The computational cost of this
calculation operation is negligible.

As a comparison, in Figures 2.13-2.18 we present the numerical errors for the
different algorithms going from € = 0 (dense matrix criterion) up to € = 1, with
a step A = 0.05. We note that with the fill-in reduction strategy (¢ = 1), not
only do we maintain accuracy in the results, but also we notably improve them
on some occasions. As an example, when € = 1, the error is exactly 0 for matrix
SHL400, for all three methods; in the case of matrix ORANI678, when using
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MGS, the error is lower by 3 orders of magnitude with respect to ¢ = 0. We
obtain the greatest accuracy, with fill-in reduction, for matrix SHL/00 and the
least accuracy for matrix MAHINDAS.

On the whole, for this set of test matrices, the least accurate results were
obtained using the MGS algorithm. Nevertheless, the errors are very similar for
the Householder and Givens algorithms.
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Chapter 3

Parallel QR Algorithms

3.1 Data Distribution

The selection of an appropriate data distribution is critical to achieve efficient
parallel algorithms. When parallelizing algorithms with regular accesses to data
(for instance, dense matrix codes), the most known data distributions are the
block and cyclic ones, or even a combination of both (block-cyclic); for instance,
the block-cyclic(z) distribution means that each Processing Element (PE) receives
z contiguous elements of an array starting on PE #0; if x = 1, it is equivalent
to the cyclic distribution. These dense data distributions are suitable for a wide
range of dense matrix algorithms.

However, these distributions are not appropriate for our algorithms, with irre-
gular patterns for accessing data. Our sparse codes contain array indirections
(due to the data storage schemes) that produce not well-balanced parallel codes
and complex communication patterns when using dense data distributions. An
approach to deal with this kind of data accesses is the use of pseudo-regular
data distributions as extensions of the classical block and cyclic regular distribu-
tions, such as MRD (Multiple Recursive Decomposition) and BRS/BCS (Block
Row/Column Scatter). A complete explanation of these distributions, with their
statistical properties can be found in [6][84]. The MRD scheme is, basically, a
kind of block distribution for sparse matrices and is very adequate for molecular
dynamics applications [100]. The BRS/BCS schemes are a generalization of the
cyclic distribution for sparse matrices: the entries of the sparse matrix are dis-
tributed over the PEs in a cyclic way (per rows and per columns) onto a mesh
of processors, as if the matrix were dense, but only the nonzero elements are
stored using the CRS format (for BRS) or the CCS format (for BCS) (see BRS
in Figure 6.3). Thus, the difference between BRS and BCS is that the former is
row-oriented and the latter is column-oriented.

These distributions, which constitute a coordinate bisection scheme to de-
compose the sparse (irregular) data domain, are adequate for a great variety of
sparse problems. There are more complex strategies to partition irregular do-
mains for specific applications, such as graph bisection (used for finite element

35
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CYCLIC DISTRIBUTION BLOCK DISTRIBUTION
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Figure 3.1: Load balancing using a cyclic distribution for Householder reflections

problems) and the spectral bisection (implemented in the CHAOS library [86];
CHAOS routines will be employed in some experiments of Chapter 7).

We have chosen a cyclic data distribution (also known as grid distribution
and scattered square decomposition). The selection of this distribution responds
to two reasons: data balancing and load balancing.

The first reason arises from the nature of the sparse matrices. As we work with
general sparse matrices (we assume that they do not follow a particular model or
pattern), the cyclic distribution is the most appropriate one in order to provide
good data balancing. Let us assume that our sparse matrix contains areas or
submatrices with large densities (for instance, matrix ORANI678 of Figure 2.9).
The use of a block distribution concentrates this large volume of data in few PEs
and, thus, the unbalance in the data distribution is evident. We must point out
that we work with general matrices, but if we worked with known families of
sparse matrices, with a given location for the nonzero entries, the best strategy
would be to preprocess the matrix (by means of row and column swaps) in order
to obtain an adequate matrix pattern and, based on it, apply the most suitable
distribution [33, Chapter 8|.

The second reason is based on the characteristics of our algorithms, which are
problems of reducing the index space. The three algorithms are made up of as
many steps as columns in the coefficient matrix A (if it is maximum-rank). In
iteration k of the main loop of the algorithms, entries .1 k1 (Matrix Q) and
Tkkn—1 (matrix R) are updated in MGS (see Figure 2.3); and entries ag.m—1k:n—1
(matrix R) are updated using Householder reflections or Givens rotations (see
Figures 2.5 and 2.7). It is clear that if we employed a block data distribution, as
the algorithms were executed, a large number of PEs (assuming a mesh topolo-
gy) would be inactive because the entries of matrix A to be updated would be
concentrated in a few PEs, due to the fact that the index space is progressively
reduced through iterations. This is prevented using a cyclic distribution which,
for our algorithms, provides a better load balance without any need for increasing
communications. This fact is shown graphically in Figure 3.1, in which we have
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Figure 3.2: Sparse matriz data distribution scheme

a 2 x 2 mesh and an 8 x 8 matrix A; we assume that iteration £ = 4 of the
main loop of the Householder algorithm is being performed. The shaded part
represents submatrix S (see Section 2.3), which is the portion of matrix A that
is currently being processed.

Thus, as our matrices are sparse and the cyclic distribution is very suitable for
our algorithms, we can use the BRS/BCS schemes. As we explained in Section 2.6
the algorithms only require efficient access by columns (except in Givens); there-
fore we select the BCS scheme. But the CCS format is not appropriate to support
operations such as fill-in and column swapping and we use the data structures of
Figure 2.8. As a conclusion, the data distribution used for the three algorithms
is the same as a BCS scheme, but the data storage structure for the nonzero ele-
ments are linked lists or packed vectors instead of the CCS format (three vector
structure).

Figure 3.2 shows the selected distribution for an 8 x 8 matrix onto a 2 x 2
mesh, with packed vectors as data structure (it would be the same scheme for
linked lists, as the one shown in Figure 5.1). As we can see, nonzero entries of the
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matrix are distributed over the PEs in a cyclic way (per rows and per columns)
onto a mesh, as if the matrix were dense, but only the nonzero elements are
stored using packed vectors. Once the algorithms have been executed, we obtain
the resulting matrix R distributed in the same way.

We assume that, for all of our parallel algorithms, the coefficient matrix A
is distributed onto a mesh with npey x npex PEs. Each PE is identified by
coordinates (pidz,pidy), being 0 < pidr < npex and 0 < pidy < npey. By
means of the data distribution, entry (I, J) of A is located in PE (pidz, pidy) =
(J mod npex, I mod npey). As the parallel algorithms described in the next
sections are programmed for MIMD distributed memory computers (see Ta-
ble 4.1), it is more appropriate to work with local indices for the matrices instead
of global indices, as shown in Figure 3.2. Therefore, from the global indices (1, J)
that identify the entries of the matrix, we can obtain the local indices (i, j) in each
PE:i= ||, j = |;e])- Inasimilar way, we can reconstruct the global indices
of the matrix from the local indices: I = (i X npey) + pidy, J = (j X npex) + pidz.
This is necessary for the result collection stage.

3.2 Parallel MGS

The bibliography for parallel MGS algorithms is scarce. Zapata et al. [107]
and Waring et al. [103] programmed MGS parallel algorithms on an nCUBE/10
(hypercube topology) and on a network of transputers configured as a simple
pipeline topology, respectively, but for dense matrices.

Let us consider the sequential algorithm in Figure 2.1, but with a sparse
approach, to see how it can be executed in parallel. First, each PE obtains the
local norms (corresponding to the column segments it contains) in a vector named
norm; by means of a reduction instruction (sum by columns, y_sum), the vector
norm of each column of PEs will contain the norms of the corresponding global
columns (2.1). As can be deduced, norm is a dense vector distributed over the
X dimension of the mesh and replicated on the Y dimension, so that each row
of PEs stores a copy of the complete vector. Then, the local maximum norm
of each PE is obtained (this value is the same for each column of PEs). The
global maximum (the pivot element) is obtained by means of a reduction routine
which finds the maximum norm by rows of PEs (z_maz). As a result, the pivot
element, as well as p (the index of the pivot column) will be contained in all the
processors (2.2).

The parallelization of the strategy to control fill-in (2.18) requires more com-
munications than (2.2), due to reduction operations, but it is not very costly from
a computational point of view. With this purpose, we have developed specific re-
duction operations, suitable for our pivoting criterion, in order to reduce latencies
(start-ups), by means of grouping together the messages to be sent in these opera-
tions. For example, our codes have a reduction routine which obtains, at the same
time, the minimum value of an integer vector and the maximum value of a floa-
ting point vector (in double precision), being these vectors cyclically distributed
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Figure 3.3: Pivoting: buffer for sending local lists

on each row of PEs.

In regard to column pivoting (2.4), we find three situations:

e If k = p, no action is taken.

o If & # p and the corresponding columns are in the same PEs, then the
column swap is local and is performed by means of an exchange of the
corresponding pointers of array cols (see Figure 2.8).

e If k£ # p and the corresponding columns are located in different columns of
PEs, message-passing is required.

Regarding the third situation, the column of PEs that contains column £ must
exchange this column of matrices () and R, as well as the corresponding norm,
with the column of PEs that contains pivot column p. In order to send this in-
formation, we have to indicate the start memory address where this information
is located and its size, that is, the information must occupy adjacent memory
positions, a situation that does not happen with a list. To solve this drawback
we use a packed vector that acts as a buffer for sending the required information.
As we show in Figure 3.3, the information is stored in adjacent positions and the
corresponding column of () and R, as well as the square of the norm, are sent
in a single message. If we established as many connections (for sending data) as
entries of the column to be sent, it would imply a great temporal overhead. For
instance, in the Fujitsu AP1000 computer (consult Section 4.1), the communica-
tion time 7T can be modelled by an affine function so that for a message of N
bytes, T =ty + t, X Nus, being ¢y a fixed overhead in establishing the communi-
cation (start-up time or latency) and ¢, the data transfer time per byte. In point
to point communications (using the AP1000 T-net), to = 6.9us and ¢, = 0.069us;
in the B-net, these values vary depending on several conditions: ¢, = 43 — 60us
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and ¢, = 0.026 — 0.042us. In [58] we find numerous experiments and measures
of the communication times for the AP1000. By sending all the information in a
single message, the fixed overhead associated to each one of the communications
is avoided.

Returning to the buffer of Figure 3.3, the procedure for moving the local
list to the packed vector for the PEs which store column k£ or column p is the
following: the local list corresponding to the column of matrix @ (and, later, R)
is traversed from the beginning; as it is traversed, each one of the entries is stored
in the buffer and erased from the list by means of a specific routine for deleting
the first element of the list. As header of this exchange buffer, we indicate the
value of the square of the norm of that column and the number of nonzero entries
of matrix @ (nelem@), in order to reconstruct the corresponding columns (local
lists) of @ and R in the receiving PE by means of a routine for insertion at the
end of the list (append). Obviously, with the parallel implementation which uses
packed vectors as data structure for matrix A, we have the information ready to
be sent, as it occupies adjacent memory positions and we do not need the buffer
of Figure 3.3.

We will return to the swap procedure in Section 4.4, where a strategy of local
pivoting is presented.

With regard to the parallelization of the MGS procedure (which we describe
in detail in [28]), the current column k of matrix ) being processed (which was
the pivot column before swapping) is normalized by dividing it by its norm (2.6).
This normalized column is stored in a packed vector named wvcol, in order to save
computations in the subsequent operations. The column of PEs which contains
the normalized column broadcasts it (stored in wcol) to all the corresponding
PEs on the X axis (z_brd). This is shown in Figure 3.4a, for a 3 x 3 mesh and
a 9 x 9 matrix. Therefore, wvcol is a packed vector which is distributed over
the Y dimension of the mesh and replicated on the X dimension, so that each
column of PEs stores a copy of the complete vector. Then, for each column
with a global index > £, we store in a vector named vsum the sparse local dot
product of each column with the normalized current column previously stored in
veol (Figure 3.4b). Finally, the global dot product for each column is obtained in
vsum by means of a reduction instruction (y_sum), as shown in Figure 3.4c; vsum
is a dense vector with many zeros, which is distributed and replicated in the same
way as vector norm. Observe that, in Figure 3.4, the arrays which have the same
subscript have the same content (that is, they are replicated). The elements of
vsum constitute the sparse row ry y.,_1 of matrix R (2.5), (2.7) (Figure 2.1). In
the list implementation, row access to matrix R is not necessary to insert this
new row, because it is an insertion made at the end of the corresponding lists
(columns) with index j, being vsum; # 0, k£ < j < n, which means column
access.

The next step is updating the entries ag.;—1 k:n—1 of matrix Q; so, a;; is over-
written with a;; — veol; x vsum; (2.9). Note that it is a local operation and
communications are not required. This operation is performed in parallel by
all the PEs, by means of an outer loop which traverses each column (list) of
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Figure 3.4: Broadcast and reduction in the parallel MGS procedure

the matrix (from column k) and an inner loop that traverses only the iterations
corresponding to the nonzero elements of vector vcol, not the whole iteration
space, which saves a lot of computations. When this updating is carried out, we
may obtain a;; = 0 (a;;| < ¢, to be more precise) and vcol;, vsum; # 0, so that
an element of matrix ) which was initially null, now takes a nonzero value (fill-in,
see Figure 3.5); this element is, therefore, inserted in the corresponding local list.
It is also possible for an element a;; to take a value close to zero, and it must,
therefore, be erased from its local list (the opposite phenomenon to fill-in). This
section of code is optimized because, each time a column of @) is updated, the
corresponding list is traversed only once. The updating of the norms (2.8) is also
local, because vsum is distributed just as vector norm.

The parallel algorithm uses several routines for insertion and deletion in the
lists in order to optimize their handling. As an example, there is an insert proce-
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dure that performs an insertion at the beginning of the list or in the middle and,
as a complement, there is another routine append that only takes into account
insertions at the end of the list. This is due to the fact that in certain steps of
the algorithm only insertions at the end of the lists are needed and, this way,
computation times can be reduced. For instance, the code is optimized because
when in a given iteration k, an insertion at the end of a list is performed due
to the fill-in previously described, all the rest of fill-in insertions in that column
(list) are also at the end (append routine).

We have focused on a linked list implementation of the algorithm, but we
have also implemented this algorithm using a data structure for the matrices
based on packed vectors (see Figure 2.8). The advantages of this data structure
were commented in Section 2.6. The treatment of fill-in with this structure is
based on re-copying each processed (and therefore, updated) column. Thus, the
entries of each column are processed in growing order of the row index by following
this procedure: an auxiliary buffer (which is also a packed vector) with enough
size to store one dense column is allocated; during the updating process of a
column of the matrix (2.9), each nonzero entry, a previously existing one or a
new one (that is, if there is fill-in), is stored in the auxiliary buffer, instead of
in the original packed vector. This way, the new elements are just added to
the buffer, but the zeroing of existing entries is discarded. After finishing the
column updating process, the buffer contains the new packed column. Hence,
this auxiliary buffer is just reallocated (realloc C function) to a memory block
of its exact size, becoming the new column of the sparse matrix, whereas the
memory space of the old column is freed. As we can see, memory allocations and
releases are performed once every processed column, whereas by using linked lists
these operations are performed once every inserted or erased element; so, memory
fragmentation generated by the fill-in is reduced to a great extent using packed
vectors.
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3.3 Parallel Householder Reflections

Parallel Householder-based algorithms are found in [108], implemented on the
Fugitsu AP1000; Hendrickson [53] presents a Househoulder algorithm without co-
lumn pivoting on a 1024-processor nCUBE 2; and Bischof [14] describes a block
Householder factorization on an Intel iPSC/1 hypercube. All these algorithms are
for dense matrices. Regarding sparse factorizations, Raghavan [81] presents a dis-
tributed multifrontal row-oriented Householder algorithm on an Intel iPSC/860
and Matstoms [66] describes a sparse Householder algorithm for shared memory
MIMD machines.

We present the parallelization of the sparse column-Householder algorithm
in [31]. The calculation of the norms in parallel, as well as the column pivoting
have the same considerations as in the MGS algorithm, but taking into account
that the swap only involves the coefficient matrix A, which is being upper trian-
gularized (matrix R), and the corresponding norms.

Focusing on the Householder reflection, in order to get the Householder vector
v, only column access is required; the current subcolumn agi1.,—1, (which was
the pivot column before swapping) is divided by a given value (see Figure 2.4,
expression (2.10)) and stored in v (previously, we set vy = 1). So, only the
column of PEs that contains the current subcolumn £ is working in parallel.
As the Householder vector contains many null elements and is broadcast to the
corresponding PEs on the X axis (z_brd), it is stored in a packed vector. Once
this is completed, the global entry I of vector v is replicated in the row of PEs
with pidy = I mod npey. As we can see, vector v is distributed and replicated
in the same way as vector vcol of the MGS procedure.

The BCS-like data distribution scheme (see Section 3.1 and Figure 3.2) we
have used for the matrix, allows us to follow an optimal path through submatrix
S (described in Section 2.3). The strategy consists in traversing the columns
of this submatrix, starting from the last column; when a column whose global
index is less than k is reached, the process ends. Also, in order to process each
column of the sparse submatrix S, the corresponding list (or packed vector, de-
pending on the implementation) is traversed, starting from the end (the list is
doubly-linked) and continuing until a row whose global index is less than k is
reached.

Let us be more specific: first, the value 3 (2.11) is obtained in all the PEs, due
to the fact that v is replicated, and using a y_sum (sum in the Y axis) reduction.
After this, vector wy,,—1 = 8STv (2.12) is calculated, so that the global entry J of
vector w is replicated in the column of PEs identified by pidz = J mod npex (the
same as vector vsum of the MGS factorization). Note that it is not necessary
to transpose submatrix S due to the data distribution scheme; as we can see,
the calculation of w is, basically, a sparse matrix (S)-sparse vector (v) product;
this fact saves many computations. A y_sum reduction is also required to obtain
vector w. Finally, submatrix S is updated as a;; = a;; + v; X w; (2.13). As
in MGS, it is a local operation performed fully in parallel by all the processors.
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Fill-in may occur at this stage if a;; = 0 and v;, w; # 0. The updating of the
norms is also a local operation (2.14). An auxiliary array of pointers, pointing to
row k in the lists or packed vectors (which store matrix A) is required to perform
this operation.

All the optimizations in the management of linked lists of the MGS procedure
(Section 3.2) are also applicable to the Householder algorithm, as well as the
packed vector implementation based on the reallocation of the columns of the
matrix.

3.4 Parallel Givens Rotations

A parallel algorithm for dense matrices based on Givens rotations (specifically,
fast Givens rotations) on a massively parallel SIMD computer (the Connection
Machine CM-200) was implemented by Bendtsen et al. [12]. Parallel sparse
Givens algorithms are found in [75], for an SGI Power Challenge computer, and
in [61], where Kratzer implements parallel Givens rotations on a CM-2 SIMD
computer with 16K processors, using a dataflow graph and only nearest-neighbor
communications.

We present parallel sparse row-oriented Givens rotations in [98]. The core
of Givens algorithm changes substantially with respect to the other two QR al-
gorithms. This is because our algorithm requires access both by rows and by
columns: row access because the algorithm updates the entries row by row, as
shown in Figure 2.7; and column access to perform the column pivoting. A data
structure such as a two-dimensional linked list would be suitable to store matrix
A, but it is very costly to manage and requires a great amount of memory space,
as we discussed in Section 2.6. Therefore, we use one-dimensional doubly-linked
lists (as in MGS and Householder algorithms) to provide access by columns. Effi-
cient row access is achieved using an auxiliary array of pointers (of size n) which
points to a certain row of the matrix in the list structure. With this array of
pointers, we traverse the linked lists (which represent columns of the matrix)
from bottom to top to point to one certain row of the matrix (row access). Fi-
gure 3.6 shows an example of this auxiliary array (called auzp), pointing to the
row 3 of the sparse matrix of Figure 2.8. If the corresponding element of this row
is zero (as it occurs in the second and third columns), auzp points to the previous
element of the list because, in this algorithm, we traverse the lists in the reverse
order. Therefore, the entries of the array auzp are updated in each iteration of
the loop i of expression (2.15), in order to make them point to the previous row
(i — 1) of the sparse matrix.

Let us consider the Givens sequential algorithm (Figure 2.6) to analyze how
it can be executed in parallel. If these rotations are parallelized according to the
sequential algorithm, neither the outer loop k, which traverses the columns of
the matrix, nor the inner loop (2.15), which annihilates each element of the co-
lumn, could be executed in parallel due to data dependences. Thus, the parallel
algorithm would need n(2m-n-1)/2 iterations (in the dense case). Nevertheless, a
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Givens rotation (2.17) can be applied to any two rows, not necessarily adjacent;
therefore, each row of PEs can apply, independently and in parallel, the rotations
to the rows of A which they store, so that execution times are reduced. Commu-
nications are required to broadcast gcos and gsin to the corresponding rows of
PEs (z_brd).

This process is illustrated for a 32x 4 matrix distributed on an 8x 1 mesh (Fi-
gure 3.7i). In the example of Figure 3.7, the eight PEs apply, in parallel, Givens
rotations to the rows of the first column of the matrix, but the first row of each PE
is not rotated. Rows which have not been rotated are paired 2 by 2, in parallel.
This implies [logs npey]| steps at most. In this example, npey = 8 and three
steps are required: 3.7ii, 3.7iii and 3.7iv; the final result is shown in Figure 3.7v.
The number of steps can be reduced in some cases; for instance, some PEs may
not have elements to be annihilated, due to the sparsity of the matrix and/or
due to the fact that the algorithm is computing the last iterations, which reduces
communications. In the previous example, if 4 PEs did not have any element to
be zeroed, only [log, 8-4] =2 steps would be necessary. The procedure shown in
Figure 3.7 was generalized in our parallel Givens algorithm for any value of npey,
and was not restricted to powers of 2.

Rows are rotated to annihilate the corresponding entries. It is clear that,
with the sparse approach, those rows whose first element is zero do not need to
be rotated. As our matrix is sparse and there are no null elements stored in the
lists, we traverse the entries of list (column) & and rotate only the rows of nonzero
elements. This way, we save many rotations, and running times are decreased.
Obviously, fill-in may appear at this stage, when applying a rotation following
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Figure 3.7: Parallel Givens rotations

expression (2.17). The parallel algorithm uses several routines for insertion and
deletion in the lists in order to improve their management.

The parallel approach of the column pivoting procedure, the initial norm
calculation and norm updating (2.16) are similar to the ones of the Householder
algorithm.

3.5 Parallel Least Squares

As we said in Section 2.5, the least squares problem min ||Az — b||s can be
approached by means of QR factorization, by solving the upper triangular sys-
tem RII"z = Qb in three stages: calculation of @b, back-substitution and
permutation.

The product QTb is calculated at the same time as the QR factorization is
performed. Previously, in MGS, vector b (we assume it is dense) was distributed
in each column of PEs, so that the global component I of b is replicated in the
row of PEs with pidy=I mod npey. The vector named g¢tb contains the product
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Figure 3.8: Calculation of Qb

Q™b, so that one element of gtb is obtained for each iteration k of the algorithm.
Each element is a dot product between vector b and the column of () obtained
in that iteration (obviously, due to the data distribution, it is not necessary to
transpose matrix (). Figure 3.8a shows this situation, where the current column
of @ being processed (iteration k) is the middle one, and the local dot product is
calculated. Then, in Figure 3.8b the global dot product is obtained by means of a
reduction instruction (y_sum). In order to group communications, this reduction
is performed at the end of the factorization, for the whole vector ¢tb instead
of entry by entry. We describe the parallelization of the least squares problem
through the MGS algorithm in [30].

Matrix @) is not explicitly calculated by means of Householder reflections. In
order to get QTb, vector b is stored in vector gtb (note that, unlike MGS, qtb
becomes a replicated column vector). And, in each one of the iterations (n, if
the rank is maximum) of our parallel algorithm, a Householder transformation is
applied to elements gtby..,_1: qtb = qtb-+wvA (similar to (2.13)), where A = Bqtb’v
(similar to (2.12)), is a real number. Only a reduction y_sum is necessary to
obtain A in each iteration. The rest of the operations are local. As we can see,
the required entries of gtb (qtby.,—1) are obtained in-place over vector b.

Using Givens rotations, vector b is stored in vector ¢tb, in the same way as in
Householder reflections (in-place procedure). Next, Givens rotations are applied
to the corresponding elements of ¢tb at the same time as the rotations to the rows
of matrix A are applied. For instance, if rows o and 3 are being processed, this
product is calculated as follows (it is similar to (2.17)):

qtb:l gcos —gsin \ [ qtb,
( qtblﬂ ) < ( gsin  gcos ) ( qtbg ) (3.1)
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It is a local operation, as gcos, gsin were previously broadcast to the corres-
ponding processors, as described in Section 3.4.

Once QTb is calculated, the upper triangular system Rz = QTb is solved
by means of a back-substitution. The corresponding sequential algorithm is as
follows:

for (i=rank-1;i>0;i--)

rank—1

T; = (qth — Z Tij - CCJ')/T,‘Z'; (32)

j=i+1

This loop has data dependences, and thus it must be kept in the parallel
code without any possibility of being distributed among the PEs. However, it
is a limitation for dense systems. Cabaleiro and Pena [19] propose a parallel
back-substitution by taking advantage of the sparse nature of the system. They
implemented a data-driven back-substitution, making use of non-blocking com-
munications in order to dynamically extract the inherent parallelism of sparse
systems. This strategy is very interesting for algorithms in which the back or
forward substitutions represent an important part of the whole running time of
the application (for instance, the incomplete LU factorization [10]). This is not
the case for our QR factorizations and, therefore, this approach is not worth the
trouble of implementing it due to its complexity.

In addition, it is necessary to access the entries of matrix R by rows (ma-
trix R is stored by columns). There are several options to solve this draw-
back. One of them is to apply the column version of the back-substitution,
described in [42, Chapter 3]. Another option is to change the storage scheme of
matrix R to a row-oriented one. The solution we have implemented is to maintain
the storage scheme of matrix R and use an auxiliary pointer vector to allow row
access, in the same way as shown in Figure 3.6 and described in Section 3.4 for
Givens rotations.

The communications required for the back-substitution are: a reduction ope-
ration (z_sum, sum by rows) to obtain the component E;‘;’;’fgl 1ij-¢; of expression
(3.2); and a broadcast operation (y_brd, broadcast by columns) to send every entry
of the solution vector z, as it is being obtained, to the corresponding column of
PEs.

Once the back-substitution is carried out we get the solution vector z € R"
distributed cyclically on each row of PEs, so that the global entry J of vector z
is replicated in the column of PEs with pidz = J mod npezx.

The last phase of the least squares problem is the permutation stage. Due to
the column pivoting carried out in the QR factorization, the IT permutation must
be applied to the components of vector z, so that z is overwritten with vector
[Tz. All the PEs contain a vector named permute € R". It is the only vector
whose components are not distributed among the PEs (all the PEs contain the
full vector replicated). This vector stores the index of the column swapped in
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each iteration (p) and, by applying these swaps to the components of z starting
from the end, the entries of z are obtained in the correct order. This permutation
operation is inherently sequential, but it means a minimal part in the execution
time of the whole factorization procedure.
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Chapter 4

Experimental Results

4.1 Parallel Machines

The supercomputer in which the parallel algorithms were originally developed was
the Fujitsu AP1000 MIMD distributed memory computer, which is composed
of a host computer and from 64 to 1024 processing elements or cells (SPARC
processors) in a two-dimensional torus topology.

It also has three independent communication networks, depicted in Figure 4.1:
the torus network (T-net, with hardware support for wormhole routing), for point
to point communications between cells; the broadcast network (B-net), for 1 to
N communications between the host and the cells, as well as for data distri-
bution and collection; and the synchronization network (S-net), for the barrier
synchronization (consult [59] for more details on the architecture). It has its
own set of native message-passing routines for parallel processing [38]. This en-
vironment, which is called CellOS, includes gather/scatter instructions, reduc-
tion instructions, broadcast and messaging routines, etc. We used this set of
instructions for our parallel algorithms, although the standard message-passing
library MPI [71][72] was later supported by the AP1000. The AP1000 pa-
rallel programming environment is extensively detailed in [55]. The parallel
QR algorithms were debugged and tested on the software AP1000 simulator
CASIM [39].

All the algorithms were also implemented on the Cray T3D distributed me-
mory multiprocessor, shown in Figure 4.2. It has a Cray Y-MP as server, and
from 32 to 2048 DEC-Alpha 21064 processors at 150 MHz, connected by a 3-D
torus topology. This architecture, its programming models and programming
tools are described in detail in [25]. The PVM message-passing library [40][92],
due to portability reasons, was selected to program our parallel algorithms on
the Cray T3D. We have also used low latency communication functions, such
as pum_fastsend and pvm_fastrecv (non-standard PVM functions) for messages of
size less than 256 bytes. We have also developed specific reduction and broad-
cast PVM-based routines suitable for our algorithms in order to group together
communications insofar as this has been possible. The parallel algorithms for
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Fujitsu AP1000 Cray T3D Cray T3E
Processor SPARC DEC Alpha DEC Alpha
21064 (150 Mhz) 21164 (300 Mhz)
Processor peak 8.33 MFLOPS 150 MFLOPS 600 MFLOPS
performance (single precision)
5.67 MFLOPS
(double precision)
Local memory 16 Mb 64 Mb 64 Mb to 2 Gb
#processors 64 to 1024 32 to 2048 16 to 2048
Peak interprocessor 50 Mb/s (B-net) 300 Mb/s 480 Mb/s
communication rate 25 Mb/s (T-net) (3D torus) (3D torus)

Table 4.1: Characteristics of the target supercomputers

this machine were previously debugged on a cluster of workstations in a PVM
environment.

The parallel codes, for both supercomputers, were written in C language,
using double precision floating point numbers and following the SPMD (Simple
Program Multiple Data) paradigm.

Table 4.1 summarizes the characteristics of the AP1000 and T3D multipro-
cessors. Obviously, the peak parameters are achieved under ideal conditions. For
instance, the routing hardware of the AP1000 T-net provides a theoretical inter-
processor communication rate of 25 Mb/s between any two cells but, in practice,
about 6 Mb/s is attainable by user programs.

The Cray T3E supercomputer was also included in this table, with comparison
purposes, because it will be the target machine of further experiments described
in Chapter 7.

4.2 Execution Times and Efficiencies

All the experimental results presented in this chapter were obtained by setting
e = 1 in the pivoting strategy of expression (2.18), in order to reduce fill-in as
much as possible.

Tables 4.2, 4.3, 4.4 present, the execution times (in seconds) and efficiencies
on the AP1000 of the QR algorithms, for MGS, Householder and Givens, res-
pectively. The use of square meshes is not a restriction, rectangular meshes
could be employed. The execution times include QR factorization as well as
the solving of the least squares problem. The time required for data distri-
bution and collection is not included because we assume that these algorithms
are possible subproblems within larger programs. Three sparse matrices from the
Harwell-Boeing set (see Table 2.1) have been chosen: JPWH991, SHERMAN1
and MAHINDAS.
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1 PE 2x 2 PEs
DLL PV DLL PV

JPWH991 2415485 2152.33s 646.37s (0.93) 576.76s (0.93)
SHERMAN1 510.20s 451.42s 159.39s (0.80) 143.99s (0.78)
MAHINDAS  246.94s  221.39s  83.24s (0.74)  77.05s (0.72)

4% 4 PEs 8x8 PEs
DLL PV DLL PV
JPWH991  183.68s (0.82) 164.02s (0.82) 54.02s (0.70) 50.31s (0.67)
SHERMAN1 47.56s (0.67)  44.60s (0.63) 15.91s (0.50) 15.03s (0.47)
MAHINDAS  31.83s (0.48)  30.50s (0.45) 14.56s (0.27) 13.87s (0.25)

Matrix

Table 4.2: MGS: execution times and efficiencies on the AP1000 for e = 1, using
doubly-linked lists (DLL) and packed vectors (PV)

1 PE 2x 2 PEs
DLL PV DLL PV

JPWH991 2283.24s 2093.75s 596.71s (0.96) 553.20s (0.95)
SHERMAN1 645.35s 561.04s 190.02s (0.85) 167.47s (0.84)
MAHINDAS 277.98s 251.16s 91.65s (0.76)  87.90s (0.71)

4% 4 PEs 8x8 PEs
DLL PV DLL PV
JPWH991  162.44s (0.88) 155.64s (0.84) 46.45s (0.77) 44.97s (0.73)
SHERMAN1 53.59s (0.75)  50.07s (0.70) 17.89s (0.56) 17.58s (0.50)
MAHINDAS  33.91s (0.51)  33.44s (0.47) 15.46s (0.28) 15.37s (0.26)

Matrix

Table 4.3: Householder: execution times and efficiencies on the AP1000 fore =1,
using doubly-linked lists (DLL) and packed vectors (PV)

Matrix 1 PE 2%x 2 PFEs 4x4 PEs 8x 8 PFEs
JPWH991 1089.05s  327.60s (0.83) 91.87s (0.74) 35.83s (0.47)
SHERMAN1 221.04s 90.41s (0.61) 25.62s (0.54) 11.67s (0.30)
MAHINDAS 140.39s  63.13s (0.56) 23.11s (0.38) 10.72s (0.20)

Table 4.4: Givens: execution times and efficiencies on the AP1000 for e = 1,
using doubly-linked lists
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1 PE 2x 2 PEs

Matrix DLL PV DLL PV

JPWH991  241.36s 202.50s 71.35s (0.85) 59.61s (0.85)
ORANI678 504.42s 384.80s 146.09s (0.86) 114.46s (0.84)
SHERMANS5 607.35s 512.27s 172.62s (0.88) 149.42s (0.86)
4% 4 PEs 8x8 PEs
DLL PV DLL PV
JPWH991  18.98s (0.79) 16.63s (0.76) 7.43s (0.51)  7.29s (0.43)

( ( (
ORANI678  50.30s (0.63) 41.50s (0.58) 21.56s (0.37) 21.03s (0.29)
SHERMANS5 73.62s (0.52) 64.61s (0.50) 26.96s (0.35) 26.95s (0.30)

Table 4.5: MGS: execution times and efficiencies on the Cray T3D for e = 1,
using doubly-linked lists (DLL) and packed vectors (PV)

1 PE 2x2 PEs

Matrix DLL PV DLL PV

JPWH991  232.45s 161.025s 63.09s (0.92) 46.31s (0.87)
ORANI678  765.25s 594.51s 249.33s (0.77) 200.80s (0.74)
SHERMANS5 1156.79s 890.67s 346.44s (0.83) 275.37s (0.81)

4% 4 PEs 8x8 PEs
DLL PV DLL PV

JPWH991 19.10s (0.76) 15.81s (0.64) 8.39s (0.43) 8.13s (0.31)
ORANI678  70.53s (0.68) 60.11s (0.62) 29.97s (0.40) 28.94s (0.32)
SHERMANS5 99.29s (0.73) 85.85s (0.65) 42.64s (0.42) 40.48s (0.34)

Table 4.6: Householder: execution times and efficiencies on the Cray T3D for
e =1, using doubly-linked lists (DLL) and packed vectors (PV)

Matrix 1 PE 2x 2 PEs 4x4 PEs 8x8 PEs

JPWH991 148.10s 48.86s (0.76) 16.40s (0.56) 7.67s (0.30)
ORANI678 288.43s 95.50s (0.76) 37.66s (0.48) 18.59s (0.24)
SHERMANS5 452.64s 143.88s (0.79) 59.99s (0.47) 32.22s (0.22)

Table 4.7: Givens: execution times and efficiencies on the Cray T3D for e = 1,
using doubly-linked lists
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Figure 4.3: Matriz JPWH991: execution times for the QR algorithms on the Cray
T3D

Tables 4.5, 4.6, 4.7 show the same information for the Harwell-Boeing matrices
JPWH991, ORANI678 and SHERMANS, which have enough fill-in and are large
enough to be executed on a multiprocessor like the Cray T3D. Matrix JPWH991
was intentionally included in the experiments of both supercomputers in order
to have a comparative reference on the computing power of the AP1000 and the
Cray T3D machines. As observed in the execution times of this matrix for one
PE, the execution on the AP1000 SPARC PE takes approximately one order of
magnitude more than on the T3D Alpha PE. The remaining matrix in Table 2.1
(SHL400) was discarded in these experiments because the computation time for
its factorization is not large enough to be worth being executed in these parallel
computers.

In the case of MGS and Householder, execution times are provided using
doubly-linked lists and packed vectors as data structures. The advantages of
packed vectors as opposed to linked lists were detailed in Section 2.6. Basically,
as packed vectors store the nonzero entries of the matrix in adjacent memory
positions, cache misses are reduced to a great extent and, therefore, execution
times are decreased, as shown experimentally in Tables 4.2, 4.3, 4.5 and 4.6. This
fact is very clear for small meshes but, as can be observed, execution times using
doubly-linked lists and packed vectors are closer and closer as the number of PEs
increases because communications are the same for both schemes and there are
fewer local computations. As a consequence of that, efficiencies are worse using
packed vectors.
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As a comparison of the three algorithms, the Householder factorization is,
in general, the one which presents the highest running times (except in matrix
JPWH991); this is due to the great amount of fill-in which appears in matrix R
during Householder factorization (see next section, Table 4.8), which increases
the number of computations with the new nonzero entries. On the other hand,
the fastest algorithm is the one based in Givens rotations (even compared to the
MGS and Householder algorithms implemented with packed vectors). As we can
see, the running times of the three algorithms come closer as the number of PEs
increases, specially for MGS and Givens (it is clear for an 8x8 mesh) because,
when data are distributed among more PEs, the number of computations that
each processor carries out is smaller and the communication term is a relatively
more significant fraction of the running time. Figures 4.3, 4.4 and 4.5 present
a graphical comparison among the execution times of the three QR algorithms
on the Cray T3D, for matrices JPWH991, ORANI678 and SHERMANS, respec-
tively. In these figures, the execution times for MGS and Householder are the
ones obtained using packed vectors, while in Givens rotations the only available
doubly-linked list running times were used.

The efficiency for npes PEs (Eypes) is defined as Eypes = (W+1Tnm), being
Thpes the execution time using npes PEs. With regard to the efficiencies, as we can
see in the corresponding tables, the algorithms scale rather well. Nevertheless,
better efficiencies could be achieved with larger matrices because, in general,
there are more calculations and the running time of the local task is large in
relation to the additional time required by communications; thus, the parallelism
is more efficiently exploited. Efficiencies are worse for the Givens algorithm, not
only for having lower execution times than the other algorithms, but also for the
number of communications which are required to update the non-rotated row of
each PE in each step of the Givens factorization (see Figure 3.7). The influence
of this factor increases for large mesh sizes; for instance, note that for matrices
JPWH991 and SHERMANS the running times on the Cray T3D are lower in
Givens than in MGS for all the mesh configurations, except for an 8x8 mesh
topology, in which the execution times are higher in Givens than in MGS. This
results in lower efficiencies.

As a last remark, it is obvious that efficiencies are much better in the AP1000
than in the Cray T3D (see matrix JPWH991) because the ratio Processor peak
performance/Peak interprocessor communication rate (see Table 4.1) is much
lower in the AP1000 than in the T3D. That is, the interprocessor network in
the AP1000 is very fast in relation to the SPARC processor, which results in
good efficiencies.

4.3 Fill-in and Numerical Results

Let us analyze how the parallel execution of the algorithms affects the fill-in of
matrix R and numerical stability. As shown in Table 4.8, sparsity fluctuates
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Matrix 1 PE 2x 2 PEs
MGS HOU GIV MGS HOU GIV
SHL400 1712 1712 1712 1712 1712 1712
JPWH991 174307 262486 174930 184806 262105 183583
SHERMAN1 53560 104238 51552 53560 102636 56290
MAHINDAS 32392 61412 34157 32392 61220 33785
ORANI678 354720 516293 356227 352686 547765 355601
SHERMANS5 343218 850164 343635 350747 866825 310017
4% 4 PEs 8x8 PEs
MGS HOU GIV MGS HOU GIV
SHL400 1712 1712 1712 1712 1712 1712
JPWH991 171019 263295 167191 161431 254009 141080
SHERMAN1 53560 103176 43677 53560 102227 53706
MAHINDAS 32392 62471 33715 32392 62528 33672
ORANI678 353855 534198 351486 353473 535828 355489
SHERMANS 375562 861524 301554 343352 878523 341842

Table 4.8: Number of nonzero entries in matriz R using several mesh configura-
tions (e =1)

Matrix 1 PE 2x 2 PEs
MGS HOU GIV MGS HOU GIV
SHL400 0 0 0 0 0 0

JPWH991 9.99E-15 1.44E-14 2.22E-14 8.66E-15 1.53E-14 1.64E-14
SHERMAN1 3.34E-13 3.43E-12 3.03E-12 2.98E-13 3.39E-12 1.57E-12
MAHINDAS 6.39E-7 1.70E-9 222E-9 6.53E-7 3.04E-9 3.91E-10

ORANI678 1.15E-12 1.14E-13 1.10E-13 6.21E-13 8.13E-14 9.28E-14
SHERMANS5 6.48E-9 1.32E-12 5.34E-13 2.32E-9 244E-12 5.05E-13

4% 4 PEs 8x8 PEs
MGS HOU GIV MGS HOU GIV
SHL400 0 0 0 0 0 0

JPWH991 6.88E-15 1.69E-14 1.93E-14 6.88E-15 1.20E-14 1.20E-14
SHERMAN1 1.56E-13 3.48E-12 5.08E-13 6.43E-13 1.28E-12 8.55E-13
MAHINDAS 6.70E-7 1.38E-9 6.15E-10 6.71E-7 2.29E-9 2.76E-9

ORANI678 1.86E-12 1.17E-13 5.20E-14 9.92E-13 8.70E-14 1.14E-13
SHERMANS5 2.38E-9 1.02E-12 7.77E-13 4.17E-10 4.21E-13 8.42E-13

Table 4.9: Numerical errors using several mesh configurations (e =1)
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Figure 4.6: Matriz JPWH991: fill-in in matriz R for different mesh sizes

depending on the mesh configuration that is used (1, 4, 16 and 64 PEs). The
explanation for this lies in the fact that, when choosing the pivot column p follo-
wing criterion (2.18), a tie between two (or more) candidate columns is possible.
Obviously, the pivot column, selected by means of a reduction instruction, varies
depending on the mesh configuration, whereupon factorization will be different.
This fluctuation in the number of elements in matrix R is greater using Givens
rotations since, depending on the configuration of the mesh (more specifically,
depending on the number of processors on the Y axis, npey), the pairs of rows of
the coefficient matrix A involved in each rotation vary (due to the cyclic distri-
bution) and, therefore, fill-in is different. Figures 4.6, 4.7, 4.8 depict the sparsity
in matrix R for matrices JPWH991, ORANI678 and SHERMANJ, respectively,
in order to have a graphical and clear view of part of the results shown in Ta-
ble 4.8.

It is very important, from the numerical stability point of view of our parallel
algorithms that, although fill-in varies, the numerical errors described in Sub-
section 2.7.2 remain invariant using different mesh sizes. This fact is checked in
Table 4.9. As we can see, the numerical errors vary slightly depending on the
number of PEs, for the same reason mentioned above for the fill-in. Neverthe-
less, within each particular algorithm, the variation in error, not following any
special pattern or tendency, is not significant for the various mesh configurations.
Finally, we present additional experimental results on the AP1000 in a technical
report [96].



4.3. FILL-IN AND NUMERICAL RESULTS 61

Fill-in in matrix ORANI678

e=1
1.0E+6
M GS
===HOUSEHOLDER
= 56E+5 F ——GIVENS | B - i
2 —
o
ko)
a2 - _ _ _
% 32E+5 | .
T
(@]
o)
N
5
Z 18E+5 | E
1.0E+5
1 4 16 64

Number of PEs
Figure 4.7: Matriz ORANI678: fill-in in matriz R for different mesh sizes

Fill-in in matrix SHERM AN5

e=1
1.0E+6
i I ]
M GS
—HOUSEHOLDER
g 56E+5 | L——_GIVENS ]
o
5
2 _ ~
2 3.2E+5 | _ B .
D
o
o
N
5
Z 18E+45 | -
1.0E+5
1 4 16 64

Number of PEs
Figure 4.8: Matrix SHERMANS: fill-in in matriz R for different mesh sizes



62 CHAPTER 4. EXPERIMENTAL RESULTS

4.4 Local Pivoting

The criterion to preserve sparsity proposed in Subsection 2.7.1 (expression (2.18))
is a global pivoting strategy, to the effect that the candidate pivot columns may
be located in any column of PEs. If the pivot column p and the current column &
are located in different processors, communications are necessary to perform the
corresponding column swap (explicit pivoting), as described in Section 3.2.

Assuming the equi-probability of each column of processors to contain the
selected pivot column following expression (2.18) (this assumption can be made
due to the utilization of a cyclic distribution), and assuming, to simplify, that the
coefficient matrix to be factorized is maximum-rank, the mean number of com-
munications (data exchanges) required to perform the pivoting is (1 — nplew) X n.
Obviously, as the X dimension of the mesh (npez) increases, a larger number of
communications will be necessary because the probability of columns k£ and p

being located in the same column of PEs decreases.

Our proposal to reduce the pivoting communications consists in applying a
local pivoting, so that the candidate pivot columns are restricted to those located
in the column of PEs which contains column k. Therefore, we should add the
condition ’and (k mod npex) = (p mod npex)’ to the criterion (2.18). With this
strategy, pivoting is simply reduced to a pointer exchange, and communications
are eliminated; it is, therefore, a local operation. Besides, if linked lists are used
as storage scheme, we also save the execution times required by the pivoting
operation to dump/reconstruct the lists in/from a buffer, as shown in Figure 3.3.
It is also important to note that the fact of using local pivoting does not eliminate
the rank-revealing condition of the factorization.

Nevertheless, in the last iterations of the QR algorithms, there are few candi-
date pivot columns in the corresponding column of PEs and, in this situation, it
would be advisable to apply global pivoting to ensure numerical stability and spar-
sity preservation. In order to include this feature, we define a parameter named
v as the number of iterations of the algorithms in which local pivoting is applied
divided by the total number of iterations (7 if the matrix is maximum-rank). Ta-
king into account the previous assumptions, the mean number of communications
required by the pivoting strategy becomes (1 — nplew) X (1 — ) x n. In practice,
as we work with large sparse matrices (n high), we use 7 values greater than 0.9.
Therefore, in the code of Figure 2.1 we should add the following condition at the

beginning of loop k: ’if (k< v n) apply local pivoting’.

We have also considered those cases in which, for a certain iteration, none of
the candidate pivot columns in the corresponding column of PEs satisfy criterion
(2.18) (for instance, for all the candidate pivot columns, their norm is less than
the threshold ¢). In this situation, which may happen in any iteration, global
pivoting is applied in that iteration, taking advantage of the calculations pre-
viously performed in the local pivoting. That is, in fact, all the columns of PEs,
not only the one which owns column £, carry out the calculations of local pivoting
in parallel, just in case global pivoting is necessary. This prospective calculation



4.5. SPARSE QR FACTORIZATION ON A VECTOR PROCESSOR 63

. Global pivoting Local pivoting
Matrix Ex.time Error Ex.time Error 7Red.Ex.
JPWH991 7.29s 6.88E-15 6.65s 8.22E-15 9%
MAHINDAS 5.66s 6.71E-7 4.43s 2.94E-7 22%

ORSREG1 23.83s  5.23E-13  19.86s  4.73E-13 17%
ORANIG678 21.03s  9.92E-13  18.87s  5.62E-13 10%
SHERMANS5  26.95s 4.17E-10  20.88s  1.97E-10 23%
GEMAT11 40.15s 5.03E-5 30.28s 9.81E-5 25%

Table 4.10: Global pivoting vs local pivoting

does not increase the computation times.

The drawbacks of local pivoting lie in the fact that, as the candidate pivot
column set is restricted, fill-in may increase in some occasions. This is because the
criterion to reduce fill-in has less candidate pivot columns to select, among them,
the one which causes the maximum preservation of sparsity. This fact could imply
higher execution times to treat this new nonzero entries, and this overhead in the
execution time can counterbalance the profits in the running times obtained by
reducing the communications using local pivoting.

Experimentally, we have proven that the local pivoting strategy provides satis-
factory results for high values of npex and, in general, for large matrices (n high),
in which the effect of the communication reduction is appreciable in the whole
factorization execution time. Table 4.10 shows a comparison between global and
local pivoting, for the parallel MGS algorithm, on an 8 x8 mesh of the Cray T3D,
using packed vectors as storage scheme and setting y=0.99, e=1. Two new sparse
matrices from the Harwell-Boeing collection were included because they have
adequate dimensions to perceive the profits of local pivoting: ORSREGI, a
2205x% 2205 matrix with 14133 nonzero entries (0.29% of non-null elements) ob-
tained in the field of oil reservoir simulation, and GEMAT11, 4929x4929, with
33185 nonzero entries (0.14%), generated in the area of power flow modelling.
More experiments on local pivoting using the AP1000 are presented in [95].

As we can see in Table 4.10, execution times are reduced by 17.5% on average
using local pivoting, for this set of sparse matrices, which is a significant reduction
that results in better efficiencies. Moreover, the numerical errors are practically
the same for global and local pivoting, as desired. The numerical error for matrix
GEMAT11 is not very good, but with the Householder and Givens algorithms we
obtain, for this matrix, errors of the order of 1071°.

4.5 Sparse QR Factorization on a Vector Pro-
cessor

As an appendix of this chapter and for illustrative purposes, we run the sparse
MGS and Householder algorithms on a vector processor, the Fujitsu VP2400/10
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Figure 4.9: Architecture of the Fujitsu VP2400/10 vector computer

uniprocessor model, whose structure is shown in Figure 4.9.

It has one scalar and one vector unit. The vector unit of this computer is basi-
cally composed of vector registers, mask registers and multiple pipelines. Vector
registers are used for storing the data needed by the vector operations and can
be reconfigured through hardware in number and word size. Mask registers are
used by the conditional statements in order to allow changes in the data flow of
the vector operations; this way, conditional statements can be vectorized. The
VP-2400/10 model has seven pipelines: two mask pipelines, two for multiplica-
tion/addition, two for loading/storage and one division unit. Six pipelines can
work concurrently.

The sparse algorithms executed on this computer are the ones which use
packed vectors as storage scheme. A set of directives, which begin with the
keyword #pragma, can be inserted in the code to provide additional information
to the vectorizing compiler. Table 4.11 shows the execution times (in seconds)
for solving the sparse least squares problem through the MGS and Householder
factorizations on the Fujitsu VP2400. Table 2.1 shows the characteristics of the
test matrices.

More important than the execution times is the fact that the special characte-
ristics of our sparse codes result in very low vectorization rates, v = t4/ts (where
ts1 is the scalar CPU time of the part of the program which can be vectorized,
and t, is the scalar CPU time for the whole program). Hence, poor performances
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Matrix Ex.time MGS Ex.time HOU

JPWH991 100.87s 89.18s
SHERMANI1 21.03s 24.33s
MAHINDAS 11.78s 16.22s

Table 4.11: Execution times on a vector processor

for (i=0; i<qr.sizel[jl; i++)
*(ptr+i) = *(qr.cols[jl+i);

(a)
for (j=0; j<n; j++)
for (ptr=qgr.cols[j]; ptr<limit; ptr++)
buf [ptr->i] += ptr->a;

(b)

Figure 4.10: Sparse code examples for a vector processor

are achieved because the vector unit of Figure 4.9 is under-used. This work is
described in [29].

Figure 4.10 shows two significant examples taken from QR algorithms source
code (see Section 2.6 and Figure 2.8 for a better comprehension of the code
notation). Vectorization is extremely difficult due to the complex data addressing
(Figure 4.10a); it even involves a variable of type pointer (ptr) in the limits of a
loop and its corresponding increment (Figure 4.10b).

As a conclusion, vector computers have been extensively used for years in
matrix algebra to deal with large dense matrix problems. However, if matrices
are sparse and we use special storage schemes (see the ones of Figure 2.8) for them,
vectorization provides a poor performance due to the large number of indirections
in the code.
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Chapter 5

A Parallel Library for Sparse
Computations

5.1 An Overview of the Library

As we pointed out in the previous chapters, sparse matrix operations appear
in many scientific areas. Many libraries have been developed for managing
sparse matrices, specially in linear algebra (consult Section 1.4); for instance,
SPARSKIT [85], is a set of useful basic routines for sparse matrix manipulation.
More libraries for sparse matrix operations are described in [70]. A more recent
library is the NIST Sparse BLAS (Basic Linear Algebra Subprogram) library [82],
which provides computational kernels for fundamental sparse matrix operations.
All of these libraries are based on compressed storage formats which do not con-
sider fill-in.

Many linear algebra applications need to be solved in parallel due to me-
mory and CPU requirements; so, parallel libraries such as ScaLAPACK [23] were
developed, mainly oriented at dense computations, although they include some
sparse matrix features.

In this chapter, we present 3LM, a C Linked List Management Library which
was mainly designed for sparse direct factorizations on distributed memory MIMD
computers, in a PVM environment, although these routines can also be applied to
other kinds of problems involving fill-in, due to their flexibility. 3LM is restricted
to a mesh topology and is based on an SPMD programming model. This library is
based on DDLY (Data Distribution Layer) [100], a parallel sparse library suitable
for other irregular applications not involving fill-in, such as molecular dynamics
and iterative methods for sparse matrices.

Our goal is to make the distributed programming in such environments easier
by means of a set of list and vector oriented operations (which can be mixed, if
necessary, with message-passing routines for more sophisticated computations).
The result is a pseudo-sequential code, in which the IF constructs used to fix the
actions on each particular processor are hidden to the programmer. This scheme

69
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also exploits local computations following the owner-computes rule.

5.2 Library Data Structures and Distributions

The choice of a data structure for representing a sparse matrix, as well as the
selection of an adequate data distribution are important keys to achieve efficient

parallel algorithms. Next, we describe the data structures and distributions avai-
lable in 3LM.

5.2.1 Data Schemes

In the context described in the previous section, the scheme we name Linked List
Column/Row Distribution (LLCD/LLRD) is the one selected for representing
and distributing sparse matrices. It includes a data structure: linked lists, each
one of them represents one column/row of the matrix, and a data distribution, a
pseudo-regular cyclic distribution. There is a detailed description in Sections 2.6
and 3.1, respectively.

For the LLCD scheme, this is accomplished by means of the following 3LM
routine:

int 111_dcd (char *file_n, int n, dl1 *list_id)

where file_n is the name of the file in which the matrix is stored in Harwell-Boeing
format [34] or in coordinate format; if filen=0 (or NULL), the structure is only
set up (this is for sparse matrices which are generated at run-time); n is the
number of columns of the matrix, and list_id is an identifier (or descriptor) of
the matrix which contains the list orientation, and an array of pointers to the
beginning (first) and to the end (last) of the lists. The type of this identifier is
the predefined data type dll.

In Figure 5.1 an 8 x 8 matrix is distributed onto a 2 X 2 mesh using this
scheme. Similar routines have been developed for a row-oriented scheme: [ll_drd
(in this case, each list represents one row of the sparse matrix), for singly-linked
lists: [ll_scd, lll_srd (column and row-oriented, respectively), and even for two-di-
mensional linked lists: [{l_sred, lll_drcd (singly and doubly-linked, in this order).
In these cases the library predefined types of the identifiers are different for each
scheme (for instance, sil for one-dimensional singly-linked lists).

In matrix algebra, vector operations (scalar-vector multiplication, vector addi-
tion, dot product, vector multiply, saxpy operation) are very common. Besides,
the characteristics of many problems force the programmer to manage vectors
distributed (and even replicated) in a row or column of processors of the virtual
mesh to take advantage of data locality and to minimize communications. In
order to make this kind of operations easy, we use the routine:
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Figure 5.1: LLCD scheme

void *111_InitVector (char *file_n, int nels, vector *vec_id,
int dir, int dtype)

which distributes a dense vector of nels components stored in file_n onto a mesh

in a cyclic way, over each row or column of processors (that is, replicated), de-
pending on dir (XDirection or YDirection); dtype is the data type of the ele-

ments: Datalnt, DataFloat, DataDouble (predefined constants). This routine
stores in wvec_id (vector identifier) the following information: orientation of the

vector (row-oriented or column-oriented), type of the elements and a pointer to

the beginning of the vector, which is also returned.
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Figure 5.2: List reorientation, from column-direction to row-direction

5.2.2 Data Reorientation

The LLCD and LLRD schemes favour a column and a row access to the elements
of the matrix, respectively. In many matrix problems, the predominant direction
of the accesses to the matrix entries may vary during program execution. There-
fore, it would be interesting to change the orientation of the data storage scheme
at run-time in a point of the code to allow efficient data access in other direc-
tion. The penalization of this reorientation can compensate for the overhead of
performing, for instance, many row accesses to data stored in a column-oriented
fashion.

The procedure [ll_dreorient offers this chance:
111_dreorient(&list_id, new_direction, m, n)

where m X n are the dimensions of the matrix, defined by list_id, to be reoriented;
new_direction is the new orientation of the matrix and it can be XDirection or
Y Direction.

This operation does not imply communications (it is a local operation) or
allocations/releases of memory; it only involves a pointer reassignment, as we can
see in Figure 5.2, where the column-oriented (YDirection) data storage scheme
of Figure 5.1 is transformed into a row-oriented (XDirection) one (this is only
shown for data of PE (0,0)). The routine lll_dreorient is for one-dimensional
doubly-linked lists, but there is also an analogous routine for singly-linked lists
(lll_sreorient). Obviously, there are no reorientation routines for two-dimensional
linked lists, as they allow efficient access both by rows and columns.

Similarly, we have the routine [ll_vreorient to redistribute vectors. For ins-
tance, if we want to reorient a column-oriented vector (previously initialized by
routine [ll_InitVector and identified by v_id) to a row-oriented vector, we should
write:

v=111_vreorient (&v_id, XDirection, nels)
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Figure 5.3: Vector redistribution, from column-direction to row-direction

where the first parameter is the identifier of the vector, the second one is the
new direction of the vector and the last one is its size. It returns a pointer
to the beginning of the vector (v) in order to work with it using the vector
notation. It is recommended to use the same name for the vector (v in the
example) as the old one; otherwise we must take into account than we cannot refer
to the new vector with the old name, which has no associated vector any more.
This is because this procedure (unlike [ll_dreorient) implies allocations/releases
of memory. It also entails communications to redistribute the entries of the
vector in the corresponding processors. Figure 5.3 is an example of this kind of
redistribution. If we reorient a vector in the same direction it previously had,

new_v=111_vreorient (&v_id, YDirection, nels)

the effect is that we can refer to this vector using the old name (v in the example)
or the new one new_v, because they are physically the same vector.

5.3 Mapping Iterations

Let us assume a mesh topology in which each processor is identified by coordinates
(pidz, pidy), being pidz the coordinate in the X axis of the mesh and pidy the
coordinate in the Y axis. All programs must begin with the statement:

111_BeginMesh (npex, npey, progname)

which sets a mesh of dimensions npeyxnpexr and executes the program progname
in all the processors, using a PVM environment, for a cluster of workstations or
for a Cray T3D/T3E supercomputer (by setting progname=0/NULL). Programs
must end with [[l_EndMesh().

As an example, considering that a matrix A is stored in an LLCD format, a
double loop which performs a column access is mapped on a local double loop as
shown in Figure 5.4.
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for (j=j1; j<j2; j++) for (j=feu(i1); j<fea(i2); j++)
for (i=il; i<i2; i++) for (i=f,op(i1); i<frow(i2); i++)
Ajj=--- Ayj=---
being

] o= 1 if pide < (x mod npex)
Jeot() = {npe:cJ +{ 0 otherwise

| = 1 if pidy < (z mod npey)
frow(®) = {npeyJ +{ 0 otherwise

Figure 5.4: Mapping global loops onto local loops

(a,b) (ad)

(c,b) (c,d)

Figure 5.5: An example of iteration space

Let us consider the iteration space of Figure 5.5. It is very common in problems
that involve the reduction of the index space, such as the LU, QR and Cholesky
factorizations, in which submatrix operations are very usual. For instance, let
us consider the operation of multiplying the entries of submatrix Ag.c 4.4, shown
in Figure 5.5 by a constant named value. The corresponding SPMD code using
3LM for the processor mesh is expressed as:

for (j=fcol(b); j<fcol(d+1); j++)
111_doper(j, listA_id, value, OpMul, frow(a), frow(c+1));

where listA_id is the matrix A identifier, OpMul is the operation (product) of each
element of the list with value, from global row index a up to index c. There are
predefined operations: OpAdd, OpSub, OpMul, OpDiv, Nop (this last one defined
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as Nop(a,b)=b), as well as user-defined ones (consult Subsection 5.6.3). As we
can see, all the iterations of the outer loop are traversed, but the inner loop is
converted into the procedure [ll_doper in order to go only through the links of the
corresponding list because it is not necessary to traverse all the iterations.

An analogous procedure for vectors is lll_doperv, with the same parameters as
lll_doper, but with a vector identifier vec_id instead of a constant value; it operates
each element of list j with the corresponding entry of vec_id.

5.4 Library Routines

The 3LM routines we have shown in the previous sections and the ones we will
see next have been specified for column-oriented operations, that is, using an
LLCD scheme for lists and using column vectors ( YDirection). This was accom-

plished in order to simplify their explanation. There exist similar procedures for
singly-linked lists (Ill_sx) and for 2-D linked lists (Ill_2dx, [ll_2sx).

However, the same routines can be also applied to row-oriented operations
(when using an LLRD scheme and row vectors) because these routines obtain the
orientation from the identifiers of lists and vectors, and they operate accordingly.
Therefore, in the sections of this chapter in which the term ’column j’ appears,
it can be also applied to row +’, depending on the distribution scheme used. For
instance, a one-dimensional row-oriented singly-linked list is shown in Figure 5.6.
Note that, as in doubly-linked lists, we have a pointer to the end of each list; this
is to make insertion and deletion operations easier.

5.4.1 Replication Operations

Sometimes, a column (in an LLCD scheme) of the matrix is required to perform
calculations with data located in other processors. The procedure:

111_drepl(j, list_id, vec_id, low, high)

replicates column j of the matrix on the corresponding processors, in the dense
vector defined by wvec_id, from entry with index low up to entry high, not inclusive
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Figure 5.7: Replication of one column of a matrix

(this fact makes it applicable to all functions in which parameters low and high
appear).

Regarding implementation details, this procedure broadcasts a compressed
vector instead of a full-size vector to reduce the size of the message to be broad-
cast. Figure 5.7 shows an example of this operation. There are analogous proce-
dures to replicate dense vectors (lll_vrepl).

5.4.2 (Gather Operations
They are used for vectors which are replicated (but not necessarily) and cyclically

distributed on each row (or column) of processors, and other processors need to
obtain non-local data of these vectors. The function:

111_vgather(vec_id, ji, j2)
returns the value of entry jI of the vector identified by wvec_id to the processors

which own entry j2. If j2=All (All is a predefined constant of the library), this
value is returned to all the processors, as shown in Figure 5.8.

5.4.3 Reduction Routines

3LM provides a set of reduction instructions, both for lists and for dense vectors.
For instance:
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111_vmaxval/111l_vminval(vec_id, low, high)

returns the maximum/minimum element of vector vec_id, from index low up to
index high. Similarly,

111_vmaxloc/111_vminloc(vec_id, low, high)

returns the index of the maximum/minimum element. There are also reduction
routines for arithmetic operations (sum, product, etc.) and even for user-defined
operations (see Subsection 5.6.3).

5.4.4 Fill-in Routines

In the sparse computations we are considering, an important drawback is the
generation of new nonzero entries in the matrix, with the corresponding problems
of storage and treatment of these entries. This is solved by means of the linked list
structure. Let us consider the following double loop which traverses the iteration
space of Figure 5.5:

for (j=b; j<d+1; j++)
for (i=a; i<c+1; i++)
Az'j = AZ] + vec;

where vec is a vector previously distributed and replicated in each column of pro-
cessors. Fill-in appears in this computation and is confined in the local processor



78 CHAPTER 5. A PARALLEL LIBRARY FOR SPARSE COMPUTATIONS

which executes its own set of iterations. We can solve this using the following
routine:

for (j=fcol(b); j<fcol(d+1); j++)
111_dfillin(j, listA_id, vec_id, OpAdd, frow(a), frow(c+1l));

where OpAdd is the operation between the elements of the list and the elements
of vector vec. Generalizing, this operation can be a predefined (see Section 5.3)
or even a user-defined function g,p.,. According to this, the procedure lll_dfillin
carries out the following actions:

# 0and A;; #0 Entry A;; updated in the list as Aj;
#0and Aj; =0 New entry Aj; inserted in the list
0 Entry A;j deleted of the list

Ajj No actions are taken

If A)Fj < YGoper (Aija Ueci)

1

For this routine, g, can be the predefined function Nop, being, for this particular
example, Nop(A;;,vec;)=vec;. So, function Nop, as parameter of the procedure
lll_dfillin explained above, is equivalent to delete list j, and the new list (column)
j corresponds now to the nonzero entries of vector vec.

A complete set of insertion and deletion functions, hidden to the programmer,
has been developed to manage the fill-in in the list structures. There also exists
a constant value named accuracy, which can be set in the code; it is a threshold
so that all matrix entries with absolute value less than accuracy are considered as
zeroes (by default, for double precision numbers, accuracy=10"2°). This constant
has the same purpose as the threshold value ¢ of expressions (2.3) and (2.18).

A routine which is related to lll_dfillin is:
111_dupdate(i, j, aij, list_id)

which sets element (%,j) in the matrix identified by list_id to aij (as in ll_dfillin
insertion and deletion are assumed depending on the value of aij). In an LLCD
scheme, this procedure can be useful for updating a row of the matrix. Note that,
for this scheme, a row access is very expensive in comparison with a column access.
For instance, if we want to set the elements of row A,;3p.4-3 (see Figure 5.5) to
the corresponding values of a row vector named new_values, we should write:

for (j=fcol(b); j<fcol(d-2); j++)

111_dupdate(i, j, new_values[j], listA_id);

The inner loop is necessary to set the PEs which do not own row a+3 to idle.

5.4.5 Swapping Operation

In many matrix calculations, explicit pivoting operations are required. This fea-
ture is a drawback in sparse computations due to the storage scheme and to
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the fill-in, which changes the number of elements per column of the matrix. A
high-level swap operation is implemented to make the programming easier:

111_dswap(j1, j2, list_id, m)

being j1 and j2 the global indices of the columns to be swapped in the mesh
according to the LLCD scheme, and m is the row dimension of the matrix. Com-
pressed vectors are used to reduce message sizes.

5.4.6 Other Routines

Additional remarkable procedures for list management are:

e 111_dcount(j, list_id, low, high)

returns the number of elements of list (column) j defined by list_id, from
row index low up to index high (not inclusive). This value is returned to all
the processors which contain column j.

e 111 _dvdp(j, list_id, vec_id, low, high)

returns to all the processors which own list (column) j the dot product
between that column and vector vec_id, with low and high as index limits.
There is a similar function l//l_vvdp which obtains the dot product of two
vectors.

e 111_dunpack(j, list_id, vec_id, low, high)

copies elements of list (column) j, from index low up to index high on the
corresponding positions of the column vector defined by vec_id; the rest of
elements of this vector are zero.

e 111_dpop(i, j, list_id)

obtains entry (7,j) of the list defined by list_id. If that element is not in the
list, it returns zero.

There are also LM low-level routines to manage the data structures directly,
as well as to determine the actions on each processor of the mesh, for special
operations which cannot be performed with the high-level set described above.
These routines are described in Section 5.6.

5.5 Practical Examples

The following subsections present examples of parallel sparse algorithms pro-
grammed with the $LM routines, focusing on sparse QR codes and least squares
problems.
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#include "111.h"

void main()

{

int m, n, pesx, pesy, j;
double *temp;

vector temp_id;

sll listA_id, listB_id;

pesx=4; pesy=4;

111_BeginMesh(pesx, pesy, "addAB");

m=5000; n=5000;

temp=111_InitVector(0, m, &temp_id, YDirection, DataDouble);

111_scd("matrixA", n, &listA_id);

111_scd("matrixB", n, &listB_id);

for (j=fcol(0); j<fcol(m); j++) {
111_sunpack(j, listB_id, temp_id, frow(0), frow(m));
111_sfillin(j, listA_id, temp_id, OpAdd, frow(0), frow(m));

}
111_EndMesh();

Figure 5.9: Column-oriented sparse matriz-sparse matriz sum

#include "111.h"
void main()

int m, n, pesx, pesy, 1i;
double *temp;

vector temp_id;

sll listA_id, listB_id;

pesx=4; pesy=4;
111_BeginMesh(pesx, pesy, "addAB2");
m=5000; n=5000;
temp=111_InitVector(0, n, &temp_id, XDirection, DataDouble);
111_srd("matrixA", m, &listA_id);
111_srd("matrixB", m, &listB_id);
for (i=frow(0); i<frow(m); i++) {
111_sunpack(i, listB_id, temp_id, fcol(0), fcol(n));
111 _sfillin(i, listA_id, temp_id, OpAdd, fcol(0), fcol(n));

}
111_EndMesh();
}

Figure 5.10: Row-oriented sparse matrixz-sparse matriz sum

5.5.1 Sparse Matrix-Sparse Matrix Sum

As a first example of the use of these routines, we display in Figure 5.9 the
code for an in-place sparse matrix-sparse matrix sum (an operation with fill-in),
A+ A+ B, on a4 x 4 mesh, using singly-linked lists. Matrices A and B are
read from files and their dimensions are 5000 x 5000. A row-oriented version is
shown in Figure 5.10.
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#include "111.h"
void main()

int m, n, pesx, pesy;

int i, j, k, rank, p;

double pivot, tempnorm;

double *norm, *vsum, *vcol, *temp;

vector norm_id, vsum_id, vcol_id, temp_id;
dll listQ_id, listR_id;

pesx=4; pesy=4;
111_BeginMesh(pesx, pesy, "qr_mgs");
m=100; n=100;
norm=111_InitVector(0, n, &norm_id, XDirection, DataDouble);
vsum=111_InitVector (0, n, &vsum_id, XDirection, DataDouble);
vcol=111_InitVector (0, m, &vcol_id, YDirection, DataDouble);
temp=111_InitVector(0, m, &temp_id, YDirection, DataDouble);
111_dcd("matrix.dat", n, &listQ_id);
111_dcd(NULL, n, &listR_id);
rank=n;
for (j=fcol(0); j<fcol(m); j++) {
111_dunpack(j, listQ_id, temp_id, frow(0), frow(m));
norm[j]1=111_dvdp(j, listQ_id, temp_id, frow(0), frow(m));

for (k=0; k<n; k++) {
pivot=111_vmaxval(norm_id, fcol(k), fcol(n));
p=111_vmaxloc(norm_id, fcol(k), fcol(n));
if (pivot < 1.0e-20) {
rank=k; break;

}
111 _dswap(k, p, listQ_id, m);
111_dswap(k, p, listR_id, n);
tempnorm=111_vgather (norm_id, k, p);
for (j=fcol(p); j<fcol(p+1l); j++)
norm[j]=tempnorm;
pivot=sqrt (pivot);
for (j=fcol(k); j<fcol(k+1); j++) {
for (i=frow(k); i<frow(k+1); i++)
111_dupdate(i, j, pivot, listR_id);
111 _doper(j, listQ_id, pivot, OpDiv, frow(0), frow(m));

}
111 _drepl(k, listQ_id, vcol_id, 0, m);
for (j=fcol(k+1); j<fcol(m); j++) {
vsum[j]=111_dvdp(j, listQ_id, vcol_id, frow(0), frow(m));
for (i=frow(k); i<frow(k+1); i++)
111_dupdate(i, j, vsum[j], listR_id);
norm[j]=norm[j]-vsum[j]*vsum[j];
for (i=frow(0); i<frow(m); i++)
temp[i]l=vcol[il*vsum[j];
111 _dfillin(j, listQ_id, temp_id, OpSub, frow(0), frow(m));
}

}
111_EndMesh();

Figure 5.11: Sparse MGS code using SLM routines

5.5.2 Sparse QR Factorizations

Sparse QR algorithms are more complex examples of programming with this
library. The code of Figure 5.11 shows an example of the use of the 3LM routines



82 CHAPTER 5. A PARALLEL LIBRARY FOR SPARSE COMPUTATIONS

for (j=fcol(k); j<fcol(n); j++) {
if (norm[j] < 1.0e-20)
counter[j]l=m+1;
else counter[j]=111_dcount(j, listQ_id, frow(0), frow(m));

}
p=111_vminloc(counter_id, fcol(k), fcol(n));
pivot=111_vgather (norm_id, p, All);

Figure 5.12: Code to preserve sparsity in the MGS algorithm

for the rank-revealing sparse MGS algorithm, with column pivoting, whose ma-
nual parallel implementation was widely described in Section 3.2. As we can see,
this code is not very broad (as much as the sequential code, more or less), whereas
the corresponding parallel code written by hand fills two thousand lines of code,
approximately.

The pivoting strategy applied in the example of Figure 5.11 is the one used
in dense QR factorizations (see expression (2.2)). Nevertheless, it is easy to
program, using this library, the fill-in strategy explained in Subsection 2.7.1.
This is accomplished by substituting the first two lines of code of the main loop
k in Figure 5.11 by the code of Figure 5.12. The integer vector counter which
appears in this figure was previously declared and set as a row vector:

counter=111_InitVector(0, n, &counter_id, XDirection, Datalnt)

This 3LM code uses expression (2.18) with € = 1, that is, it selects as pivot
column the one with the least number of nonzero elements, provided that the
square of the norm of the pivot column is larger than a specific threshold (1072
in our example code).

Figure 5.13 is the 8LM code for the sparse Householder transformations (see
Section 3.3 for more details about the parallel algorithm), with the fill-in reduction
method incorporated.

Note that, in these codes, local indices are always used, both in the loop limits
and in the routines of the library. It is achieved by means of functions fcol and
frow, previously described in Figure 5.4. This allows the appropriate processors
to be working. The exceptions are the routines for replication (Subsection 5.4.1),
gathering (Subsection 5.4.2) and swapping (Subsection 5.4.5), which use global
indices in their arguments. The set of reduction instructions mazloc/minloc (see
Subsection 5.4.3) also returns a global index.

As we said before, in this chapter we have mainly focused on column-oriented
operations, but these routines are also applied to row-oriented operations depen-
ding on the distribution of lists and vectors. For instance, in the code of Figu-
re 5.13, the first routine /[l vrepl is applied to a column vector v_id (replication
in each column of processors), but the second one is applied to a row vector
temp2_id (replication in each row of processors). In order to show this feature,
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#include "111.h"
void main()
{
int m, n, pesx, pesy, i, j, k, rank, p;
double pivot, tempnorm, divider, beta;
double *norm, *w, *v, *temp, *temp2;
int *counter;
vector norm_id, w_id, v_id, temp_id, temp2_id, counter_id;
dll 1listQR_id;
pesx=4; pesy=4; m=100; n=100;
111_BeginMesh(pesx, pesy, "qr_hou");

norm= 111_InitVector (0, n, &norm_id, XDirection, DataDouble);
w= 111_InitVector(0, n, &w_id, XDirection, DataDouble);
v= 111_InitVector (0, m, &v_id, YDirection, DataDouble);
temp=  111_InitVector(0, m, &temp_id, YDirection, DataDouble);
temp2= 111_InitVector(0, n, &temp2_id, XDirection, DataDouble);
counter=111_InitVector(0, n, &counter_id, XDirection, Datalnt);

111_dcd("matrix.dat", n, &listQR_id);

rank=n;

for (j=fcol(0); j<fcol(m); j++) {
111_dunpack(j, listQR_id, temp_id, frow(0), frow(m));
norm[j]=111_dvdp(j, listQR_id, temp_id, frow(0), frow(m));

for (k=0; k<n; k++) {
for (j=fcol(k); j<fcol(m);j++) {
if (norm[j] < 1.0e-20)
counter [j]l=m-k+1;
else counter[j]=111_dcount(j, 1listQR_id, frow(k), frow(m));
}
p=111_vminloc(counter_id, fcol(k), fcol(n));
pivot=111_vgather(norm_id, p, All);
if (pivot < 1.0e-20) {
rank=k; break;

111_dswap(k, p, listQR_id, m);
tempnorm=111_vgather (norm_id, k, p);
for (j=fcol(p); j<fcol(p+1l); j++)
norm[j]=tempnorm;
pivot=sqrt(pivot);
for (j=fcol(k); j<fcol(k+1); j++) {
111_dunpack(j, listQR_id, v_id, frow(k), frow(m));
divider=111_vgather(v_id, k, All);
if (divider < 0.0)
pivot=-pivot;
divider=divider+pivot;
for (i=frow(k); i<frow(m); i++)
v[il=v[il/divider;

111_vrepl(k, v_id, k, m);
for (i=frow(k); i<frow(k+1); i++)
v[i]l=1.0;
beta=-2/111_vvdp(v_id, v_id, frow(k), frow(m));
for (j=fcol(k); j<fcol(n); j++) {
w[jl=beta*111_dvdp(j, listQR_id, v_id, frow(k), frow(m));
for (i=frow(k); i<frow(m); i++)
temp[i]l=v[il*w[j];
111 _dfillin(j, listQR_id, temp_id, OpAdd, frow(k), frow(m));
temp2[j1=111_dpop(frow(k), j, listQR_id);
}

111 _vrepl(k, temp2_id, k+1, n);
for (j=fcol(k+1); j<fcol(n); j++)
norm[j]=norm[j]-temp2[jl*temp2[j];

}
111_EndMesh();

Figure 5.13: Sparse Householder code using SLM routines
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S,

Figure 5.14: Row-oriented Householder transformations

we have implemented a row-oriented triangularization of a sparse square matrix
by means of Householder transformations using 3LM routines. The procedure
is based on Householder post-multiplications [42, Chapter 5. Row pivoting was
also incorporated to preserve sparsity. This algorithm traverses the iteration
space in descending order, and the subrow k,0:k-1 is zeroed in the k-th iteration;
this way, the lower triangular part of the matrix is annihilated and the upper
triangular matrix UT is obtained, as shown in Figure 5.14. The corresponding
3LM code is presented in Figure 5.15 (note that this algorithm is not exactly a
QR factorization, it is only a matrix upper triangularization to show the handling
of the 3LM routines).

5.5.3 Sparse Least Squares Problems

We have also implemented the least squares problem by means of the sparse MGS
code of Figure 5.11. As we detailed in Section 3.5, this problem is approached by
solving the upper triangular system RII”z = Q7'b, which consists of three stages:
calculation of Qb, back-substitution and permutation.

First, the following vectors must be declared and initiated in the 3LM code:

e Vector b (right-hand side of the system)

double *b;

vector b_id;

b=111_InitVector("vectorb.dat", m, &b_id, YDirection,
DataDouble) ;

e Vector gtb (stores the product Q7b)

double *qtb;
vector qtb_id;
qtb=111_InitVector(0, n, &qtb_id, XDirection, DataDouble);
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#include "111.h"

void main()

{

int dim, pesx, pesy, i, j, k, p;

double pivot, tempnorm, divider, beta;
double *norm, *w, *v, *temp, *temp2;

int *counter;

vector norm_id, w_id, v_id, temp_id, temp2_id, counter_id;
dll 1istUT_id;

pesx=4; pesy=4; dim=100;
111_BeginMesh(pesx, pesy, "triang_hou");

norm=  111_InitVector (0, dim, &norm_id, YDirection, DataDouble);
W= 111_InitVector (0, dim, &w_id, YDirection, DataDouble);
v= 111_InitVector (0, dim, &v_id, XDirection, DataDouble);

temp= 111 _InitVector(0, dim, &temp_id, XDirection, DataDouble);
temp2= 111 _InitVector(0, dim, &temp2_id, YDirection, DataDouble) ;
counter=111_InitVector(0, dim, &counter_id, YDirection, Datalnt);
111_drd("matrix.dat", dim, &listUT_id);
for (i=frow(0); i<frow(dim); i++) {
111_dunpack(i, 1istUT_id, temp_id, fcol(0), fcol(dim));
norm[i]=111_dvdp(i, 1istUT_id, temp_id, fcol(0), fcol(dim));

}
for (k=dim-1; k>-1; k--) {
for (i=frow(0); i<frow(k+1);i++) {
if (norm[i] < 1.0e-20)
counter [i]=k+1;
else counter[i]=111_dcount(i, 1istUT_id, fcol(0), fcol(k+1));

p=111_vminloc(counter_id, frow(0), frow(k+1));
pivot=111_vgather(norm_id, p, All);
111_dswap(k, p, listUT_id, dim);
tempnorm=111_vgather (norm_id, k, p);
for (i=frow(p); i<frow(p+1); i++)
norm[i]=tempnorm;
pivot=sqrt(pivot);
for (i=frow(k); i<frow(k+1); i++) {
111 _dunpack(i, 1istUT_id, v_id, fcol(0), fcol(k+1));
divider=111_vgather(v_id, k, All);
if (divider < 0.0)
pivot=-pivot;
divider=divider+pivot;
for (j=fcol(0); j<fcol(k+1l); j++)
v[jl=v[jl/divider;

111 _vrepl(k, v_id, 0, k+1);
for (j=fcol(k); j<fcol(k+1); j++)
v[j]=1.0;
beta=-2/111_vvdp(v_id, v_id, fcol(0), fcol(k+1));
for (i=frow(0); i<frow(k+1); i++) {
wl[il=betax*111_dvdp(i, 1listUT_id, v_id, fcol(0), fcol(k+1));
for (j=fcol(0); j<fcol(k+1); j++)
temp[jl1=v[jl*w[il;
111_dfillin(i, 1istUT_id, temp_id, OpAdd, fcol(0), fcol(k+1));
}temp2[i]=lll_dpop(i, fcol(k), listUT_id);

111_vrepl(k, temp2_id, 0, k+1);
for (i=frow(0); i<frow(k+1); i++)
norm[i]=norm[i]-temp2[i]*temp2[i];

}
111_EndMesh();

Figure 5.15:

Row-oriented sparse upper triangularization using Householder
transformations (3LM code)
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for (k=rank-1; k>-1; k--) {
for (i=frow(k); i<frow(k+1); i++) {
rbyx=111_dvdp(i, listR_id, x_id, fcol(k+1), fcol(rank));
for (j=fcol(k); j<fcol(k+1l); j++)
x[j]1=(atb[j]l-rbyx) /111 _dpop(i, j, listR_id);

111 _vrepl(k, x_id, k, k+1);

Figure 5.16: 3LM back-substitution

e Vector z (solution vector)

double *x;
vector x_id;
x=111_InitVector(0, n, &x_id, XDirection, DataDouble);

e An integer vector permute € R". As the entries of this vector are not
distributed over the processors, it does not require the [ll_InitVector SLM
routine. Entry & of this vector contains the index of the pivot column (p) in
iteration k. This is achieved by adding the following statement at the end
of the code of Figure 5.12:

permute [k]=p;

The product @7b is obtained in vector gtb by means of the following 3LM
sentence, located just after the routine lll_doper (inside the loop j) of the code of
Figure 5.11:

qtb[jl=111_dvdp(j, listQ_id, b_id, frow(0), frow(m));

Once we have calculated QTb and the factorization ends, a back-substitu-
tion (3.2) is required to solve the system Rz = QTb. As we pointed out in
Section 3.5, one possible approach is to change the storage scheme of matrix R to
a row-oriented one; this solution is the one chosen because it is easy to implement
by means of the 3LM reorientation routines (see Subsection 5.2.2), as opposed to
the auxiliary pointer vector approach chosen in the manual codes.

Therefore, matrix R is previously reoriented to a row-oriented scheme using
this sentence:

111_dreorient(&listR_id, XDirection, n, n);

and then, the corresponding row-oriented back-substitution is applied, as dis-
played in Figure 5.16.

But the least squares procedure is not finished yet. The permutations per-
formed in the algorithm must be applied to the elements of the solution vector z.
Therefore, we must apply the swaps stored in vector permute, starting from the
end, to obtain the elements of vector z in the right order (see code of Figure 5.17).
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for (k=rank-1; k>-1; k--) {
buf1=111_vgather(x_id, k, permutel[k]);
buf2=111_vgather(x_id, permute[k], k);
for (j=fcol(k); j<fcol(k+1); j++)
x[j]1=buf2;
for (j=fcol(permutelk]); j<fcol(permutel[k+1]); j++)
x[j]l=bufl;

Figure 5.17: Permutation of the entries of the solution vector z

5.6 Low-Level Features

In special and unavoidable situations, users need to program in a low-level fashion,
taking into account the mesh topology and using message-passing routines di-
rectly. The functions of the next subsections (none of these functions were ne-
cessary in the example codes of the previous sections) are provided to aid the
programmer in these special tasks.

5.6.1 Mesh Functions

The mesh topology is visible for the programmer through the use of the following
functions:

e npes (). Returns the number of processors of the mesh.

e npesx/npesy(). Returns the number of processors in the X/Y dimension
of the mesh.

e peid (). Provides the identifier of the processor.

e peidx/peidy(). Provides the X/Y axis identifier of the processor in the
mesh.

e pidowner(i,j). Returns the identifier of the processor which contains en-
try (i,j). It is a local operation: (i mod npesy())xnpesz() + j mod npesz(),
due to the distribution scheme we are using.

e pidxowner(j)/pidyowner(i). Returns the identifier in the X/Y axis of
the processors which contain the entries of column/row j/i.

There are also functions to convert global indices into local indices (locrow(7)
and loccol(j)) and vice versa (globrow(i)/ globcol(j)).
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typedef struct itemd {

——— — typedef struct items {
prev. . int index; int index;
index | aij type aij; type aij;
struct itemd *prev; struct items *next;
- next struct itemd *next; } items
} itemd; '
Doubly-Linked List Singly-Linked List

Figure 5.18: Data structures for list management

5.6.2 List Management

In order to perform more complex operations, users can combine the routines of
the 3LM library with the manual handling of the linked list data structures. This
management requires a deeper knowledge of the underlying data structures of
the library. Therefore, the declaration of these structures, shown in Figure 5.18
(for one-dimensional lists) must be taken into account by the user, where type
represents the int, float or double data types. There are similar data structures
for two-dimensional linked lists.

Programmers can access to the pointers to the beginning and to the end of
the lists using the functions lll_dbegin and lll_dend, respectively (lll_sbegin and
lll_send for singly-linked lists):

pointerd *111_dbegin/111_dend(dll list_id)
pointers *111_sbegin/111_send(sll list_id)

As we can see, in order to refer to these pointers, we must make use of the prede-
fined data types pointerd (for doubly-linked lists) and pointers (for singly-linked).
Therefore, with these functions we can access the elements of the lists directly.
For instance, if we want to display on the screen the nonzero elements of matrix
R obtained in the code of Figure 5.11, in a row-column-entry format (coordinate
format), we must first define:

pointerd *firstr, aux

and add the code of Figure 5.19 (note that the condition in the while loop is
because these lists end with the NULL value, as we show in Figures 5.1 and 5.6).

Similar functions for two-dimensional linked lists are:
pointer2d *111_2dbegin/111_2dend, pointer2s *111_2sbegin/111_2send

the first two 8L M routines for doubly-linked lists and the last ones for singly-linked.

We must take into account that, after using a reorientation procedure for
lists (see Subsection 5.2.2), the old values previously returned by the functions
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firstr=111_dbegin(listR_id);
for (j=fcol(0); j<fcol(n); j++) {
aux=firstr[j];
while (aux) {
printf ("\n i=Yd, j=%d, aij=%le", globrow(aux->index),
globcol(j), aux->aij);
aux=aux->next;
}
}

Figure 5.19: 3LM low-level code

lll_dbegin, lll_dend, etc. are not valid yet, because they have been changed by
means of the reorientation function. Therefore, these functions should be applied
again to obtain the right values.

5.6.3 User-Defined Functions

As we mentioned in Section 5.3, in addition to the predefined functions OpAdd,
OpSub, OpMul, OpDiv, Nop, which can be passed as a parameter of the routines
lll_doper, lll_doperv, lll_dfillin, etc. (and the analogous routines for singly-linked
lists and two-dimensional lists), users can define their own set of functions to
perform list operations. In order to do this, a binary function must be declared.
For instance, if we want to overwrite all the nonzero entries a;; of a matrix A
(stored in one-dimensional singly-linked lists) with 7.0 x log a;; (an operation
without fill-in), the user should first declare this function:

type OpExample (x, y)

type x, vy,
{

return loglO(x)*y;
}

and the corresponding 8LM code (using the routine lll_soper) to perform the
operation described above is:

for (j=fcol(0); j<fcol(m); j++)
111_soper(j, listA_id, 7.0, OpExample, frow(0), frow(m));

5.7 Comparison Results

It would be interesting to compare the parallel manual algorithms described in
Chapter 3 with the ones coded using 3LM routines. Table 5.1 shows this compa-
rison between the manual MGS algorithm (see Section 3.2) and the corresponding
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Manual code SLM code

JPWH991 Ex.Time Speed-up Ex.Time Speed-up %Overh.
1 PE 241.36s 1.00 805.32s 1.00 234%
2x2 PEs 71.35s 3.38 264.67s 3.04 271%
4x4 PEs 18.98s 12.72 96.97s 8.30 411%
8x8 PEs 7.43s 32.48 40.22s 20.02 441%
Manual code 3LM code
ORANIGTS Ex.Time Speed-up Ex.Time Speed-up %0verh.
1 PE 504.42s 1.00 2545.44s 1.00 405%
2x2 PEs 146.09s 3.45 828.23s 3.07 467%
4x4 PEs 50.30s 10.03 291.78s 8.72 480%
8x8 PEs 21.56s 23.40 126.14s 20.18 485%
Manual code 3LM code
SHERMANS Ex.Time Speed-up Ex.Time Speed-up #%Qverh.
1 PE 607.35s 1.00 2897.42s 1.00 377%
2x2 PEs 172.62s 3.52 883.15s 3.28 412%
4x4 PEs 73.62s 8.25 364.46s 7.95 395%
8x8 PEs 26.96s 22.53 148.77s 19.48 452%

Table 5.1: MGS: execution times and speed-ups for matrices JPWH991,
ORANI678 and SHERMANS

3LM version presented in Figure 5.11. Execution times and speed-ups are pro-
vided for three sparse matrices: JPWH991, ORANI678 and SHERMANS (see
Table 2.1). The experiments were conducted on a Cray T3D; therefore, the exe-
cution times for the manual MGS algorithm are the same as the ones presented in
Table 4.5 (using doubly-linked lists). The field %Overh. of Table 5.1 represents
the increase in the execution times of the LM algorithm in relation to the manual
one. As we can see, there is an important (and obvious) overhead (although these
algorithms scale rather well). This is due to the fact that the 3LM algorithms:

e do not use packed vectors to perform some basic vector operations; their
approach is to scatter the corresponding row/column of the sparse matrix
(represented by a list) on a dense vector (using [l xunpack routines) to
perform these operations (see, for instance, the sparse matrix-sparse matrix
sum examples of Subsection 5.5.1).

e do not use fast communication primitives (for example, the ones specific for
the Cray T3D supercomputer) in the underlying implementation; this was
done for portability reasons.

e do not group communications together; for example, if we want to calculate
a reduction operation of each column of a sparse matrix of n columns,
we should apply the corresponding reduction routine to each column of
the matrix; internally, it involves n reduction operations. But it can be
optimized, using low-level features (not used in our algorithms), grouping
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the communications of the n reduction operations together, in order to
reduce start-up times.

e do not have the deep knowledge of the programmer about the parallel al-
gorithms to optimize them.

In conclusion, the 3LM library consists of easy to program general purpose
routines, suitable for the field of sparse direct factorizations and their applications.
Therefore, it is clear that the execution times cannot be competitive compared to
the ones obtained using very optimized manual codes, such as the ones described
in the previous chapters. But, in contrast, these routines allow developing parallel
sparse codes effortlessly; besides, if more efficient codes are required, it offers the
chance of combining those routines with the low-level capabilities described in
Section 5.6.
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Chapter 6

HPF Extensions for Sparse
Operations

6.1 Introduction

In recent years, there have been important research efforts in developing efficient
parallel numerical codes for distributed memory multiprocessors. The data-pa-
rallel paradigm has emerged as one of the most successful programming models.
Recently introduced parallel languages, such as CM Fortran [93], Vienna For-
tran [22][110], Fortran D [36], Craft [76] and de facto standard High-Performance
Fortran (HPF) [56][57], follow this approach.

In a data-parallel programming model, the user writes code using a global in-
dex space and compiler directives to set data and work distributions. Data-parallel
compilers, taking into account this information, reorganize the code, translate
global addresses into local addresses and insert communications to execute the
program on a multiprocessor following an SPMD model.

All these languages had initially focused on regular computations, that is,
well-structured codes that can be efficiently parallelized at compile-time using
simple data (and computation) mappings. However, the situation is different
for irregular codes, where data-access patterns and workload are usually known
only at run-time. In the literature we can recognize two approaches to deal with
irregular codes. The first approach, compile-time techniques, extends the parallel
language with new constructs (compiler directives) to express non-structured pa-
rallelism. With this information, the compiler can perform at compile-time a
number of optimizations, usually embedding the rest of them into a run-time
library (as we will see in Section 7.2 of the next chapter). In the second approach,
run-time techniques, the non-structured parallelism is captured and managed
fully at run-time.

Regarding the first approach, Fortran D and Vienna Fortran data-parallel
languages, for instance, include some support for irregular data distributions. In
Fortran D, programmers can specify a mapping of array elements to processors

93
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using another array. Vienna Fortran, on the other hand, let programmers define
functions to specify irregular distributions. However, HPF in its first Forum [56]
does not directly support any of these constructs. This fact has been acknow-
ledged by some researchers, proposing a number of extensions to HPF trying
to correct this shortcoming [21][73], and by the HPF Forum in its decision for
developing the version 2.0 of HPF (HPF-2) [57]. This second release of HPF
has been improved providing a generalized block distribution (GEN-BLOCK),
where the contiguous array partitions may be of different sizes, and an indirect
distribution (INDIRECT), where a mapping array is defined to specify an ar-
bitrary assignment of array elements to processors. Others, however, prefer the
second approach, proposing run-time techniques to automatically manage pro-
grammer-defined data distributions, partition loop iterations, remap data and
generate optimized communication schedules. Most of these solutions are based
on the inspector-executor paradigm [18][78][79].

In any case, the current constructs included in these languages and the suppor-
tive run-time libraries are insufficiently developed, leading to low efficiencies when
they are applied to a broad set of irregular codes, appearing in the majority of
real scientific and engineering applications. To contribute to the solution of this
problem the Computer Architecture research group at the University of Malaga
has developed and extensively tested pseudo-regular data distributions, designed
as natural extensions of regular data distributions [6][9][84][100][101]. The aim of
these distributions is their simplicity for incorporation to a data-parallel language
and be used by a programmer, together with their effectiveness in obtaining high
efficiencies from the parallelization of irregular codes. But the underlying data
structures do not deal with fill-in computations and, therefore, we will discuss in
this chapter the above related issues in the scene of sparse matrix computations
involving fill-in and pivoting operations. Sparse direct factorizations (such as QR
orthogonalizations), as we have shown in the previous chapters, present this kind
of computations.

Henceforth, Fortran will be the implementation language of our algorithms
instead of C language, used in the previous chapters.

6.2 A First Data-Parallel Implementation Using
Craft

The basis language of Craft [76] is Fortran 77 plus a number of Fortran 90 exten-
sions such as array syntax and intrinsic functions to perform global operations
on shared data. It includes a set of compiler directives (beginning with the
keyword CDIRS$) to distribute data and work. Craft is only implemented on
Cray Research Massively Parallel Processors. Although we refer to Craft as a
data-parallel model, it also supports several other styles of programming, which
may be combined within the same program: message-passing, global address
(shared data) and work-sharing.
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induc = pos

DO i= inf, su
CDIR$ DO SHARED(i) om vv(i) IF (v(i) .NE. 0.0) THEN
DO i = inf, sup vv(induc) = v(i)

v(vi(i)) = vv(i) vi(induc) = i
END DO induc = induc + 1
END IF
END DO
(a) (v)

Figure 6.1: Sparse QR Craft example codes

A hybrid language of Craft and HPF, HPF_Craft [57, Annex D], combines
an SPMD execution model with the highest performing of the HPF features. It
is being implemented for Cray MPP systems and may also be available on Cray
vector architectures. The goal of HPF_Craft is to attain a well-defined extrinsic
interface to the standard HPF.

As a first approach to the data-parallel programming style, we tried to imple-
ment a simplified sparse MGS algorithm (without column pivoting and without
dynamic memory allocation, due to the use of Fortran 77) using Craft on a Cray
T3D. Basically, we implemented the corresponding sequential algorithm in For-
tran, using a CCS data structure (see Section 2.6) and we dealt with fill-in by
means of copying the data structure in each iteration of the algorithm to include
the newly generated elements. We detail this approach for the sparse MGS and
LU factorizations in [97].

Craft only provides the classical BLOCK(z) distribution for dense matrices,
where z indicates that each PE receives z contiguous entries of an array, starting
on PE #0 (if z=1, we have a cyclic distribution). These distributions are not
suitable for sparse matrix computations, as we will show in the QR example code
segments of Figure 6.1, which are extracts of our Craft code. The DO SHARED
directive in Figure 6.1a distributes the work of the loop; it assigns iteration ¢
to the PE which owns wvv(i). This piece of code unpacks a compressed vector
(with values stored in vector vv and row indices in vi) into a dense one, v (scatter
operation). The assignment statement with indirections on the left-hand side
prevents exploiting locality (it is not guaranteed that wv(vi(i)), vi(i) and wvv(i)
are located in the same processor) because none of the dense data distributions
provided by Craft are appropriate for the CCS sparse data structure.

The code in Figure 6.1b performs the opposite procedure (gather operation):
it packs the entries of a dense vector with many zero entries, v, into a compressed
one (represented by vv and wvi). Craft fails when compiling this piece of code
because of the use of an induction variable called induc and its increment inside a
conditional statement; the execution of these sentences produces erroneous (and
undefined) results in the entries of the compressed vector.
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REAL:: DATA(alpha)

INTEGER: : COL(alpha), ROW(m+1)

'HPF$ PROCESSORS, DIMENSION(P1,P2):: mesh

'HPF$ REAL, DYNAMIC, SPARSE(CRS(DATA,COL,ROW)):: A(m,n)
'HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

Figure 6.2: HPF specification of the BRS distribution

6.3 The SPARSE Directive

As can be observed, current data-parallel languages do not provide support to
specify data distributions for sparse matrices or flexible data structures for sto-
ring these matrices. However, the distribution strategy of a sparse matrix across
the processors and the data structure chosen to store the corresponding local
sparse matrices is essential to obtain high parallel efficiencies, as shown in the
experimental results of Chapter 4 on sparse QR algorithms. An interesting sur-
vey on current data-parallel languages, focusing on data distribution features, is
presented in [26].

It would be of major interest if we could incorporate to a data-parallel lan-
guage special data distributions and data structures for sparse computations.
Ujaldén et al [101] introduced the SPARSE directive to incorporate in Vienna
Fortran and HPF the MRD and BRS/BCS pseudo-regular data distributions (see
Section 3.1). Although these distributions can be specified using a mapping array,
for instance, through the HPF-2 INDIRECT directive, these mapping arrays
present several drawbacks, such as the amount of memory consumed and the
fact that all optimization analysis must be postponed until run-time. Besides,
as mapping arrays are usually distributed over the processors, there is also a
significant communication overhead whenever a processor needs to locate a data
item distributed through this mapping array. However, the pseudo-regular dis-
tributions mentioned above are more efficient, as a simple modulus calculation
is enough to locate the data items. For instance, an HPF-like specification of
the BRS data distribution may be as indicated in Figure 6.2 (see [101] for more
details).

The new SPARSE directive means, in this figure, that the sparse matrix A is
actually represented in a CRS format, using the arrays DATA, COL and ROW
(alpha is the number of nonzero entries of matrix A). The DYNAMIC keyword
in the SPARSFE directive means that the contents of the above three arrays are
determined dynamically, as a result of executing a DISTRIBUTE statement.

BRS is a cyclic distribution of the compressed representation of a sparse ma-
trix. Stating CYCLIC'in a DISTRIBUTE directive is understood by the compiler
as applying a BRS distribution to the DATA, COL and ROW arrays declared in
the SPARSFE statement. This way, we have the benefits of a cyclic data distri-
bution (load balancing and simple data addressing schemes, that lead to simple
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053 00 00 00
0500000 O 00 00 00 210
1098 8 8 8 8201 106 190 00 00 016 DATA  COL  ROW
00 00 072 00 19 1 1
0000 07200 3 1 -
0 00170 0 0 O 00 017 00 00 59 5 5
0 00 0930 0O 00 00 930 00 37 3 5
0000 O0O0130
0000440 019 [ 20 00 00 130 3
27 0 011 0 0 64 0 023 690 370 0 0
270 011 00 640
(a) (b) (c)

Figure 6.3: BRS partitioning for a 2x 2 processor mesh

communication patterns) applied to a sparse matrix independently of the com-
pressed format used to represent it. Figure 6.3 shows the result of applying this
directive, for m = 10, n = 8, P1 = P2 = 2 and alpha = 16. In this example,
the sparse matrix of Figure 6.3a is partitioned into a set of submatrices of size
2x2 (Figure 6.3b), which are further mapped, in the same way, onto the pro-
cessor mesh. As an example, the underlined entries in Figure 6.3b are assigned
to processor (0,0) of the mesh. Finally, the sparse local submatrices are stored in
a CRS format, as depicted in Figure 6.3c for the processor (0,0).

6.4 HPF-2 Proposals for Sparse Distributions

The tendency in data-parallel languages is to use Fortran, because of its extended
utilization in scientific codes and because it is less flexible than C, which makes
the implementation of the compiler easier.

We have chosen HPF to propose our data-parallel extensions for two main
reasons:

e Standarization. HPF is a standard of the High Performance Fortran Forum
(HPFF). HPFF is a coalition of industrial and academic groups working to
suggest a set of standard extensions to Fortran 90 to provide support for
high-performance programming on a wide variety of machines, including
massively parallel SIMD and MIMD systems and vector processors. The
last version is HPF 2.0 [57] and it is an extension of the current Fortran
standard Fortran 95.

e Fortran 90 basis. The basis of the data-parallel extensions described in [101]
is Fortran 77 and they do not consider pivoting operations or fill-in. We
propose data-parallel extensions for sparse matrix computations with pi-
voting and fill-in, using Fortran 90 [35] as basis language, due to the fact that
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Figure 6.4: LLRCS data storage scheme

dynamic data structures (pointers, memory allocation, etc.) are required
to support these features.

First, we propose four data storage schemes to support the sparse matrices
(or vectors) to be distributed:

e LLCS, Linked List Column Storage.
e LLRS, Linked List Row Storage.
e LLRCS, Linked List Row-Column Storage.

e (CVS, Compressed Vector Storage.

The first three schemes represent sparse matrices and the last one represents
one-dimensional sparse arrays. The LLCS storage scheme corresponds to the first
structure shown in Figure 2.8, that is, the matrix is represented by columns stored
as linked lists (but considering that, from now on, for all our Fortran codes, we
assume that the arrays begin in index 1). Observe that in the figure the lists
are doubly-linked, but they can also be defined as singly-linked, in order to save
memory overhead. The LLRS storage scheme is similar to LLCS, but considering
linking by rows instead of columns. A two-dimensional linked list data structure
can be declared using the LLRCS storage scheme, as shown in Figure 6.4. As
well as with the other two schemes, the entries can be singly or doubly-linked.
Finally, the CVS scheme represents a sparse array as two arrays and one scalar:
the index array, containing the indices of the nonzero entries of the sparse array,
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!Doubly LLRS, LLCS (one-dimensional)
TYPE entry
INTEGER:: index
REAL:: value
TYPE (entry), POINTER:: prev, next TYPE ptr
END TYPE entry TYPE (entry), POINTER:: p
END TYPE ptr
!Doubly LLRCS (two-dimensional)
TYPE entry TYPE (ptr), DIMENSION(n):: pex
INTEGER:: indexi, index]j
REAL:: value
TYPE (entry), POINTER:: previ, prevj, &
nexti, nextj
END TYPE entry

Figure 6.5: Fortran 90 derived data types for the list items and declaration of an
array of pointers to these items

the value array, containing the nonzero entries themselves, and a scalar that stores
the number of nonzero entries.

The left side of Figure 6.5 displays the Fortran 90 derived data types which
define the corresponding items of each kind of linked list. The first type corres-
ponds to the LLRS and LLCS schemes (doubly-linked), indistinctly, and the
second one, to the LLRCS scheme (doubly-linked too). The singly-linked versions
for these data types are similar, but without the prev pointers. The next step
consists in defining one array (or two) of pointers to the above items. It is not
possible in Fortran 90 to directly declare the array of pointers we wish. But
Fortran 90 allows us to declare such array(s) (say pez) indirectly through the use
of a derived data type (we called it ptr), as depicted in the right side of Figure 6.5.
Therefore, pez is an array of n pointers, each one of them pointing (if we have an
LLCS scheme) to one column of the sparse matrix.

Once the storage schemes have been defined, we can use the SPARSFE directive
(see Section 6.3) to specify that a sparse matrix (or sparse array), say A, is
stored using a particular linked list scheme. That is, A represents a place holder
(template) for the sparse matrix, and the SPARSFE directive establishes a connec-
tion between the logical entity A and its internal representation (linked lists).
The benefit of this approach is that we can use the standard HPF DISTRIBUTE
and ALIGN directives applied to the matrix A and, at the same time, store the
matrix itself using a compressed format. As an example, and connecting with
the preceding chapter, the LLCD (Linked List Column Distribution) scheme of
the 3LM library (shown in Figure 5.1) is equivalent to the LLCS storage scheme
of our extended HPF-2 combined with the DISTRIBUTE(CYCLIC, CYCLIC)
directive.

The SPARSE directive described in Section 6.3 can be easily extended to
incorporate the new linked list data structures. Figure 6.6 shows a simplified
Backus-Naur (BNF) syntax [43, Appendix 1] of our proposal for such direc-
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< sparse-directive> ::=<datatype>, SPARSE (<sparse-content>)::<array-objects>
<datatype>::= REAL | INTEGER
< sparse-content>::= LLRS (<ll-spec>)
| LLCS (<!l-spec>)
| LLRCS (<!i2-spec>)
| CVS (<cvs-spec>)
<ll-spec>::= <pointer-array-name>, <pointer-array-name>,
< size-array-name>,
<link-spec>
<lI2-spec>::= <pointer-array-name>, <pointer-array-name>,
<pointer-array-name>, <pointer-array-name>,
< size-array-name>, <Size-array-name>,
<link-spec>
<cvs-spec>::= <indez-array-name>, <value-array-name>, <size-scalar-name>
<link-spec>::= SINGLY | DOUBLY
<array-objects>::= <sized-array>{,<sized-array>}
< sized-array>::= <array-name>(<subscript>[,<subscript>])

Figure 6.6: Syntaz for the proposed HPF-2 SPARSE directive

tive, where the new data structures are the only ones considered. The first
two data structures, LLRS and LLCS, are defined by two arrays of pointers
(<pointer-array-name>) (with the same type as the per array shown in Figu-
re 6.5), which point to the beginning and to the end, respectively, of each row (or
column) list, and a third array (<size-array-name>), containing the number of
elements per row (for LLRS) or per column (for LLCS). The option <link-spec>
specifies the type of linking of the list data structure (singly or doubly). Re-
garding the LLRCS data structure, we have four arrays of pointers which point
to the beginning and to the end of each row and each column of the sparse ma-
trix, and two additional arrays storing the number of elements per row and per
column, respectively.

As an example of using this directive for the Compressed Vector Storage, the
following statement:

IHPF$ REAL, DYNAMIC, SPARSE (CVS(vi, vv, sz)):: V(10)

declares V as a place holder of a one-dimensional sparse array, which occupies
no storage. What is really stored are the nonzero entries of the sparse array
(vv), the corresponding indices (vi), and the number of nonzero entries (sz). The
function of the place holder V is to provide an abstract object with which other
data objects can be aligned and which can then be distributed.

The meaning of the DYNAMIC directive (which is used in all our SPARSE
directives) is that, in this context, the size of the arrays may change during
computations.
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REAL, DIMENSION(10,10):: A

INTEGER, DIMENSION(10):: vi

REAL, DIMENSION(10):: vv

INTEGER:: sz

'HPF$ PROCESSORS, DIMENSION(2,2):: mesh

'HPF$ REAL, DYNAMIC, SPARSE (CVS(vi, vv, sz)):: V(10)
'HPF$ ALIGN V(:) WITH A(x*,:)

'HPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

Figure 6.7: HPF-2 specification of a replicated compressed vector

The HPF-2 directives DISTRIBUTE and ALIGN can be applied to our sparse
place holders with the same syntax as in the standard. As we noted in Section 6.3,
distributing a sparse place holder is equivalent to distributing it as if it were a
dense matrix/array. In the case of the ALIGN directive, however, the semantics
must be slightly different. Let us consider the example code of Figure 6.7. The
effect of the ALIGN directive within this piece of code is the following: the
nonzero entries of V (that is, vv) are aligned with the columns of A depending
on the positions stored in the array vi, and not in the corresponding positions
in its own vv array (which is the standard semantics for dense arrays). Then,
the DISTRIBUTE directive replicates the V array over the first dimension of the
processor array mesh, and distributes it over the second dimension in the same
way as the second dimension of matrix A, so that each row of the processor mesh
stores a complete copy of V. Observe that in this distribution operation, vi is
taken as the index array for the entries stored in vv. As we can see, in order to
replicate an object (V) it must first be aligned with a higher-dimensional object
(matrix A); if there is no suitable data object to serve as the align target, a
template can be declared for this aim. Figure 6.8 shows the combined effect of
alignment /distribution for a particular case (we follow the same PE notation as
in the mesh of Figure 5.1).

6.5 Extended HPF-2 Sparse Codes

The use of the SPARSFE directive establishes a link between the sparse matrix
(or array) and its storage scheme. From this point on, we can choose to hide the
storage scheme to programmers, and allow them to write the parallel sparse code
using dense matrix notations, as we initially proposed in [97].

In this proposal, the compiler would be in charge of translating these dense
notations into parallel sparse codes taking into account the storage schemes used.
However, this approach implies a great effort in compiler implementation (the
feasibility of its design is not clear), as well as the possibility of mixing in the
same code place holders (that is, logical entities) with real arrays. A simple
consequence of this fact is that if we compile the program in sequential mode the
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IHPF$ REAL, DYNAMIC, SPARSE (CVS(vi,vv,sz)):: V(10)

V[aOchdeOOf]

vi[1346710]vv[abcdef]sz@

IHPF$ ALIGN V(:) WITH A(*,)
IHPF$ DISTRIBUTE(CYCLIC,CYCLIC) ONTO mesh:: A

(13,579, 2.4 6.8 10
la'b!0!e! 0, 0 icidlolf
[1 3 7]vi|oc [4 6 10] viloc
[a b e]vvloc |c d flwloc
PE (0,0), PE (0,1) | PE (1,0), PE (1,1)

Figure 6.8: Alignment and distribution of a sparse array on a 2x 2 mesh

result would be erroneous. Bik [13] proposes a similar approach, based on the
automatic transformation of a dense program, annotated with sparse directives,
into a semantically equivalent sparse code. As a conclusion, this proposal unloads
the large part of the work on the compiler and results in easy to program high-level
codes. However, the implementation of such a compiler is very complex, and no
implementation of it is available for general and real problems.

Therefore, being realistic, as sparse codes are complex, programmers should
assume some part of this complexity in their codes, giving hints to the compiler
so that it can do a good job. An approach in this line is to force programmers to
use the lists and arrays defining the storage scheme explicitly, and allow them to
use the place holders only for alignment and distribution purposes. This is the
solution employed for the data-parallel sparse QR codes we present next. The
same approach was also applied to sparse LU codes in [7].

6.5.1 Sparse MGS Data-Parallel Code

Let us focus on the first of our working example codes, the sparse rank-revealing
MGS algorithm (consult Sections 2.2 and 3.2). As we have discussed in Sec-
tion 2.6, we have chosen one-dimensional doubly-linked lists as the compressed
storage format for matrices @) (that is, A, at the beginning of the computation)
and R. In this HPF-2 code, we carried out a simple parallelization of the MGS
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INTEGER, PARAMETER:: m=1000, n=1000, dim=8

REAL, PARAMETER:: accuracy=1.0E-20

'HPF$ PROCESSORS, DIMENSION(dim):: linear

TYPE (ptr), DIMENSION(n):: firstq, lastq, firstr, lastr

TYPE (entry), POINTER:: aux

REAL, DIMENSION(n):: norm, vsum

INTEGER, DIMENSION(n):: vsizeq, vsizer

INTEGER, DIMENSION(m):: vcoli

REAL, DIMENSION(m):: vcolv

INTEGER: : size

INTEGER:: k, i, j, rank, p

REAL:: pivot, product, valmin

'HPF$ REAL, DYNAMIC, SPARSE(LLCS(firstq, lastq, vsizeq, DOUBLY)):: Q(m,n)
'HPF$ REAL, DYNAMIC, SPARSE(LLCS(firstr, lastr, vsizer, DOUBLY)):: R(n,n)
'HPF$ REAL, DYNAMIC, SPARSE(CVS(vcoli, vcolv, size)):: VCOL(m)

'HPF$ ALIGN norm(:) WITH Q(x,:)

'HPF$ ALIGN vsum(:) WITH Q(*,:)

'HPF$ ALIGN VCOL(:) WITH Q(:,%)

'HPF$ DISTRIBUTE (*,CYCLIC) ONTO linear:: Q, R

Figure 6.9: Declaration section of the extended HPF-2 specification of the MGS
algorithm

algorithm by cyclically distributing the columns of the sparse matrices @2 and R
across a linear array of processors.

Figure 6.9 shows the declaration section of the parallel MGS code using the
proposed extensions to HPF-2. Matrices ¢) and R are defined as sparse and stored
using the LLCS data structure. Matrix @ is initially the input matrix A, which
is read from a file, while matrix R is computed during the execution of the code.
The arrays of pointers firstq (firstr) and lastq (lastr) indicate the first and the last
nonzero entry, respectively, of each column of the @ (R) sparse matrix. The array
vsizeq (vsizer) stores the number of nonzero entries of each column of @ (R). We
have also defined a sparse array VCOL, which is stored as a compressed vector
(CVS format). This array contains the normalized pivot column of @ (after the
pivoting operation), calculated in each outer iteration of the algorithm. The place
holders (@, R and VCOL) are in upper-case to distinguish them from the real
variables.

The last sentence in the declaration section distributes the columns of both
sparse matrices, () and R, cyclically over a one-dimensional arrangement of pro-
cessors (declared as linear by the PROCESSORS directive). Previously, two dense
arrays, norm and vsum, were aligned with the columns of (). Therefore, after the
distribution of (), these two arrays also appear distributed in a cyclic way over the
processors. Finally, the sparse array VCOL is aligned with the rows of (). Hence,
after distributing ¢}, VCOL is completely replicated over all the processors. The
reason of this replication is that the pivot column is selected and updated in each
iteration of the main loop of the algorithm (see loop k of the sequential algorithm
in Figure 2.1). This is accomplished by the owner of column £ of @ and, hence,
the new value must be consistently broadcast. The replication of VCOL, which
implies this broadcasting operation, exploits data locality.
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Figure 6.10: Partitioning of MGS arrays on two processors

Note that, with this declaration, the linear array of processors is not an essen-
tial limitation (a mesh processor could be used). It is just for convenience, as
our experiments have produced better results (execution times and efficiencies)
for this configuration.

As an example of the above declaration of variables, Figure 6.10 shows the
partitioning of the arrays/matrices declared in Figure 6.9 (matrix R is omitted),
for the case of two processors (dim = 2) and an even number of columns for Q. It
is also assumed that the outer loop of the MGS algorithm is in the iteration num-
ber 4. The legend in the lower left corner of the figure gives the correspondence
between the notation employed for naming the data elements and the notation
used in the declaration section.

Figure 6.11 presents the rest of the parallel MGS code. First, the norms of the
columns of the matrix are calculated and then, a column pivoting, is applied. This
column pivoting is based on criterion (2.18) in order to reduce fill-in, and consists
in obtaining the pivot column p as the one with the least number of nonzero
elements (this number is stored in valmin), whenever the norm of this column is
greater than the threshold value accuracy. As we can see, the pivoting procedure
involves a reduction operation and, therefore, we use a REDUCTION clause in
our HPF code. The effect of this clause is explained in detail in Subsection 6.5.3,
because it is also necessary for the least squares problem. A similar approach is
used in [7] to program the Markowitz criterion in a sparse LU factorization using
our extended HPF-2.

Once the pivot column is selected, the swap routine is called to perform the

permutation of the current column £ and the pivot column p of matrices () and
R.

After computing the squared norms of the columns of A and the pivoting
operation, the column k of @ is updated (normalized) and copied into the sparse
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! ——> Norms are calculated
'HPF$ INDEPENDENT, NEW (aux,i)
DO j =1, n
'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN
aux => firstq(j)i%p
DO i = 1, vsizeq(j)

END DO
'HPF$ END ON
END DO

rank = n
! ==> Main loop
main: DO k =1, n
! ==> Column pivoting
valmin = m+1; p =0
'HPF$ INDEPENDENT, REDUCTION(valmin, p)
DO j =k, n
IF (vsizeq(j) < valmin .AND. norm(j) >= accuracy) THEN
valmin = vsizeq(j); p = j

END IF
END DO
IF (p == 0)
rank = k-1; EXIT
END IF
pivot = norm(p); mnorm(p) = norm(k); mnorm(k) = pivot

CALL swap(k, p, firstq, lastq, vsizeq)
CALL swap(k, p, firstr, lastr, vsizer)
pivot = SQRT(pivot)

! =—=> Column k of Q is updated and copied into VCOL
'HPF$ ON HOME (firstq(k)), RESIDENT BEGIN
aux => firstq(k)%p
DO i = 1, vsizeq(k)
aux/value = auxjvalue / pivot
vcoli(i) = auxlindex; vcolv(i) = auxlvalue
aux => aux/next
END DO
size = vsizeq(k)
'HPF$ END ON

! —==> Dot-products between column k of Q and columns (k+1:n) of Q
vsum(k) = pivot; vsum(k+1l:n) = 0.0
'HPF$ INDEPENDENT, NEW (aux,i)
loopjl: DO j = k+1, n
'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN
aux => firstq(j)%p
loopil: DO i = 1, size
DO
IF (.NOT.ASSOCIATED(aux)) EXIT
IF (aux’index >= vcoli(i)) EXIT
aux => auxjnext
END DO
IF (ASSOCIATED(aux)) THEN
IF (auxjindex == vcoli(i)) THEN
vsum(j) = vsum(j) + aux¥valuexvcolv(i)
END IF
END IF
END DO loopil
'HPF$ END ON
END DO loopji °

norm(j) = norm(j) + auxivalue*auxjvalue; aux => aux)next

Figure 6.11: Outline of an extended HPF-2 specification of the parallel MGS

algorithm (first part)
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! ——> Subrow (k,k:n) of R is updated
'HPF$ INDEPENDENT
DO j =k, n
IF (ABS(vsum(j)) >= accuracy) THEN
CALL append(k, vsum(j), firstr(j)%p, lastr(j)¥%p, vsizer(j))
END TIF
END DO

! ——> Submatrix of Q (columns (k+1:n) of Q) is updated
'HPF$ INDEPENDENT, NEW (aux,i,product)
loopj2: DO j = k+1, n
'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN
aux => firstq(j)%p
loopi2: DO i =1, size

product = -vsum(j)*vcolv(i)
outer_if: IF (ABS(product) >= accuracy) THEN
DO

IF (.NOT.ASSOCIATED(aux)) EXIT
IF (auxjindex >= vcoli(i)) EXIT
aux => auxjnext
END DO
inner_if: IF (ASSOCIATED(aux)) THEN
IF (auxjindex == vcoli(i)) THEN
auxyvalue = auxvalue + product
ELSE
! =——-> First or middle position insertion
CALL insert(aux, vcoli(i), product, firstq(j)%p, &
vsizeq(j))
END IF
ELSE inner_if
! =—=--> End position insertion
CALL append(vcoli(i), product, firstq(j)%p, &
lastq(j)%p, vsizeq(j))
END IF inner_if
END IF outer_if
END DO loopi2
'HPF$ END ON
END DO loopj2

! ==> Norms are updated
norm(k+1:n) = norm(k+1:n) - vsum(k+1:n)*vsum(k+1:n)

END DO main

Figure 6.11 (cont.): Outline of an ertended HPF-2 specification of the parallel
MGS algorithm (last part)

VCOL array. This is computed by the owner of such column (ON HOME direc-
tive) and, therefore, as VCOL is replicated, the new array is sent to the rest of
the processors.

Afterwards, loop j in the MGS algorithm (see Figure 2.1) is computed. This
loop is split into three loops: the updating of subrow Ry ., (the calculation
of entry (k, k) is also included), the updating of submatrix Q1. k+1:m, and the
updating of the corresponding squared norms of @Q: normy..,.

The dot products between column k£ and columns (k + 1 : n) of @ are tem-
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MODULE list_routines
USE data_structure
IMPLICIT NONE

CONTAINS

SUBROUTINE append(ind, product, fptr, lptr, nel)
INTEGER:: ind, nel
REAL:: product
TYPE (entry), POINTER:: fptr, lptr

TYPE (entry), POINTER:: new
ALLOCATE (new)

newYindex = ind

newYvalue = product

nel = nel + 1

IF (.NOT.ASSOCIATED(1lptr)) THEN
NULLIFY (newj,prev, newjnext) ! Empty list
fptr => new
1ptr => new

ELSE
newj,prev => lptr
NULLIFY (new)next)
lptrnext => new
lptr => new

END TIF

END SUBROUTINE append

END MODULE list_routines

Figure 6.12: Fortran 90 module for list management

porarily stored in the dense array wsum. In this part of the parallel code two
ON HOME (...), RESIDENT directives were also included, to facilitate the com-
piler’s analysis and code generation tasks. For instance, the /HPF$ ON HOME
(firstq(j)) directive means that the processor which owns the program variable
firstq(j) should execute the computation. The aim of the RESIDENT clause is to
indicate that all references to all variables referenced during the execution of the
directive’s body are local, that is, focusing on our example, all these variables are
stored in the local memory of the active processor that owns variable firstq(j).
This way, the compiler can use this information to avoid generating communi-
cations or to simplify array address calculations, which optimizes the generated
code.

The parallel loops were also annotated with the INDEPENDENT, NEW {(...)
directive, with the same meaning as in the standard HPF-2. The INDEPEN-
DENT directive indicates that the iterations of the DO-loop which it precedes
are independent and they can be executed in any order (and therefore, con-
currently), without changing the semantics of the loop. The NEW clause of the
INDEPENDENT directive specifies that the variables indicated in parentheses
must be considered private to each iteration, in order to make the iterations
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INTEGER, PARAMETER:: m=1000, n=1000, dim=8

REAL, PARAMETER:: accuracy=1.0E-20

'HPF$ PROCESSORS, DIMENSION(dim):: linear

TYPE (ptr), DIMENSION(n):: first, last, rowk

TYPE (entry), POINTER:: aux, aux2

REAL, DIMENSION(n):: norm, w

INTEGER, DIMENSION(n):: vsize

INTEGER, DIMENSION(m):: vi

REAL, DIMENSION(m):: vv

INTEGER: : size

INTEGER:: k, i, j, rank, p

REAL:: pivot, product, temp, beta, dotp, valmin

'HPF$ REAL, DYNAMIC, SPARSE(LLCS(first, last, vsize, DOUBLY)):: A(m,n)
'HPF$ REAL, DYNAMIC, SPARSE(CVS(vi, vv, size)):: V(m)
'HPF$ ALIGN norm(:) WITH A(*,:)

'HPF$ ALIGN w(:) WITH A(*,:)

'HPF$ ALIGN rowk(:) WITH A(*,:)

'HPF$ ALIGN V(:) WITH A(:,%)

'HPF$ DISTRIBUTE (*,CYCLIC) ONTO linear:: A

Figure 6.13: Declaration section of the extended HPF-2 specification of the House-
holder algorithm

independent. Therefore, each iteration must be given a new and independent
copy of these variables, which are undefined at the beginning of the iteration and
become undefined again at the end.

From the structure of this code we note that if it is converted by a Fortran 90
compiler (that is, the HPF-2 directives are taken as comments), the code runs
properly in sequential mode. The code also contains the user routines append()
and insert() for list management, which are included in a Fortran 90 module.
For instance, Figure 6.12 shows the code for the routine append(), which adds an
entry at the end of a list. The insert() routine adds an element at the beginning or
in the middle of a list. This module requires another module called data_structure
(not shown in the figure), which includes the declaration of the derived data types
(previously described in Section 6.4) to support the linked list data structures.

6.5.2 Sparse Householder Data-Parallel Code

The Householder algorithm (consult Sections 2.3 and 3.3) can also be expressed by
means of our extended HPF compiler. The declaration section of this algorithm is
presented in Figure 6.13. The interpretation of this code is basically the same as
for MGS: the algorithm is mapped onto an array of dim processors. In this case,
we have only one matrix in LLCS format (A4), which is overwritten in-place by
matrix R. The Householder vector Visstored in CVS format to reduce the number
of computations when performing matrix-vector operations and, by means of the
ALIGN directive, it is replicated on each processor to favour local computations
(it is similar to the VCOL vector of the MGS algorithm).

The purpose of the pointer array rowk is, basically, to point to the row k of
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! —=> Norms are calculated

! ==> Main loop
rank = n
main: DO k =

! ==> Column pivoting

! ——> Householder vector is copied in V (stored in CVS format)
! —==> Only the owner processor executes this piece of code
'HPF$ ON HOME (rowk(k)), RESIDENT BEGIN
aux => rowk(k)%p
temp = 0.0
IF (ASSOCIATED(aux)) THEN
IF (k == aux’index) THEN
IF (auxjvalue < 0.0) THEN
pivot = -pivot
END IF
temp = aux)value
aux => auxjnext
END TIF
END TIF
beta = temp+pivot
vi(l) =k
vv(1) 1.0
size = vsize(k)
IF (rowk(k)p%index /= k) size = size+l
DO i = 2, size
vi(i) = auxjindex

vv (i) aux,value/beta
aux => aux’next
END DO
'HPF$ END ON

! ——> Dot-products between Householder vector and columns (k:n) of A
w(k:n) = 0.0
'HPF$ INDEPENDENT, NEW (aux,i)
loopjl: DO j =k, n
'HPF$ ON HOME (rowk(j)), RESIDENT BEGIN
aux => rowk(j)%p
loopil: DO i = 1, size
DO
IF (.NOT.ASSOCIATED(aux)) EXIT
IF (auxjindex >= vi(i)) EXIT
aux => auxjnext
END DO
IF (ASSOCIATED(aux)) THEN
IF (auxindex == vi(i)) THEN
w(j) = w(j) + auxlvaluexvv(i)
END TF
END IF
END DO loopil
'HPF$ END ON
END DO loopjil

Figure 6.14: Qutline of an extended HPF-2 specification of the parallel House-
holder algorithm (first part)



110

CHAPTER 6. HPF EXTENSIONS FOR SPARSE OPERATIONS

dotp = -2.0/DOT_PRODUCT(vv(1l:size), vv(l:size))
w(k:n) = dotp * w(k:n)
! —-> Householder reflection
'HPF$ INDEPENDENT, NEW (aux,aux2,i,product)
loopj2: DO j =k, n
'HPF$ ON HOME (rowk(j)), RESIDENT BEGIN
aux => rowk(j)%p
loopi2: DO i =1, size
product = w(j) * vv(i)
outer_if: IF (ABS(product) >= accuracy) THEN
DO
IF (.NOT.ASSOCIATED(aux)) EXIT
IF (aux%index >= vi(i)) EXIT
aux => auxjnext

END DO
inner_if1: IF (ASSOCIATED(aux)) THEN
inner_if2: IF (aux’index == vi(i)) THEN

auxy%value = auxvalue + product
IF (ABS(auxjvalue) < accuracy) THEN
aux2 => auxjnext
IF (auxlindex == rowk(j)%p%index) rowk(j)%p => aux2
! ———-> Deletion of an entry of the list
CALL delete(aux, first(j)%p, last(j)%p, vsize(j))
aux => aux2
ENDIF
ELSE inner_if2
! =—=—-> First or middle position insertion
CALL insert(aux, vi(i), product, first(j)%p, vsize(j))
IF (rowk(j)%p/index > auxlprev)index) &
rowk(j)/%p => auxlprev
END IF inner_if2
ELSE inner_if1l
! ——--> End position insertion
CALL append(vi(i), product, first(j)%p, last(j)%p, &
vsize(j))
IF (.NOT.ASSOCIATED (rowk(j)%p)) rowk(j)%p=>last(j)%p
END IF inner_if1
END IF outer_if
END DO loopi2
'HPF$ END ON
END DO loopj2

! ——> Norms, rowk and vsize are updated
'HPF$ INDEPENDENT, NEW (aux)
DO j = k+1, n
'HPF$ ON HOME (rowk(j)), RESIDENT BEGIN
aux => rowk(j)%p
IF (ASSOCIATED(aux)) THEN
IF (aux)index == k) THEN
norm(j) = norm(j) - aux¥%value*auxjvalue
rowk(j)%p => aux¥next
vsize(j) = vsize(j)-1
END IF
END IF
'HPF$ END ON
END DO

END DO main

Figure 6.14 (cont.): Outline of an extended HPF-2 specification of the parallel

Householder algorithm (last part)
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REAL:: acum
TYPE (ptr), DIMENSION(n):: vaux
REAL, DIMENSION(n):: x, gtb
REAL, DIMENSION(m):: b

'HPF$ ALIGN vaux(:) WITH Q(*,
'HPF$ ALIGN x(:) WITH Q(x,
'HPF$ ALIGN qtb(:) WITH Q(*,
'HPF$ ALIGN b(:)  WITH Q(:,*

)
)
)
)

Figure 6.15: Extended declaration section for the LSP through MGS

the matrix stored in linked lists. This array is similar to the auxiliary array auzp
used in Givens rotations (see Figure 3.6) but, unlike quzp (which traverses the
lists from bottom to top), rowk traverses the lists from top to bottom. Specifically,
each entry j of rowk points to element Ay;, if it is nonzero. If this element is zero,
it points to element A,;, being z the closest integer to k, z > k, such that A,; # 0;
if no integer z satisfies these conditions, entry j of rowk is nullified. Besides, rowk
is not used to have row access to the list structure; this array is necessary, in each
iteration k (see the iteration space of the Householder algorithm in Figure 2.5)
that updates submatrix S (described in Section 2.3), to know the beginning of
this submatrix represented by lists.

All the comments about the HPF-2 MGS code of the preceding subsection are
applicable to the corresponding HPF-2 Householder code of Figure 6.14. In this
executable section, the norm calculation, as well as the pivoting procedure are
omitted (they were commented for MGS). In the code we have another routine
called delete, which erases the entry of the list pointed (following the code) by
auz.

The reason of the updating of the array wvsize at the end of the code in the
last part of Figure 6.14 is because, for the Householder algorithm, entry vsize;
is used to store the number of nonzero elements of subcolumn Ay, ; (following
Fortran index notation), in order to apply the pivoting strategy described in
Subsection 2.7.1.

6.5.3 Least Squares Problems

As a practical example, we have also implemented the least squares problem
through the MGS QR factorization (it would be very similar for the Householder
algorithm), using HPF-2 code. The parallel algorithm is, basically, the one des-
cribed in Section 3.5, but note that the HPF-2 code is for a linear array of
Processors.

In order to obtain an adequate data distribution for the arrays involved in
the least squares problem, we must extend the declaration section of Figure 6.9
with the statements of Figure 6.15. In this figure, four additional vectors are
declared (we employed the same notation as in Section 3.5): the right-hand side
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!' ==> Init x and vaux
x = 0.0
'HPF$ INDEPENDENT
DO j=1,n
vaux(j)%p => lastr(j)%p
ND DO

! —-> Back-substitution
DO i = rank, 1, -1
acum = 0.0
'HPF$ INDEPENDENT, REDUCTION (acum)
DO j = i+1, rank
IF (ASSOCIATED(vaux(j)%p)) THEN
IF (vaux(j)%p%index == i) THEN
acum = acum + vaux(j)ip%value * x(j)
vaux (j)%p => vaux(j)¥%plprev
ND IF

END IF
END DO
x(1) = (qtb(i)-acum)/vaux(i)plkvalue
vaux(i)%p => vaux(i)Jplhprev
END DO

Figure 6.16: HPF-2 back-substitution for the LSP

vector b, the vector which stores the product Q7b (qtb), the solution vector z, and
the array of pointers vauz. This last one is the auxiliary array used to provide
row access during the back-substitution to the column-oriented data structure in
which matrix R is stored.

Vector gtb (which is initially zeroed) is easily obtained by adding the following
statement as the sentence before last of loop ¢ which updates column k& of matrix
Q (see Figure 6.11):

qtb(k) = qtb(k) + aux)value * b(aux’index)

Once the MGS factorization ends, we solve the corresponding upper triangular
system by means of a back-substitution (see Section 3.5). Figure 6.16 shows the
HPF-2 sparse code for the back-substitution described (in dense notation) in
expression (3.2). As we can see in this figure, the external loop 4 is inherently
sequential and, therefore, we cannot use an INDEPENDENT directive for it.
The inner loop j, however, consists in performing a reduction operation on the
variable acum, and every bit of the reduction can be executed independently
and in parallel in each processor. Thus, we annotate the inner loop with an
INDEPENDENT directive and a REDUCTION clause (which also appears in
the pivoting procedure) to inform the compiler about this situation. This clause
asserts that variable acum is updated in the INDEPENDENT loop by a series of
commutative/associative operations (sum in this case). The value of the reduction
variable acum after the loop is the result of a reduction tree. The reduction
operation of loop j is indeed a user-defined operation and is not considered by the
HPF-2 standard, but its inclusion would not add any significant complexity to the
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compiler implementation. There also exists some research on detecting complex
parallel reductions [91], where IF constructs can appear inside a reduction loop.

Regarding the permutation code section, it is not a parallelizable stage, as
we said in Section 3.5. The HPF-2 code for this phase would simply be the
corresponding Fortran 90 sequential code.
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Chapter 7

Compiler and Run-Time Support

7.1 Compiler Support

The HPF-2 extensions for sparse computations proposed in the previous chapter
must be supported by a compiler module, which should be correctly embedded
and integrated in an HPF-2 compiler, avoiding collateral effects. This module
should carry out, as a broad outline, the following stages: source code analysis,
code parallelization and SPMD code generation.

We have chosen the Cocktail toolbox [46] for the design of this compiler mo-
dule, due to the high quality and reliability of the compilers generated with this
application. It is composed of a set of tools, largely independent of each other, to
design the different stages in the compiler construction: a scanner and a parser
read the source, check the concrete syntax, and construct an abstract syntax
tree (stored internally as linked records); semantic analysis is performed on the
abstract syntax tree; afterwards the abstract syntax tree is transformed into an
intermediate representation and, finally, the code generator produces the machine
code. These tools accept as input a specification written in a specific language
to the tool and generate files in a target language (C or Modula-2).

7.1.1 Source Code Analysis

The lexical analysis of the extended HPF-2 code is the first stage of the compiler
module. This analysis deals with those elements of the code specific for sparse
matrices. Therefore, the characters (letters, digits and symbols) which make up
the new sparse directives, are grouped together constituting lexical components
or tokens; for instance, the set of characters 'LLRCS’ is a token that is identified
as a keyword of the language.

Rex (Regular Ezpression Tool) is the scanner generator of Cocktail. It com-
bines the powerful specification method of regular expressions with the generation
of highly efficient scanners (five times faster than Lez [2] generated scanners). The
Rex specification consists of a set of regular expressions associated with semantic

115
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SCANNER shpf

GLOBAL {

void shpf_ErrorAttribute
(yyToken, yyRepairAttribute) short yyToken;
shpf_tScanAttribute * yyRepairAttribute;

}

DEFINE Letter = {A-Z a-z} .
Digit = {0-9} .
Identifier = Letter (Letter | Digit | "_") * .
Int_constant = Digit+ .
A = {Aa} .

B = {Bb} .
C = {Cc} .
[ ]
[ )
[ )
X = {Xx} .
Y = {Yy} .
Z = {Zz} .

RULE

"(": {return 2; }

")": {return 3; }

wov: {return 4; }

"::":{return 5; }

"+": {return 50;}

"-1. {return 51;}

"x": {return 52;}

"/m: {return 53;}

"xx":{return 54;}

'HP F $: {return 15;}

DYNAMIC: {return 16;}

DIMENGSTION :{return 17;}

REAL: {return 40;}

INTEGER {return 41;}

SPARSE {return 10;}

LLRS: {return 20;}

LLCS: {return 21;}

LLRCS {return 22;}

CvVvs: {return 23;}

SINGLY: {return 30;}

DOUBLY: {return 31;}

Identifier: {return 1; }

Int_constant: {return 6; }

Figure 7.1: Scanner specification for the SPARSE directive

actions (written in one of the target languages: C, Modula-2), which are executed
when regular expressions are matching; consult [45] for a complete description of
the syntax. The generated scanners are implemented as table-driven determinis-
tic finite automatons. Rex automatically computes the line and column position
of every token and it can also handle ambiguous specifications.

As an example, Figure 7.1 shows the Rex scanner specification for the HPF-2
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SCANNER shpf PARSER phpf
TOKEN
Identifier =1
;() =92
;)) =3
;’) =4
’7:? =5
Int_constant = 6
’ 'HPF$’ = 15
’DYNAMIC? = 16
’DIMENSION’ = 17
?SPARSE’ =10
’LLRS’ = 20
LLCS? =21
’LLRCS’ = 22
CVs’ = 23
>SINGLY? = 30
’DOUBLY? = 31
REAL’ = 40
> INTEGER’ = 41
,+7 - 50
) - 51
7*7 = 52
;/7 = 53
2 k%) = b4
OPER
LEFT 7+) pa— ]
LEFT ’x? J/;
RIGHT %%’
LEFT unary_defined_operator
[ ]
[ ]
[ )

Figure 7.2: Parser specification for the SPARSE directive (first part)

SPARSFE directive proposed in Section 6.4. Only the indispensable symbols and
keywords were included. Note that, following Fortran 90 syntax, upper-case and
lower-case letters are treated as identical in both keywords and identifiers.

The syntactic analysis performed by a parser determines if the stream of
tokens provided by the scanner can be generated by a certain grammar. In order
to carry out this analysis, a syntactic tree associated with the tokens of the source
code is constructed. This data structure contains all the syntactic information of
the source code and allows fast findings and extractions of information about the
code; besides, subsequent tranformations on the code can be easily applied.

Cocktail offers the chance of selecting among three different parser generators
(Lalr, Ell and Lark [47][44]), which transform a grammar into a parser. We have
chosen the first one, which processes the class of LALR(1) (lookahead-LR) gram-
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RULE
hpf_directive: hpf_header sparse_directive ’::’ array_objects
hpf_header: ’!HPF$’ datatype

datatype: ’REAL’
| ’INTEGER’

sparse_directive: sparse_stmt
| sparse_stmt opt_dyn
| sparse_stmt opt_dim
| sparse_stmt opt_dyn opt_dim
| sparse_stmt opt_dim opt_dyn
| opt_dyn sparse_stmt
| opt_dim sparse_stmt
| opt_dyn opt_dim sparse_stmt
| opt_dim opt_dyn sparse_stmt
| opt_dyn sparse_stmt opt_dim
| opt_dim sparse_stmt opt_dyn

array_objects: (identifier [array_content]) || ’,’
array_content; >(? int_expr [’,’ int_expr] ’)’
opt_dyn: ’,’ 'DYNAMIC’

opt_dim; >,? ’DIMENSION’ array_content

int_expr: ’(’ int_expr ’)’

| int_expr ’+’ int_expr

| int_expr ’-’ int_expr

| int_expr ’*’ int_expr

| int_expr ’/’ int_expr

| int_expr ’**’ int_expr

| -’ int_expr PREC unary_defined_operator
| Int_constant

| Identifier

sparse_stmt: ’,’ ’SPARSE’ ’(’ sparse_content ’)’
sparse_content: ’LLRS’ ’(’ 1ll_spec ’)’

| >LLCS’> ’(’ ll_spec )’

| >LLRCS’ ’(’ 112_spec ’)’

| ’cvs’ >(? cvs_spec ’)’
cvs_spec: Identifier ’,’ Identifier ’,’ Identifier
11_spec: cvs_spec ’,’ link_spec

112_spec: cvs_spec ’,’ cvs_spec ’,’ link_spec

link_spec: ’SINGLY’
| ’DOUBLY’

Figure 7.2 (cont.): Parser specification for the SPARSE directive (last part)

mars [2|. Syntactic errors are handled completely automatically by the generated
parser, including error reporting, error recovery and error repair, following the
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complete backtrack-free method. The parser created by Lalr, which consists in
a stack automaton controlled by a parse table, is two to three times faster than
the one produced by Yacc [2]. As in the regular expressions of the scanner, each
grammar rule may be associated with a semantic action, which is executed when
the corresponding rule is recognized by the table-driven parser generated.

Lalr directly accepts only grammar rules in plain BNF notation [43, Appen-
dix 1]. But we wrote the grammar rules using EBNF (Extended BNF) constructs
and converted it to plain BNF using a grammar transformer provided by Cocktail
(see [47] for further details).

The Lalr parser specification of the SPARSE directive is shown in Figure 7.2.
From an implementation point of view, it should extend the parser specification
of an HPF standard compiler in order to include the new directive. As we can
see, the scanner generated by Rez (called shpf) offers an interface to be used by
the parser that will be created by Lalr. The TOKEN section defines the termi-
nals of the grammar and their encoding. In the OPER section, precedence and
associativity of operators are specified to resolve ambiguities (LR~conflicts); it is
necessary for the integer expressions that can appear in a DIMENSION attribute
of the SPARSE directive (as we can see, the DIMENSION attribute, in this con-
text, does not allow subarray notation [35]). The RULE section contains the
grammar rules and semantic actions (which were omitted to simplify). A com-
plete definition of the specification language can be found in the corresponding
user manual [47].

7.1.2 Parallelization and Code Generation

Once the source code analysis is completed, the parallelization stage begins. It
consists in extracting the information of the syntax tree generated in the analysis
stage in order to carry out the adequate parallelization strategies. The main part
of this information is obtained in the compiler directives provided by the user.

The parallelization phase focuses on the following goals:

e Generation of the sparse data structures and their distribution/alignment
on the processors.

e Loop parallelization: distribution of the load (loop iterations) related to
sparse computations among the processors, generally following the owner-
computes rule (each iteration is executed on the owner processor of the
referenced data in the left-hand side of an assignment statement) or follo-
wing the guidelines of a possible ON HOME directive.

e Translation of the global indices of the sparse structures into local indices.

e Management of reduction operations involving sparse data structures. These
operations entail a strategy of computation distribution so as to exploit the
intrinsic locality expressed by the corresponding REDUCE clause.
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A more complex analysis stage would allow grouping communications together
to reduce start-up times, overlap communications and computations and detect
user-defined reduction operations, even with IF constructs (the REDUCTION
clause was discussed in Subsection 6.5.3).

The final step, the code generation stage, generates SPMD (Single Program
Multiple Data) Fortran 90 code, extended with calls to run-time standard messa-
ge-passing routines to access non-local data, so that the portability of the final
code is guaranteed. Code transformations are carried out to insert the run-time
support so as to perform the tasks associated with the previous parallelization
stage.

This SPMD code will be accepted by a standard Fortran 90 compiler of the
target parallel machine to be translated into an executable binary code for that
machine.

7.2 Run-Time Support

As we saw in the previous section, the HPF compiler acts as a source-to-source
preprocessor, generating SPMD Fortran 90 source code. This code includes
run-time routines to perform the corresponding parallelization and communica-
tion tasks. In order to support our HPF-2 extensions for sparse matrices, we have
extended the run-time library DDLY (Data Distribution Layer) [99] [100] with a
set of routines to handle linked lists and compressed vectors. These routines are
called from the SPMD code generated by our extended HPF-2 compiler.

Basically, DDLY performs a set of operations for the distribution and align-
ment of arrays (dense and sparse) on distributed memory multiprocessors. Specifi-
cally, it provides an interface which allows managing arrays as abstract objects,
hiding from the user the internal data structures used to store and distribute
data. It also covers all necessary message-passing handling and optimization,
and input/output management. The user interface to DDLY is based on object
descriptors, which store information about the corresponding object. A basic
operation consists in defining an array/matrix descriptor and assigning it to a
particular data object. These descriptors are managed in a similar way to the
management of file descriptors in UNIX. The assignment of a descriptor to a
data object is accomplished by calling a special open function. From this step on,
every manipulation of the data object is performed through the corresponding
descriptor. For instance, the library includes a number of procedures to dis-
tribute and align data objects. We only need to specify the descriptor of the
object (array/matrix) and some other arguments to perform the desired opera-
tion. With this interface, each HPF-2 distribution/alignment directive is trans-
lated into a corresponding call to one or several DDLY functions. As desired,
DDLY follows an SPMD programming paradigm, that is, the library functions
are called by all the processors with the same arguments. Therefore, the functions
are executed in a coordinated way.
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In Chapter 5, we described the 3LM library. As we said, it is based on the
DDLY library because they both are libraries for sparse computations, they use
descriptors (called identifiers in the 8LM library) for representing data objects
and follow an SPMD model. But the LM library has higher-level routines than
DDLY (although 8LM includes low-level features, as described in Section 5.6).
That is, the DDLY routines are suitable for implementing a parallel compiler,
whereas the 3LM library is more adequate to be used by a common programmer
of specific parallel sparse algorithms.

As an example of the code generated with DDLY routines, Figures 7.3 and 7.4
show a hypothetical SPMD output of the extended HPF-2 compiler described
in Section 7.1. The selected example is the sparse MGS algorithm, whose corres-
ponding HPF-2 code was displayed in Figures 6.9 and 6.11. The calculation of
the associated least squares problem was also included (see HPF code in Subsec-
tion 6.5.3).

7.2.1 Declaration Section

Figure 7.3 shows the hypothetical output of the extended HPF-2 compiler for the
declaration section of the MGS algorithm presented in Figures 6.9 and 6.15.

First, the procedure ddly_new_topology initializes the desired topology, in which
the SPMD code will be executed: a linear array of dim processors, whose cha-
racteristics are stored in the topology descriptor ¢td. The effect of the proce-
dure ddly_HB_read is that a sparse matrix and a vector are read from a file in
Harwell-Boeing format [34]. The sparse matrix is stored in a compressed format
(see Section 2.6) using the triplet of vectors: data, row, col and the vector is
stored in a dense array b.

By means of the ddly_new routine, matrix @) is associated to a matrix descrip-
tor md_(), which indicates that sparse matrix () is stored in a compressed format
by columns (CCS) and the data type of its entries is real (DDLY_MF_REAL);
ddly_init_matriz initializes matrix @ with the contents of the three vectors (data,
row, col) previously read from a file. Similar procedures are used for matrix R,
except ddly_HB_read, as matrix R is generated at run-time (it is initially an empty
data structure).

Regarding the compressed vector VCOL, the process is the same as for sparse
matrices: ddly_new associates vector VCOL (stored in CVS format and with
floating point entries) to a vector descriptor vd_VCOL and is initialized by means
of the ddly_init_cvs routine with its components vcoli, vcolv and size (which are
initially empty). Similar calls are carried out for all the arrays declared (norm,
vsum, b, etc.) in order to associate all of them to a vector descriptor to perform
further distribution/alignment operations. Note that vector b was initialized with
the contents read in the ddly_HB_read procedure.

Once the data structures have been created and initialized, the next stage
is the distribution/alignment of these structures, using their descriptors. The
procedure ddly_bcs distributes matrix ) (identified by the descriptor md_@) on
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PROCESSORS, DIMENSION(dim):: linear
td is a topology descriptor for a (1 x dim) mesh
CALL ddly_new_topology(td, 1, dim)

REAL, DYNAMIC, SPARSE(LLCS(firstq, lastq, vsizeq, DOUBLY)):: Q(m,n)
A Harwell-Boeing matrix (data, row, col) is read

CALL ddly_HB_read(n, alpha, data, row, col, b)

A matrix descriptor for Q, md_Q, is created using CCS

CALL ddly_new(md_Q, CCS, DDLY_MF_REAL)

md_Q is initialized

CALL ddly_init_matrix(md_Q, n, alpha, data, row, col)

REAL, DYNAMIC, SPARSE(LLCS(firstr, lastr, vsizer, DOUBLY)):: R(n,n)
A matrix descriptor md_R is created and initialized

REAL, DYNAMIC, SPARSE(CVS(vcoli, vcolv, size)):: VCOL(m)

An array descriptor for VCOL, vd_VCOL, is created using CVS
CALL ddly_new(vd_VCOL, CVS, DDLY_VF_REAL)

vd_VCOL is initialized

CALL ddly_init_cvs(vd_VCOL, vcoli, vcolv, size)

Vector descriptors for all declared arrays are created and initialized

DISTRIBUTE (*,CYCLIC) ONTO linear:: Q, R

BCS distribution of Q (specified by md_Q)

CALL ddly_bcs(md_Q, td)

md_Q is now the descriptor of the distributed matrix

CCS data storage is changed into LLCS

CALL ddly_ccs_to_llcs(md_Q, firstq, lastq, vsizeq, DOUBLY)

Similar calls for matrix R

ALIGN norm(:) WITH Q(*,:)
norm aligned with the 2nd dimension of Q
CALL ddly_alignv(vd_norm, md_Q, SecondDim)

ALIGN vsum(:) WITH Q(x,:)
CALL ddly_alignv(vd_vsum, md_Q, SecondDim)

ALIGN VCOL(:) WITH Q(:,*)
VCOL aligned with the 1st dimension of Q
CALL ddly_aligncvs(vd_VCOL, md_Q, FirstDim)

ALIGN vaux(:) WITH Q(x*,:)
ALIGN x(:) WITH Q(*,:)
ALIGN qtb(:) WITH Q(*,:)
vaux, X, qtb aligned with the 2nd dimension of Q

ALIGN b(:) WITH Q(:,*)
b aligned with the 1st dimension of Q
CALL ddly_alignv(vd_b, md_Q, FirstDim)

Figure 7.3: Output of the HPF-2 compiler for the declaration section of the MGS
algorithm
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! —=> Norms are calculated
'HPF$ INDEPENDENT, NEW (aux,i)
! =——> Loop is partitioned

DO j = ddly_LowBound(1), ddly_UpBound(n)
'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN

! skkkkk QN HOME body %%

'HPF$ END ON

END DO

rank = n
! —=> Main loop
main: DOk =1, n
! —==> Column pivoting
valmin = m+1; p =0
'HPF$ INDEPENDENT, REDUCTION(valmin, p)
! ==> Loop is partitioned: local reduction
! —-> (After this reduction, p stores the local index of the pivot column)
DO j = ddly_LowBound(k), ddly_UpBound(n)
IF (vsizeq(j) < valmin .AND. norm(j) >= accuracy) THEN
valmin = vsizeq(j); p = j
END IF
END DO
! ——> Global reduction
! ——> (After this reduction, p stores the global index of the pivot column)
p = ddly_ReducelLocMinAbs(valmin, p)
IF (P =
rank = k-1; EXIT
END IF
pivot = norm(ddly_LowBound(p) :ddly_UpBound(p));
norm(ddly_LowBound(p) :ddly_UpBound(p)) = &
norm(ddly_LowBound (k) :ddly_UpBound (k))
norm(ddly_LowBound (k) :ddly_UpBound(k)) = pivot
CALL swap(k, p, firstq, lastq, vsizeq)
CALL swap(k, p, firstr, lastr, vsizer)
pivot = SQRT(pivot)

! =—> Column k of Q is updated and copied into VCOL
'HPF$ ON HOME (firstq(k)), RESIDENT BEGIN
! —==> This loop appears due to the ON HOME directive
DO dum = ddly_LowBound(k), ddly_UpBound (k)
aux => firstq(dum)%p
DO i = 1, vsizeq(dum)
! kxxkx*xk loop i body **kkxx
END DO
size = vsizeq(dum)
END DO
'HPF END ON
! -=-> VCOL is broadcast because it is replicated
CALL ddly_aligncvs(vd_VCOL, md_Q, FirstDim)

! —=> Dot-products between column k of Q and columns (k+1:n) of Q
vsum(ddly_LowBound (k) :ddly_UpBound(k)) = pivot;
vsum(ddly_LowBound (k+1) :ddly_UpBound(n)) = 0.0

'HPF$ INDEPENDENT, NEW (aux,i)

! —=> Loop is partitioned

loopjl: DO j = ddly_LowBound(k+1), ddly_UpBound(n)

'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN

! sxokskokokk ON HOME body skkskskox

'HPF$ END ON

END DO loopjl :

Figure 7.4: Qutput of the HPF-2 compiler for the executable section of the MGS
algorithm (first part)
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! —==> Subrow (k,k:n) of R is updated
'HPF$ INDEPENDENT
! ==> Loop is partitioned
DO j = ddly_LowBound(k), ddly_UpBound(n)
IF (ABS(vsum(j)) >= accuracy) THEN
CALL append(k, vsum(j), firstr(j)%p, lastr(j)¥%p, vsizer(j))
END IF
END DO

! ——> Submatrix of Q (columns k+1:n of Q) is updated
'HPF$ INDEPENDENT, NEW (aux,i,product)
! =——> Loop is partitioned
loopj2: DO j = ddly_LowBound(k+1), ddly_UpBound(n)
'HPF$ ON HOME (firstq(j)), RESIDENT BEGIN

! sxxkxk ON HOME body *kkkx*
'HPF$ END ON

END DO loopj2

! —=> Norms are updated
norm(ddly_LowBound (k+1) :ddly_UpBound(n)) = &
norm(ddly_LowBound(k+1) :ddly_UpBound(n)) - &
vsum(ddly_LowBound (k+1) :ddly_UpBound(n)) * &
vsum(ddly_LowBound (k+1) :dd1y_UpBound (n))

! ==> Init x and vaux
x = 0.0
'HPF$ INDEPENDENT
! —=> Loop is partitioned
DO j = ddly_LowBound(1), ddly_UpBound(n)
vaux (j)%p => lastr(j)%p
END DO

! ——> Back-substitution
DO i = rank, 1, -1
acum = 0.0
'HPF$ INDEPENDENT, REDUCTION (acum)
! ==> Loop is partitioned: local reduction
DO j = ddly_LowBound(i+1), ddly_UpBound (rank)
IF (ASSOCIATED(vaux(j)%p)) THEN
IF (vaux(j)%p%index == i) THEN
acum = acum + vaux(j)iphvalue * x(j)
vaux (j)%p => vaux(j)%phprev
END IF
END IF
END DO
! —==> Global reduction
CALL ddly_ReduceScalarSum(acum)

DO dum = ddly_LowBound(i), ddly_LowBound (i)
x(dum) = (qtb(dum)-acum)/vaux(dum)?plvalue
vaux (dum) %p => vaux(dum)%plprev

END DO

END DO

END DO main

Figure 7.4 (cont.): Qutput of the HPF-2 compiler for the executable section of the
MGS algorithm (last part)
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--> The independent loops (DO j = globa, globb) are translated into
--> (D0 j = ddly_LowBound(globa), ddly_UpBound(globb))

--> my_pe is a global variable which contains the processor identifier
--> N$PES = # of PEs (global variable on the Cray T3D/T3E machine)

INTEGER FUNCTION ddly_LowBound (i)

INTEGER i

ddly_LowBound = (i-1)/N$PES+1

IF (my_pe < MOD(i-1,N$PES)) ddly_LowBound = ddly_LowBound+1
END FUNCTION ddly_LowBound

INTEGER FUNCTION ddly_UpBound (i)

INTEGER i

ddly_UpBound = i/N$PES

IF (my_pe < MOD(i,N$PES)) ddly_UpBound = ddly_UpBound+1
END FUNCTION ddly_UpBound

Figure 7.5: DDLY functions for mapping loop iterations

the array of processors (identified by the topology descriptor td), using the BCS
scheme (consult Section 3.1). The change of storage scheme of matrix @ to
an LLCS one (through the ddly_ccs_to_llcs routine) allows achieving the desired
distribution (see the LLCD scheme of Figure 5.1). The implementation of this
distribution scheme in two DDLY routines (instead of creating a new and com-
plex one for our purposes) was to take advantage of the existing DDLY routine
ddly_bcs, so that the new routine ddly_ccs_to_llcs is enough to have our distribu-
tion for linked lists (and there is no overhead using the combination of these two
routines). The corresponding procedures for distributing matrix R were omitted
because they follow the same structure as matrix @ (although, in this case, the
effect is that the distributed structures are only initialized).

After the distribution, some data structures are aligned with the distributed
matrices. As we can see in Figure 7.3, dense vectors are aligned with the first
or the second dimension of matrix ). Therefore, the HPF ALIGN directives are
translated into the DDLY routines ddly_alignv with the appropriate parameters.
The compressed vector VCOL is also aligned with the first dimension of matrix ()
(that is, VCOL is replicated in all the processors) by means of the ddly_aligncuvs
routine.

A complete set of new initialization/distribution/alignment DDLY routines
was developed to consider the wide variety of situations which can appear using
the SPARSFE directive.

7.2.2 Executable Section

Figure 7.4 displays the code generated by the extended HPF-2 compiler for the
executable section of the MGS algorithm presented in Figures 6.11 and 6.16.

As we can see, the iterations of the loops annotated with the INDEPENDENT
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directive are distributed on the array of processors by means of the DDLY func-
tions ddly_LowBound and ddly_UpBound, applied to the lower and upper bounds
of the loop, respectively (obviously, they are specific for the chosen data distri-
bution). Figure 7.5 lists and explains both DDLY functions. These functions
are also applied to the bounds of the operations performed in the HPF-2 code
using subarray notation, because they are equivalent to independent DO loops
(see, for instance, the updating of the norms). They were also used to translate
global references to arrays into local references (as done, for example, in the norm
swap).

The ON HOME body and loop i body comments of the code mean that the
corresponding HPF-2 code of Figure 6.11 located in that place is directly copied
(with no modification) to the output of the HPF-2 compiler.

The reduction operation performed in the column pivoting stage deserves
special attention. It is split into two parts by the HPF-2 compiler (due to the aid
of the REDUCTION clause):

e First, a local reduction (restricted to the condition of the IF construct)
is carried out: each processor obtains the local absolute minimum of the
entries of the distributed array vsizeq they own, as well as the corresponding
index p.

e Second, a global reduction, using the DDLY function ddly_ReduceLocMinAbs
is performed. It returns (in p) the global index of the entry of the distributed
array vsizeq with minimum absolute value, using the information obtained
in the local reduction.

A similar procedure is accomplished in the back-substitution stage for the
variable acum. In this case, there is a local sum reduction of this variable and,
next, a global reduction by means of the ddly_ReduceScalarSum procedure. Note
that these are special reduction operations which involve IF constructs inside the
reduction loop and this situation should be detected by a complex analysis phase
of the compiler, as we pointed out in Subsection 6.5.3. Many DDLY routines to
support a large variety of reduction operations have been implemented.

In the part of the code in which column k is updated and copied into the
compressed vector VCOL, an auxiliary loop variable dum is created by the com-
piler so that the owner processor of the entry firstq(k) (see the corresponding ON
HOME directive) is the only one that executes the piece of code inside this new
dum loop. Note that references firstq(k) and wvsizeq(k) of the original HPF-2 code
in Figure 6.11 in this ON HOME body are substituted by the local references
firstq(dum) and wvsizeq(dum), respectively. This approach with the auxiliary va-
riable dum is also used at the end of the back-substitution stage.

Returning to the VCOL updating, the analysis stage of the compiler detects
that the replicated compressed vector VCOL (this replication was indicated in the
corresponding ALIGN directive) is updated in the loop i body comment. There-
fore, once VCOL is updated by the owner processor of firstq(k), it is broadcast
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(their components vcoli, vecolv and size are broadcast) to all the processors, by
means of the ddly_aligncvs routine. As we can see, latencies are saved by grouping
together the information to be broadcast.

7.3 Experimental Results

Sparse MGS and Householder factorizations were used to experimentally test the
corresponding parallel codes generated by our extended HPF-2 compiler, as we
will show in the next subsections.

7.3.1 Parallel MGS Generated Code

We have executed the hypothetical output of the HPF-2 compiler for the sparse
MGS algorithm (shown in Figures 7.3 and 7.4) on a Cray T3E multiprocessor,
whose characteristics were described in Table 4.1 (consult [88] for further details
about its architecture). It is important to remark that this is not an optimized
hand-coded MGS program (as the one coded in C described in Section 3.2 and
tested in Chapter 4), but it is the output of the compiler.

As we said in the previous section, we have extended the DDLY run-time
library to support our HPF-2 extensions. The underlying routines we have used
in the new DDLY functions to perform communications/synchronizations were
the Cray SHMEM (Shared Memory access library) routines [11]. This library,
specific for the Cray MPP line of computers (such as the Cray T3D and T3E)
and available for Fortran and C interfaces, manages the Cray T3E following a
NUMA shared memory model (consult Section 1.2). The main advantage of these
routines is their very low latency, which leads to low execution times and efficient
programs.

The choice of this library, which is difficult to program for a common user,
for the run-time support was a weighed decision; in fact, the SHMEM routines
are the communication primitives of the output generated by the HPF_Craft
data-parallel compiler, mentioned in Section 6.2. Nevertheless, the main draw-
back of the SHMEM library is that its use is restricted to Cray computers.
In order to make the output of the extended compiler portable to other machines,
the communication core of the new DDLY functions was also implemented using
MPI, at the expense of increasing the execution times with these slower routines.

Figures 7.6 and 7.7 present the corresponding execution times and speed-ups
for several arrays of processors (1, 2, 4, 8 and 16 PEs), respectively. The test
sparse matrices were taken from the Harwell-Boeing collection, and were des-
cribed in Table 2.1. Harwell-Boeing matrix WELL1850 (1850x712, 8758 nonzero
elements, used in least squares problems in surveying) was also included in the
experiments, as an example of the factorization of a rectangular matrix. As
can be observed, the use of specific data distributions and data structures for
sparse matrices embedded in the HPF-2 compiler leads to very good speed-ups.
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Insertion Deletion Traversing Total

Fortran 90 66.44s 53.57s 11.14s 129.15s
C 15.95s 10.59s 4.30s 30.84s

Table 7.1: Benchmark for list management in Fortran 90 and C

Superlinearity is even achieved for matrix JPWH991 using two processors. This
fact would be inconceivable using the classical dense distributions applied to
sparse matrices.

Bigger matrices would report better results and would allow us to exploit
parallelism using a large number of processors.

7.3.2 Parallel Householder (Generated Code

Similar results are presented in Figures 7.8 and 7.9 for the Householder algo-
rithm. Note that the same scale is used for the graphs which represent the exe-
cution times of MGS and Householder, in order to compare them properly. The
speed-ups obtained for Householder are better than the ones for MGS; we achieve
superlinearity for more cases, even for eight processors (matrix SHERMANS).

A curious matter, for both Fortran 90 MGS and Householder algorithms, is
that their execution times are very high compared with the corresponding manual
C algorithms which use doubly-linked lists on the Cray T3D (see Tables 4.5 and
4.6), taking also into account that the Fortran 90 algorithms are executed on
DEC Alpha processors at 300 Mhz (Cray T3E), whereas the C algorithms were
executed on slower Alpha processors at 150 Mhz (Cray T3D). This fact should
lead, in theory, to lower execution times for the Fortran 90 algorithms.

In order to explain this strange situation, we have designed a simple bench-
mark to compare the list management in Fortran 90 and C on a single Alpha
processor at 300 Mhz. This benchmark consisted in performing repeatedly a
great number of insertion, deletion and traversing operations in linked lists. The
execution times are shown in Table 7.1 and it clearly explains the high running
times of the Fortran 90 algorithms. As we can see, for this particular bench-
mark, the total execution time in Fortran 90 is more than four times slower than
in C. One possible reason of this fact is that Fortran 90 is not as flexible as
C and this implies many type and memory checkings at run-time for dynamic
memory operations, which results in an increase of the execution times. For-
tran 90 compilers (at least for the Cray T3E) should be greatly improved and
optimized in this aspect of pointers/dynamic memory to be competitive with C
compilers.

As a consequence of the high execution times of the Fortran 90 algorithms and
the use of the fast SHMEM routines, the speed-ups are obviously much better
than the ones of the corresponding C algorithms coded by hand, as we showed
experimentally in Figures 7.7 and 7.9.
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Matrix CHAOS LLCS Manual LLCS Ratio

SHL400 92s 6s 8.66
JPWH991 615s 99s 10.42
SHERMANI1 243s 27s 9.00
MAHINDAS 179s 21s 8.52
ORANI678 1228s 134s 9.16
SHERMANS5 1685s 191s 8.82

Table 7.2: Ezecution times for the parallel sparse MGS using manual LLCS and
the CHAOS implementation

7.4 Comparison with the CHAOS Approach

In order to compare our parallel solutions with others based mainly on run-time
techniques, we have additionally implemented the sparse MGS algorithm using
the CHAOS run-time library [79][86]. This library uses the inspector-executor
paradigm to deal with irregular data accesses.

Routines from the CHAOS library were inserted to rebalance the load (and
data) of the parallel sparse MGS algorithm. Basically, through these routines, we
have generated a translation table which assigns the global indices of matrix A to
the different processors following an irregular model (specifically, a cyclic LLCS
distribution). This table is distributed across the processors and used by the
localize CHAOS routine to translate the global indices into local indices within
each processor. It also generates a communication schedule used to gather the
off-processor data needed during computation, and to scatter back local copies
after computation.

Table 7.2 shows a comparison of the execution times using the cyclic LLCS
pseudo-regular data distribution (see Section 6.4) in a manual MGS algorithm
(this manual algorithm is the same as the one described in Section 3.2), as
opposed to the same distribution but implemented with CHAOS routines (all
codes were written in C). The execution times have been taken in a cluster
of 16 Sun SPARCstation 4 with 85-MHz microSPARC-II processors in a PVM
message-passing environment. The test sparse matrices were taken from the
Harwell-Boeing suite (described in Table 2.1). The entry ratio represents the
quotient Teraos/Tavanua @and, as we can see, for all the tested matrices, the
cyclic LLCS pseudo-regular approach (which is the one proposed in our HPF-2
extensions of Section 6.4) obtains almost one order of magnitude of improve-
ment in the execution times. For other sparse problems without pivoting and
fill-in (and using BRS/BCS distributions), similar results are presented in [102].
Therefore, pseudo-regular data distributions obtain better performance than the
CHAOS general inspector-executor model.

The CHAOS approach has a large number of communications and high me-
mory overhead, as a consequence of accessing a large distributed data addressing
table. This results in high execution times. On the other hand, as we also experi-
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mentally proved in previous chapters, the cyclic LLCS pseudo-regular distribution
is adequate for sparse matrix problems (in particular, QR algorithms) because it
exploits data and computation locality and minimizes communications. It does
not require additional storage or communications for addressing non-local data,
as all the processors know where the data are located using simple operations.

7.5 Towards Automatic Parallelization

The limited skill of compilers to detect parallelism in codes is an important draw-
back to the use of supercomputers because it compels programmers to tediously
parallelize their programs by hand, as we did in the first part of this thesis. This
fact adds a significant level of complexity to the programming task. Because of
these compiler limitations, conventional programming languages are usually ex-
tended with directives to provide the compiler with the information that it cannot
obtain by itself, as discussed in Chapter 6 for HPF.

Nowadays, many efforts are being made to improve compilers with com-
plex techniques to parallelize programs automatically. This way, the acceptance
and use of multiprocessors would be enhanced due to this transparency to pro-
grammers. Many of these techniques to generate optimized parallel codes are
described in [106][111]. The SUIF [50] and Polaris [16] parallelizing compilers
are two representative examples of current active research on automatic program
parallelization.

7.5.1 The SUIF and Polaris Compilers

The SUIF (Stanford University Intermediate Format) compiler, developed by
the Stanford Compiler Group, is a free infrastructure designed to support colla-
borative research in optimizing and parallelizing compilers. SUIF transforms
Fortran 77 and C sequential programs into SPMD code for shared address space
machines. This parallel code includes calls to a portable run-time library, which
is currently available for SGI machines, the Stanford DASH multiprocessor and
Digital AlphaServers.

The SUIF system consists of a set of compiler passes (implemented as sepa-
rate programs), each one of them performs a single analysis or transformation of
the code. These passes work together by using a common intermediate format
to represent programs. New passes can be freely inserted at any point in a com-
pilation. These facts make SUIF easy to modify and extend, becoming a very
adequate environment for evaluating new compiler techniques. As we can see,
although this approach is somewhat inefficient, it is very flexible.

The passes that SUIF runs for parallelization are: constant propagation,
scalarizing array accesses, forward propagation, normalization, induction variable
detection, constant folding, scalar privatization analysis, reduction recognition,
dependence preprocessing, parallelism and locality optimization, and parallel code
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DO j=1,n
vsum(j) = 0.0
DO i = col(j), col(j+1)-1
vsum(j) = vsum(j) + data(i) * vcol(row(i))
END DO
END DO

Figure 7.10: Sparse matriz-dense vector product

generation. After running the parallelization passes, SUIF can generate C code
or MIPS processor code.

The Polaris compiler includes optimization techniques (automatic detection
of parallelism and data distribution) to translate a Fortran 77 sequential program
into an output (Fortran 77 plus parallel directives) which can be executed effi-
ciently on a parallel computer: shared memory multiprocessors (such as an SGI
Challenge machine) and scalable machines with a global address space (such as
the Cray T3D). Currently, a Polaris version for a network of computers is being
developed.

The Polaris restructurer also performs its transformations in several compi-
lation passes. Polaris includes several analysis techniques based on both static
and dynamic (run-time) parallelization strategies, which rest on a careful re-
search on the characteristics of real Fortran codes. These techniques, such as
data dependence analysis (at compile-time or dynamically at run-time), symbolic
program analysis, induction variable recognition, interprocedural analysis, array
privatization, reduction variable recognition, etc. are widely described and tested
in [15] and [17].

7.5.2 Automatic Parallelization of Sparse Computations

In this thesis, we have focused on sparse matrix operations, which involve irregular
memory access patterns. As an example of this kind of operations, the sparse
matrix-dense vector product is depicted in Figure 7.10. This product is a common
operation performed in our QR algorithms; see, for instance, expression (2.7) in
Figure 2.1, which represents a dense matrix-vector product (the vector is the
column % of matrix A). In our Fortran 77 code, this operation is converted into a
sparse matrix-dense vector product. The sparse matrix is stored in a CCS format
using three vectors (data, row, col) and column k of the matrix is stored in vector
veol; the dense array vsum stores the result of this product. The arrays vcol and
vsum were described in the parallel MGS C algorithm (Section 3.2), but note that
in our Fortran 77 code, vcol is a dense array, instead of a packed vector.

The sparse matrix-dense vector product is also used in the Householder algo-
rithm to compute vector w (see expression (2.12) of Figure 2.4). The dense vector
of the product in our Fortran 77 algorithm is the Householder vector v (in the
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static void _MAIN___O_func(int _my_id)
{

_my_struct_ptr = _suif_aligned_args;
j = _my_struct_ptr->_field_O;

vsum = _my_struct_ptr->_field_1;
data = _my_struct_ptr->_field_2;
vcol = _my_struct_ptr->_field_3;

row = _my_struct_ptr->_field_4;

col = _my_struct_ptr->_field_5;

_my_nprocs = *_suif_aligned_my_nprocs;

for (__priv_jO = max(n * _my_id / _my_nprocs + 1, 1);

__priv_jO < min(n * (_my_id + 1) / _my_nprocs + 1, n+1); __priv_jO++)
suif_tmp3 = &((double *)vsum) [__priv_jo - 1];
suif_tmp4 = suif_tmp3;
suif_tmpb5 = suif_tmp4;
suif_tmp6 = suif_tmpb;

*suif_tmp6 = 0.0;
__s2c_tmp7 = ((int *)col) [(long) (__priv_jOo + 0)]1 - 1;
for (i = ((int *)col) [__priv_jO - 1]; i <= __s2c_tmp7; i++)
{
*suif_tmp5 = *suif_tmp6 + ((double *)data)[i - 1] *
((double *)vcol) [((int *)row)[i - 1] - 1];

}
if (_my_id == _my_nprocs - 1)
{*j = __priv_joO;
return;

extern int MAIN__()
{

_doall_level_result = suif_doall_level();
if (0 < _doall_level_result)
{
for (j = 1; j <= n; j++)
{

suif_tmpl = &vsum[j - 1];

*suif_tmpl = 0.0;
__s2c_tmp2 = col[j - 1];
__s2c_tmp3 = col[(long)(j + 0)] - 1;

__s2c_tmp3)

if (__s2c_tmp2 <=
{

suif_tmp0 = suif_tmpl;

for (i = __s2c_tmp2; i <= __s2c_tmp3; i++)

xsuif_tmp0 = vsum[j - 1] + datal[i - 1] * vcol[row[i - 1] - 1];

}
}
}
else

{
struct _BLDR_struct_000 *_MAIN___O_struct_ptr;
suif_start_packing(_MAIN___O_func, "_MAIN___O_func");
*_suif_aligned_task_f = _MAIN___O_func;
_MAIN___O_struct_ptr = _suif_aligned_args;
suif_named_doall (_MAIN___O_func, "_MAIN___O_func", 0, n, 1);

}

}

Figure 7.11: Summarized output of the SUIF compiler for the sparse matriz-dense
vector product
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C$DOACROSS LOCAL(I,J),SHARE(N,VSUM,COL,DATA,VCOL,ROW),
C$& MP_SCHEDTYPE=INTERLEAVED,CHUNK=2

CSRD$ LOOPLABEL ’PROD_do#1’
DO j =1, n, 1
vsum(j) = 0.0
i = col(j)
CSRD$ LOOPLABEL ’PROD_do#1#1°
DO i =1, col(1+j)+(-col(j)), 1
vsum(j) = vsum(j)+data((-1)+col(j)+i)*vcol(row((-1)+col(j)+i))
END DO
END DO

Figure 7.12: Summarized output of the Polaris compiler for the sparse
matriz-dense vector product

sparse C algorithm v is a packed vector).

Figures 7.11 and 7.12 show the core of the output of the SUIF and Polaris
compilers for the code of Figure 7.10, respectively. As we indicated in the earlier
subsection, the SUIF output is SPMD C code (we have omitted many lines of
code to simplify) and the Polaris restructurer output is composed of Fortran 77
code plus a set of compiler directives (Polaris directives begin with the keyword

CSRDS).

The SUIF and Polaris compilers parallelize the outer loop j of the sparse
matrix-dense vector code of Figure 7.10; but, unfortunately, there are many other
irregular access patterns in our sparse QR codes that greatly complicate the auto-
matic detection of parallelism and, in many situations, following a conservative
approach, potential parallel programs are not parallelized, which decreases the
speed-ups of the output parallel codes.

Asenjo et al. propose in [5] automatic parallelization techniques to detect and
exploit parallelism on a collection of real codes with irregular access patterns
(sparse factorizations, molecular dynamics and fluid dynamics computations,
etc.), and evaluate the effectiveness of these methods with the aim of being in-
cluded in the Polaris restructurer. We have applied two of these techniques to
the Fortran 77 code of the MGS and Householder QR decomposition algorithms.
These techniques are: the test of monotonicity of index arrays and the test of
non-overlapping ranges of induction variables, and we describe them in the next
two subsections.

The reason of using Fortran 77 QR algorithms is that the basis of Polaris
is Fortran 77 and we cannot use Fortran 90 capabilities, as we have done in
our HPF data-parallel approach. Therefore, pointer data types and dynamic
data structures cannot be analyzed by the Polaris compiler. These sequential
Fortran 77 QR codes are simplified and follow the same style as the Craft MGS
algorithm described in Section 6.2.

However, there is active research and increasing interest in dependence ana-
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D0 j=1,n
DO i = col(j), col(j+1)-1
data(i) = ...
END DO
END DO

Figure 7.13: Subscripted array subscripts in the QR codes

lysis of pointer references to be included in a parallelizing compiler, which is
certainly not a trivial task. Matsumoto et al. describe in [68] a new method
to analyze dependences between pointer references in Pascal and Fortran 90 lan-
guages, which mainly appear in the management of dynamic data structures,
such as linked lists or trees. Amme and Zehendner [3] present an efficient data
dependence analysis method in programs with pointers based on solving a data
flow problem.

7.5.3 Testing Monotonicity of Index Arrays

The appearance of subscripted subscripts in the loops of the code usually forces
data dependence analyzers to conclude conservatively that those loops are not
parallelizable.

These subscripted array subscripts are very common in sparse codes and are
difficult to handle by the automatic parallelizers. One common pattern of our
QR algorithms involves the use of subscripted array subscripts in loop bounds,
as shown in Figure 7.13, in which an array variable that traverses that loop is
written.

The condition for the outermost loop j of this code to be parallelized (doall
loop) is given by the following expression:

6[col(j),col(j +1)—1]=0 (7.1)

that is, Vj, the range [col(j), col(j+1)-1] must be non-overlapping.

Although this condition may not hold for other patterns with subscripted
array subscripts, for our sparse codes the index arrays are inherently monotonic.
This is because the matrices in our sparse codes are represented using a com-
pressed format (a column-wise storage scheme, CCS; in our example). Each en-
try j of array col stores the position in data where column j of the sparse matrix
begins and, therefore, the index array col is non-decreasing.

The analysis of this kind of patterns is difficult to accomplish at compile-time.
However a combination of compile-time analysis and run-time tests would allow
to prove that these index arrays are non-decreasing. Sometimes, the index array
is read from input, as occurs with our QR code, in which the coefficient matrix
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DO j =1,
col2(j)
END DO

col1(j)

DDk =1, n
bufindex = MOD(k,2)*shift + 1
DO j = k+1, n
cptrl = bufindex
DO i = coll1(j), col2(j)
data(bufindex) = data(i)
bufindex = bufindex + 1
END DO
cptr2 = bufindex - 1
IF (£fill_in_cond) THEN
cptr2 = cptr2 + 1
data(bufindex:bufindex+inc) = ...
bufindex = bufindex + inc
END IF
DO i = col2(j)+1, coll(j+1)-1
data(bufindex) = data(i)
bufindex = bufindex + 1

END DO
col1(j) = cptrl
col2(j) = cptr2
END DO
col(n+1) = bufindex
END DO

Figure 7.14: Fill-in stage of the Fortran 77 sparse QR algorithms

is read from a file in a CCS format. In this case, proving that the ranges do
not overlap is equivalent to testing that Vj,1 < j < n,col(j + 1) > col(j)-
This test, whose running time overhead is negligible, should be included, when
possible, as part of the initial input stage. As the test is basically a reduction
operation across the array col, it can also be executed in parallel to decrease the
test execution time.

7.5.4 Testing Non-Overlapping Ranges of Induction Va-
riables

In order to describe this test, Figure 7.14 shows a simplified code of the process
of updating coefficient matrix A in QR algorithms, the fill-in stage, about which
we will not go into details.

The outermost loop & is executed for the n columns of the sparse matrix A,
stored in CCS format (data, row, col), as we said in the previous subsection;
coll, col2 are auxiliary index arrays. This piece of code includes array references
to the entries of the sparse matrix (stored in array data) via a linear induction
variable bufindez, which is conditionally incremented (see the IF block of Figu-
re 7.14). In order to prove the independence (non-overlap) of ranges of array
references through an induction variable, a static analysis may be used to reveal
non-overlapping conditions which can be tested at run-time.
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Let us focus on the example code of Figure 7.14. The two sufficient conditions
the j(k + 1 : n) loop must fulfill to be executed in parallel are:

e First, the range of bufinder must not overlap the same range of bufindex
for iterations executed on other processors; that is, output dependences are
not present.

e Second, the range of bufinder in this loop must not overlap the range
[col1(j), coll(j+1)-1], as shown in the following expression:

Vi, k+1 < j <n, range(bufindex) () [coll(j),coll(j+1)—1] =0 (7.2)

This is equivalent to asserting that there are no flow or anti-dependences.

In order to prove these two conditions, it must first be determined that index
arrays coll and col2 are non-decreasing. As we can see in Figure 7.14, these arrays
are reassigned in each iteration of loop j(k+1 : n), which makes the analysis of the
array access pattern difficult. Nevertheless, simple conditions under which these
index arrays will be non-decreasing can be determined statically at compile-time,
as we will next show.

The induction variable bufindex is never decremented in loop j. Besides, it
is conditionally increased under the condition fill_in_cond in a positive quantity
(inc). Moreover, the initial assignment of the first j(1 : n) loop of Figure 7.14
assures that the first i(coll(j) : col2(j)) loop is executed at least one iteration;
therefore, one of the invariant conditions of this loop is that the induction variable
bufindex is strictly increasing. If arrays coll and col2 are initially non-decreasing,
this invariant condition is, by induction, a sufficient condition to assert that they
will remain non-decreasing during the execution of the outermost loop k. As a
conclusion, the proof of the non-decreasing nature of these index arrays has been
reduced to executing the test: V4,1 < j < mn,col(j+1) > col(j), once at run-time.

As a result of the fact that bufindex is strictly increasing in the loop j(k+1 : n),
we have also proven that there are no output dependences across the iterations
of this loop (first condition).

The next step is to prove the second condition (see expression (7.2)), using a
simple test which compares the upper bound of bufindex to the lower bound of
coll and the lower bound of bufindex to the upper bound of coll. The presence
of a conditional increment in bufindex (by means of fill_in_cond) complicates the
analysis; however, we can use an estimate of the maximum value of bufindez by
determining an upper bound across the entire iteration space of the j(k + 1 : n)
loop. Given that coll and col2 are non-decreasing and the strictly increasing
nature of bufinder, then col2(j) > coll(j); thus we know the tripcount of the
i(coll(j) : col2(j)) loop and we can conservatively assume that the fill_in_cond
condition is always fulfilled.

Together these facts lead to the run-time test of Figure 7.15 to prove the
non-overlapping nature of reads and writes to array data. That is, the test con-
cludes the proof that the iterations of the j(k + 1 : n) loop are independent.
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min_i = col(k+1)

max_i col(n+1)-1

min_bufindex = bufindex

max_bufindex = bufindex + (max_i-min_i) + ((n-k)*inc)

IF ((min_bufindex .GT. max_i) .OR. (max_bufindex .LT. min_i) THEN
parallel_ex = .TRUE.

ELSE
parallel_ex = .FALSE.

END IF

Figure 7.15: Test of non-overlapping ranges of the variable bufindex

This test (which has little overhead) must be placed outside the j(k + 1 : n)
loop. When it is true, this loop may be executed in parallel; otherwise, it must
conservatively be executed serially.
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Conclusions

This thesis has covered a wide variety of subjects in the field of parallel sparse
numerical computations: from parallel sparse algorithms constructed by hand up
to automatic parallelization techniques of sparse codes.

Thus, we have used different numerical libraries for sparse and dense ma-
trix algorithms, parallel distributed memory target machines (Fujitsu AP1000,
Cray T3D, Cray T3E, a network of workstations), message-passing libraries (PVM,
MPI, Cray SHMEM library, AP1000 CellOS routines), run-time libraries (DDLY,
CHAOS), compiler construction tools (Cocktail), data-parallel compilers (HPF,
Craft), automatic parallelizing compilers (SUIF, Polaris), etc.

The main contributions of the thesis can be summarized in the following eight
items:

e The implementation of portable parallel sparse rank-revealing QR algo-
rithms on MIMD distributed memory supercomputers, with application to
solving least squares problems, which are often used in many active scientific
areas. The choice of the data distribution and the dynamic data structures
was essential to obtain efficient parallel algorithms, as we showed experi-
mentally in the corresponding chapters.

e The inclusion of a general heuristic strategy, valid for the three QR methods
(Modified Gram-Schmidt, Householder reflections and Givens rotations)
and for any pattern of the matrix to be factorized, in order to preserve
the sparsity rate of the coefficient matrix during factorization. This strate-
gy obtains acceptable reductions of fill-in and preserves the numerical sta-
bility of the computations. Using this fill-in reduction criterion, based on
column pivoting and with minimum execution time overhead, the sparse
QR direct methods can be competitive, in some applications, with iterative
algorithms.

e A local pivoting strategy was obtained to reduce the number of commu-
nications (message-passing) when applying the column pivoting associated
with the fill-in reduction criterion. Thus, the execution times of the pa-
rallel QR algorithms are reduced and the efficiencies are increased. This
local pivoting can be easily adapted to any other factorization algorithms
(LU, Cholesky - --) that employ pivoting.

141



142 CONCLUSIONS

e The development of 3LM, a portable parallel library for sparse matrix com-
putations involving pivoting and fill-in operations, in order to facilitate the
programming of sparse algorithms on distributed memory multiprocessors.
This library, called by means of a simple interface, includes a wide variety
of features for sparse matrices and vectors, such as dynamic data structures
(mainly based on linked lists), data distributions/redistributions, data repli-
cation operations, reduction operations, routines to manage pivoting and
fill-in, list and vector operations, etc.

e A syntax proposal to extend the standard High Performance Fortran da-
ta-parallel language with new features to support sparse matrix operations.
These features, focused on the new /HPF$ SPARSE compiler directive,
include data distributions/alignments and data structures (based on For-
tran 90 derived data types) specific for sparse matrices and fill-in operations.
Thereby, the efficiencies of the sparse data-parallel algorithms are greatly
improved.

e A compiler module to support the syntax proposal of the previous point.
This module consists in the developement of a source code analyzer for ex-
tended HPF (lexical and syntactic analysis) and the description of the code
parallelizator and generator, following an SPMD paradigm. The module
was designed to be embedded and integrated in an HPF compiler and to
easily include new extensions to the HPF language.

e A run-time library for the execution of the parallel tasks of the SPMD code
generated by the compiler module. It consists in a complete and portable
set of routines to perform data distributions and alignments, reductions,
array index translations, etc.

e An introduction to the analysis and application of automatic parallelization
techniques (monotonicity of index arrays and non-overlapping ranges of
induction variables) suitable for sparse matrix operations, focusing on our
sparse QR codes.

As future research work, we will consider three main goals (related exclu-
sively to the second part of the thesis) to complement the task developed in this
dissertation:

e First, we intend to complete and improve the compiler module and the
run-time library of the HPF extension for sparse computations, in order to
generate an optimized SPMD code.

e Second, we will study the feasibility of including new features in the HPF
compiler for another set of numerical scientific irregular problems provided
that this inclusion implies minimum changes in the compiler. Consequently,
new data structures and data distributions should be analyzed to improve
the efficiencies of these irregular applications.
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e The third research line is to go deeply into new automatic parallelization
techniques for codes with irregular pattern accesses (focusing on pointers
and dynamic data structures) liable to be included in a code restructurer
for parallel compilers.
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