
The AdCIM framework: extraction,
integration and persistence of the
configuration of distributed systems

Iván Díaz Álvarez

Department of Electronics and Systems
University of A Coruña, Spain

Department of Electronics and Systems

University of A Coruña, Spain

PhD THESIS

The AdCIM framework: extraction,

integration and persistence of the

con�guration of distributed systems

Iván Díaz Álvarez

May 2010

PhD Advisor:
Juan Touriño Domínguez

Dr. Juan Touriño Domínguez
Catedrático de Universidad
Dpto. de Electrónica y Sistemas
Universidade da Coruña

CERTIFICA

Que la memoria titulada �The AdCIM framework: extraction, integration and per-

sistence of the con�guration of distributed systems� ha sido realizada por D. Iván
Díaz Álvarez bajo mi dirección en el Departamento de Electrónica y Sistemas de
la Universidade da Coruña y concluye la Tesis Doctoral que presenta para optar al
grado de Doctor en Informática.

A Coruña, 24 de Marzo de 2010

Fdo.: Juan Touriño Domínguez
Director de la Tesis Doctoral

Fdo.: Juan Touriño Domínguez
Director del Dpto. de Electrónica y Sistemas

Resumen de la Tesis

Este resumen se compone de una introducción, que explica el enfoque y contexto
de la Tesis, seguida de una sección sobre su organización en partes y capítulos.
Después, sigue una enumeración de las contribuciones recogidas en ella, para �nalizar
con las conclusiones y trabajo futuro.

Introducción

Los administradores de sistemas tienen que trabajar con la gran diversidad de
hardware y software existente en las organizaciones actuales. Desde el punto de
vista del administrador, las infraestructuras homogéneas son mucho más sencillas
de administrar y por ello más deseables. Pero, aparte de la di�cultad intrínseca de
mantener esa homogeneidad a la vez que progresa la tecnología y las consecuencias de
estar atado a un proveedor �jo, la propia homogeneidad tiene riesgos; por ejemplo, las
instalaciones en monocultivo son más vulnerables contra virus y troyanos, y hacerlas
seguras requiere la introducción de diferencias aleatorias en llamadas al sistema que
introduzcan diversidad arti�cial, una medida que puede provocar inestabilidad (ver
Birman y Schneider [7]).

Esto hace la heterogeneidad en sí casi inevitable, y una característica de los sis-
temas reales difícil de obviar. Pero de hecho conlleva más complejidad. En muchas
instalaciones, la mezcla de Windows y derivados de Unix es usual, ya sea en combi-
nación o divididos claramente en clientes y servidores. Las tareas de administración
en ambos sistemas son diferentes debido a las diferencias en ecosistema y modo
de conceptualizar los sistemas informáticos acaecidas tras años de divergencia en
interfaces, sistemas de con�guración, comandos y abstracciones.

A lo largo del tiempo ha habido muchos intentos de cerrar esa brecha, y algunos

v

vi

lo hacen emulando o versionando las herramientas Unix, probadas a lo largo de
muchos años. Por ejemplo, la solución de Microsoft, Windows Services for Unix [60]
permite el uso de NIS, el Network File System (NFS), Perl, y el shell Korn en
Windows, pero no los integra realmente en Windows, ya que está más orientado a la
migración de aplicaciones. Cygwin [70] soporta más herramientas, como Bash y las
Autotools de GNU, pero se centra en la traslación directa a Windows de programas
Unix basados en POSIX usando gcc. Outwit [94] es un port muy interesante del
conjunto de herramientas Unix que integra los pipelines de Unix en Windows y
permite acceder al Registro, los drivers ODBC y al portapapeles desde los shells de
Unix, pero los scripts desarrollados para este sistema no son usables directamente
en sistemas Unix. Por lo tanto, la separación sigue a pesar de dichos intentos.

En esta Tesis presentamos un framework, denominado AdCIM, para la admi-
nistración de la con�guración de sistemas heterogéneos. Como tal, su objetivo es
integrar y uniformizar la administración de estos sistemas abstrayendo sus dife-
rencias, pero al mismo tiempo ser �exible y fácil de adaptar para soportar nuevos
sistemas rápidamente. Para lograr dichos objetivos la arquitectura de AdCIM sigue
el paradigma de orientación a modelo [41], que propone el diseño de aplicaciones a
partir de un modelo inicial, que es transformado en diversos �artefactos�, como códi-
go, documentación, esquemas de base de datos, etc. que formarían la aplicación. En
el caso de AdCIM, el modelo es CIM, y las transformaciones se efectúan utilizando
el lenguaje declarativo XSLT, que es capaz de expresar transformaciones sobre datos
XML. AdCIM realiza todas sus transformaciones con XSLT, excepto la conversión
inicial de �cheros de texto plano a XML, hecha con un párser especial de texto a
XML. Los programas XSLT, también denominados stylesheets (�hojas de estilo�),
enlazan y transforman partes especí�cas del árbol XML de entrada, y soportan eje-
cución recursiva, formando un modelo de programación declarativo-funcional con
gran potencia expresiva.

El modelo elegido para representar los dominios de administración cubiertos
por el framework es CIM (Common Information Model) [23], un modelo estándar,
extensible y orientado a objetos creado por la Distributed Management Task Force
(DMTF). Usando esquemas del modelo CIM, los múltiples y distintos formatos
de con�guración y datos de administración son traducidos por la infraestructura
de AdCIM en instancias CIM. Los esquemas CIM también sirven como base para
generar formularios web y otros esquemas especí�cos para validación y persistencia
de los datos.

El desarrollo de AdCIM como un framework orientado al modelo evolucionó a

vii

partir de nuestro trabajo previo [89], que extraía datos de con�guración y los al-
macenaba en un repositorio LDAP utilizando scripts Perl. En sucesivos trabajos,
como [22], se empezó a trabajar con la orientación a modelo y se demostró la natu-
raleza adaptativa de este framework, mediante adaptaciones a entornos Grid [20] y
a Wireless Mesh Networks en [21].

El enfoque e implementación de este framework son novedosos, y usa algunas
tecnologías de�nidas como estándares por organizaciones internacionales como la
IETF, la DMTF, y la W3C. Vemos el uso de dichas tecnologías como una ventaja en
vez de una limitación en las posibilidades del framework. Su uso añade generalidad
y aplicabilidad al framework, sobre todo comparado con soluciones ad-hoc o de
propósito muy especí�co.

A pesar de esta �exibilidad, hemos intentado en todo lo posible de�nir y concretar
todos los aspectos de implementación, de�nir prácticas de uso adecuadas y evaluar
el impacto en el rendimiento y escalabilidad del framework de la elección de las
distintas tecnologías estándar.

Organización de la Tesis

Esta Tesis está organizada en dos partes, precedidas por una introducción gene-
ral en el Capítulo 1, y seguidas por un capítulo con conclusiones y trabajo futuro
(Capítulo 10), la bibliografía y un glosario, que creemos muy necesario en un trabajo
con gran cantidad de términos técnicos y acrónimos.

La primera parte introduce el framework AdCIM en el Capítulo 2, y luego lo
detalla por capas de diseño, comenzando por la Capa de Modelado en el Capítulo 3,
la Capa de Datos de Sistema en el Capítulo 4, y luego la de Persistencia de Datos
en el Capítulo 5. Finalmente, la Capa de Aplicación se trata en el Capítulo 6.

Una parte considerable de la investigación y desarrollo del framework concierne a
su adaptación a escenarios y casos de uso complejos. La segunda parte de la Tesis se
debe a dicha naturaleza del trabajo, con el objetivo de ponerlo en contexto y entender
su uso y alcance. Empieza con una pequeña introducción, seguida por tres ejemplos
de aplicación. El primero, en el Capítulo 7, es una extensión de la Capa de Datos
de Sistema para soportar el formato del �chero de con�guración Sendmail, seguido
de una adaptación al middleware de Grid Globus en el Capítulo 8, en concreto
para poder utilizar información CIM en el el servicio de publicación de información

viii

de administración de Globus. Dicha parte de la Tesis se cierra con el ejemplo más
complejo de los tres en el Capítulo 9, una aplicación a las Wireless Mesh Networks
(un tipo especial de red inalámbrica), que sirve también como demostración de las
capacidades de razonamiento ontológico del framework.

Metodología de Trabajo

El framework presentado en esta Tesis se basa en el paradigma de la orientación
a modelo, por lo que el desarrollo se enfocó en la especi�cación del modelo y en
sus transformaciones a diversos artefactos que especi�can o implementan la diversa
funcionalidad del framework. Por ello, para cada dominio determinado se siguieron
los siguientes pasos:

Determinar, describir y establecer requisitos del dominio modelizado.

Adaptar y extender el modelo CIM para el dominio modelizado.

Especi�car los artefactos necesarios (Soporte de persistencia, esquemas, inter-
faces de usuario, código).

Determinar el formato de extracción de la con�guración y establecer los mé-
todos usados.

Transformar e integrar los elementos anteriores.

En el caso de usar ontologías para la implementación de procesos de razonamien-
to, se requiere también:

Establecer formalmente las reglas tanto explícitas como implícitas del dominio.

Formular las limitaciones semánticas y lógicas del dominio.

Especi�car una ontología y taxonomía que complemente al modelo del dominio
e incluya los dos puntos anteriores.

Suplementar con reglas lógicas para políticas y limitaciones del tratamiento
ontológico.

ix

Contribuciones

Debido a su naturaleza �exible y a la complejidad del problema, las contribucio-
nes que aporta la Tesis son múltiples. En resumen, AdCIM provee infraestructura
para:

Representación e�ciente y extensión del modelo CIM usando un formato es-
pecial de CIM (denominado miniCIM), que ocupa poco espacio y es fácil de
procesar.

Extracción, basada en gramáticas, de información de con�guración y admi-
nistración como instancias miniCIM. Como caso complejo de estudio, hemos
adaptado este proceso a la con�guración del agente de correo Sendmail.

Persistencia transparente de datos miniCIM en un repositorio (un directorio
LDAP, aunque AdCIM es independiente del repositorio), incluyendo mapeado
de esquema. Hemos conseguido un escalado lineal en sistemas multicore del
rendimiento de esta capa de persistencia.

Consulta y modi�cación de la información miniCIM, soportada por el direc-
torio mediante servicios web REST.

Pregeneración y asignación de estilo de interfaces web de usuario XForms para
crear aplicaciones de administración que pueden comunicarse directamente con
los servicios web antes mencionados.

Especi�cación formal de ontologías para dominios de administración con sopor-
te para procesos de razonamiento y delineación de políticas de administración.

Conclusiones

En este trabajo se describe en detalle AdCIM, un framework orientado al modelo
basado en CIM y destinado al desarrollo de aplicaciones para la integración de la
administración de sistemas distribuidos heterogéneos. Su naturaleza orientada al
modelo signi�ca que es capaz de hacer prototipado y adaptación rápida a escenarios
complejos, como aquellos descritos en los Capítulos 7, 8 y 9. AdCIM aporta hojas
de estilo XSLT que producen varios artefactos a partir del esquema, por lo que
las extensiones y modi�caciones del modelo pueden transformarse rápidamente en

x

esquemas de bases de datos, documentos XML o formularios web. Dichos artefactos
también respetan las restricciones semánticas, ya que se derivan directamente del
esquema.

AdCIM también soporta la extracción de datos CIM de varias fuentes de con�gu-
ración, y especialmente desde �cheros de texto plano, prevalentes en sistemas Unix,
pero también soporta el subsistema WMI de Windows, con�guraciones de �rmwa-
re y otras fuentes. En el caso de �cheros de texto plano, soporta con�guraciones
complejas como la de Sendmail (ver Capítulo 7).

AdCIM también deriva esquemas de bases de datos como parte de los artefactos
soportados y, usando las plantillas XSLT que proporciona, soporta la persistencia
de datos CIM en repositorios LDAP. El rendimiento de esas hojas de estilo XSLT
se muestra como escalable y adaptable a arquitecturas multicore. Parte de este ren-
dimiento es debido al uso de nuestro formato miniCIM, que minimiza la sobrecarga
debida a utilizar datos CIM codi�cados en XML. Esta codi�cación es posible utili-
zando un esquema XML derivado del esquema original de CIM.

Los formularios XForms se generan con el objetivo de manipular instancias CIM
de datos de con�guración y administración de un modo general y simple para el usua-
rio. Estos formularios son fácilmente prototipables, pero al mismo tiempo soportan
personalización con CSS y su visualización en navegadores comunes. Su acceso a
los datos CIM es intermediado por una interfaz de servicios web REST que expone
estos datos para clientes web y aplicaciones externas.

Por último, la naturaleza semiformal de CIM se complementa con restricciones
semánticas adicionales con el objeto de crear una especi�cación formal ontológica
OWL, con la cual se demuestran capacidades de razonamiento formal y la delineación
de políticas basadas en reglas de Horn.

Todos estos componentes software se ensamblan para abstraer, integrar y asociar
todos los datos de con�guración y administración en un todo coherente. La tarea de
desarrollo se complementa con hojas de estilo XSLT proporcionadas por el frame-
work y con el uso de tecnologías de integración, como servicios web REST, XForms
y XSLT. Aunque los recursos consumidos en los nodos dependen de la implemen-
tación elegida para el repositorio, del procesador XSLT y del intérprete XForms,
hemos conseguido un uso de memoria y procesador que apenas inter�ere con otros
procesos en la máquina.

xi

Trabajo Futuro

Nuestro trabajo futuro incluye el estudio de otros repositorios distribuidos, el uso
más completo de ontologías para agregar y derivar nuevo conocimiento a partir de
información adquirida en los nodos administrados, la extensión a nuevos dominios
de administración como Cloud Computing, y el desarrollo de aplicaciones para la
diagnosis y recuperación automática de condiciones de error distribuidas en sistemas
con gran heterogeneidad.

International Publications

1. Jesús Salceda, Iván Díaz, Juan Touriño, Ramón Doallo. CIM Modeling for
System Management (invited talk).Large Scale System Con�guration Work-

shop at the 17th Usenix Large Installation Systems Administration Conference,
LISA'03. San Diego, USA, October 2003.

2. Jesús Salceda, Iván Díaz, Juan Touriño, Ramón Doallo. A Middleware Archi-
tecture for Distributed Systems Management.Journal of Parallel and Distri-

buted Computing, volume 64, number 6, pages 759-766, June 2004.

3. Iván Díaz, Juan Touriño, Jesús Salceda, Ramón Doallo. A Framework Fo-
cus on Con�guration Modeling and Integration with Transparent Persistence.
InProceedings of the 19th IEEE International Parallel and Distributed Pro-

cessing Symposium, IPDPS 2005, Workshop on System Management Tools

for Large-Scale Parallel Systems, page 297a, Denver, USA, April 2005.

4. Iván Díaz, Juan Touriño, Ramón Doallo. Towards Low-Latency Model-Oriented
Distributed Systems Management. InProceedings of the 10th Asia-Paci�c Net-
work Operations and Management Symposium, APNOMS 2007, Lecture Notes
in Computer Science volume 4773, pages 41-50. Sapporo, Japan, October 2007.

5. Iván Díaz, Gracia Fernández, María J. Martín, Patricia González, Juan Touriño.
Integrating the Common Information Model with MDS4. InProceedings of

the 9th IEEE/ACM International Conference on Grid Computing, Grid 2008,
IEEE Computer Society, pages 298-303. Tsukuba, Japan, September 2008.

6. Iván Díaz, Cristian Popi, Olivier Festor, Juan Touriño, Ramón Doallo. Onto-
logical Con�guration Management for Wireless Mesh Routers. InProceedings
of the 9th International Workshop on IP Operations and Management, IPOM

2009, Lecture Notes in Computer Science, volume 5843, pages 116-129. Venice,
Italy, October 2009.

xiii

xiv

7. Iván Díaz, Juan Touriño, Ramón Doallo. AdCIM: a System Administration
Framework for Heterogeneous Environments. December 2009 (submitted for
Journal publication).

8. Iván Díaz, Gracia Fernández, María J. Martín, Patricia González, Juan Touriño.
Extending the GT4 Information Service with the Common Information Model.
March 2010 (submitted for Conference publication).

Abstract

System administration is a complex �eld constantly growing in scale and com-
plexity in tandem with new hardware and software developments. There are many
solutions that enable scalable administration but they are generally proprietary and
non-interoperable in nature, causing vendor lock-in and data fragmentation into
unrelated information silos. There is also a need to manage and abstract an increas-
ing heterogeneity in networks. This Thesis describes a management application
framework, named AdCIM, that uni�es representation, integration and persistence
of management and con�guration data into CIM model objects. CIM is an object
oriented, extensible model for management and con�guration. The framework pre-
sented can integrate data from existing agents, registries or con�guration �les, as
complex as those of Sendmail, and is specialized in heterogeneous networks, such
as Grids and Wireless Mesh Networks. The framework also supports ontological
reasoning procedures and policy enforcement, uses standard and open technologies
like XSLT, XForms and LDAP and has a declarative and model-driven nature.

Dedicado a. . .

Mis padres.

Cris, por tener tanta paciencia.

Miguel, por tener visión de futuro.

Acknowledgements

The completion of a Thesis is not a task to undertake alone, so there are people
whose support and dedication I wish to acknowledge. First, I want to acknowledge
my PhD supervisor Juan for the con�dence, support and attention placed in me. I
must also not forget to mention my colleagues in the Department of Electronics and
Systems and the good working environment they provided.

I gratefully thank the following institutions for funding this work: Department
of Electronics and Systems of A Coruña for the human and material support, Uni-
versity of A Coruña for �nancing my attendance at several conferences, and Xunta

de Galicia and Spanish Government for the projects Soluciones Middleware y Hard-

ware en Computación de Altas Prestaciones: Aplicación a Códigos Multimedia y de

Simulación (TIN2004-07797-C02-02), Arquitectura Software y Marco Metodológico

basados en Modelos Formales para la Generación Sistemática de Herramientas de

Administración de Sistemas (PGIDIT06PXIB105228PR) and Soluciones Hardware

y Software para Computación de Altas Prestaciones (TIN2007-67537-C03-02).

I also thank the Spanish Government for funding my work with FPI grant BES-
2005-8758, and the INRIA LORIA Group MADYNES and its Research Director
Olivier Festor for its collaboration and support in the work done in Chapter 9
during a research visit �nanced by the aforementioned FPI grant.

Iván Díaz

"A thousand mile journey begins with one step", Lao-Tse

Contents

1. Introduction 1

I The AdCIM Framework 5

2. Framework Overview 7

2.1. Framework Layers . 7

2.2. Framework Deployment . 9

2.3. Base Technologies . 11

2.3.1. The CIM Model . 11

2.3.2. XSLT . 16

2.4. Related Work . 21

3. Modelling Layer 25

3.1. Application and Extension of the CIM Model 25

3.2. XML Representations of CIM . 27

3.3. Schema Transformation . 31

3.4. Conclusions . 34

xxiii

xxiv CONTENTS

4. System Data Layer 35

4.1. Sources of Con�guration and Management Data 36

4.2. Con�guration Data Extraction . 37

4.2.1. Text File Con�gurations . 37

4.2.2. WMI Data . 40

4.3. Distributed Client Data Transport . 42

4.4. Data Transport Experimental Results 43

4.5. Conclusions . 47

5. Data Persistence Layer 49

5.1. Directory Databases . 50

5.1.1. The LDAP Protocol: Origin and Design 50

5.1.2. LDAP Interchange Formats 54

5.2. AdCIM Persistence in LDAP . 58

5.2.1. miniCIM to LDIF Stylesheet 59

5.2.2. DSML to miniCIM Stylesheet 63

5.2.3. miniCIM Schema to LDAP Schema Stylesheet 63

5.2.4. Persistence Stylesheet Benchmarks 66

5.3. Conclusions . 68

6. Application Layer 69

6.1. XForms . 69

6.2. XForms Use in AdCIM . 72

6.3. Web Data Interface . 80

6.4. Conclusions . 81

CONTENTS xxv

II Advanced Applications 83

Introduction to Part II 85

7. Advanced Con�guration Extraction: the Sendmail File 87

7.1. Con�guration Format . 88

7.2. CIM Representation . 90

7.3. Transformation Process . 91

7.4. Conclusions . 95

8. Grid Integration 97

8.1. Integration of MDS and CIM . 98

8.1.1. Globus MDS . 98

8.1.2. Internal Representation of the Model 100

8.1.3. CIM Information Provider . 101

8.1.4. Database Backend . 103

8.1.5. CIM Operation Provider . 104

8.2. Experimental Results . 105

8.3. Related Work . 108

8.4. Conclusions . 109

9. Application to Wireless Mesh Networks 111

9.1. AdCIM meets Wireless Mesh Networks 111

9.2. Con�guration Analysis . 113

9.3. Con�guration Mapping to CIM . 115

9.3.1. CIM Class Semantics . 116

xxvi CONTENTS

9.3.2. Mapping Considerations . 117

9.3.3. XSLT Implementation . 117

9.4. Ontology Representation . 119

9.4.1. The Web Ontology Language 120

9.4.2. CIM Transformation to OWL 121

9.4.3. OWL Reasoning Implementation in AdCIM 123

9.5. Related Work . 126

9.6. Conclusions . 127

10.Conclusions and Future Work 129

10.1. Conclusions . 129

10.2. Future Work . 131

References 133

Glossary 145

List of Tables

2.1. CIM property types . 14

2.2. Common CIM quali�ers . 17

2.3. XSLT elements . 20

3.1. Mapping of CIM-XML Schema to miniCIM XML Schema 28

4.1. Martel operators . 38

5.1. Types of lines in an LDIF �le . 55

6.1. XForms model and action elements 71

6.2. XForm controls . 72

9.1. Expressivity characteristics in description logics 120

9.2. CIM to OWL mapping . 122

xxvii

List of Figures

2.1. AdCIM layer diagram. Transformations shown in brackets 9

2.2. Framework default deployment view 10

2.3. CIM Logical and Physical classes . 12

2.4. CIM Core model � top level hierarchy 13

2.5. 1-to-many CIM association with properties 15

2.6. Many-to-many CIM association with properties 16

2.7. Example of an XSLT stylesheet . 20

3.1. AdCIM Modelling Layer . 25

3.2. InetdService place in CIM hierarchy 26

3.3. Example of miniCIM Inetd service instance 29

3.4. miniCIM XML Schema de�ning Inetd services 30

3.5. Inetd service association instance expressed in miniCIM (Hosted-

InetdService) . 31

3.6. CIM-XML to miniCIM XML Schema stylesheet excerpt 32

3.7. CIM-XML to miniCIM XML Schema stylesheet excerpt (cont.) 33

4.1. Overview of the con�guration extraction process 36

xxix

xxx LIST OF FIGURES

4.2. Parsing of the inetd.conf �le to XML 39

4.3. Parsing /var/log/messages �le to XML 41

4.4. Python script to extract service information from WMI 41

4.5. Performance measurements for CPU Load test 46

4.6. Performance measurements for Service Discovery test 46

4.7. Performance measurements for Log Parsing test 47

5.1. AdCIM Data Persistence Layer . 49

5.2. LDAP tree showing naming convention 52

5.3. Example of an LDIF �le representing InetdService and HostedInetdService

instances. 56

5.4. Example of a DSML �le representing an InetdService instance with

a HostedInetdService association attached. 58

5.5. miniCIM to LDIF stylesheet for processing an auxiliary association . 60

5.6. Representations of CIM auxiliary associations in (a) miniCIM, (b)

LDIF, output from the miniCIM to LDIF stylesheet, (c) DSML data

extracted from the LDAP repository 61

5.7. DSML to miniCIM stylesheet for processing an auxiliary association . 64

5.8. miniCIM schema to LDAP schema 65

5.9. miniCIM to LDIF stylesheet e�ciency 67

5.10. DSML to miniCIM stylesheet e�ciency 68

6.1. AdCIM Application Layer . 70

6.2. Complete CSS styled XForms form for Inetd services 73

6.3. XSLT code transforming miniCIM XML schema to XForms instances 74

6.4. Generalized XForms form code (part I) 75

LIST OF FIGURES xxxi

6.5. Generalized XForms form code (part II) 76

6.6. Generalized XForms form code (part III) 77

6.7. Complete CSS styled XForms form for managing wireless mesh routers 79

7.1. Example entries of a sendmail.mc �le 88

7.2. CIM representation of the Sendmail con�guration 89

7.3. Process to transform the Sendmail con�guration to miniCIM 91

7.4. Excerpts from the Martel program used for parsing sendmail.mc to

XML . 91

7.5. Excerpts from the SAX �lter used after parsing sendmail.mc to XML 92

7.6. Excerpts from the XSLT stylesheet to output sendmail.mc data to

miniCIM . 93

7.7. CIM rendition of sendmail.mc data 95

8.1. Overview of the AdCIM and MDS4 integration 99

8.2. MDS4 �hourglass� representation . 100

8.3. UML diagram of the internal CIM representation 101

8.4. CIM Information Provider . 102

8.5. Example query tree . 105

8.6. MDS memory usage experimental results 106

8.7. MDS response time experimental results 107

9.1. Application of the AdCIM framework to WMN management 112

9.2. Wireless mesh router architecture 113

9.3. Wireless mesh router con�guration for an IP interface 114

9.4. CIM mapping class hierarchy for the router con�guration 116

xxxii LIST OF FIGURES

9.5. Excerpt from the output of transforming the con�guration of Fig. 9.3

into miniCIM format . 118

Chapter 1

Introduction

System administrators have to take into account the great diversity of hardware
and software existing nowadays in organizations. From the point of view of ad-
ministrators, a homogeneous infrastructure would be much easier to manage, and
de�nitely desirable. But, besides the di�culty of preserving homogeneity against the
force of progress and the fear and consequences of vendor lock-in, homogeneity also
presents risks. Monoculture, for example, makes sites more vulnerable to viruses
and trojans, and making them secure requires the introduction of arti�cial diversity
measures, which a�ect system stability greatly (see Birman and Schneider [7]).

This makes the existence of heterogeneity almost unavoidable, and a feature of
real systems that can not be easily factored out. But it brings added complexity.
In many sites, the combination of Windows and Unix-like machines is not unusual,
whether mixed or in either side of the client/server divide. System administration
tasks in both systems are di�erent due to the divergence in ecosystem and culture
formed during several years that created a great variety of interfaces, con�guration
storage, commands and abstractions.

There have been many attempts to bridge the gap between Windows and Unix,
and some emulate or port the time-proven Unix toolset. For example, Windows Ser-
vices for Unix [60] are Microsoft's solution, enabling the use of Network Information
Service (NIS), Network File System (NFS), Perl, and the Korn shell in Windows, but
it is not really integrated with Windows as it is more a migration-oriented toolset.
Cygwin [70] supports more tools, such as Bash and the GNU Autotools, but it is
centered in porting Portable Operating System Interface for Unix (POSIX) compli-
ant code to Windows using gcc. Outwit [94] is a very interesting port of the Unix

1

2 Chapter 1. Introduction

tools that integrates Unix pipelines in Windows and allows accessing the Registry,
Open Database Connectivity (ODBC) drivers, and the clipboard from a Unix shell,
but the resulting scripts are not directly usable in Unix. Therefore, the divergence
is still not solved.

In this Thesis we present a framework, named AdCIM, for the management of
the con�guration of heterogeneous systems. As such, its aim is to integrate and uni-
formize the management of these systems abstracting the di�erences, but at the same
time being su�ciently �exible and easy to adapt to support new systems quickly.
To achieve these objectives, the architecture of AdCIM follows the model-driven
paradigm [41], which advocates the design of applications originating from an initial
model, which is later transformed into several �artifacts�, like code, documentation,
database schemata, and others which comprise the application. In AdCIM's case,
the model is CIM, and the transformation is achieved using the eXtensible Sheet
Language Transformations (XSLT), which is declarative and capable of expressing
transformations of XML data. AdCIM performs all its XML transformations with
XSLT, except the initial conversion of �at text �les to XML, done with a specialized
text-to-XML parser. XSLT programs, also called stylesheets, match and transform
speci�c parts of the input XML tree, and support recursive execution, conforming
a very �exible functional-declarative programming model.

The model chosen to represent the administration domains covered by the frame-
work is CIM (Common Information Model) [23], a standard, object-oriented, and
extensible model created by the Distributed Management Task Force (DMTF). Us-
ing CIM model schemata, the multiple and disparate formats of con�guration and
management data are translated by AdCIM's infrastructure into CIM instances.
CIM schemata also serve as the basis to generate web interface forms and other
speci�c schemata for validation and persistence purposes.

The development of AdCIM as a model-driven framework was evolved from our
previous work in [89], which extracted con�guration data and stored them in a
LDAP repository using Perl scripts. In our subsequent work in [22], we started to
implement this model-oriented approach, and demonstrated its adaptive nature in
later works, extending AdCIM for the management of Grids in [20] and Wireless
Mesh Networks in [21].

This work is novel in scope and implementation, but it uses some technologies
de�ned as standard by international organisms such as the Internet Engineering Task
Force (IETF), Distributed Management Task Force (DMTF) and World Wide Web

3

Consortium (W3C). We see the use of these technologies as an advantage rather than
a liability. Their use not only adds generality and applicability to the framework
compared with hacks or ad-hoc limited purpose solutions, but also o�ers a number
of implementations and choices that make the framework �exible and adaptable to
multiple scenarios.

Despite this �exibility, we have tried to the utmost extent to de�ne and make
all the implementation aspects concrete, to stablish best-use practices, and measure
the impact on performance and scalability of the choice and use of di�erent standard
technologies.

These technologies are integral to the comprehension of the framework, so they
are brie�y documented. Due to their transversal use, CIM and XSLT are covered
in the next chapter. Other technologies, like Lightweight Directory Access Protocol
(LDAP) and XForms, are covered in appropriate chapters.

Organization of the Thesis

This Thesis is organized into two parts, preceded by this introduction, and fol-
lowed by a chapter with Conclusions and Future work (Chapter 10), the bibliography
and a glossary, which we feel is very important in a work full of technical terms and
acronyms.

The �rst part introduces the framework in Chapter 2, and then details its de-
sign layer by layer. The Modelling Layer, which de�nes schemata to represent this
information and does transformations between them, comes �rst in Chapter 3. The
System Data Layer, focused on the extraction of con�guration information, is de-
tailed next in Chapter 4, and the Data Persistence Layer, which stores and preserves
these data, in Chapter 5. Finally, the Application Layer, concerned with user and
application interfaces, is covered in Chapter 6.

A considerable part of the research and development of the framework was con-
cerned with its adaptation to complex scenarios and use cases. The second part was
motivated by this peculiarity of the work, to put it in context and understand its
use and scope. It begins with a small introduction, followed by three examples of
application. The �rst one, in Chapter 7, is an extension of the System Data Layer
to support the Sendmail con�guration �le format. Next, an adaptation to integrate
CIM information into the discovery and monitoring services of the Grid middleware

4 Chapter 1. Introduction

Globus is shown in Chapter 8. The Part closes with the most complex scenario
in Chapter 9, an application to Wireless Mesh Networks (a special type of wire-
less network), which also doubles as a demonstration of the ontological reasoning
capabilities of the framework.

Part I

The AdCIM Framework

5

Chapter 2

Framework Overview

In this chapter, we give a high-level overview of the AdCIM framework. This
overview shows the framework from the layering (Section 2.1) and deployment views
(Section 2.2). AdCIM uses the CIM model as representation for the con�gura-
tion and management data. Data and model transformations are done using XSLT
stylesheets. Both technologies are covered in Section 2.3. Finally, we compare our
framework with some related works in the literature.

2.1. Framework Layers

The AdCIM framework is structured following a multi-layered organization, in
which the communication between layers is accomplished using di�erent protocols
and interchange formats. Additionally, each component can be deployed among a
large number of network nodes.

Figs. 2.1 and 2.2 show these two di�erent views of the AdCIM framework: an
architectural/layered view in Fig. 2.1, and a deployment view in Fig. 2.2.

The architectural view consists of four layers:

Modelling Layer: This layer includes CIM schemata and instances, and
transformations that involve both. It is particularly interesting, since the
modelling of new domains begins with these schemata, from which the rest of
artifacts are derived. This modelling and the di�erent XML representations
of CIM are detailed in Chapter 3.

7

8 Chapter 2. Framework Overview

System Data Layer: This layer includes extraction processes that collect,
interpret, collate and translate data to a CIM-XML representation (step [A]

in Fig. 2.1). It adapts the framework to existing management data, and must
be extended for new domains. In the case of text con�guration �les, this
adaptation is done using text-to-XML grammar-based parsers. This layer is
the subject of Chapter 4. As an example of a complex con�guration, we also
modelize the con�guration of the Sendmail mail agent in Chapter 7.

Data Persistence Layer: The scope of this layer is the speci�cation of data
formats and transformations for data persistence. This is a transparent layer,
and requires no adaptation e�ort to develop new administration applications.
It is covered in Chapter 5.

Application Layer: It comprises the interfaces visible to the external appli-
cations and end users of the framework. For applications, AdCIM provides
web services for the acquisition of XML data, and for users an XForms- and
XSLT-based solution to develop full-featured, responsive web applications, as
shown in Chapter 6.

In brief, AdCIM provides:

A more space-e�cient XML format to represent CIM data (named miniCIM)
which is used in all data transfers.

XSLT stylesheets to transform XML data:

• From XML con�guration and management data to miniCIM instances
(step [B] in Fig. 2.1) (Section 4.2).

• From miniCIM instances to LDIF, for persistence in an LDAP directory
(step [C]) (Section 5.2.1).

• From DSML directory query data back to miniCIM instances (step [D])
(Section 5.2.2).

• From DMTF CIM-XML schema to miniCIM schema (step [H], Sec-
tion 3.3), and from miniCIM schema to LDAP schema (step [G]) (Sec-
tion 5.2.3), used by LDAP directories for validation and performance
purposes.

Templates and web styles to generate XForms from arbitrary CIM class de�-
nitions (step [E]) (Section 6.2).

2.2 Framework Deployment 9

LDAP
Schema

Data Persistence Layer

Modelling Layer

Application Layer

System Data Layer

Check
CIM/LDAP

LDIF
Instances

XSLT

DSML

miniCIM
XML

Schema

XForms
forms

pre-generated
from schema

XSLT

CSS

LDAP
TCP/IP

LDAP Server

LD
A

P
TC

P
/I
P

H
T
T
P
 +

 R
E
S
T

Martel
Text-to-XML

Parser
Config
Files

DSML
[D]

XSLT
XSLT

[G]
[C]

[B]

[E]

[A]

miniCIM
instances

[F
]

[A] [A]

[A] [A]

[A]

HTML+
Javascript

XForms Processor

CIM-XML
Schema

XSLT
[H]

Figure 2.1: AdCIM layer diagram. Transformations shown in brackets

A web service to serve and update miniCIM data to/from the repository (step
[F]) (Section 6.3).

2.2. Framework Deployment

The AdCIM default deployment (Fig. 2.2) follows a three-tiered architecture
(comparable to the Model-View-Controller pattern), with a system data acquisition
and persistence tier which gathers the administration data of the network nodes,
and persistence servers which store these data. The network nodes monitor changes
and send raw data (con�guration �les, performance parameters, etc.) to the admin-
istration servers to minimize management overhead in the network nodes.

10 Chapter 2. Framework Overview

Persistence
Servers

LDAP v3

Administration
Servers

XSLT

XSLT

HTTP/REST

Administration
Clients

XForms

XHTML/CSS

Network Nodes

Actions

Data Acquisition
& Persistence

(Model)

Data Transformation
(Controller)

User interfaces (View)

W
e
b
 S

e
rv

ic
e
s

LD
A

P
+

X
S
LT

Figure 2.2: Framework default deployment view

Other kinds of deployment are supported by AdCIM; for example, management
data transformations and other administration server tasks support being parti-
tioned into several servers to balance the load, or moved to the client nodes (dis-
placing the load to them).

The currently widespread web browser support for XSLT transformations also
makes possible to o�oad some of the work to clients, so that they are able to directly
access the persistence servers or view network node data bypassing the central repos-
itory, but generally processing the XSLT code in the server is preferable to ease the
scalability and provisioning of the system � since load is aggregated and controllable
� and to avoid security problems derived from the possibility of modifying the XSLT
code in the client with added templates that introduce information maliciously (e.g.,
to activate a service with a known vulnerability).

2.3 Base Technologies 11

The CIM model and its XML formats to represent CIM instances are covered in
Chapter 3. The administration servers translate data to these CIM instances in a
process detailed in Chapter 4. These data are stored and retrieved using LDIF and
DSML in LDAP servers (Chapter 5), and later exposed by the application server
transparently as XML data using a REST [30] web service interface. Administration
clients use XForms [107] styled with CSS (Cascading Style Sheets) [103], running in
a web browser (detailed as part of the Application Layer in Chapter 6).

2.3. Base Technologies

This section gives a technical and historical overview of the CIM model and the
XSLT language, focused on the aspects useful to the AdCIM framework.

2.3.1. The CIM Model

CIM [23] is a management standard which de�nes an object-oriented and user-
extensible information model for all management data. These data are divided
into physical and logical classes and attributes. Physical classes represent tangible
concepts such as location, cabling, component placing, temperature and voltage.
Logical classes embody functional, abstract and intangible properties related with
purpose, operation and category such as users, software packages and their depen-
dences, administration policy and hardware capabilities. In Figure 2.3, both types
of classes are shown in di�erent colors. Both share the top of their inheritance hi-
erarchy and are related at various levels via associations, such as Realizes, which
relates one or several logical entity instances with physical instances that form their
implementation.

CIM is organized into several divisions called �models�. There are models to
represent hardware, logical devices, products, networks (with several submodels) and
other domains. The main model from which others are derived is called the �Core
model�. Inside this model, CIM information is represented as a class hierarchy based
on inheritance with the class ManagedElement at the top (see Fig. 2.4). Parent classes
represent broader and more general entities and children classes in the hierarchy
inherit or re�ne properties from their ancestor, add specialized attributes and cover
narrower concepts. For instance, class CacheMemory (from the Device model) has
the properties and methods of its parent Memory, plus specialized properties like

12 Chapter 2. Framework Overview

PhysicalElement

Tag : string {key}
CreationClassName : string {key}
Manufacturer : string
Model : string
SerialNumber : string
Version : string
PartNumber : string
PoweredOn : boolean
ManufactureDate : datetime
...

ManagedElementLocation
Name : string {key}
PhysicalPosition : string {key}
Address : string

Component

P
h
y
sica

lE
le

m
e
n
tLo

ca
tio

n

0..1

ElementLocation

EnabledLogicalElement

LogicalDevice

Memory

System

CreationClassName : string {key}
Name : string {override, key}
NameFormat : string
Roles : string[]
...

LogicalElement

ManagedSystemElement

InstallDate: datetime
Name: string
OperationalStatus: uint16[] {enum}
StatusDescriptions : string[]
Status: string {enum, D}
HealthState : uint16 {enum}

CreationClassName : string {key}
DeviceID : string {key}}
LastErrorCode : uint32 {D}
PowerOnHours : uint64 {D, units}
...

ComputerSystem
NameFormat {override, enum}
Dedicated : uint16[] {enum}
OtherDedicatedDescriptions : string[]
ResetCapability : uint16 {enum}
PowerManagementCapabilities : uint16 [] {D, enum}

SetPowerState ([IN] PowerState : uint32 {enum},
[IN] Time : datetime) : uint32 {D})

PhysicalConnector

ConnectorPinout : string
ConnectorType : uint16 [] {D, enum}
ConnectorGender : uint16 {enum}
...

PhysicalPackage

RemovalConditions : uint16 {enum}
Removable : boolean {D}
Replaceable : boolean {D}
HotSwappable : boolean {D}
...

PhysicalComponent
RemovalConditions : uint16 {enum}
Removable : boolean {D}
Replaceable : boolean {D}
HotSwappable : boolean {D}

PhysicalFrame

CableManagementStrategy : string
ServicePhilosophy : uint16 [] {enum}
IsLocked: boolean
...

Card
HostingBoard : boolean
SlotLayout : string
RequirementsDescription : string
OperatingVoltages : sint16[] {uints}
...

Slot

HeightAllowed : real32
LengthAllowed : real32
Number : uint16
...

Chip

FormFactor : uint16 {enum}

Caption : string *
Description : string
ElementName : string

EnabledState : uint16 {enum}
RequestedState : uint16 {enum}
EnabledDefault : uint16 {enum}
TimeOfLastStateChange: datatime
OperatingStatus : uint16 {E}{enum}
...

RequestStateChange(
[IN] RequestedState {enum},
[OUT] Job: CIM_ConcreteJob,
[IN] TimeoutPeriod: dateTime): uint32 {enum}

CardInSlot

*
ConnectorInPackage

0..1

PackagedComponent

*

ComputerSystemPackage

Realizes

Realizes

Legend

Physical Class

Logical Class

Experimental (as of CIM 2.17){E}

CacheMemory

..
.

Associativity: uint16

BlockSize: uint64
BlockNumber: uint64

Figure 2.3: CIM Logical and Physical classes

Associativity. Each instance of a CIM class is identi�ed by a unique name, formed
from an aggregation of the value of a set of class-designated properties, called key

properties.

The CIM model, though, not only categorizes all these data in an object hier-
archy, but it also de�nes an association model which relates instances of all these
classes. Associations are �rst-class CIM classes which contain regular properties
and two referential properties. These properties work as �pointers� to other CIM in-
stances, referring to them by their key properties, and are usually named Antecedent

and Dependent. These referential properties are always key properties, and their val-
ues must be the unique name of an instance of some given class or its descendants,
called ends of the association. For example, the association MemberOfCollection

(see Fig. 2.4) expresses the association between two ends: an abstract collection
(Collection) and its components, which are instances of any class (i.e., children of
ManagedElement).

Associations can have 1�to�1, 1�to�many and many�to�many cardinality. The
1-to-many subtype includes weak associations, which represent asymmetric associ-
ations where one end has no separate existence/name without the other; i.e., a �le
is not separable from a �le system without changing its identity, as a �le system is
not separable from a partition. It must be noted that changing the key properties
of a CIM instance (i.e., its name) means a change of its very nature, so a copy of a

2.3 Base Technologies 13

ManagedSystemElement

InstallDate: datetime
Name: string
OperationalStatus: uint16[] {enum}
StatusDescriptions : string[]
Status: string {enum, D}
HealthState : uint16 {enum}

PhysicalElement

Tag : string {key}
CreationClassName : string {key}
Manufacturer : string
Model : string
SKU : string
SerialNumber : string
Version : string
PartNumber : string
OtherIdentifyingInfo : string {write}
PoweredOn : boolean
ManufactureDate : datetime
VendorEquipmentType : string
UserTracking : string
CanBeFRUed : boolean

LogicalElement

InstallDate: datetime
Name: string
OperationalStatus: uint16[] {enum}
StatusDescriptions : string[]
Status: string {enum, D}
HealthState : uint16 {enum}

Location

Name : string {key}
PhysicalPosition : string {key}
Address : string

*

*

0..1

*

Component

PhysicalElementLocation

0..1

ManagedElement

Caption: string
Description: string
ElementName: string

*

*

*

SynchronizedComponent Dependency

ConcreteComponent

LogicalIdentityOrderedComponent

*
*

ConcreteDependency

ElementLocation

StatisticalData

InstanceID : string {key}
ElementName : string {override, req'd}
StartStatisticTime: datetime
StatisticTime : datetime
SampleInterval : datetime
ResetSelectedStats(
[IN SelectedStatistics string[]) : uint32

RelatedStatisticalData

HostedDependency

Collection

*

*

MemberOfCollection / OrderedMemberOfCollection

OwningCollectionElement{E}

*

Figure 2.4: CIM Core model � top level hierarchy

�le in another �le system is conceptualized as another independent �le.

The association model is the basic pillar of CIM: it renders CIM object trees
into navigable networks of management data, enabling very powerful queries. For
instance, a decrease in the throughput of a web application can be traced through
associations, tracing from the web server that hosts the application, via a �le system
in a Redundant Array of Independent Disks (RAID), to one of the disks associated
with the RAID with a mechanical failure condition as the root cause of the problem.
For illustrative purposes, Fig. 3.2 of the next chapter shows part of the hierarchy
of the CIM classes representing system services and network interfaces. Speci�cally,
InetdService represents Inetd Unix services, which are used as case study through-
out the Thesis.

CIM constructs

The representation of the CIM model is based on several constructs. Among
these are the just exposed instances, properties and associations and, additionally,

14 Chapter 2. Framework Overview

Type Description

uint8 Unsigned 8-bit integer.

sint8 Signed 8-bit integer.

uint16 Unsigned 16-bit integer.

sint16 Signed 16-bit integer.

uint32 Unsigned 32-bit integer.

sint32 Signed 32-bit integer.

uint64 Unsigned 64-bit integer.

sint64 Signed 64-bit integer.

char16 UCS-2 character.

string UCS-2 string.

boolean Boolean.

real32 IEEE 4-byte �oating point.

real64 IEEE 8-byte �oating point.

datetime A string containing a date.

reference A reference to another instance.

Table 2.1: CIM property types

quali�ers.

Instances All non-abstract classes can be instantiated. The identity and name of
their instances is determined by the value of its key properties, and, in the case of
instances of a class subject to a weak relationship, the instance must also include as
its own the key properties of the other end of the association.

Properties Properties can have simple types, such as integer, boolean and string
(shown in Table 2.1), and the reference type, which represents pointers to other
instances. They can also be de�ned as arrays of simple types. Optionality and
cardinality can also be speci�ed with quali�ers, and subclasses can override their
de�nition inherited from parent classes and even rede�ne their meaning using the
Override quali�er. This mechanism is part of the CIM model design principle of
re�ning abstract concepts to more concrete representations.

Associations Associations are represented as children classes of the Dependency

class instead of ManagedElement. Associations also contain referential properties
which point to other instances called association ends. These ends are related in
a concrete way by the association without needing to be modi�ed, so that the

2.3 Base Technologies 15

association of two instances is represented independently of the identity and intrinsic
properties of the end of the association. These referential properties are also key
properties, so usually only normal properties can be modi�ed without losing identity.
The main classi�cation of associations used in this Thesis is by the cardinality of
their ends and their use of non-referential properties:

1-to-1. 1-to-1 associations have end with a �xed cardinality of 1. They are
usually meant to represent identity associations.

1-to-many. 1-to-many associations relate one end of cardinality 1 with an un-
limited number of instances in the other end, optionally with non-referential prop-
erties. A subset of this group are the weak associations, which model entities sub-
sumed into another (i.e., like �les in a �lesystem). Usually, 1-to-many associations
model formal inclusion, containment and connectivity relationships (i.e., producer-
consumer relationships).

In Fig. 2.5, a 1-to-many association is shown. In this case, it models a physical
location. Semantically, a physical entity can not occupy two di�erent places, so lim-
iting the cardinality of the relationship in the location end is coherent with physical
world con�gurations.

Element: Ref PE1
PhysicalLocation:ref Sec. Loc.

PhysicalElementLocation

PhysicalFrame
Tag : PE1
CreationClassName : PhysicalFrame
Manufacturer : ACME
Model : M1
IsLocked : True

Location

Location

Name : Sec. Loc.
PhysicalPosition : 49°51S, 28°34W
Address : RL 2, Block 1

Name : Pri. Loc.
PhysicalPosition : 47°9S, 26°43W
Address : RL1, Block 3

PhysicalFrame
Tag : PE2
CreationClassName : PhysicalFrame
Manufacturer : ACME
Model : M1
IsLocked : True

PhysicalFrame
Tag : PE3
CreationClassName : PhysicalFrame
Manufacturer : Uncle SAM
Model : JJ1
IsLocked : False

Element: Ref PE2
PhysicalLocation:ref Sec. Loc.

PhysicalElementLocation

Element: Ref PE3
PhysicalLocation:ref Pri. Loc.

PhysicalElementLocation

Figure 2.5: 1-to-many CIM association with properties

16 Chapter 2. Framework Overview

Many-to-many. Many-to-many associations have no cardinality limitations
on either end, so the representation and attribute partition is the same for both.
In Fig 2.6, a many-to-many Synchronized association is shown. Since this relation-
ship is symmetric, and each end can have any number of associated synchronized
elements, it is natural to represent it and peer-to-peer relationships with many-to-
many associations.

Quali�ers Quali�ers are modi�ers which control the expression of other CIM con-
structs. They have a name, type (like properties), �avor, and a scope which deter-
mines the type of construct a�ected. Some quali�ers are exclusive to classes, others
to properties and some are applicable to all constructs. Class quali�ers control,
for example, abstractness; property quali�ers control cardinality, overriding and op-
tionality, and there are also those applicable to all constructs, such as Description.
The �avor determines if the quali�er can be overridden in subclasses, whether is
inherited by them or not, or if it is restricted only to that class. Table 2.2 shows
some of the most often used quali�ers, their scope and purpose.

2.3.2. XSLT

eXtensible Sheet Language Transformations (XSLT) is a base technology for
AdCIM since it is used for all model and data transformations. In this section, we

SystemElement: ref S1
SyncedElement: ref M1
WhenSynced: 19/10/2004
SyncMaintained: True

SynchronizedSystemSubClass
Caption: S1
Description: S1
ElementName: S1

MgdElementSubClass

Caption: M2
Description: M2
ElementName: M2

MgdElementSubClass
Caption: M1
Description: M1
ElementName: M1

SystemSubClass
Caption: S3
Description: S3
ElementName: S3

SystemElement: ref S1
SyncedElement: ref M2
WhenSynced: 15/10/2004
SyncMaintained: True

Synchronized

SystemElement: ref S2
SyncedElement: ref M2
WhenSynced: 11/01/2005
SyncMaintained: True

Synchronized

SystemElement: ref S3
SyncedElement: ref M2
WhenSynced: 12/07/2004
SyncMaintained: False

Synchronized

SystemSubClass
Caption: S2
Description: S2
ElementName: S2

Figure 2.6: Many-to-many CIM association with properties

2.3 Base Technologies 17

Name Scope Description

Abstract Class, Association Determines if the construct is

instantiable.

Description Any A natural language description of

the construct.

Deprecated Class, Property Superseded construct. Not recommended

for new developments.

Displayname Property The name used in user interfaces.

Key Property De�nes a property as a key property

used for naming.

Min and Max Property De�ne the minimum and maximum

cardinality of the property.

Override Property Allows to change the format or semantics

of an inherited property.

Propagated Property Weak-association inherited properties

are implicitly assumed in subclasses.

Required Property The property must have a

non-null value.

ValueMap Property Determines the valid values

of a property.

Values Property Maps the allowed values of a property

to �xed strings.

Version Class, Association, Schema Versioning information.

Table 2.2: Common CIM quali�ers

cover its conception, purpose, characteristics and implementations.

History and conception

The genesis of XSLT is a direct result of the evolution and inheritance of XML,
derived from the Standard Generalized Markup Language (SGML) [46] W3C [102]
standard for the speci�cation of documents. SGML was also a tag-based metalan-
guage which decoupled the document representation from the processes applied to
it.

Document Style Semantics and Speci�cation Language (DSSSL) [45] was devel-
oped to specify in a device-independent way the representation of SGML documents,
specially for typographical and print applications. DSSSL supported the assignment
of styles depending of context and semantic purpose and included a transformation

18 Chapter 2. Framework Overview

engine to support the reordering of the document (i.e. to support tables). It was
declarative since it used and was based on the syntax of Scheme Lisp.

With the advent of XML as a web-oriented simpli�cation of the markup spec-
i�cation language SGML, soon a DSSSL-equivalent was needed. XSL [104] was
proposed by the W3C to �ll this niche. It was also composed of a transformation
and a formatting language, but since most transformations were to HTML or XML,
the �rst implementations only covered the transformation language. In time, this
part of the speci�cation was proven to be good enough for web formatting and later
for XML transformation. This separation became the norm, and XSL was split into
XSLT (the transformation part) and XSL-FO (the formatting part), used mostly
for print applications. This separation was still palpable in XSLT 1.0, in which
variables with XML output were called fragment result trees, which were to be later
formatted by the XSL-FO part.

XSLT de�ned a sublanguage to specify nodes in an XML tree which veri�ed
some conditions. This language was fused with the then in-development XPointer
speci�cations and became XPath 1.0 [12]. The use and scope of XPath for XML
can be compared with that of Structured Query Language (SQL) for relational
databases.

XSLT is used, among other things, to publish XML data as HTML in the web.
Dunkel et al. [26] compare XSLT favorably with Java Server Pages (JSP), espe-
cially in its model-view separation and that XSLT is not restricted to pure web
environments.

XSLT 2.0 was released much later, and supposed a dramatic change, specially for
its adoption of XPath 2.0, which introduced control structures, sequence evaluation
and a new type system. This new paradigm made XSLT development more complex,
which was already considered intimidating by traditional programmers. In this
Thesis we have not adopted XSLT 2.0 as core component since there are still very
few implementations to date.

Characteristics

Due to its conception and design, XSLT has characteristics that set it apart from
most programming languages. Most of these are related to its declarative nature
and purpose:

2.3 Base Technologies 19

XML syntax. The most obvious characteristic is that XSLT uses an XML syn-
tax. Although it makes XSLT programs much more verbose, the XML syntax
was justi�ed to reduce syntactic mismatch with XML, reuse XML parsers and
employ XSLT stylesheets as inputs of other stylesheets, or metatemplating. In
Section 6.2, a form of this technique is used.

Rule-based. An XSLT program is organized around templates, which are rule-
based. A template is a program fragment which describes how an expected
input is transformed. Templates do not need to be ordered and can implicitly
call each other, by recursing and pattern-matching over an XML tree. This
means that the execution order is not prede�ned and depends on the input and
the posterior addition of new templates. General rules can also be overridden
by more concrete or prioritary ones.

No side-e�ects. Since template evaluation order can change, it is important
that the evaluation of templates is side-e�ect free. This means that a template
can be reevaluated multiple times with the same input and produce the same
output without modifying the state of the program. To guarantee this prop-
erty, variable values can not be changed after the initial assignment. Instead
of traditional modi�able variables, tail recursion and pattern-matching can be
used to obtain the same results.

The elimination of side-e�ects opens the door to a series of mathematical opti-
mizations of the code and promotes parallelism. It also avoids the need to recalculate
the output of a program from scratch when only part of the input is changed.

In Table 2.3, most XSLT elements and their functions are shown. These elements
are frequently used in the XSLT stylesheet listings in the rest of this Thesis.

Transformation example

In Fig. 2.7, a small XSLT stylesheet is shown. It begins in line 1 with the XML
preamble, and lines 2�13 are the stylesheet, inside an <xsl:stylesheet/> element.
Line 3 establishes the output of the document as an XML �le � this creates a valid
preamble in the result, text output is also supported � and line 4 declares all non-
signi�cant spaces to be stripped of every element.

The template at lines 5�9 matches all attributes, elements and text nodes with
its match expression. Since it matches the root node of the XML tree, it is executed

20 Chapter 2. Framework Overview

XSLT element Description

<xsl:apply-templates/>
Gives control to templates matching child elements or

elements pointed by the select attribute.

<xsl:call-template/> Calls a template by name.

<xsl:choose/> Multiple condition section, comparable with C switch.

<xsl:for-each/> Does a loop across a set of XML nodes.

<xsl:if/>
Executes the content if the condition in the attribute

test is true.

<xsl:import/> Includes code from another stylesheet �le.

<xsl:otherwise/>
Executed in <xsl:choose/> if no <xsl:when/> was

taken.

<xsl:output/> Changes output �le.

<xsl:param/> De�nes a stylesheet or template parameter.

<xsl:stylesheet/> Declares a stylesheet, and works as the root node.

<xsl:template/>
De�nes a template either by the matched expression

or by name.

<xsl:text/> Content is copied verbatim to the output.

<xsl:value-of/> Evaluates and prints its select attribute.

<xsl:variable/>
De�nes a variable with its value either in the select

attribute or inside the element.

<xsl:when/>
In an <xsl:choose/> marks a branch taken if its test

attribute is true.

<xsl:with-param/>
Inside <xsl:call-template/> identi�es a passed pa-

rameter and its value.

Table 2.3: XSLT elements

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
3 <xsl:output method="xml"/>
4 <xsl:strip−space elements="∗"/>
5 <xsl:template match="@∗|node()">
6 <xsl:copy>
7 <xsl:apply−templates select="@∗|node()"/>
8 </xsl:copy>
9 </xsl:template>
10

11 <xsl:template match="elementA[@�avour='xyzzy']">
12 </xsl:template>
13 </xsl:stylesheet>

Figure 2.7: Example of an XSLT stylesheet

�rst. The <xsl:copy/> element denotes a shallow copy, which is applied to all XML
nodes and attributes, following the select attribute of the <xsl:apply-templates/>

element.

2.4 Related Work 21

The �shallow copy� term means that all matching children input nodes and at-
tributes are copied to the output, and the �rst template is called for each of them,
performing a recursive copy. Nevertheless, the second template (lines 11-12) matches
all elements in the input named elementA with the condition (marked by brackets)
of having a flavor attribute with the xyzzy value. By the matching rules in XSLT,
templates with narrower matching expressions take priority (since they usually cover
special cases), and the action inside the template is taken. Since the element is
empty and does not indicate any action, the matching elements are simply dis-
carded from the output. Thus, the �nal e�ect of the stylesheet is eliminating the
elements matched by the second template.

It must be noted that the stylesheet does not directly control program �ow. If a
new template were to be added, the result and evaluation order could be completely
changed. Also, the declarative style means that the stylesheet is centered on describ-
ing possible inputs and desired outputs, rather than explicitly controlling iteration
and covering cases. This coding paradigm needs markedly di�erent mindset and
coding practices.

Support

XSLT 1.0 is supported in a large number of computing platforms and devices.
Since it is implemented in Java, it works on the wide range of platforms supported by
the Java Runtime. Among these implementations, Saxon [48] and Xalan XSLTC [5]
are the most frequently used. Saxon uses a highly optimized Document Object
Model (DOM)-like tree representation, and XSLTC precompiles stylesheets into na-
tive Java code. There is also the Intel XSLT Accelerator (also known as PaNaPa),
which automatically parallelizes XSLT code and supports multicore systems [98].

There are also hardware implementations, like the one in [18], that uses dedicated
network hardware that can transparently �lter XML tra�c in the network at wire
speed.

2.4. Related Work

AdCIM is a novel approach in the �eld of con�guration management, and not a
derivative work or application of an existing system. Of course, there are common
points with other tools and frameworks, since they have similar purposes. Therefore,

22 Chapter 2. Framework Overview

we approach the related literature in a piecemeal fashion, covering concrete areas
of our framework with which to compare with other works that by goal, scope or
design are divergent in other aspects.

In this section, we begin with general categorizations. In later chapters, works
related with more speci�c topics are cited in the appropriate sections.

The use of CIM

Since CIM is a well-established standard there has been copious literature �
though it must not be confused with the one about the also popular International
Electrotechnical Commission (IEC) CIM [44] (Common Information Model) stan-
dard of the electric power industry to modelize electric transmission. Here we are
specially interested about the works touching CIM's objective of integrating man-
agement information and the reduction of data fragmentation and �silos�.

This increasing need of integration has been explored in the work by Schott et
al. [92], which advocates CIM to avoid �information overload�. There are also authors
that propose the use of CIM as an integral part of the development of management
applications. Mehl et al. [58] propose that application and system developers in-
tegrate a �management infrastructure� based on CIM in the normal development
process of the applications. They explicitly discourage the development of this in-
frastructure by third parties, which has the e�ect of ultimately shutting o� system
administrators from management application development. Of course, the costs of
this development activity for the system administrators can be insurmountable for
most organizations and it is part of what this work endeavours to avoid.

Formalization of con�guration

The integration of management data, the veri�cation of the validity of con�g-
urations, and the reasoning based on ontologies are high-level processes, but these
data originate in most cases from low-level, application-dependent formats. Thus,
there is a need to bridge this gap.

There are several works that modelize or formalize existing con�gurations. Sinz
et al. [93] model the Apache con�guration �le to perform the formal testing of the
correctness of con�gurations. A later work, by Post and Sinz [83], can verify the
correctness of whole con�guration models (in this case, the Linux kernel con�gu-
ration), by translating them to logic programs. Dolstra and Löh [25] prove the
feasibility of a purely functional (non-imperative) con�guration system by making
an entire functionally-con�gured Linux distribution, with immutable con�guration

2.4 Related Work 23

�les which are evaluated lazily, and with the possibility of retrieving any past con�g-
uration state. Nevertheless, this distribution is more experimental than production-
oriented, and using its capabilities would mean to install it in all nodes, compared
with the platform-independence of AdCIM.

Con�guration work�ows

Con�guration changes can be the result of manual system administrator inter-
vention, or a higher-level process like the ones mentioned above. In both cases, the
modi�cation process can be complex when macro languages, server restart, valida-
tion and data transfer are involved, specially when these tasks are distributed among
several machines.

Some works try to support and enhance traditional con�guration work�ows: for
example, Bajohr and Margaria [6] automate the modi�cation and deployment of con-
�guration �les on complex systems so the con�guration process can be abstracted,
streamlined and organized as a work�ow for remote operators. The system devel-
oped by Su et al. [97] can speculate about changes in con�guration and make causal
analysis of the changes made by an administrator, but they do not represent and
integrate these changes in an extensible management framework like AdCIM.

Transformations in system management

There are many works in system management that transform data: for adapta-
tion of legacy systems, between systems with di�erent con�guration formats or for
expediency, if there is a format that is more convenient or easier to modify. The
transformation of management data to XML is seen as particularly useful, because
of the tool support and interchange potential. This is covered, for example, by
Strauss and Klie [96], and Yoon et al. [110]. Both works translate Simple Network
Management Protocol (SNMP) data to XML, but the structure is translated as is
from SNMP MIBs, without the integration approach that AdCIM provides. SNMP
has a very �at structure that does not represent aspects like associations as �exibly
as CIM.

XSLT transformations concerning translations between general models have been
explored by Peltier [82], which generates XSLT stylesheets from a high-level lan-
guage.

Large scale administration frameworks

These frameworks are geared toward systems that are homogeneous by design
and hence not directly comparable with AdCIM, but have common points, like the

24 Chapter 2. Framework Overview

abstract representation of network nodes and the manipulation of con�guration �les.

LCFG [3] and Cfengine [10], for example, are based on templating solutions.
The former is oriented towards initial installation of network nodes using a template
language, and the latter towards simplifying and replicating common administration
operations across several network nodes. Both are limited frameworks that address
a �xed set of operations which can not be easily expanded. Thus, LCFG is only
capable of installing or updating network nodes but, for instance, it can not extract
con�guration information from the administered nodes like AdCIM does.

SmartFrog [40] is a Java-based framework for distributed con�guration manage-
ment that supports user extension via a component model and a runtime which
controls the life cycle of the components. Its language avoids the duplication usual
in con�guration �les, but it is still a �at �le mapping, so it is not useful to derive
ontologies and detect miscon�gurations preemptively like AdCIM.

The language used by bcfg2 [19] is more advanced than the one in SmartFrog,
and it is based on clauses for installing packages, modifying con�guration �les, and
creating directories and symlinks. It also allows merging con�gurations with manual
changes, but it does not represent the con�guration state or detect miscon�gurations
distributed among several preexisting con�gured nodes as our framework does.

Chapter 3

Modelling Layer

This chapter describes the Modelling Layer, which comprises the adaptation of
the CIM model to management domains and the XML representations of CIM used
in the framework. Figure 3.1 shows an overview of this layer. In the left, we can
see a CIM-XML schema that can be provided by the DMTF as part of the domains
normally covered by CIM, or added as an extension. From this schema, an XSLT
transformation derives a special XML Schema that de�nes our miniCIM format,
used by the remaining layers in AdCIM, and validates for syntactical or low-level
semantic errors (such as range or cardinality).

Modelling Layer

miniCIM
XML

Schema

miniCIM
instances

Defines &
Validates

CIM-XML
Schema

[H]

XSLT

Figure 3.1: AdCIM Modelling Layer

3.1. Application and Extension of the CIM Model

The CIM model covers a vast range of management data but, naturally, not
all possible manageable entities. Thus CIM is fully extensible through inheritance:
a new concept is derived from a class adding new properties or constraints. For

25

26 Chapter 3. Modelling Layer

example, in Fig. 2.3, the ComputerSystem class adds information about power man-
agement, role and nomenclature to the System class. In rare cases, the new entity
or concept is not assimilable to an existing class; then, an extension of the top class
ManagedElement is needed.

ManagedElement EnabledLogicalElement

Service System

CreationClassName : string {key}
Name : string {override, key}
NameFormat : string
Roles : string[]
...

LogicalElement

ManagedSystemElement

InstallDate: datetime
Name: string
OperationalStatus: uint16[] {enum}
StatusDescriptions : string[]
Status: string {enum, D}
HealthState : uint16 {enum}

CreationClassName: string {key}
Name: string {override, key}
PrimaryOwnerName : string {write}
PrimaryOwnerContact : string {write}
StartMode: string (10) {D, enum}

ComputerSystem
NameFormat {override, enum}
Dedicated : uint16[] {enum}
OtherDedicatedDescriptions : string[]
ResetCapability : uint16 {enum}
PowerManagementCapabilities : uint16 [] {D, enum}

SetPowerState ([IN] PowerState : uint32 {enum},
[IN] Time : datetime) : uint32 {D})

Caption : string *
Description : string
ElementName : string

EnabledState : uint16 {enum}
RequestedState : uint16 {enum}
EnabledDefault : uint16 {enum}
TimeOfLastStateChange: datatime
OperatingStatus : uint16 {E}{enum}
...

RequestStateChange(
[IN] RequestedState {enum},
[OUT] Job: CIM_ConcreteJob,
[IN] TimeoutPeriod: dateTime): uint32 {enum}

HostedService

HostedInetdService

InetdService

Command; string
Protocol: string
Wait: string
User: string
...

Figure 3.2: InetdService place in CIM hierarchy

Descendant classes are not merely syntactic sugar; they can substitute parent
classes, specially as association ends. The bene�ts of this substitution are twofold:
�rst, it gives a simpli�ed, abstract view of instances; and second, it eases the cate-
gorization and query of objects. For example, CIM can represent detailed hardware
information of all physical interfaces in a network, being also able to abstract them
as generic network adapters without data duplication.

An example of extension which is used as case study in the subsequent chapters
is illustrated with the class InetdService in Fig. 3.2. This class is a descendant of
Service, the CIM class that describes generic services with high-level properties (e.g.,

3.2 XML Representations of CIM 27

a service started state). Service also encapsulates more abstract properties from its
parent LogicalElement, and properties derived from the weak association Hosted-
InetdService with the System class (such as SystemName). InetdService inherits
all these properties and includes additional properties of interest, such as packet
protocol, process owner and command line parameters. The CIM model is designed
to be extensible, but this extension must be designed to represent the domain closely.
There are many scenarios, the easiest ones the modelling of speci�c vendor models
or a small extension of preexisting classes. In these cases, the extension can be done
with a subclass that adds some vendor-speci�c or additional attributes.

A harder category of problems requires the creation of new associations. They
can be accomplished with subclasses of preexisting associations or with totally new
classes. Care must be taken to limit the classes that can be related by the association
if it is not representing a generic relationship.

The hardest cases are the modelling of whole new domains, with their own set
of classes and associations. In this case, the classes used should be subclasses of the
most concrete CIM class possible. This ensures that the resulting classes are inte-
grated in the CIM model and honor abstract relationships, specially Realizes. At
most, a derived class should be child of EnabledLogicalElement (see Fig. 2.3) for log-
ical entities (since it supports attributes to indicate if a logical device is activated),
or PhysicalComponent (see also Fig. 2.3) for physical entities (since it supports the
notion of packaging). In Fig. 7.2 of Chapter 7 and Fig. 9.4 of Chapter 9, CIM
extensions for concrete domains are explained (the Sendmail mail agent con�gura-
tion and Wireless Mesh Networks, respectively). In Chapter 7, all new classes are
derived from the SettingData class, representing generic settings. The domain of
Chapter 9 also derives from this class, but it also uses at their fullest preexisting
classes, modelling network entities like WirelessPort or SwitchService.

3.2. XML Representations of CIM

Inside our framework, exchanges of CIM data employ an XML representation
transformable with XSLT which enables web service technology and XForms to
directly read CIM data, as will be seen in Chapter 6. Nevertheless, there are many
possible XML representations.

CIM-XML [24] is the o�cial DMTF representation of CIM in XML, devised to
represent CIM schemata and instances. CIM-XML uses very long uppercase names

28 Chapter 3. Modelling Layer

CIM-XML miniCIM XML Schema miniCIM format

/CIM/DECLARATION-

/DECLGROUP-

/VALUE.OBJECT-

/CLASS with name

aClass

<xsd:complextype name="aClass"/>

and <xsd:element name="aClass"

type="aClass"/>
<aClass/>

SUPERCLASS="sClass"

<xsd:complexContent>

<xsd:extension base="sClass"/>

</xsd:complexContent>

implicit

PROPERTY with name

aProperty and type

aType

<xsd:element name="aProperty type

="aType"/>

<aClass>

<aProperty/>

</aClass>

REFERENCECLASS <xsd:attribute name="adc:range"/>

<Antecedent

adc:range =

"aClass"/>

<QUALIFIER

NAME="Abstract"/>
<xsd:attribute name="abstract"/>

<aClass

abstract

= "true"/>

<QUALIFIER

NAME="Key"/>

<xsd:key name="aClass">

<xsd:selector xpath="aProperty"/>

</xsd:key>

implicit

<QUALIFIER

NAME="Min"/>
xsd:minOccurs implicit

<QUALIFIER

NAME="Max"/>
xsd:maxOccurs implicit

<QUALIFIER

NAME="Required"/>
xsd:minOccurs=1 implicit

<QUALIFIER

NAME="Values"/>

<xsd:restriction>

<xsd:enumeration value="aValue"/>

</xsd:restriction>

implicit

Table 3.1: Mapping of CIM-XML Schema to miniCIM XML Schema

and convoluted naming schemes; hence, it is very cumbersome to use for representing
instances. To shorten this representation some information can be merged from an
external schema �le, but there are unavoidable overheads; e.g., key properties must
be present twice, in the naming part of the instance and in its properties. As a
consequence, a simple declaration of the network services of a managed node in CIM-
XML takes up 305Kb. Our XML representation of CIM, called miniCIM, reduces

3.2 XML Representations of CIM 29

1 <AdCIM_InetdService namespace="dc=udc">
2 <SystemCreationClassName>CIM_ComputerSystem</SystemCreationClassName>
3 <SystemName>shalmaneser</SystemName>
4 <CreationClassName>AdCIM_InetdService</CreationClassName>
5 <Name>ftp</Name>
6 <SocketType>stream</SocketType>
7 <Protocol>tcp</Protocol>
8 <Wait>nowait</Wait>
9 <User>root</User>
10 <Command>root/usr/sbin/tcpd</Command>
11 </AdCIM_InetdService>

Figure 3.3: Example of miniCIM Inetd service instance

this size to 3Kb, by removing redundant schema and key information. The miniCIM
schema is constructed by an AdCIM stylesheet from the original DMTF CIM-XML
schema (step [H] in Figs. 2.1 and 3.1). This stylesheet (covered in more detail in the
next section) implements the transformations shown in Table 3.1. The left column
shows CIM-XML concepts, the middle one its translation to XML Schema, and
the rightmost one shows an example of the concept in miniCIM format, in which
�implicit� means that this concept is controlled by the schema and does not need
to be explicitly indicated in instances. The miniCIM format is used for the rest of
stylesheets as input and output. In Fig. 3.3 we can see a miniCIM instance of the
InetdService class seen in Fig. 3.2.

The schema language chosen to validate miniCIM instances is XML Schema, the
�rst schema format standardized by the W3C for XML. XML Schema [108] has a
very extensive set of features, like type inheritance, abstract classes and keys. This
makes it unwieldy for simple tasks, but very suited to represent CIM instances in
XML. These features o�oad much of the complexity of a representation of CIM
as XML in the schema. Other schema languages, like RELAX NG, were not used
because they are designed to represent XML document structure rather than data
typing and inheritance (see Lee and Chu [52]). An excerpt of an XML Schema
describing the miniCIM representation of the class InetdService and its parent
class Service is shown in Fig. 3.4; miniCIM instances are composed of property-
value pairs, and semantic information is con�ned to the schema. The format of the
miniCIM instances validated with this schema can be seen in Fig. 3.5. It shows the
association class HostedInetdService, derived from the HostedService association
of Fig. 3.2, representing Inetd network services belonging to a computer system,
and a declaration of its key properties. Invalid or key-less instances, or associations
pointing to a non-extant instance, are detected by an XML validator.

The use by AdCIM of XSLT code to obtain a miniCIM XML Schema from the
CIM-XML schema greatly eases the transformation problem: to create the miniCIM

30 Chapter 3. Modelling Layer

1 <xsd:complexType name="InetdService">
2 <xsd:complexContent>
3 <xsd:extension base="Service">
4 <xsd:sequence>
5 <xsd:element name="SocketType" type="xsd:string"/>
6 <xsd:element name="Protocol" minOccurs="1" type="xsd:string"/>
7 <xsd:element name="Wait" type="xsd:string"/>
8 <xsd:element name="WaitInstance" type="xsd:string"/>
9 <xsd:element name="User" type="xsd:string"/>
10 <xsd:element name="Command" type="xsd:string"/>
11 </xsd:sequence>
12 </xsd:extension>
13 </xsd:complexContent>
14 </xsd:complexType>
15 <xsd:complexType name="Service" abstract="true">
16 <xsd:complexContent>
17 <xsd:extension base="EnabledLogicalElement">
18 <xsd:sequence>
19 <xsd:element name="SystemCreationClassName" minOccurs="1" type="xsd:string"/>
20 <xsd:element name="SystemName" minOccurs="1" type="xsd:string"/>
21 <xsd:element name="CreationClassName" minOccurs="1" type="xsd:string"/>
22 <xsd:element name="Name" minOccurs="1" type="xsd:string"/>
23 <xsd:element name="StartMode" type="xsd:string"/>
24 <xsd:element name="Started" type="xsd:string"/>
25 </xsd:sequence>
26 </xsd:extension>
27 </xsd:complexContent>
28 </xsd:complexType>
29 <xsd:key name="InetdService">
30 <xsd:selector xpath="InetdService"/>
31 <xsd:�eld xpath="SystemCreationClassName"/>
32 <xsd:�eld xpath="SystemName"/>
33 <xsd:�eld xpath="CreationClassName"/>
34 <xsd:�eld xpath="Protocol"/>
35 <xsd:�eld xpath="Name"/>
36 </xsd:key>

Figure 3.4: miniCIM XML Schema de�ning Inetd services

schema, CIM-XML schema classes are inspected for abstractness, parent class and
association status. Then CIM-XML concepts are translated to XML Schema con-
structs following Table 3.1. Classes are translated as a complex type (lines 15�28
in Fig. 3.4) which represents their possible attributes. Superclass information is
de�ned using type extensions, so it is implicit, as opposed to abstractness, which is
represented with an attribute (like in line 15). Properties are children elements of
the class elements with a normal or restricted type, and their quali�ers Min, Max and
Required are mapped as schema cardinality restrictions (see lines 5�10 and 19�24).
Simple data types are translated directly to their XML Schema equivalents, and
enumerations based on the Values quali�er are de�ned as restrictions of a string
base type � later, in Section 6.2, these enumeration values, which represent the
possible string values of a CIM property, are used to �ll a selection box in a user

3.3 Schema Transformation 31

1 <HostedInetdService namespace="dc=udc">
2 <StartMode>Automatic</StartMode>
3 <Antecedent>
4 <ref classname="ComputerSystem" namespace="dc=udc">
5 <CreationClassName>ComputerSystem</CreationClassName>
6 <Name>shalmaneser</Name>
7 </ref>
8 </Antecedent>
9 <Dependent>
10 <ref classname="InetdService" namespace="dc=udc">
11 <SystemCreationClassName>ComputerSystem</SystemCreationClassName>
12 <SystemName>shalmaneser</SystemName>
13 <CreationClassName>InetdService</CreationClassName>
14 <Name>ftp</Name>
15 <Protocol>tcp</Protocol>
16 </ref>
17 </Dependent>
18 </HostedInetdService>

Figure 3.5: Inetd service association instance expressed in miniCIM (HostedInetd-
Service)

web interface to both control the possible values that the user can input and also to
give hints of these available values.

The Key quali�er is translated by the AdCIM schema mapping stylesheet to
the XML Schema <xsd:key/> operator (see also lines 29�36 in Fig. 3.4), which
marks certain parts of an element (its key, which must be unique). To �nd the
key properties of a CIM class, a recursive search of them in the class and in all its
superclasses must be done but, since keys are de�ned independently, modifying key
properties of a class does not change its miniCIM representation (but rather changes
its CIM-XML representation).

The next section discusses the stylesheet used to reach this result.

3.3. Schema Transformation

This section details the stylesheet that translates the CIM-XML schema into
an XML Schema (step [H] in Figs. 2.1 and 3.1), using the translation covered in
Table 3.1. This XML Schema is then used to validate the miniCIM XML syntax,
which keeps all semantic constraints and helps to reduce latency and transfer times
in our framework.

This XSLT stylesheet is partly shown in Figs. 3.6�3.7. It begins outputting the

32 Chapter 3. Modelling Layer

1 <xsl:template match="/">
2 <xsd:schema>
3 <xsl:for−each select="/CIM/DECLARATION/DECLGROUP/VALUE.OBJECT/CLASS[not(contains(@NAME,'PRS_'))]">
4 <xsl:for−each select="PROPERTY[QUALIFIER[@NAME='Values']] | PROPERTY.ARRAY[QUALIFIER[@NAME='Values']]">
5 <xsd:simpleType name="{current()/ancestor::CLASS/@NAME}−{current()/@NAME}">
6 <xsl:apply−templates select="QUALIFIER[@NAME='Values']"/>
7 </xsd:simpleType>
8 </xsl:for−each>
9 <xsd:complexType name="{@NAME}">
10 <xsl:if test="QUALIFIER[@NAME='Abstract']/VALUE='true'">
11 <xsl:attribute name="abstract">true</xsl:attribute>
12 </xsl:if>
13 <xsl:if test="PROPERTY.REFERENCE">
14 <xsl:choose>
15 <xsl:when test="current()/PROPERTY | current()/PROPERTY.ARRAY and not (current()/PROPERTY.REFERENCE[

QUALIFIER[@NAME='Max']])">
16 <xsl:attribute name="adc:dependency">withnonref</xsl:attribute>
17 </xsl:when>
18 <xsl:otherwise>
19 <xsl:attribute name="adc:dependency">bare</xsl:attribute>
20 </xsl:otherwise>
21 </xsl:choose>
22 </xsl:if>
23 <xsl:choose>
24 <xsl:when test="@SUPERCLASS">
25 <xsd:complexContent>
26 <xsd:extension base="{@SUPERCLASS}">
27 <xsl:apply−templates select="."/>
28 </xsd:extension>
29 </xsd:complexContent>
30 </xsl:when>
31 <xsl:otherwise>
32 <xsl:apply−templates select="."/>
33 </xsl:otherwise>
34 </xsl:choose>
35 </xsd:complexType>
36 </xsl:for−each>
37 <xsd:element name="CIM">
38 <xsd:complexType>
39 <xsd:sequence>
40 <xsl:for−each select="/CIM/DECLARATION/DECLGROUP/VALUE.OBJECT/CLASS[not(contains(@NAME,'PRS_'))]">
41 <xsl:if test="not (QUALIFIER[@NAME='Abstract'])">
42 <xsd:element name="{@NAME}" type="{@NAME}"/>
43 </xsl:if>
44 </xsl:for−each>
45 </xsd:sequence>
46 </xsd:complexType>
47 <xsl:call−template name="key"/>
48 </xsd:element>
49 </xsd:schema>
50 </xsl:template>

Figure 3.6: CIM-XML to miniCIM XML Schema stylesheet excerpt

root element of the schema (line 2 of Fig. 3.6) and iterating across all classes (lines 3�
36), and creates complex types for each one. Inside this loop, the abstract attribute
is set in lines 10�12, and those representing the type of association in lines 14�21.
In lines 23�34, classes are declared as an extension type of their superclass.

In lines 37�48, the document is declared as having a CIM root element, inside of
which there can be a unordered succession of arbitrary length of elements named
after the classes, with their corresponding complex type.

The stylesheet continues in Fig. 3.7 with a template processing the properties of
each class in line 51. The loop in lines 53�70 iterates over the non-referential ones,
and assigns a minimum cardinality of 1 to required or key properties (lines 55�57),

3.3 Schema Transformation 33

51 <xsl:template match="CLASS">
52 <xsd:sequence>
53 <xsl:for−each select="PROPERTY[@CLASSORIGIN=ancestor::CLASS/@NAME] | PROPERTY.ARRAY[@CLASSORIGIN=

ancestor::CLASS/@NAME]">
54 <xsd:element name="{@NAME}">
55 <xsl:if test="QUALIFIER[@NAME='Required' or @NAME='Key']/VALUE='true'">
56 <xsl:attribute name="minOccurs">1</xsl:attribute>
57 </xsl:if>
58 <xsl:choose>
59 <xsl:when test="QUALIFIER[@NAME='Values']">
60 <xsl:attribute name="type"> <xsl:value−of select="current()/@CLASSORIGIN"/> <xsl:text>−</xsl:text>
61 <xsl:value−of select="current()/@NAME"/> </xsl:attribute>
62 </xsl:when>
63 <xsl:otherwise>
64 <xsl:attribute name="type">
65 <xsl:apply−templates select="@TYPE"/>
66 </xsl:attribute>
67 </xsl:otherwise>
68 </xsl:choose>
69 </xsd:element>
70 </xsl:for−each>
71 <xsl:for−each select="PROPERTY.REFERENCE[@CLASSORIGIN=ancestor::CLASS/@NAME]">
72 <xsd:element name="{@NAME}">
73 <xsl:attribute name="adc:reference">true</xsl:attribute>
74 <xsl:if test="@REFERENCECLASS">
75 <xsl:attribute name="adc:range">
76 <xsl:value−of select="@REFERENCECLASS"/>
77 </xsl:attribute>
78 </xsl:if>
79 <xsl:if test="QUALIFIER[@NAME='Override']/VALUE='Antecedent'">
80 <xsl:attribute name="adc:antecedent">true</xsl:attribute>
81 </xsl:if>
82 <xsl:if test="QUALIFIER[@NAME='Override']/VALUE='Dependent'">
83 <xsl:attribute name="adc:dependent">true</xsl:attribute>
84 </xsl:if>
85 <xsl:if test="QUALIFIER[@NAME='Required' or @NAME='Key']/VALUE='true' and not(QUALIFIER[@NAME='Min'])">
86 <xsl:attribute name="minOccurs">1</xsl:attribute>
87 </xsl:if>
88 <xsl:if test="QUALIFIER[@NAME='Min']">
89 <xsl:attribute name="minOccurs">
90 <xsl:value−of select="QUALIFIER[@NAME='Min']/VALUE"/>
91 </xsl:attribute>
92 </xsl:if>
93 <xsl:if test="QUALIFIER[@NAME='Max']">
94 <xsl:attribute name="maxOccurs">
95 <xsl:value−of select="QUALIFIER[@NAME='Max']/VALUE"/>
96 </xsl:attribute>
97 </xsl:if>
98 </xsd:element>
99 </xsl:for−each>
100 </xsd:sequence>
101 </xsl:template>

Figure 3.7: CIM-XML to miniCIM XML Schema stylesheet excerpt (cont.)

and an enumeration or simple type to all properties (lines 58-68).

The processing follows with the referential properties. In lines 72�73 an element
is created for each one with the adc:reference attribute (indicating that it is a
referential property) set to true. The classes that the association can point at are
de�ned next using adc:range (lines 75�77). The rest of the template (lines 79�
97) is concerned with the translation of quali�ers. For example, lines 85�87 detect
a Required or Key quali�er, and set the minimum cardinality to 1 (since the Key

quali�er also implies that the property is required).

The stylesheet also has parts (not shown) to translate key properties to <xsd:key/>
sections (as covered by Table 3.1), and to map attribute types.

34 Chapter 3. Modelling Layer

3.4. Conclusions

We have seen in this chapter the use and extension of CIM, the mappings of
XML used, and the space bene�ts of miniCIM. The process of transformation of the
CIM-XML schema into a miniCIM XML Schema was also covered, including the
mapping of its constructs to XML Schema and part of the XSLT transformation to
implement this mapping. All these topics are of great importance not only for the
extension of AdCIM to new domains, but also for its performance; so, in a sense,
the Modelling Layer of AdCIM can be viewed as its core.

Chapter 4

System Data Layer

In this chapter we cover the System Data Layer of the AdCIM framework. This
layer is tasked with the extraction of data from the managed nodes. This extraction
is required because management frameworks have no purpose without real data of
the managed entities. These data come from numerous sources, such as con�guration
�les, registries, and proprietary repositories, so these sources are covered in Section
4.1. Data are converted from these sources to an intermediate XML format (step
[A] in Figs. 2.1 and 4.1) and then translated by AdCIM to miniCIM instances using
XSLT (step [B]) stylesheets provided by AdCIM that greatly simplify this task.
Obtaining XML data from con�guration sources can be especially di�cult in the
case of semi-structured �at text �les, but it is simpli�ed by text-to-XML grammar
parsers that �bootstrap� �at text to XML, covered in Section 4.2.1. These text
�les are the norm in Unix systems, but rarely used in Windows. The di�erences
between Windows and Unix systems are great; there also are divergences among
Unix �avors, but they are minor compared with those of Windows incarnations and
Unix-like systems. Thus, we have used another extraction method for Windows
systems which is detailed in Section 4.2.2.

The chapter continues in Section 4.3 with a discussion of how Common Object
Request Broker (CORBA) and Web Services are used in AdCIM for data trans-
port between the managed nodes and management servers (see Fig. 4.1). Then,
Section 4.4 explains our experiments to determine which technology is better in
the context of our framework in terms of the transfer latency, total transfer time
and message size for the messages generated in three typical scenarios. Finally,
Section 4.5 details our conclusions.

35

36 Chapter 4. System Data Layer

miniCIM
instances

XML Data

WMI

Web ServicesCORBA

[A]

Client

Server

X
S

LT
 [B

]
Distributed Object Tech

Text-to-XML Parser

UNIX configuration Windows configuration

Figure 4.1: Overview of the con�guration extraction process

4.1. Sources of Con�guration andManagement Data

Con�guration and management data in production network nodes are dispersed
among numerous and diverse locations, ranging from semi-structured �at �les to
registries, proprietary repositories and even �rmware.

�Flat �le� is a term that denotes a database that is ��attened� into a �le, as op-
posed to a hierarchical or relational organization. These �les have no overt structure,
but a covert one, based on conventions on delimiters and use of line separators that
must be respected by all editors, thus the � `semi-structured� term. The structure is
actually consensual and external to the �le.

Proprietary repositories are by nature found in many forms, but it is usual to
store the con�guration on embedded databases, separate disk partitions or, more
rarely, as overlays on binary or library �les.

Con�gurations on �rmware are very widespread, since every PC stores vital
information to its operation in Flash memory accessible by the BIOS con�guration
menu. Network cards can have self-booting programs in EEPROMs, and routers,
wireless cards and even printers store their con�guration in some sort of �rmware.
The main problem with �rmware is the access to it, which can be proprietary, poorly
documented and/or unsafe.

While most of these data sources are readily available through standard interfaces

4.2 Con�guration Data Extraction 37

and OS calls, some of these interfaces are of proprietary nature, and ridden with
platform and version di�erences, which makes keeping track of these data a di�cult
task. The system manager has the responsibility of locating all relevant information,
so AdCIM tries to lighten it, by isolating, expressing and categorizing this knowledge.
For this, system manager intervention is necessary for semantic interpretation and
translation of the data, particularly for in-house software.

In the case of Windows machines, the Windows Management Instrumentation
(WMI) subsystem [61] catalogs many software abstractions using a custom adap-
tation of CIM to Windows entities, so CIM-XML instances can be created easily
with small scripts invoking directly the WMI API. UNIX and derivatives such as
Linux rely instead on con�guration �les for expressing most con�guration data, so
their transformation to CIM data is more complex. Other important entities are the
directory structures, such as the /proc �lesystem, which represents many real-time
management data and is also writable; and the output of administration agents (par-
ticularly logs and alert reports) can be handled like con�guration �les by processing
them as text. Registries (other than Windows' own one) usually have proprietary
APIs that require a case-by-case approach based on customized scripts.

4.2. Con�guration Data Extraction

This section describes the methods used both in Unix and Windows systems
to extract con�guration data from system �les and other text �le-based sources.
Con�guration information is mainly collected from two sources: �at text sources,
such as �les and internal commands, and the WMI subsystem present in all Windows
systems since Windows 2000.

4.2.1. Text File Con�gurations

Usually, Unix-based OS codify almost all con�guration data in �at �les and di-
rectory structures that are not available in directly parseable formats like XML, so
our framework parses and transforms them to XML to facilitate further process-
ing. Semi-structured �at �les have been ubiquitously used to express con�guration
data [29], mostly for simplicity and integration with existing operating system ca-
pabilities � i.e. the Unix philosophy of 'everything is a �le'. Their disadvantages
are fragmentation, poor version tracking and text coding issues. From the point of

38 Chapter 4. System Data Layer

view of data integration, the worst problems are text formatting and spacing: while
many text �le formats ignore white spaces, tabs and line distribution, some, like the
Make�le format (which requires strict tabulator use) are very stringent.

Converting �at text �les into CIM instances thus implies capturing these nu-
ances in a formal and automated manner. Human intervention is needed to properly
specify the semantics, largely external to the format. Despite this, many con�gu-
ration formats are generalizable to line-oriented (e.g., inetd.conf, sendmail.cf) or
section-record based (e.g., Apache's httpd.conf), and special cases are generally
derived from these base cases.

The parsing of these text �les is implemented in AdCIM through grammar rules,
written using Martel [17], a Python module to parse text �les to Simple API for
XML (SAX) events, then directly transcribable to XML data. Fig. 4.2a shows an
example of a Martel program that produces a structured XML �le from the Inetd
network services (described in Section 3.1) con�guration �le /etc/inetd.conf that
can be seen in Fig. 4.2b. Table 4.1 shows some Martel operators. For example,
Martel.Re and Martel.Alt represent the �*� and �|� regular expression operators,
respectively: operator Martel.Group aggregates its second argument into a single
XML element, and Martel.ToEol matches any text before the next end of line.
Martel command Description

Martel.Alt Matches only one of its arguments.

Martel.Group
De�nes its contents as a group to be placed inside an

XML element.

Martel.Opt Matches its argument zero or one times.

Martel.Re
Tries to match a regular expression (Python �avor)

into the text.

Martel.Rep Matches its argument zero or more times.

Martel.Str
Renders its value with no provision to enter or modify

data.

Martel.ToEol Matches all text to the end of the line inclusive.

Martel.UntilEol Matches all text until the end of the line.

Table 4.1: Martel operators

The Martel code follows the inetd.conf �le structure, composed of lines of three
types: o� lines (see line 4 of Fig. 4.2a), commentaries (line 5), and normal ser-
vice lines (line 6). Every normal line maps to an enabled service, and o� lines
to temporarily disabled services. The program also has to discriminate between
commentaries and the #<off># sequence that begins an o� line. Each line is then
sectioned, forming a list of items that are mapped to predetermined properties in

4.2 Con�guration Data Extraction 39

1 import Martel; from xml.sax import saxutils
2 def Item(name): return Martel.Group(name,Martel.Re("\S+\s+"))
3 �elds=Item("name")+Item("socktype")+Item("proto")+Item("�ags")+Item("user")+Martel.ToEol("args")
4 o�ine=Martel.Re("#<o�>#\s∗")+Martel.Group("o�",�elds)
5 commentary=Martel.Re("#")+Martel.Group("com",Martel.ToEol())
6 serviceline=Martel.Group("service",�elds)
7 blank=Martel.Str("\n")
8 format=Martel.Group("inetd",Martel.Rep(Martel.Alt(o�ine, blank, commentary, serviceline)))
9 parser = format.make_parser()
10 parser.setContentHandler(saxutils.XMLGenerator())
11 parser.parseFile(open("inetd.conf"))

(a) Martel program used for parsing inetd.conf to XML

1 #echo stream tcp nowait root internal
2 ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/proftpd
3 #<o�># sgi_fam/1−2 stream rpc/tcp wait root /usr/sbin/famd

(b) Sample lines from the original inetd.conf format

1 <?xml version="1.0" encoding="UTF−8"?>
2 <doc>
3 <commentary> <com>#</com>echo stream tcp nowait root internal </commentary>
4 <line><id>ftp</id><ws> </ws><id>stream</id><ws> </ws><id>tcp</id><ws> </ws>
5 <id>nowait</id><ws> </ws><id>root</id><ws> </ws><id>/usr/sbin/tcpd</id>
6 <ws> </ws><id>/usr/sbin/proftpd</id></line>
7
8 <o�> <com>#</com><o�>#<ws> </ws>
9 <line><id>sgi_fam/1−2</id><ws> </ws><id>stream</id><ws> </ws><id>rpc/tcp</id>
10 <ws> </ws><id>wait</id><ws> </ws><id>root</id><ws> </ws>
11 <id>/usr/sbin/famd</id><ws> </ws><id>fam</id></line>
12 </o�>
13 </doc>

(c) Excerpt of the transformation of inetd.conf to XML

Figure 4.2: Parsing of the inetd.conf �le to XML

the resulting CIM instances. The output of this transformation, in Fig. 4.2c, is still
a direct representation of the original data in Fig. 4.2b, now structured.

The speci�cation of a con�guration �le with grammar-based rules has another
bene�t, as this documents the con�guration format formally. The detail can be
high, following the original �le format very closely, or be more general and describe
the high-level format of the document (e.g., line-oriented with space separators).
The latter approach makes it easier to process many formats by specifying general
rules (and a more lenient matching when �les do not conform to format), but the
former has the bene�t of early-on error checking and validation of con�guration
formats. Since Martel supports backtracking, multiple versions of the same �le can
be speci�ed. If the �le fails at the end of the parsing process, the backtrack makes the
process resume with the next matching rule that would represent another version.

40 Chapter 4. System Data Layer

This feature can be also used to determine �le version and mismatches.

The output of Fig. 4.2c is converted to miniCIM via an XSLT stylesheet (step
[B] in Figs. 2.1 and 4.1). Since this stylesheet creates miniCIM XML instances, its
output is simple to write (i.e., XML element-value pairs for each property).

The task of converting con�guration and management data to CIM instances is
perhaps the most di�cult and error-prone stage in the use of AdCIM, due to the
format and semantic mismatches, and the usual problems in using regular expres-
sions, such as matching unintended strings or failing intended matches. Nevertheless
many tools and languages used traditionally by system administrators, such as Perl
or Python, use regular expressions extensively, so this problem is not particular to
our framework.

Figure 4.3a shows a more complex example of grammar rules that parses the
/var/log/messages log �le, composed of messages, warnings and errors from var-
ious system processes and the kernel. This log format (shown in Fig. 4.3b), very
representative of Linux �avors, is line-based (entries correspond with lines in the
�le). Each entry contains a date (parsed in line 5 of Fig. 4.3a) and a process iden-
ti�er (line 9). In lines 11-12, the format of entries is speci�ed as consisting of a
date, followed by a space, followed by a host name, another space, a process iden-
ti�er and a free-form message until the end of the entry. This free-form message
can be further parsed to detect alerts and noti�cations of individual processes. The
objects obtained from a log �le are semantical alerts (not con�gurations) and are
thus read-only, but in tandem with con�guration data enable the detection of mis-
con�gurations.

4.2.2. WMI Data

Windows moved its system con�guration repository from �les to the Registry
with the introduction of Windows 95. Thus, to extract con�guration data it would
seem necessary to manipulate Registry data. Instead, we have used the Windows
WMI subsystem [61], which provides comprehensive data of hardware devices and
software abstractions in CIM format, exposed using the Component Object Model
(COM), the native Windows component framework. WMI is built-in since Windows
2000, but it is also available for previous versions. Queries can also be made remotely
using Distributed COM (DCOM). Its coverage varies with the Windows version, but
it can be extended by users.

4.2 Con�guration Data Extraction 41

1 import Martel; from xml.sax import saxutils
2 def Group(x,y): return Martel.Group(x,y)
3 def Re(x): return Martel.Re(x)
4 def Item(name): return Martel.Group(name,Martel.Re("\S+"))
5 def Date(name): return Martel.Group(name,Martel.Re("\S+\s+\d+\s+[0−9:]∗"))
6 def Space(): return Martel.Re("\s∗")
7 def Colon(): return Martel.Re(":\s∗")
8 def Origin(): return Group("origin",Re("\w+"))+Col()
9 def OriginPid(): return (Group("origin", Group("name", Re("[\w()_−]+")) +Re("\[")+
10 Group("pid", Re("[0−9]+")) +Re("\]")+ Colon()))
11 �elds=(Date("date") +Space()+ Item("host") +Space()+ Martel.Alt(OriginPid(),Origin(),Space()) +
12 Martel.UntilEol("message") + Martel.ToEol())
13 format=Group("�le",Martel.Rep(�elds))
14 parser = format.make_parser()
15 parser.setContentHandler(saxutils.XMLGenerator())
16 parser.parseFile(open("m"))

(a) Martel program used for parsing /var/log/messages to XML

1 Nov 25 17:40:01 host1 cron[8698]: (root) CMD (/usr/bin/giis −u > /dev/null)
2 Nov 25 17:46:18 host1 sshd[8714]: Accepted keyboard−interactive/pam for user1 from 283.154.60.211 port 58598 ssh2

(b) Sample lines from /var/log/messages

Figure 4.3: Parsing /var/log/messages �le to XML

1 import sys, win32com.client, pythoncom, time; from cStringIO import StringIO
2 locator = win32com.client.Dispatch("WbemScripting.SWbemLocator")
3 wmiService = locator.ConnectServer(".","root\cimv2")
4 refresher = win32com.client.Dispatch("WbemScripting.SWbemRefresher")
5 services = refresher.AddEnum(wmiService, "Win32_Service").objectSet
6 refresher.refresh()
7 pythoncom.CoInitialize()
8 string = StringIO()
9 for i in services:
10 (string.write((
11 "<SystemCreationClassName>"+unicode(i.SystemCreationClassName)+"</SystemCreationClassName>"+
12 "<CreationClassName>"+unicode(i.CreationClassName)+"</CreationClassName>"+
13 "<Name>"+unicode(i.Name)+"</Name>"+"<State>"+unicode(i.State)+"</State>"+
14 "<StartMode>"+unicode(i.StartMode)+"</StartMode>"+"</CIM_Service>").encode("utf8")))
15 print string.getvalue()

Figure 4.4: Python script to extract service information from WMI

WMI data can be uniformly retrieved using simple code, such as the one shown
in Fig. 4.4, which uses the COM API and directly writes XML data of miniCIM
instances representing Windows services (which use a derived class of CIM_Service
with custom properties). The code uses a locator to create a WMI COM interface
named SWbemRefresher (see line 4) which makes possible to update WMI instance
data without creating additional objects. Line 5 declares Win32 services as the class
to listen for instances. In the next lines, instances contained in the refresher interface
are queried and their data written as miniCIM instances. Line 7 is needed to avoid
problems accesing DCOM objects in multi-threaded contexts. A StringIO Python

42 Chapter 4. System Data Layer

object (line 8) is used to avoid string object creation overheads. Since Python,
like Java, has immutable strings, using them directly would generate a number of
unneeded temporary objects. Hence, we use StringIO, which is a mutable object,
mimicking a �le interface and designed for e�cient string concatenation. Aside from
these minor technical points, the conversion of WMI data to miniCIM instances is
a much easier process than the parsing of �at con�guration �les.

4.3. Distributed Client Data Transport

The data in managed nodes must be transferred to the servers and updated
back in the clients via a transport mechanism. Since the arrangement and number
of managed nodes could vary widely over time, a network-transparent distributed
transport system is needed to support large numbers of nodes, allowing them to
communicate in a standard and decentralized manner.

Thus, this section describes the use of both CORBA [72] and Web Services [9]
solutions for distributed data transport in our framework. As can be seen in Fig. 4.1
the purpose of this middleware is to e�ciently transfer miniCIM instances or raw
XML data between clients and servers.

CORBA achieves interoperability between di�erent platforms and languages by
using abstract interface de�nitions written in the Interface Description Language
(IDL), from which glue code for both clients and servers is generated. This interface
is a �contract� to be strictly honored by both parties. This enforces strict type
checking, but clients become �brittle�: any change or addition in the interface breaks
their code and implies their recompilation and/or readaptation.

Using an XML Schema validated dialect has two bene�ts: �rst, it promotes
�exibility, since changes in format can be safely ignored by older clients and, second,
it preserves strict validation in document exchanges. Both aspects are important
due to the extensibility of the CIM model, which induces more frequent updates,
but in very time-critical instances a direct mapping of a CIM class to IDL is still
possible.

To pass XML data via CORBA they are �attened to a string. This solution is
not optimal, since some time must be lost in serialization and de-serialization. A
more e�cient solution would be to pass the data as a CORBA DOM Valuetype [73],
which is passed by value with local methods. Then, the parsed XML structure

4.4 Data Transport Experimental Results 43

would not be �attened, so that clients could manipulate the XML data without
remote invocations. Unfortunately, this is a feature not yet well supported in most
production-grade ORBs, so the ultimate impact of this solution on serialization
performance is yet to be measured. Our requirements for the solution were opennes,
performance, and, above all, small footprint, so our chosen implementation of ORB
after reviewing existing implementations was omniORB [42], a high-speed CORBA
2.1 compliant ORB with bindings for both C++ and Python.

In contrast with CORBA, Web Services (WS) solutions provide an interoperation
layer that can be both tightly coupled (using methods with strict typing and proce-
dures) or loosely coupled (XML document-centric). Gradually, WS are being more
oriented to support web-based service queries than to o�er distributed transport,
but there is a signi�cant overlap between the two approaches.

WS use XML dialects, such as WSDL for interface de�nition, and Simple Object
Access Protocol (SOAP) for transport. It may seem that using XML dialects would
promote synergy, but the use of XML as both �envelope� of the message and for
representing it does not o�er additional synergy. In fact, it can be a hindrance,
since the message must be either sent as an attachment (which implies Base64, a
binary codi�cation scheme that codi�es 3 binary bytes into 4 ASCII characters and
has roughly a 37% penalty in size), or with its XML special characters encoded
as character entities to avoid being parsed along with the XML elements of the
envelope. Additionally, two XML parsings (and the corresponding encoding) must
be done, causing high latency. There seems to be no plans for supporting platform-
independent parsed XML representations like DOM Valuetype in WS.

As implementation of Web Services we have chosen the Zolera SOAP Infrastruc-
ture [90], the most active and advanced WS library for Python. It was chosen to
minimize software and resource requirements in the managed nodes, and o�ers good
performance at the same time.

4.4. Data Transport Experimental Results

We have proceeded to evaluate the performance of the System Data Layer for
various representative tasks and the impact of the transport technology (Web Ser-
vices vs CORBA). The tests have been performed using Athlon64 3200+ nodes
connected by Gigabit Ethernet cards.

44 Chapter 4. System Data Layer

One objective of this framework is to support monitoring applications which
consume structured data and gather and update them with small footprint and low-
latency. To achieve multiplatform interoperability and low-latency network messag-
ing, both CORBA and Web Services are assessed.

The subject of performance and low-latency issues in system administration is
discussed in other works. Pras et al. [84] �nd Web Services more e�cient than
SNMP for bulk administration data retrieval, but not for single object retrieval
(i.e. monitoring), and conclude that data interfaces are more important for perfor-
mance than encoding (Basic Encoding Rules (BER) vs XML). Nikolaidis et al. [69]
show great bene�ts by compressing messages in a Web Service-based protocol for
residential equipment management, but only use Lempel-Ziv compression, which is
outdated, and patent-encumbered. Yoo et al. [109] implement zlib compression �
using the patent-free De�ate method � and other mechanisms to optimize the NET-
work CONFiguration (NETCONF) protocol using SOAP (Web Services), Blocks
Extensible Exchange Protocol (BEEP) and Secure SHell (SSH) messaging, but their
method gives similar response times for all three protocols, which indicates that the
bottleneck is elsewhere.

We have tested three di�erent cases of use of system data extraction, both in
Windows and Unix (Linux). The parameters measured for these cases have been
total time, latency and message size, with and without compression. Total time is
de�ned as the round-trip time elapsed between a request is sent and the response is
completely received. Latency is the round-trip time when the response is a 0-byte
message. Two di�erent algorithms have been used for compression: zlib and bzip2.
The three cases tested are:

CPU load retrieval, (results are shown in Fig. 4.5). This case is representative
of monitoring applications, which would be typically invoked several times per
second, and need specially fast response times and low load on the client.

Service information discovery, shown in Fig. 4.6. This case represents queries
for the discovery of services or machines, invoked with a frequency ranging
from minutes to hours.

Log �le information retrieval and parsing (data mining), shown in Fig. 4.7.
This case represents bulk data requests invoked manually or as part of higher-
level diagnostic processes. These requests have unspeci�ed total time and data
size, so they are invoked ad-hoc, with little or no regularity.

4.4 Data Transport Experimental Results 45

The code examples shown in Section 4.2, speci�cally Figs. 4.2a and 4.4 for net-
work services, and 4.3a for log parsing have been used in their corresponding cases.

The �rst test in Fig. 4.5 shows lower latency and total time for CORBA vs WS in
both platforms. Base latency for CORBA is roughly 0.2 ms, whereas it rises to 20-30
ms when using WS, in great part due to the overhead of parsing the envelope and
codifying the message. Compression bene�ts greatly WS but slows down CORBA
performance. Fig. 4.5b shows the cause: WS messages are large enough to bene�t
from compression, but CORBA messages (less than 50 bytes long) are actually
doubled in size. In the second test (Fig. 4.6), WS times are very similar to those
obtained in the previous case, since parsing overhead dominates total time. CORBA
times are longer than in the �rst case, but still shorter than the WS counterparts.

In these two test cases, Windows times are higher than those of Unix, due to
the overhead of operating with COM objects. Nevertheless, these overheads are
smoothed over in the third test, since each object carries more data. From Figs. 4.5
and 4.6, it is clear that message size determines total time, a�ecting WS much
more, due to the use of an XML codi�cation and envelope. The envelope size, which
introduces an almost �xed penalty a�ects signi�cantly only the �rst test with short
message size, but codi�cation introduces a 20% message size overhead on average.

The third test (Fig. 4.7) shows a much narrower spread of values due to message
size (1Mb+); thus, total time is dominated by transfer time, instead of by protocol
overheads. In this test compression in WS achieves times comparable to those of
uncompressed CORBA. This would be more noticeable with less bandwidth, as WS
compression ratios of 40:1 are reported in Fig. 4.7b.

In general, all times are very acceptable, although CORBA has a clear advantage.
The bene�ts of compression are dubious, except in the third test for WS. bzip2
compresses better, but it is slower and is oriented to larger data sets than zlib,
which is a better choice for the tested cases. Although both WS and CORBA are
acceptable solutions for information exchange in our framework, monitoring and low-
latency applications strongly favor CORBA over WS due to its message compactness
and better processing time, so it is the transport solution chosen for AdCIM.

46 Chapter 4. System Data Layer

0
.0
2
5

0
.0
5

0
.0
7
5

0
.1

0
.1
2
5

0
.1
5

0
.1
7
5

0
.2

0
.2
2
5

0
.2
5

0
.2
7
5

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

Seconds

∼
0
.0
0
0
3

W
S
W
in
d
o
w
s

W
S
U
n
ix

C
O
R
B
A
W
in
d
o
w
s

C
O
R
B
A
U
n
ix

(a
)
T
o
ta
l
ti
m
e
(d
a
rk
er
)
a
n
d
la
te
n
cy

(l
ig
h
te
r)

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

Bytes

W
S
W
in
d
o
w
s

W
S
U
n
ix

C
O
R
B
A
W
in
d
o
w
s

C
O
R
B
A
U
n
ix

(b
)
M
es
sa
g
e
si
ze

F
ig
ur
e
4.
5:

P
er
fo
rm

an
ce

m
ea
su
re
m
en
ts

fo
r
C
P
U
L
oa
d
te
st

0
.0
2
5

0
.0
5

0
.0
7
5

0
.1

0
.1
2
5

0
.1
5

0
.1
7
5

0
.2

0
.2
2
5

0
.2
5

0
.2
7
5

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

Seconds

W
S
W
in
d
o
w
s

W
S
U
n
ix

C
O
R
B
A
W
in
d
o
w
s

C
O
R
B
A
U
n
ix

(a
)
T
o
ta
l
ti
m
e
(d
a
rk
er
)
a
n
d
la
te
n
cy

(l
ig
h
te
r)

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

2
2
0
0
0

2
4
0
0
0

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

pl
ai
n

zl
ib

bz
2

Bytes

W
S
W
in
d
o
w
s

W
S
U
n
ix

C
O
R
B
A
W
in
d
o
w
s

C
O
R
B
A
U
n
ix

(b
)
M
es
sa
g
e
si
ze

F
ig
ur
e
4.
6:

P
er
fo
rm

an
ce

m
ea
su
re
m
en
ts

fo
r
Se
rv
ic
e
D
is
co
ve
ry

te
st

4.5 Conclusions 47

0

0.5

1

1.5

2

2.5

3

3.5

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

S
e
c
o
n
d
s

WS WindowsWS UnixCORBA WindowsCORBA Unix

(a) Total time (darker) and latency (lighter)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

p
la
in

zlib

b
z2

K
il
o
b
y
t
e
s

WS WindowsWS UnixCORBA WindowsCORBA Unix

(b) Message size

Figure 4.7: Performance measurements for Log Parsing test

4.5. Conclusions

We have explored the con�guration data extraction in the AdCIM framework,
focusing on the extraction of service and log data from Windows and Unix into mini-
CIM instances. This is achieved using di�erent techniques (text-to-XML parsing
grammars, WMI scripts) due to the di�erent management approaches supported by
each OS.

We have also discussed methods and alternatives to implement multiplatform and
low-latency transport methods using two di�erent approaches: CORBA and Web
Services technologies. Finally, we have assessed the implementations by de�ning a
testing framework for measuring total time, latency and message size of the transport
of messages for three usual scenarios on network management.

The chosen �elds of network services and log data analysis have illustrated the
use of these methods for administration domains particularly dissimilar between
operating systems. But the scope of the System Data Layer is not limited to such
domains, as will be shown in Part II of the Thesis, which shows adaptations to the
Sendmail mail agent (Chapter 7), and Wireless Mesh Networks (Chapter 9).

Chapter 5

Data Persistence Layer

This chapter details the implementation of the persistence in the AdCIM frame-
work. Section 5.1 presents an overview of the LDAP directories used to store man-
agement data, their protocols and interchange formats, which represent the main
interface between AdCIM and the LDAP directory. Section 5.2 covers the trans-
formations shown in Figs. 5.1 (an excerpt of Fig. 2.1), that is, the transformation
from miniCIM instances to LDAP repository data (step [C]), from LDAP data to
miniCIM instances (step [D]), and from miniCIM Schema to LDAP Schema (step
[G]). Finally, Section 5.3 summarizes this chapter.

LDAP
Schema

Data Persistence Layer

Check
CIM/LDAP

LDIF
Instances

DSML

miniCIM
XML

Schema XSLT

LDAP
TCP/IP

LDAP Server

LD
A

P
TC

P
/I
P

DSML
[D]

XSLT
XSLT

[G]
[C]

miniCIM
instances

Figure 5.1: AdCIM Data Persistence Layer

49

50 Chapter 5. Data Persistence Layer

5.1. Directory Databases

The AdCIM framework requires a persistence layer with replication and scala-
bility to support e�cient decentralized management, but it does not require strong
transaction enforcement or triggers. The �exibility and extensibility of the logical
schema and the query language are also important to ease storage and translation
of miniCIM instances to/from the repository. Several repository solutions were con-
sidered, �nally settling on LDAP directories.

Here we consider �directory� broadly to include hierarchical databases optimized
for queries, such as Domain Name System (DNS) or LDAP. The data inside them
are usually organized on a tree of nodes. These nodes have a type which determines
their attributes. Nodes (also named entries) can be accessed directly from the root
or via a query which searches the tree for nodes that satisfy a condition.

Directory databases were developed primarily to store user, naming and orga-
nizational information for mail exchange services, which led naturally to their hi-
erarchical, tree-like structure. Directories are highly optimized for read operations,
support multivaluated attributes and multi-master replication. They often imple-
ment the LDAP access protocol [54].

The greatest bene�t of directories lies in their having centralized and fast access
and update to frequently used information. This logically centralized access makes
it much easier to implement access control to sensible information. Directories also
allow de�ning and introducing new types of entries and can be reorganized more
easily than other types of databases. They have disadvantages in applications that
require transactional processing.

5.1.1. The LDAP Protocol: Origin and Design

X.500 was developed by the CCITT (Telegraph and Telephone Consultative
Committee) � now ITU (International Telecommunications Union) � as a proposal
to standardize directory services. X.500 is notable because it was the �rst direc-
tory system designed to be open, general-purpose and extensible, and supported
a more powerful search model and replication mechanisms than contemporary sys-
tems. Nevertheless, implementing the standard was di�cult, and these implemen-
tations were unstable and slow in part due to the use of the Open Systems Inter-
connection (OSI) network stack instead of the TCP/IP one.

5.1 Directory Databases 51

The protocol used to access X.500 directories was called DAP (Directory Ac-
cess Protocol), so when a lighter protocol was implemented it was named LDAP
(Lightweight Directory Access Protocol). Since it was easier to implement, it grad-
ually displaced X.500.

LDAP was designed in the early 90's and later standardized by the IETF [47]. It
de�nes an open and standard interface for directory access which simpli�ed several
points of DAP and used the TCP/IP stack with minimal functionality loss. Over
the years, LDAP-only directory implementations appeared and the bene�ts carried
over to the server side. Nowadays LDAP is a critical part of the computer services
in many organizations.

LDAPv3, the last revision, brought several improvements, such as international-
ization support, client referrals, strong cryptography support, extensible operations,
and the possibility of retrieving schema and implementation information from the
repository.

Information Model

Tipically, the entries in a directory share a common domain, and there is a strong
relationship between entries. Hence, it is natural to group these semantic restrictions
in a common schema, to avoid duplication and promote reusability, and ultimately
standardize common types into an inheritance hierarchy of object classes.

The schema is enforced strictly, so non-explicitly de�ned attributes or class inclu-
sions are disallowed. Attributes can be declared as multivaluated, and be inherited
between classes. Entries � which represent entities � are de�ned as instances of
object classes. These classes can be divided in three di�erent types:

abstract: Classes on the top of the information model hierarchy. Entries can
not have directly an abstract class � i.e. these classes are not instantiable �
because their purpose is to de�ne common attribute sets inheritable by normal
classes, and make searches easier. The top class, ancestor of all the classes, is
their representative.

structural: Instantiable classes that can be represented by actual entries in the
repository. All must inherit from an abstract class such as top.

auxiliary: Auxiliary classes do not represent entities, but secondary attribute
sets which are transversal. For example, a telephone number can be associated

52 Chapter 5. Data Persistence Layer

to a person, a company or a dial-up service. It is used also to add optional
attributes to an entry without having to change its schema.

In this work, auxiliary classes are used extensively for the representation of
CIM associations.

Naming Model

The naming model is the most visible, because it determines the name of entities.
The model has a tree topology, as can be seen in Fig. 5.2, but in contrast with the
information model, it has no common root for all the entries in a repository. This
allows a server to have several separate trees with local roots which are e�ectively
in separate namespaces. It is also possible to fuse these trees in a super-hierarchy if
needed.

DN: ou=Sales,
o=LDAP Systems. Inc.,

c=es

DN: uid=jcrichton, ou=Sales,
o=LDAP Systems. Inc., c=es

DN: o=LDAP Systems. Inc., c=es

DN: uid=clatewood, ou=Management,
o=LDAP Systems. Inc., c=es

Figure 5.2: LDAP tree showing naming convention

Entry names are formed concatenating the name of each node, or Relative Dis-
tinguished Name (RDN), constructed using one attribute designed as identi�er, with
the RDN of its parent, until reaching the local root. The resulting name, or Dis-
tinguished Name (DN), is constructed backwards compared with that of a �le in a
�lesystem. In Fig. 5.2, nodes representing people are identi�ed using the attribute

5.1 Directory Databases 53

uid (user identi�er), and the node at the top by the attribute c (country). Other
usual attributes are cn (common name), ou (organizational unit), and o (organiza-
tion). Since each entry can use di�erent attributes as identi�ers, the name of the
attribute is also included in the name.

Functional Model

The functional model represents the query and modi�cation operations that can
be performed on constructs de�ned in the information or naming models. LDAP
operations are considered atomic, so if some step in an operation is not completed
satisfactorily, the previous state is restored.

Most queries are performed using the search operator, which can search the
entire tree, a subtree or a concrete node. To select only nodes which verify some
conditions, LDAP �lters are used. These �lters are composable, but only �lter out
nodes from the subtree. They can not join entries, direct the search or perform
arithmetic operations.

The compare operator is used to verify if an entry has an attribute with an
expected value. The client sends a triplet <DN>,<attribute_name>,<value>. The
server then sends an a�rmative or negative answer. This operator stems from
X.500, where the search operator did not discriminate the case where an attribute
was not present from the case where the same attribute had a value not satisfying
the �lter.

The entry operator delete accepts a DN and removes the referred entry if it is
present, does not have children, and the user is authorized.

The perhaps non-intuitive rename operator can not only change the name of
entries, but also copy and move them. It accepts four parameters, the DN of the
entry to be changed, its new RDN, optionally the DN of its new parent, and a
boolean value that, when true, instructs the server to keep the old entry, e�ectively
making a copy.

These operators are tree-level operators that work with whole entries. There are
also entry-level operators that work with attributes. In DAP, it was possible to add
and delete attributes and add or remove values to an existing attribute, but when
adding a value to an attribute, this setup required the client to �rst check if the
attribute was present or not and use a di�erent operation in each case.

54 Chapter 5. Data Persistence Layer

LDAP simpli�ed entry modi�cation semantics using three operators: add, delete
and replace. The �rst one, add, appends new values for both existing or non-existing
attributes. In a similar manner, delete erases values, and attributes if they lose their
last values. Finally, replace overwrites the previous set of values. As shown in the
next section, these semantics pose a problem to our framework persistence, since
adding a preexisting value to an attribute is considered as an error.

5.1.2. LDAP Interchange Formats

There are a great number of LDAP clients which facilitate access to directories,
but there are some tasks, such as data interchange between di�erent vendor imple-
mentations, bulk import of entries, database dumps and bulk edit automation, that
can be unfeasible using most clients directly. These cases are covered by the inter-
change formats. The most prominent are LDIF (LDAP Data Interchange Format)
and DSML (Directory Services Markup Language).

LDIF was part of the initial LDAP ecosystem, and later underwent a standard-
ization process that ended with LDAPv3, speci�ed in Request for Comments (RFC)
documents included in [54]. It is text-based and supported universally by LDAP
clients. DSMLv2 [78] is basically an XML mapping of LDIF, with the same cap-
abilities, designed much later and standardized by OASIS (Organization for the
Advancement of Structured Information Standards) [77].

LDIF

LDIF is a plain text-based format structured in multi-line records separated by
blank lines. Each record can either describe a directory entry (entry record) or any
change that can be made to it within LDAP (operator record). These changes are
speci�ed with directives, which are equivalent to the operators seen before.

The types of possible lines in an LDIF �le are shown in Table 5.1. Records
are separated by blank lines, and separator lines are used when there are multiple
operators in the same entry. Content lines are of the format '<x>: <y>', in which
the meaning of x and y depends on the context. For example, the �rst line of either
record begins with a 'dn: <DN of entry>' directive, which speci�es the DN of the
entry described or modi�ed by the record. In the case of entry records, the following
lines have the format '<attribute_name>: <attribute_value>'. There is at least one

5.1 Directory Databases 55

line for each attribute, and also one for each value of multivaluated attributes.

Operator records also begin with the dn directive, but followed by the metadirec-
tive changetype: <directive>, where directive can be one of add, delete, modify
and modrdn. Three of these directives (the �node directives�) refer to entire entries:
add adds a new entry, delete removes an existing entry, and modrdn changes the
DN of an entry, with the same options seen for the operator replace at the end of
Section 5.1.1.
Type First character Description

Content line any except <space>,'-' or '#' A line containing part of an entry

or operation.

Wrapped line <space> Continuation of the previous line,

can be repeated.

Blank line \n (newline) A line used to end records.

Comment line '#' A comment, ignored by clients.

Separator line '-' Used to separate operators.

Table 5.1: Types of lines in an LDIF �le

The changetype: modify directive is used when, instead of entries, attributes
need to be changed. This directive must be followed by a number of subdirectives
in the form <directive>: <attribute_name>, where directive can be one of add,
replace and delete. All of these subdirectives should be followed by argument
pairs of the form <attribute_name>: <attribute_value>, where attribute_name

must match the one following the directive. These directives should not be con-
fused with the node directives just seen, as they operate exclusively with attribute
values. Consequently, add adds a new value to an attribute, creating it if necessary;
replace changes whatever values the attribute had by the ones in the argument, and
delete can delete some values of an attribute, or the entire attribute if no values
are speci�ed. When adding new values to an attribute, it is possible to specify a
Base64 encoded string or a �le URL as input.

It is possible to indicate several operations to be performed in the same entry.
Since directives can have an arbitrary number of arguments, it is required to put a
separator line (a lone '-' symbol) between directives.

Figure 5.3 shows an example of LDIF �le codifying instances of the InetdService
and HostedInetdService classes shown in Fig. 3.2, and which employ the organiza-
tion and directives just explained: the �rst block of lines (lines 1�12) before the
blank line form an entry record. This record begins with a dn directive (line 1), fol-
lowed by the DN of the entry, formed by two RDNs (the value of the orderedCimKeys

56 Chapter 5. Data Persistence Layer

attribute and dc=udc, the top entry of the tree) separated by a comma. The next
attribute, orderedCimKeys (line 2) is the identi�er attribute. Which attribute is the
identi�er and its exact content is not important, but it has to be a unique name
amongst its siblings. The objectClass line (line 3) is the most important one, since
it determines the class of the entry, and thus, the type of attributes that the entry
can hold, and its mandatory attributes. An entry can have one primary objectclass
and an arbitrary number of auxiliary classes which enable the attachment of new
attributes. The next lines (lines 4�12) are pairs attribute name � attribute value.
The attribute in lines 9�10 appears two times, because it has two values. The blank
line in line 13 ends the record.

The second block in lines 14�23 is an operator record which codify several ad-
ditions to the entry represented in the �rst block, so its DN is repeated in the �rst
line (line 14). Afterwards, a changetype: modify directive indicates that the rest
of the record is composed of attribute and value operations. All of them are add

operations, with separator lines in between. The �rst add operation (lines 16�17) as-
signs a new objectclass to the entry, which permits the addition of the following two
attributes (lines 19�23). LDAP operations are atomic, but some implementations
do not support adding a new objectclass and attributes allowed by that objectclass
in the same operator record.

Summarizing, LDIF �les can represent both entries and operations on these

1 dn: orderedCimKeys=AdCIM_InetdService.CreationClassName\3Dccname\2CName\3Dftp\2CProtocol\3Dtcp\2CSystemCreationClassName\3
Dscname\2CSystemName\3Dsname,dc=udc

2 orderedCimKeys: AdCIM_InetdService.CreationClassName=ccname,Name=ftp,Protocol=tcp,SystemCreationClassName=scname,SystemName
=sname

3 objectClass: AdCIM−InetdServiceInstance
4 CreationClassNameCIM−Service: ccname
5 SystemCreationClassNameCIM−Service: ccname
6 SystemNameCIM−Service: scname
7 NameCIM−Service: ftp
8 SocketTypeAdCIM−InetdService: stream
9 ProtocolAdCIM−InetdService: tcp
10 ProtocolAdCIM−InetdService: udp
11 UserAdCIM−InetdService: nowait
12 CommandAdCIM−InetdService: root/usr/sbin/tcpd
13
14 dn: orderedCimKeys=AdCIM_InetdService.CreationClassName\3Dccname\2CName\3Dftp\2CProtocol\3Dtcp\2CSystemCreationClassName\3

Dscname\2CSystemName\3Dsname,dc=udc
15 changetype: modify
16 add: objectClass
17 objectClass: AdCIM−HostedInetdServiceAuxClass
18 −
19 add: StartModeAdCIM−HostedInetdService
20 StartModeAdCIM−HostedInetdService: Automatic
21 −
22 add: AntecedentAdCIM−HostedInetdService
23 AntecedentAdCIM−HostedInetdService: orderedCimKeys="CIM_ComputerSystem.CreationClassName=CIM_ComputerSystem,Name=

shalmaneser", dc=udc

Figure 5.3: Example of an LDIF �le representing InetdService and
HostedInetdService instances.

5.1 Directory Databases 57

entries. These capabilities are useful for both initial directory population and the
automation of operations. The use of interchange formats such as LDIF decouples
the transformation of data to directory format from the actual repository updating,
which can then be made in the most appropriate way. It also makes possible to
rollback changes easily and log them incrementally using versioning systems. Finally,
LDIF �les can serve as full backups of the repository data that are both human-
readable and implementation independent.

DSMLv2

As mentioned before, DSMLv2 has the same capabilities as LDIF. Since LDIF
already covers the full spectrum of data representation and manipulation on LDAP
directories, the necessity of another interchange format could be questioned. The
motivation behind DSML was to develop an XML-based LDIF equivalent. This
would mean an easy integration with XML-based tools and applications and the
updating and consulting of directories across �rewalls, which customarily blocked
LDAP ports, using HTTP as transport protocol.

DSMLv1 was a preliminary speci�cation released by OASIS [77] in 1999, and
only covered directory representation. DSMLv2 adds support for data operations,
making it a true LDIF-equivalent. DSML can also specify queries and represent the
schema of a directory, areas not covered by LDIF, and usually non interoperable
between LDAP implementations.

By design, DSML is a client format. Clients read DSML and communicate with
the server using standard LDAP commands. Therefore, no support is required
in the server. The drawback is that there must be an intermediate conversion
step from the LDAP response to DSML. Nevertheless, there are no clear bene�ts
of implementing this support in the server, and the design of DSML makes the
conversion straightforward.

In Figure 5.4 a small snippet of DSML data is shown. The �rst line is the XML
preamble that all well-formed XML documents must have. The batchResponse and
searchResponse elements (lines 2�38) contain the result of a search with one result
entry contained in the searchResultEntry element (lines 4�36). The DN, which in
an LDIF �le would be the �rst line of the record, here is an XML attribute, but
using the same format as in line 1 of Fig. 5.3.

Inside the entry, the objectclass is de�ned as an objectclass attribute (lines 20�

58 Chapter 5. Data Persistence Layer

1 <?xml version="1.0" encoding="UTF−8"?>
2 <batchResponse xmlns="urn:oasis:names:tc:CIML:2:0:core">
3 <searchResponse>
4 <searchResultEntry dn="orderedCimKeys=AdCIM_InetdService.CreationClassName\=AdCIM_InetdService\,Name\=ftp\,Protocol\=

tcp,dc=udc">
5 <attr name="CommandAdCIM−InetdService">
6 <value>root/usr/sbin/tcpd</value>
7 </attr>
8 <attr name="SocketTypeAdCIM−InetdService">
9 <value>stream</value>
10 </attr>
11 <attr name="UserAdCIM−InetdService">
12 <value>nowait</value>
13 </attr>
14 <attr name="orderedCimKeys">
15 <value>AdCIM_InetdService.CreationClassName=AdCIM_InetdService,Name=ftp,Protocol=tcp</value>
16 </attr>
17 <attr name="ProtocolAdCIM−InetdService">
18 <value>tcp</value>
19 </attr>
20 <attr name="objectClass">
21 <value>AdCIM−InetdServiceInstance</value>
22 <value>AdCIM−HostedInetdServiceAuxClass</value>
23 </attr>
24 <attr name="CreationClassNameCIM−Service">
25 <value>AdCIM_InetdService</value>
26 </attr>
27 <attr name="AntecedentAdCIM−HostedInetdService">
28 <value>orderedCimKeys=CIM_ComputerSystem.CreationClassName\3DCIM_ComputerSystem\2CName\3Dshalmaneser,dc=udc</

value>
29 </attr>
30 <attr name="NameCIM−Service">
31 <value>ftp</value>
32 </attr>
33 <attr name="StartModeAdCIM−HostedInetdService">
34 <value>Automatic</value>
35 </attr>
36 </searchResultEntry>
37 </searchResponse>
38 </batchResponse>

Figure 5.4: Example of a DSML �le representing an InetdService instance with a
HostedInetdService association attached.

23), with several value subelements which hold the classes associated with the entry.
In DSML attributes are represented as attr elements with a name XML attribute,
and their values are represented as value subelements.

DSML has also a complete operation model, but AdCIM uses LDIF for directory
modi�cation operations, so it is not covered in this section. The main bene�t of
DSMLv2 is that its XML syntax makes possible the use of XSLT to transform the
directory data back to CIM objects. The use of LDIF would require an intermediate
parsing of the LDIF output not needed with DSML.

5.2. AdCIM Persistence in LDAP

Despite the repository-independent design of AdCIM, LDAP directories are spe-
cially suited to store its miniCIM information due to their scalability, schema �ex-

5.2 AdCIM Persistence in LDAP 59

ibility, hierarchical structure and implantation. There are other possibilities, the
most straightforward is to do a �at mapping to a relational database, such as in
the works by Finke [31, 32]. The problem with this approach is the in�exibility of
relational tables and schemata. Automatic XML persistence in relational databases
is a more current proposal addressed in the works surveyed by Nambiar et al. [66].
It o�ers transparent persistence, but to date has to cope with severe performance
penalties. These shortcomings are in great part due to their generality. In AdCIM's
case, we have additional knowledge about the structure of the stored data which
allows a more e�cient and natural mapping.

The transparent storage of miniCIM data on LDAP repositories is ensured by
three XSLT stylesheets provided by AdCIM. Two of these stylesheets carry out the
transformation of miniCIM to and from directory data (steps [C] and [D] in Figs. 2.1
and 5.1) according to the CIM schema, and are invoked by the Application Layer
when an appropriate query is made to the web service interface (step [F] in Fig. 2.1).
The third stylesheet translates the CIM schema to an LDAP schema that checks
equivalent constraints on directory data (step [G] in Figs. 2.1 and 5.1).

The following subsections describe these stylesheets in detail, and a �nal sub-
section presents benchmark results. For clarity, the term attribute is used within
LDAP contexts, and the term property within a CIM context.

5.2.1. miniCIM to LDIF Stylesheet

This stylesheet maps miniCIM information to the LDIF input format (step [C]

in Fig. 5.1). Even if LDIF is a standard, there are variations on the strictness of its
parsing in its implementations. OpenLDAP [75], the open-source LDAP implemen-
tation used by AdCIM, imposes strict spacing and line breaking, so the stylesheet
has to handle these requirements. The next di�culty is mapping the CIM instance
structure to LDAP; our implementation is loosely based on the DMTF recommen-
dations in [101], which divides CIM classes into three categories depending on how
they are processed: regular, auxiliary associations and structural associations.

Regular instances are the easiest to map. Each property is transposed directly
to an LDAP attribute, and a new attribute, orderedCimKeys, is constructed by a
concatenation of its class name, the names and values of key attributes (ordered
alphabetically and comma-separated), and used as the entry RDN. The local root
of the LDAP tree is named after the CIM namespace. The �rst line of Fig. 5.6b

60 Chapter 5. Data Persistence Layer

shows a DN built in this manner.

1 <!−− Auxiliar −−>
2 <xsl:when test="contains($schemaClass//@adc:dependency,'bare')">
3 <xsl:for−each select="$schemaClass/xsd:complexContent/xsd:extension/xsd:sequence/xsd:element[@adc:reference]">
4 <xsl:variable name="atref" select="current()"/>
5 <xsl:variable name="ock">
6 <xsl:call−template name="instance2orderedCimKeys">
7 <xsl:with−param name="instance" select="$instance/∗[local−name()=current()/@name]"/>
8 <xsl:with−param name="schema" select="$schema"/>
9 <xsl:with−param name="ref">true</xsl:with−param>
10 <xsl:with−param name="escaped">true</xsl:with−param>
11 </xsl:call−template>
12 </xsl:variable>
13 <xsl:text>dn: orderedCimKeys=</xsl:text>
14 <xsl:value−of select="$ock"/>
15 <xsl:text>,</xsl:text>
16 <xsl:value−of select="$namespace"/>
17 <xsl:text>
18 </xsl:text>
19 <xsl:text>changetype: modify
20 </xsl:text>
21 <xsl:text>add: objectClass
22 </xsl:text>
23 <xsl:text>objectClass: </xsl:text>
24 <xsl:value−of select="translate(local−name($instance/.),'_','−')"/>
25 <xsl:text>AuxClass
26 −
27
28 </xsl:text>
29 <xsl:text>dn: orderedCimKeys=</xsl:text>
30 <xsl:value−of select="$ock"/>
31 <xsl:text>,</xsl:text>
32 <xsl:value−of select="$namespace"/>
33 <xsl:text>
34 </xsl:text>
35 <xsl:for−each select="$instance/∗">
36 <xsl:if test="(local−name(current())!=$atref/@name) and (($schemaClass//∗[@name=local−name(current())]) or (not($atref[

@minOccurs])))">
37 <xsl:variable name="name" select="translate(concat(local−name(current()),local−name($instance/.)),'_','−')"/>
38 <xsl:text>changetype: modify
39 </xsl:text>
40 <xsl:text>add: </xsl:text>
41 <xsl:value−of select="$name"/>
42 <xsl:text>
43 </xsl:text>
44 <xsl:if test="local−name($schemaClass//∗[@name=local−name(current()) and (not(@adc:reference))])">
45 <xsl:for−each select="current()/value">
46 <xsl:value−of select="$name"/>
47 <xsl:text>: </xsl:text>
48 <xsl:value−of select="normalize−space(current())"/>
49 <xsl:text>
50 </xsl:text>
51 </xsl:for−each>
52 </xsl:if>
53 <xsl:if test="local−name($schemaClass//∗[@name=local−name(current()) and @adc:reference])">
54 <xsl:value−of select="$name"/>
55 <xsl:text>: </xsl:text>
56 <xsl:text>orderedCimKeys=</xsl:text>
57 <xsl:call−template name="instance2orderedCimKeys">
58 <xsl:with−param name="schema" select="$schema"/>
59 <xsl:with−param name="instance" select="current()"/>
60 <xsl:with−param name="ref">true</xsl:with−param>
61 <xsl:with−param name="escaped">true</xsl:with−param>
62 </xsl:call−template>
63 <xsl:text>,</xsl:text>
64 <xsl:value−of select="translate($namespace,'_','−')"/>
65 <xsl:text>
66 </xsl:text>
67 </xsl:if>
68 <xsl:text>−
69 </xsl:text>
70 </xsl:if>
71 </xsl:for−each>
72 <xsl:text>
73 </xsl:text>
74 </xsl:for−each>
75 </xsl:when>

Figure 5.5: miniCIM to LDIF stylesheet for processing an auxiliary association

5.2 AdCIM Persistence in LDAP 61

1 <HostedInetdService namespace="dc=udc">
2 <StartMode>Automatic</StartMode>
3 <Antecedent>
4 <ref classname="ComputerSystem" namespace="dc=udc">
5 <CreationClassName>ComputerSystem</CreationClassName

>
6 <Name>shalmaneser</Name>
7 </ref>
8 </Antecedent>
9 <Dependent>
10 <ref classname="InetdService" namespace="dc=udc">
11 <SystemCreationClassName>ComputerSystem</

SystemCreationClassName>
12 <SystemName>shalmaneser</SystemName>
13 <CreationClassName>InetdService</CreationClassName>
14 <Name>ftp</Name>
15 <Protocol>tcp</Protocol>
16 </ref>
17 </Dependent>
18 </HostedInetdService>

(a) Input auxiliary instance (same as

Fig. 3.5)

1 dn: orderedCimKeys=InetdService.CreationClassName\=ccname
\2CName\=ftp\2CProtocol\=tcp,dc=udc

2 changetype: modify
3 add: objectClass
4 objectClass: AdCIM−HostedInetdServiceAuxClass
5 −
6 dn: orderedCimKeys=InetdService.CreationClassName\=ccname

\2CName\=ftp\2CProtocol\=tcp,dc=udc
7 changetype: modify
8 add: StartModeAdCIM−HostedInetdService
9 StartModeAdCIM−HostedInetdService: Automatic
10 −
11 changetype: modify
12 add: AntecedentCIM−HostedService
13 AntecedentCIM−HostedService: orderedCimKeys="

ComputerSystem.CreationClassName=ComputerSystem,
Name=shalmaneser", dc=udc

14 −

(b) Resulting LDIF �le

1 <searchResultEntry dn="orderedCimKeys=ComputerSystem.CreationClassName\=ComputerSystem\,Name\=shalmaneser,dc=udc">
2 <attr name="CreationClassNameCIM−System"> <value>ComputerSystem</value> </attr>
3 <attr name="NameCIM−System"> <value>shalmaneser</value> </attr>
4 <attr name="DependentCIM−HostedService">
5 <value>orderedCimKeys=InetdService.CreationClassName\=ccname\2CName\=ftp\2CProtocol\=tcp,dc=udc</value>
6 <value>orderedCimKeys=InetdService.CreationClassName\=ccname\2CName\=skserv\2CProtocol\=tcp,dc=udc</value>
7 </attr>
8 <attr name="objectClass">
9 <value>CIM−ComputerSystemInstance</value>
10 <value>AdCIM−HostedInetdServiceAuxClass</value>
11 </attr>
12 <attr name="orderedCimKeys"> <value>ComputerSystem.CreationClassName=ComputerSystem,Name=shalmaneser</value> </attr>
13 </searchResultEntry>
14

(c) DSML data representing a regular instance with appended auxiliary association

Figure 5.6: Representations of CIM auxiliary associations in (a) miniCIM, (b) LDIF,
output from the miniCIM to LDIF stylesheet, (c) DSML data extracted from the
LDAP repository

Associations have relational and non-relational attributes, the former having DN
values. The simplest way of mapping associations would be to allocate a node for
each association and add new attribute values for all its properties. This approach
fails because LDAP does not guarantee any ordering for the values of a multivaluated
attribute. The consequence is that when there is more than one instance of a given
association, their non-referential attributes are mixed and become inseparable from
one another, what we call �attribute aliasing�.

To solve this problem associations are mapped as LDAP auxiliary classes for both
ends, antecedent and dependent, pointing to each other and which can have di�erent
cardinalities. These association attributes are partitioned between those ends. The
auxiliary classes for each end are attached to the associated instances adding a
new value to their objectClass attribute. These new values de�ne new association

62 Chapter 5. Data Persistence Layer

attributes to be used in the associated instances, but the two ends must also follow
an attribute partitioning convention. Non-referential properties are mapped to the
end with cardinality greater than one, usually the dependent. This avoids attribute
aliasing since the attributes prone to attribute aliasing are allocated to di�erent
nodes. This mapping method is restricted to 1-to-many associations and many-to-
many associations without non-referential properties, since referential attributes do
not su�er from aliasing.

Fig. 5.5 shows the XSLT code to map auxiliary associations. It begins iterating
over the referential properties. Each referential property points to an entry which
receives a subset of the attributes. The DN of this entry is determined in lines 5�12,
and a new objectClass with support for the attributes of the association is added to
the entry in lines 13�25. A new record with the same DN is codi�ed in lines 29�34.
Line 35 then iterates over the properties. Line 36 is the �partition condition� that
determines which attributes go to which end of the association. The condition states
that if a property exists in the schema for the class, and the referential property of
this end has no cardinality limitations (that is, it is not the end with maximum
cardinality 1), then the attribute is added in lines 37�67. Lines 37�43 print the
correct attribute name concatenating the originating class of the property and its
name, and lines 44�67 process the properties depending on the type. In lines 57�62
referential properties are processed with the same instance2orderedCimKeys function
that obtains DNs from entries.

The remaining case, many-to-many with non-referential properties, produces
aliasing with the auxiliary mapping, so it is instead mapped by structural asso-
ciations, which are regular instances with referential properties. Auxiliary classes
with referential attributes are attached to both ends of the association for navigation
help. Both of these helper attributes point to the association instance. This method
of mapping could be used by all associations, but auxiliary mapping meshes better
with LDAP persistence, allowing to retrieve association data without the additional
queries required by structural mapping to access the separate association node.

Figure 5.6a shows an example of a miniCIM representation of the association
HostedInetdService (shown in the CIM hierarchy of Fig. 3.2), and Fig. 5.6b part
of the LDIF representation as an auxiliary association, with two entries for the
Dependent association end (lines 6�10 and 11�14); the other end would di�er by
having only a referential attribute.

5.2 AdCIM Persistence in LDAP 63

5.2.2. DSML to miniCIM Stylesheet

This stylesheet (corresponding to step [D] in Fig. 5.1) transforms information
retrieved from the LDAP repository to miniCIM format. This process is the opposite
to the one performed by the preceding stylesheet, except that the input format is
not LDIF, but DSML. Fig. 5.6c shows an auxiliary association (HostedInetdService)
attached to a CIM regular instance (ComputerSystem) coded in DSML. As covered
in Section 5.1, it represents the same entities as LDIF, such as attributes, values
and DNs using a di�erent format.

Due to the mapping used in Section 5.2.1, each node in a DSML �le can corre-
spond to several miniCIM instances (e.g., a regular instance with several auxiliary
associations attached), and the information from auxiliary associations is also bro-
ken into several nodes. Each class in a node has one corresponding objectClass

value, with at least one regular or structural instance, and possibly several auxiliary
class de�nitions.

The stylesheet in Fig. 5.7, similar to the previous subsection, shows the XSLT
code for converting an auxiliary association from DSML to miniCIM. Lines 5�6
get the names of the referential properties of each end of the association, which
are used in lines 7�22 to iterate �rst over the nodes pointed by one referential
property, and then once more over the referential property in these nodes (since
they are auxiliary associations, each node has exactly one referential property).
Line 23 performs a sanity check, only passed if both referential properties point to
each other. Next, lines 24�35 aggregate and consolidate the attributes from both
ends, emulating the input expected from a structural class (which does not have
its attributes distributed over several entries), and the function map-result, which
processes structural entries with the aggregated attributes is called in lines 36�39.
The end result of the processing of this stylesheet are miniCIM instances, which
were the input of the last stylesheet, so round-tripping and the persistence of all the
data represented is achieved.

5.2.3. miniCIM Schema to LDAP Schema Stylesheet

Constructing an LDAP schema (step [G] in Fig. 5.1) is a �nal step to integrate
directories into the AdCIM framework. LDAP schemata, like any database schema,
specify constraints about the allowed entry and data types, ensuring data integrity
and semantic validity. Schemata also improve performance, and make possible more

64 Chapter 5. Data Persistence Layer

1 <!−−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ map−result−aux (class,result) ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−−>
2 <xsl:template name="map−result−aux">
3 <xsl:param name="class"/>
4 <xsl:param name="result"/>
5 <xsl:variable name="ref_prop_name_1" select="translate(concat($class/xsd:complexContent/xsd:extension/xsd:sequence/xsd:element[

@adc:reference][1]/@name,$class/@name),'_','−')"/>
6 <xsl:variable name="ref_prop_name_2" select="translate(concat($class/xsd:complexContent/xsd:extension/xsd:sequence/xsd:element[

@adc:reference][2]/@name,$class/@name),'_','−')"/>
7 <xsl:if test="$result[not (dsml:attr[@name=$ref_prop_name_1])]">
8 <xsl:for−each select="$result/dsml:attr[@name=$ref_prop_name_2]/dsml:value">
9 <xsl:variable name="current">
10 <xsl:call−template name="escapedn">
11 <xsl:with−param name="dn" select="current()"/>
12 </xsl:call−template>
13 </xsl:variable>
14 <xsl:variable name="result_1" select="/dsml:batchResponse/dsml:searchResponse/dsml:searchResultEntry[@dn=$current or @dn=

current()]"/>
15 <xsl:variable name="pos_1" select="position()"/>
16 <xsl:for−each select="$result_1/dsml:attr[@name=$ref_prop_name_1]/dsml:value">
17 <xsl:variable name="current2">
18 <xsl:call−template name="escapedn">
19 <xsl:with−param name="dn" select="current()"/>
20 </xsl:call−template>
21 </xsl:variable>
22 <xsl:variable name="result_2" select="/dsml:batchResponse/dsml:searchResponse/dsml:searchResultEntry[@dn=$current2 or @dn=

current()]"/>
23 <xsl:if test="$result_1 and $result_2">
24 <xsl:variable name="merged_result">
25 <dsml:searchResultEntry>
26 <xsl:copy−of select="$result_1/dsml:attr[not(@name=$ref_prop_name_1)]"/>
27 <xsl:copy−of select="$result_2/dsml:attr[not(@name=$ref_prop_name_2)]"/>
28 <dsml:attr name="{$ref_prop_name_1}">
29 <xsl:copy−of select="$result_1/dsml:attr[@name=$ref_prop_name_1]/dsml:value[position()]"/>
30 </dsml:attr>
31 <dsml:attr name="{$ref_prop_name_2}">
32 <xsl:copy−of select="$result_2/dsml:attr[@name=$ref_prop_name_2]/dsml:value[$pos_1]"/>
33 </dsml:attr>
34 </dsml:searchResultEntry>
35 </xsl:variable>
36 <xsl:call−template name="map−result">
37 <xsl:with−param name="class" select="exsl:node−set($class)"/>
38 <xsl:with−param name="result" select="exsl:node−set($merged_result)"/>
39 </xsl:call−template>
40 </xsl:if>
41 </xsl:for−each>
42 </xsl:for−each>
43 </xsl:if>
44 </xsl:template>

Figure 5.7: DSML to miniCIM stylesheet for processing an auxiliary association

e�cient indices. Their format is tightly coupled to directory implementations, so
each vendor has formats incompatible with each other, despite representing almost
equivalent information. In this section the process and examples of the code for
obtaining a valid schema for the OpenLDAP open-source implementation is shown.

CIM and OpenLDAP schemata di�er in structure, as the latter de�nes attributes
and classes separately. Therefore, attribute names must be prepended with their
original class names, and associated with a universal identi�er, called Object Iden-
ti�er (OID), assigned by the IANA (Internet Assigned Numbers Authority). The
OpenLDAP schema format is a line-oriented �at text �le, using the format shown
in Fig. 5.8a. This �gure shows the codi�cation in LDAP schema format of the
InetdService class shown in Fig. 3.2 and used as case study for this chapter. Each
attribute or class de�nition of this example has its own line and OID. Class de�-

5.2 AdCIM Persistence in LDAP 65

1 attributetype (1.3.6.1.4.1.5657.20.2.2.1.823 NAME 'CommandAdCIM−InetdService' DESC 'The command for running the server' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 EQUALITY caseIgnoreMatch SUBSTR caseIgnoreSubstringsMatch SINGLE−VALUE)

2
3 objectclass (1.3.6.1.4.1.5657.20.2.2.3.3739 NAME 'AdCIM−InetdService' DESC '' SUP CIM−Service ABSTRACT MAY (orderedCimKeys $

SystemCreationClassNameCIM−Service $ SystemNameCIM−Service $ CreationClassNameCIM−Service $ NameCIM−Service $
SocketTypeAdCIM−InetdService $ ProtocolAdCIM−InetdService $ WaitAdCIM−InetdService $ WaitInstanceAdCIM−InetdService $
UserAdCIM−InetdService $ CommandAdCIM−InetdService))

4
5 objectclass (1.3.6.1.4.1.5657.20.2.2.3.3743 NAME 'AdCIM−HostedInetdServiceAuxClass' DESC '' SUP AdCIM−HostedInetdService

AUXILIARY MAY (AntecedentCIM−HostedService $ DependentCIM−HostedService))

(a) Example of LDAP schema mapping CIM instances

1 <!−− Auxiliary −−>
2 <xsl:text>objectclass (1.3.6.1.4.1.5657.20.2.2.3.</xsl:text><xsl:value−of select="(position()−1)∗3+1"/>
3 <xsl:text> NAME '</xsl:text><xsl:value−of select="translate(@name,'_','−')"/><xsl:text>' DESC '</xsl:text>
4 <xsl:value−of select='normalize−space(translate(descendant::desc,"'"," "))'/><xsl:text> '</xsl:text>
5 <xsl:if test="@superclass"><xsl:text> SUP </xsl:text><xsl:value−of select="translate(@superclass,'_','−')"/>
6 </xsl:if>
7 <xsl:text> ABSTRACT </xsl:text>
8 <xsl:call−template name="print−must−may">
9 <xsl:with−param name="attributes" select="descendant::attribute[not (@reference)]"/>
10 </xsl:call−template>
11 <xsl:text>objectclass (1.3.6.1.4.1.5657.20.2.2.3.</xsl:text>
12 <xsl:value−of select="(position()−1)∗3+2"/>
13 <xsl:text> NAME '</xsl:text><xsl:value−of select="translate(@name,'_','−')"/>
14 <xsl:text>AuxClass' DESC '</xsl:text>
15 <xsl:value−of select='normalize−space(translate(descendant::desc,"'"," "))'/>
16 <xsl:text>' SUP </xsl:text><xsl:value−of select="translate(@name,'_','−')"/><xsl:text> AUXILIARY </xsl:text>
17 <xsl:call−template name="print−must−may">
18 <xsl:with−param name="attributes" select="descendant::attribute[@reference]"/>
19 </xsl:call−template>

(b) Excerpt of XSLT stylesheet to create LDAP schema auxiliary class de�nitions

Figure 5.8: miniCIM schema to LDAP schema

nitions can have the optional (MAY) and required (MUST) keywords. Attributes are
inherited from a superclass with the SUP keyword. Auxiliary objectClass values are
de�ned with AUXILIARY, and abstract classes with the ABSTRACT keyword.

Translating the CIM schema to this format is direct once attributes are assigned
unique names. The main di�erence lies in the separation of attributes and classes.
The type of attribute is encoded as an OID number following the keyword SYNTAX.
An example of an attribute de�nition can be seen in the �rst entry of Fig. 5.8a.
The other two entries show the de�nition of an auxiliary association, the �rst one
an abstract class with the attribute de�nitions corresponding to the InetdService

class, and the second one an instantiable auxiliary class derived from the �rst class
using the SUP keyword.

An excerpt from the stylesheet that generates this OpenLDAP schema is shown
in Fig. 5.8b. The excerpt corresponds to the auxiliary association mapping section.
Line 2 declares an objectclass entity using an OID stemming from the 1.3.6.1.-

66 Chapter 5. Data Persistence Layer

4.1.5657.20.2.23 OID branch. Since an abstract class, an auxiliary class and an
instantiable class is associated to each auxiliary class in the miniCIM schema, three
OIDs are associated to each one. Line 5 translates the superclass information to
SUP format, and lines 8�10, and 17�19 call the print-must-may template, which for-
mats the attributes in MUST and MAY groups depending on their optionality. Regular
classes and structural associations are mapped in a similar fashion. The end schema
resulting from this processing is a large number of attributetype and objectclass

de�nitions such as the ones in Fig. 5.8a.

5.2.4. Persistence Stylesheet Benchmarks

This section details the performance results obtained while benchmarking the
three XSLT stylesheets described in the previous sections. These stylesheets use
techniques like caching schema �les, creating indexes via the <xsl:key/> operator,
and reducing to a minimum the nodes accessed on XPath expressions, but the
greatest gain is due to the functional nature of XSLT, which makes parallelization
possible without code changes with reasonably optimized stylesheets. Nevertheless,
the only parallelizing XSLT processor currently available, to our knowledge, is the
Intel XSLT Accelerator (from now on, PaNapa), discussed in Sun et al. [98].

We performed several benchmarks with this software using the Data Persistence
Layer of AdCIM (the most performance critical), both with PaNapa and with the
Saxon XSLT processor [48]. The results (measured on a quad-core Core 2 Duo
machine at 2.8Ghz) can be seen in Figures 5.9 and 5.10. The graphs measure the
bandwidth (given in instances/s and Megabytes/s) depending on the size of the
input and the number of cores (for PaNapa, as Saxon is not multicore-aware).

In Fig. 5.9 we can see the results of measuring the throughput of the miniCIM
to LDIF stylesheet both using Saxon and PaNapa with 1 to 4 cores. In this and the
following graph the input is a set of miniCIM instances of which 36% are regular
instances, 53% are auxiliary associations and 11% structural associations, a distribu-
tion that is usual in the CIM representation of real data and covers all the stylesheet
code paths. Looking at the graph, PaNapa has a nearly linear speed up with the
number of cores when the input size is large enough (still good for small sizes). The
Saxon and PaNapa 1-core curves show a very similar performance, which suggests
that the code is not penalized due to a performance bug present on either XSLT
processor.

5.2 AdCIM Persistence in LDAP 67

250 Kb/s

500 Kb/s

750 Kb/s

1.00 Mb/s

1.25 Mb/s

1.50 Mb/s

1.75 Mb/s

2.00 Mb/s

2.25 Mb/s

2.50 Mb/s

2.75 Mb/s

3.00 Mb/s

3.25 Mb/s

3.50 Mb/s

32Kb 64Kb 128Kb 256Kb 512Kb 1Mb 2Mb 4Mb 8Mb

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

256 512 1024 2048 4096 8192 16384 32768

M
e
g
a
b
y
te
s/
s

N
u
m
b
e
r
o
f
C
IM

in
st
a
n
c
e
s
p
e
r
se
c
o
n
d

Input size (Mb)

Input size (instances)

Speed up: 1.79x
Speed up: 1.95x

Speed up: 3.94x

Speed up: 2.70x

Speed up: 3.76x

Speed up: 2.06x

Saxon
PaNapa
PaNapa 2 Cores
PaNapa 4 Cores

Figure 5.9: miniCIM to LDIF stylesheet e�ciency

Figure 5.10 shows the e�ciency of the DSML to miniCIM stylesheet. In this
case, the throughputs in Mb/s are higher, but the instances/s throughput is very
similar to the �rst graph. The reason is that DSML is more verbose than miniCIM,
and the performance limiting factor for the stylesheet is not the I/O, that scales with
instance size, but the CPU use, that scales with the number of instances. Saxon is
also noticeably slower than PaNapa, due to the higher complexity of the processing
compared with the miniCIM to LDIF stylesheet. In conclusion, it can also be seen
that PaNapa's throughput scales almost linearly with multiple cores, reaching very
high values for XML processing.

The third stylesheet, transforming the miniCIM schema to an OpenLDAP schema,
is a transformation step only needed on schema modi�cations, so we measured the
time of completion for the 2.17 CIM schema. This schema has 2.3Mb of size and
more than 8000 entries counting attributes and classes, very large compared to the
usual LDAP schema sizes (which usually only reach the low hundreds of entries), yet
it only takes about 2 seconds to load the full CIM schema into OpenLDAP at restart,
and has no measurable penalty on the subsequent performance of OpenLDAP.

68 Chapter 5. Data Persistence Layer

2.5Mb/s

5Mb/s

7.5Mb/s

10Mb/s

12.5Mb/s

15Mb/s

17.5Mb/s

20Mb/s

22.5Mb/s

25 Mb/s

128Kb 256Kb 512Kb 1Mb 2Mb 4Mb 8Mb 16Mb 32Mb

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

256 512 1024 2048 4096 8192 16384 32768

M
e
g
a
b
y
te
s/
s

N
u
m
b
e
r
o
f
C
IM

in
st
a
n
c
e
s
p
e
r
se
c
o
n
d

Input size (Mb)

Input size (instances)

Speed up: 1.77xSpeed up: 2.07x

Speed up: 1.91x

Speed up: 1.45x

Speed up: 2.92x

Speed up: 3.33x

Saxon
PaNapa
PaNapa 2 Cores
PaNapa 4 Cores

Figure 5.10: DSML to miniCIM stylesheet e�ciency

5.3. Conclusions

In this chapter, we have �rst surveyed some basic concepts on LDAP repositories
to understand their di�erences with �traditional� relational databases and the char-
acteristics that made them desirable to support the Data Persistence Layer of the
AdCIM framework. With this background, we have explored the transformations
contained in this layer displayed in Fig. 5.1 to translate data between the repository
and miniCIM instances and back, and to create an LDAP schema from a miniCIM
XML Schema. Finally, we have presented some performance results that show the
performance and scalability of this layer and its support of multicore environments.

Chapter 6

Application Layer

The AdCIM Application Layer comprises all AdCIM's APIs and user interfaces.
Among these, there are high-level user interfaces implemented using XForms, and
there are low-level Representational EState Transfer (REST) web services for expos-
ing miniCIM data to these interfaces and external applications. XForms are created
from the miniCIM XML Schema using several XSLT templates (step [E] in Fig. 6.1
and Fig. 2.1) and can represent and manipulate any CIM class in a general fashion
via REST web services (step [F] in Fig. 6.1). They can be displayed in any web
browser, styled with Cascading Style Sheets (CSS) and populated with data from
the Data Persistence Layer. This chapter is organized as follows: Section 6.1 brie�y
details XForms and Section 6.2 explains the transformation processes involved in
generating the �nal form. Next, Section 6.3 covers the REST web services and
Section 6.4 gathers the chapter conclusions.

6.1. XForms

XForms [107] is a W3C standard designed as a successor to classic HTML forms.
XForms improve on classic forms by using XML to represent both input and output
data. These data are organized in XML instances associated with �controls�, which
are normally represented by common operating system widgets, such as text input
boxes, combo boxes (a combination of a text input box and a drop-down option
list), and other widgets commonly found on web forms. The XML instances are
grouped into a �model�, which is basically a collation of XML documents. This
is in stark contrast to traditional forms, in which data are interspersed between

69

70 Chapter 6. Application Layer

Application Layer

miniCIM
XML

Schema

XForms
forms

pre-generated
from schema

CSS
[E]

miniCIM
instances HTTP + REST [F]

HTML+
Javascript

XForms Processor

Figure 6.1: AdCIM Application Layer

several controls, a situation prone to mismatches in the data shown, which forces
applications to assemble the data from each individual control.

Speci�c XML elements inside the model are bound to one or more controls, so
changes in either one update the other. Elements can also be bound to calculations
involving other elements in the model, so a form can have, for example, a control
showing a total sum in real time depending on user actions. Classic web forms im-
plement this functionality using Javascript code embedded in the page. In contrast,
calculated controls are updated implicitly in XForms, avoiding common scripting
errors.

Data validation is another functionality traditionally performed using scripts.
The XForms models support the speci�cation of constraints applied prior to sub-
mission. Since all output data are collated in an XML instance, there are sets of
constraints di�cult to perform in Javascript that are much easier and clearer to
specify in XForms. The same functionality can be applied to controls dynamically,
so it is possible to show a group of controls or modify their editability under a set
of constraints. Wizard-dialog functionality is also simple to support, since it can
be implemented with groups of controls that are shown in order, sharing the same
underlying data model.

XForms have also an event model, and some of these events can be sent from

6.1 XForms 71

XForms element Description

<xf:alert/> Shows a modal message, normally a message box.

<xf:bind/>
Binds together an element of a model to a control or an-

other element.

<xf:insert/>
Creates more instance data by cloning existing model ele-

ments.

<xf:instance/> An explicit declaration of initial instance data in a model.

<xf:load/>
Loads the contents pointed by a link in a new page or

replacing the current one.

<xf:model/> De�nes one model containing XML form data.

<xf:recalculate/> Updates all the data derived by calculations in a model.

<xf:reset/> Resets all models and the form to the original state.

<xf:send/>

Submits data to a place determined by a

<xf:submission/> element. Several asynchronous

submissions can be done during the life of a form.

<xf:setvalue/> Directly sets the value of an element in a model.

<xf:submission/>
De�nes a place to send the data of the form, its serializa-

tion, transport method and other parameters.

Table 6.1: XForms model and action elements

controls (instead of being bound to data), a�ecting the form state, model data or
performing a submission operation. Some of these actions are described in Table 6.1.

Controls in XForms (of which a selection is shown in Table 6.2) are not necessarily
represented with traditional web widgets, since they are de�ned by logical function
(i.e., �choose an element�, �trigger an action�), instead of appearance. Nevertheless,
controls have an appearance attribute and the type of their bound data can give
additional hints to the XForms interpreter to represent controls. For example, the
<xf:select1/> XForms element speci�es a control that lets the user select exactly
one of its elements, usually represented as a combo box with �normal� appearance,
and a list showing several selections with �full appearance�; <xf:alert/> represents
error or warning messages (e.g., shown when validation fails), that can be realized
by a message box or a box on an HTML page, and so on. These forms can also
have other implementations besides web forms, since XForms provide representation-
independent controls; so, for instance, a multiple choice list could be represented by
an aural interface like that of an answering machine.

The XForms standard was geared for inclusion into existing web client technol-
ogy, thus many implementations are plug-ins or extensions for popular browsers such
as Internet Explorer or Mozilla Firefox (for example, the o�cial XForms extension of

72 Chapter 6. Application Layer

XForms element Description

<xf:input/>
Enables free-form data entry, normally with a text input

area.

<xf:output/> Renders its value with no provision to enter or modify data.

<xf:range/> Accepts input from a sequential range of data.

<xf:repeat/>
Creates as many copies of the groups of controls inside as

the selected instance element.

<xf:secret/>
Represents a control which makes it di�cult for third par-

ties to obtain its value.

<xf:select/>
Allows the user to select one or more items from a group

of choices, or optionally enter another value.

<xf:select1/>
The same as <xf:select/>, but limits the choice to one

element.

<xf:submit/> Initiates the submission of data to the server.

<xf:textarea/>
Similar to <xf:input/>, but supports multiline content,

e.g., to input an email message.

<xf:trigger/>
Represents an action directly initiable by the user. Nor-

mally represented with a button.

<xf:upload/>
Uploads a �le or data from external devices, such as cam-

eras or microphones.

Table 6.2: XForm controls

Mozilla Firefox [64]). Some of these solutions use existing browser technologies; for
example, DENG [16] implements XForms and other advanced functionalities over
several browsers using client-side Javascript. There are many other client-based im-
plementations of XForms, including those which convert the forms to legacy HTML
in the server, like Chiba [11]. The implementation currently used in AdCIM is
Orbeon Presentation Server [76], but due to this wealth of implementations new
deployment possibilities are always possible.

6.2. XForms Use in AdCIM

XForms was chosen to implement AdCIM user interfaces due to the dynamic
nature of CIM data and the need to rapidly prototype and generate applications
from the schema, as part of the model-driven approach. As such, user interfaces are
just another artifact of the schema which need to be generic and easily populated
with miniCIM data.

XForms forms are translated on-the-�y to HTML and styled with CSS. An ex-

6.2 XForms Use in AdCIM 73

ample of the �nal appearance of such an AdCIM form for Inetd services generated
with XForms is shown in Fig. 6.2. The form is structured as a grid of grouped con-
trols. Each of these groups represents an Inetd service and its associated properties,
such as if it is started or its command line parameters. The values of these proper-
ties are represented as editable controls styled with CSS to resemble standard text.
The icons next to the service name (actually, CSS styled buttons) allow the user to
add or remove interfaces. The data used to populate the form are miniCIM data
translated from entries in the LDAP repository using the XSLT stylesheet described
in Section 5.2.2, previously extracted from the managed nodes using the methods
seen in Chapter 4 and persisted in the repository via the stylesheet of Section 5.2.1.

Figure 6.2: Complete CSS styled XForms form for Inetd services

In order to create a XForms form (step [E] in Fig. 6.1 and Fig. 2.1) from the
miniCIM XML Schema, a XSLT stylesheet (shown in Fig. 6.3) gets as input an
association and the two classes pointed by it, and returns as XForms instances the
properties of the dependent class, a blank instance of this class, and the appropriate
XForms controls for showing and modifying these class properties. These instances
are passed to the XForms form template shown in Figs. 6.4, 6.5 and 6.6. This tem-
plate has XSLT commands that copy the instances in their correct places, creating a
form for the speci�ed class with the appropriate �elds to manipulate its properties,
and with functionality to add or remove form �elds dynamically. We denote the

74 Chapter 6. Application Layer

�nal result of these processes as pregeneration. With it, any instance from a class
de�ned in the schema can be edited automatically by a web form.

Another bene�t of pregeneration is that the values allowed for every property
are populated from the schema, so that the user is required to input valid values.

1 <instances>
2 <view_class><xsl:value−of select="$classname"/></view_class>
3 <assoc_class><xsl:value−of select="$assoc_classname"/></assoc_class>
4 <related_class><xsl:value−of select="$related_classname"/></related_class>
5 <instance_�elds>
6 <selected/>
7 <delselected/>
8 <�elds>
9 <xsl:copy−of select="$o�elds"/>
10 </�elds>
11 <�elds2>
12 <xsl:for−each select="exsl:node−set($o�elds)/∗">
13 <xsl:element name="{local−name(current())}"/>
14 </xsl:for−each>
15 </�elds2>
16 </instance_�elds>
17 <instance_new>
18 <xsl:copy−of select="document('input:new_instance')"/>
19 </instance_new>
20 <binds>
21 <xf:bind id="bind_A" nodeset="instance('instance_0')//{$classname}">
22 <xsl:for−each select="exsl:node−set($o�elds/∗)">
23 <xf:bind id="{concat('bind_',local−name(current()))}" nodeset="{local−name(current())}">
24 <xsl:if test="@type">
25 <xsl:attribute name="type"><xsl:value−of select="@type"/></xsl:attribute>
26 </xsl:if>
27 <xsl:if test="@key">
28 <xsl:attribute name="required">true</xsl:attribute>
29 </xsl:if>
30 </xf:bind>
31 </xsl:for−each>
32 </xf:bind>
33 </binds>
34 <controls>
35 <xf:repeat id="rep1" class="body" bind="bind_A">
36 <html:div class="status">
37 <html:div class="items">
38 <xf:input ref="./Name" class="title">
39 <xf:label class="title−label">Name: </xf:label>
40 </xf:input>
41 <xsl:for−each select="exsl:node−set($o�elds/∗)">
42 <xsl:variable name="name" select="local−name(current())"/>
43 <html:div class="control">
44 <xsl:choose>
45 <xsl:when test="values">
46 <xf:select ref="{$name}" id="input_{$name}">
47 <xf:label id="label_{$name}"><xsl:value−of select="concat($name,': ')"/></xf:label>
48 <xf:itemset nodeset="instance('instance_�elds')/�elds/{local−name(current())}/values/value">
49 <xf:label ref="."/> <xf:value ref="."/>
50 </xf:itemset>
51 </xf:select>
52 </xsl:when>
53 <xsl:otherwise>
54 <xf:input ref="{$name}" id="input_{$name}">
55 <xf:label id="label_{$name}"><xsl:value−of select="concat($name,': ')"/></xf:label>
56 </xf:input>
57 </xsl:otherwise>
58 </xsl:choose>
59 </html:div>
60 </xsl:for−each>
61 </html:div>
62 </html:div>
63 </xf:repeat>
64 </controls>
65 </instances>

Figure 6.3: XSLT code transforming miniCIM XML schema to XForms instances

6.2 XForms Use in AdCIM 75

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
3 <xsl:output method="xml" indent="yes"/>
4 <xsl:template match="/root">
5 <html:html>
6 <html:head>
7 <html:link rel="stylesheet" type="text/css" href="myforms/xforms.css"/>
8 <xf:model id="model_0">
9 <xf:instance id="instance_0">
10 <xsl:copy−of select="instance_0"/>
11 </xf:instance>
12 <xf:instance id="instance_1">
13 <xsl:copy−of select="instance_1"/>
14 </xf:instance>
15 <xf:instance id="instance_1_sel">
16 <instance/>
17 </xf:instance>
18 <xf:instance id="instance_new_serv">
19 <xsl:copy−of select="instances/instance_new"/>
20 </xf:instance>
21 <xf:instance id="instance_�elds">
22 <xsl:copy−of select="instances/instance_�elds"/>
23 </xf:instance>
24 <xf:instance id="instance_select">
25 <instance/>
26 </xf:instance>
27 <xsl:copy−of select="instances/binds/∗"/>
28 <xf:submission action="http://127.0.0.1:8080/chiba−web−1.0.0/jsp/debug−instance.jsp" id="submission_0" method="post

"/>
29 <xf:submission action="http://127.0.0.1:8080/ops/ldap2?assoc={instances/assoc_class}" ref="instance('instance_1')/CIM/{

instances/related_class}[Name=instance('instance_1_sel')]" id="submission_comp" method="post" replace="
instance" instance="instance_0"/>

30 <xf:message level="modeless" ev:event="xforms−compute−exception">xforms−compute−exception</xf:message>
31 <xf:message level="modeless" ev:event="xforms−binding−exception">xforms−binding−exception</xf:message>
32 </xf:model>
33 </html:head>
34 <html:body>
35 <xxforms:dialog id="dialog1" appearance="full" level="modeless" close="true" draggable="true">
36 <xf:label>Modify Fields</xf:label>
37 <html:table>
38 <html:tr>
39 <html:td>
40 <xf:select1 appearance="minimal" ref="instance('instance_�elds')/selected" id="select1_�eld">
41 <xf:label id="label_486">Available Fields:</xf:label>
42 <xf:itemset nodeset="instance('instance_�elds')/�elds/∗
43 [not (local−name()=(for $x in instance('instance_0')//{instances/view_class}[index('rep1')]/∗ return

local−name($x)))]">
44 <xf:label value="concat(local−name(.),if (@key) then '[K]' else'')"/>
45 <xf:value value="local−name(.)"/>
46 </xf:itemset>
47 </xf:select1>
48 </html:td>
49 <html:td>
50 <xf:trigger>
51 <xf:label>Insert New Field</xf:label>
52 <xf:action ev:event="DOMActivate">
53 <xf:insert ev:event="DOMActivate" nodeset="instance('instance_0')//{instances/view_class}[index('rep1')

]/∗" origin="instance('instance_�elds')/�elds2/∗[local−name(.)=instance('instance_�elds')/selected]"
at="last()" position="after"/>

54 <xf:refresh/>
55 <xf:rebuild/>
56 <xf:recalculate/>
57 </xf:action>
58 <xf:setvalue value="−−−−−"/>
59 </xf:trigger>
60 </html:td>
61 </html:tr>
62 <html:tr>

Figure 6.4: Generalized XForms form code (part I)

XForms instances are arbitrary XML data, so these forms interface directly with
AdCIM's web service infrastructure, via Uniform Resource Locator (URL) direc-
tions. The output of the form is guaranteed to be well-formed miniCIM instances,
so that the server does not waste bandwidth on validation failures.

76 Chapter 6. Application Layer

63 <html:td>
64 <xf:select1 appearance="minimal" ref="instance('instance_�elds')/delselected" id="select2_�eld">
65 <xf:label id="label_586">Shown Fields:</xf:label>
66 <xf:itemset nodeset="instance('instance_�elds')/�elds/∗
67 [(local−name()=(for $x in instance('instance_0')//{instances/view_class}[index('rep1')]/∗ return

local−name($x)))]">
68 <xf:label value="concat(local−name(.),if (@key) then '[K]' else'')"/>
69 <xf:value value="local−name(.)"/>
70 </xf:itemset>
71 </xf:select1>
72 </html:td>
73 <html:td>
74 <xf:trigger>
75 <xf:label>Delete Field</xf:label>
76 <xf:action ev:event="DOMActivate">
77 <xf:delete ev:event="DOMActivate" nodeset="instance('instance_0')//{instances/view_class}[index('rep1')

]/∗[local−name(.)=instance('instance_�elds')/delselected]" at="1" position="after"/>
78 <xf:refresh/>
79 <xf:rebuild/>
80 <xf:recalculate/>
81 </xf:action>
82 </xf:trigger>
83 </html:td>
84 </html:tr>
85 </html:table>
86 </xxforms:dialog>
87 <html:div class="header">
88 <xf:select class="topselect" appearance="full" ref="instance('instance_select')" incremental="true">
89 <xf:itemset bind="bind_A">
90 <xf:label ref="Name"/>
91 <xf:value ref="Name"/>
92 </xf:itemset>
93 </xf:select>
94 </html:div>
95 <html:div class="sidebar">
96 <html:div>
97 <html:img src="myforms/adcim_logo.png" height="34" width="100"/>
98 </html:div>
99 <html:div>
100 <xf:trigger appearance="minimal" class="link">
101 <xf:label class="sidebar−label">Insert before</xf:label>
102 <xf:insert ev:event="DOMActivate" nodeset="/CIM/{instances/view_class}" origin="instance('instance_new_serv')/{

instances/view_class}" at="last()" position="after"/>
103 </xf:trigger>
104 </html:div>
105 <html:div>
106 <xf:submit appearance="minimal" class="link" submission="submission_0">
107 <xf:label class="sidebar−label" id="label_84">Submit all changes</xf:label>
108 </xf:submit>
109 </html:div>

Figure 6.5: Generalized XForms form code (part II)

The instance generation stylesheet in Fig. 6.3 begins transferring its inputs (CIM
association and associated classes) to the ouput (lines 2�4). In line 9 it copies the
dependent class properties in variable $ofields, and then copies their names to
another element of the instance (lines 11�15), and also copies a blank template for
that instance (line 18). The stylesheet then proceeds to write <xf:bind/> bindings to
relate controls with the miniCIM properties they represent (lines 20�33), and creates
these controls in lines 34�64 inside a <xf:repeat/> element, so there is a group of
controls per miniCIM instance. The Name property, present in all CIM classes, is
put as header of the controls (lines 38�40), and properties with the Values quali�er
in the schema are represented as a <xf:select/> element, normally represented
with a combo box and loaded with the allowed values. The rest of the properties
are represented with <xf:input/> elements, which normally are mapped to a text

6.2 XForms Use in AdCIM 77

110 <html:div>
111 <xf:trigger appearance="minimal" class="link">
112 <xf:label class="sidebar−label">Reset</xf:label>
113 <xf:reset ev:event="DOMActivate"/>
114 </xf:trigger>
115 </html:div>
116 <html:div>
117 <xf:trigger appearance="minimal" class="show−drop−down" id="show−trigger">
118 <xf:label>
119 <html:span>Modify Fields...</html:span>
120 <html:img src="/apps/xforms−sandbox/samples/images/dialog−down.png"/>
121 </xf:label>
122 <xxforms:show ev:event="DOMActivate" dialog="dialog1" neighbor="show−trigger" constrain="true"/>
123 </xf:trigger>
124 </html:div>
125 <html:div>
126 <xf:label class="title">
127 Standard CIM form:
128 <xf:output value="index('rep1')"/>
129 </xf:label>
130 </html:div>
131 <html:div>
132 <xf:select1 ref="instance('instance_1_sel')" incremental="true">
133 <xf:label class="sidebar−label">Show services from computer:</xf:label>
134 <xf:itemset nodeset="instance('instance_1')//{instances/related_class}">
135 <xf:value ref="Name"/>
136 <xf:label ref="Name"/>
137 </xf:itemset>
138 <xf:action ev:event="xforms−value−changed">
139 <xf:send submission="submission_comp"/>
140 <xf:refresh/>
141 <xf:rebuild/>
142 <xf:recalculate/>
143 </xf:action>
144 </xf:select1>
145 </html:div>
146 </html:div>
147 <html:div class="total">
148 <xsl:copy−of select="instances/controls"/>
149 </html:div>
150 </html:body>
151 </html:html>
152 </xsl:template>
153 </xsl:stylesheet>

Figure 6.6: Generalized XForms form code (part III)

input box, but can vary depending on the property type. For example, properties
representing date values are represented with a Javascript-generated calendar.

The generated instances are passed to an XForms template with XSLT com-
mands, which starts loading the CSS code of the form (Fig. 6.4, line 7), and declar-
ing the XForms form model in lines 8�32, including the copy of the <xf:bind/>

instructions created in the last stylesheet (line 27), and a <xf:submission/> element
to support the change of the shown instances when another antecedent end for the
association is selected (line 29).

The template then declares an Orbeon-exclusive dialog container (from Fig. 6.4,
line 35 to Fig. 6.5, line 86). This dialog is a modal draggable window dialog. Dialogs
are not part of the XForms standard, but they improve the presentation and the
controls inside the dialog can still be easily displayed in a standard way, so in the end
it is a small cosmetic addition that does not cause real incompatibilities with other

78 Chapter 6. Application Layer

XForms implementations. The controls inside this dialog support the functionality
to add and remove form �elds (and their associated controls) dynamically. For
example, lines 40 to 47 create a <xf:select1/> �eld to select available instance
�elds, and lines 64�71 a similar list with the displayed �elds. Both lists are updated
dynamically with �eld changes. Additionally, lines 50 to 59 de�ne the control to
dynamically add �elds, and lines 74 to 82 the control to delete them. There is
only one control in the header, a <xf:select/> control (lines 88�93) that shows
one checkbox per miniCIM instance to make their selection faster. There are also
controls in the sidebar (see Fig. 6.2), but these are related with adding or deleting
miniCIM instances and form state; so, for example, lines 100 to 103 insert a new
instance before the current one. Lines 111�114 in Fig. 6.6 de�ne a <xf:trigger/>

control (see Table 6.2) to reset the form, and lines 117�123 another one that brings
up the dialog touched before. The last element of the sidebar, in lines 132�144
creates a <xf:select1/> control which allows changing the association antecedent
and retrieving the dependent instances using the submission of line 29 in Fig. 6.4.
Finally, the most important part of the template is in line 148, which copies the
actual controls pregenerated in Fig. 6.3.

The resulting form is styled and given layout with CSS like a standard web page.
The main function of CSS in the CSS+XForms combination is customizing the
representation of the di�erent possible states of a control. Control representation can
also be changed using CSS coupled with the appearance attribute. A practical use of
this is representing trigger controls as hyperlinks instead of buttons. This requires
setting the appearance attribute to minimal and changing the text appearance to
mimic a link. A further re�nement of this technique is to substitute a trigger

with a custom image. The resulting code is cleaner and the original trigger text
is still on the page code, and these images can be modi�ed without any change to
the underlying form. Presentation concerns are thus separated from the semantic-
centered markup representation, leveraging existing web designer knowledge and
promoting integration with web page content.

The form shown in Fig. 6.2 for managing Inetd services was pregenerated using
the stylesheets described above, just like the form for managing wireless mesh routers
(an AdCIM application scenario covered in Chapter 9) that can be seen in Fig. 6.7.

6.2 XForms Use in AdCIM 79

Figure 6.7: Complete CSS styled XForms form for managing wireless mesh routers

AdCIM Interaction Model

The interactivity and look&feel of AdCIM web forms mimic that of typical
desktop applications. Another way of achieving this would be using Asynchronous
Javascript and XML (AJAX) [81], a web application paradigm based on Javascript
and XML data transfers decoupled from the user interface (i.e., page information
can be updated without reloading). This relegates servers to provide raw XML data
on demand to clients which are responsible for the view and controller roles. The
prime disadvantages of AJAX for its use in AdCIM are that the script developer
must code data transfers explicitly (or use a third-party library), form data must
be converted from and to XML in the page code, and calculated �elds and data
dependences between controls must be updated manually.

These drawbacks are overcome by the use of XML in XForms and by its data
dependency model. Thus, data dependences and constraints are speci�ed in the
model and automatically enforced, changes in instances are propagated to controls
(and vice versa), and initial �eld-population can be done from �les, URLs or web
services. Besides, XForms provide a similar functionality to AJAX by using instance
substitution. For example, when the value selected in the left combo box of the form
of Fig. 6.2 is changed, an xforms:submit event is �red, sending a submission (the
name of the selected computer) to a REST -format URL. The result from this
submission is used to replace the data bound to the right interface pane and the

80 Chapter 6. Application Layer

top check box group (representing service selection in Fig. 6.2), which are updated
accordingly, as XForms have the added advantage of declarativeness.

Regardless of the underlying interface and interaction technology, the use of
REST and the data-centric web approach of AdCIM guarantees that management
data are not locked in a concrete web application, and can be integrated and accessed
programmatically.

6.3. Web Data Interface

AdCIM exposes miniCIM data to the forms in the Application Layer and external
components via a REST web service (step [F] in Fig. 6.1). These services are
tasked with receiving commands encoded in URLs, accessing the LDAP repository
to retrieve and store the instances a�ected by the command, and translating these
instances into/from miniCIM using the XSLT stylesheets described in Chapter 5.

REST [30] is a type of XML messaging interface that uses exclusively the HTTP
protocol operations and semantics [62], and is presented as a simpler alternative to
SOAP web services, increasingly perceived as convoluted. In REST, objects and
associations are accessed using standard HTTP operations. For example, the URL
to retrieve all computer system objects is �http://localhost:8080/adcim/adcim?-
class=ComputerSystem�; and the URL to retrieve all Inetd managed services from the
computer system pc1 is �http://localhost:8080/adcim/assoc?association=Hosted-
InetdService&end=antecedent&CreationClassName=ComputerSystem&Name=pc1�. This
URL signals the service to traverse the HostedInetdService association from the
ComputerSystem end and returns the Service instances at the other end (see Fig. 3.2).
Objects are modi�ed with the PUT HTTP operation, which creates or updates CIM
objects stored in the network nodes and afterwards in the repository.

While SOAP represents an opaque, stateful and complex view of web services,
in which data resources are not directly addressable and involves the generation of a
SOAP envelope (and pre-generated stub code), REST web services assign a unique
addressable HTTP Uniform Resource Identi�er (URI) to each resource, and employ
the GET, POST, PUT and DELETE operations for data access. The resultant interface
is a noun-based interface in which the nouns are XML-represented entities and the
verbs are HTTP operations, as opposed to the method-centric Remote Procedure
Call (RPC)-like SOAP approach and its focus on object and type representation.
As REST uses HTTP as transport protocol, it is stateless, obviating the need for

6.4 Conclusions 81

state keeping in both client and server.

REST renders AdCIM data interfaces very easy to use and maintain, specially
since schema changes do not a�ect them, and invocation using XForms is direct,
using only HTTP accesses.

6.4. Conclusions

This chapter has covered the top layer of the AdCIM framework, the Appli-
cation Layer. This layer covers both user and application interfaces. The user
interfaces are implemented using XForms, so the chapter began with background on
this technology in which the portable, general and XML-centric nature of XForms
was explained. The following section covered the use of XForms in AdCIM, and
presented an XSLT stylesheet that can generate web forms �on-the-�y� from CIM
Schema de�nitions. Finally, this chapter touched upon the REST web services used
as application interfaces and their invocation. These interfaces unite to give a very
�exible, portable, extensible and very customizable Application Layer that makes
the development of CIM-enabled management applications much easier.

Part II

Advanced Applications

83

Introduction to Part II

This Part of the Thesis covers several real world applications of the AdCIM
framework. These applications not only validate its usefulness in complex envi-
ronments and prove its extensibility, but they also give a unique insight into the
operation of the framework and its application.

The �rst application, in Chapter 7, is an extension of the System Data Layer
to import Sendmail con�guration �les. This con�guration is notorious for being
complex and di�cult to manage and, as such, a good case study for our framework.

The second application in Chapter 8 is the application of the AdCIM framework
to Grid management and its integration inside the Globus Toolkit, and, concretely,
in its Monitoring and Discovery Subsystem. As Grid infrastructures are a good
example of heterogeneous distributed systems, it is also an interesting application
�eld.

The last application, in Chapter 9, is the most complex one. It is concerned with
Wireless Mesh Networks (WMN), which extend wireless LANs to compete with clas-
sical wired LANs, o�ering self-organizing and self-healing capabilities. Concretely,
we have modelled the con�guration of routers in such networks. We have chosen
this case as a good place to introduce AdCIM's ontology support. Since CIM is
a good taxonomy of the management domain of discourse, we have extended it to
support logical deduction processes. These processes, capable of con�guration di-
agnosis, validation and prediction, combined with the descriptive properties of the
CIM model and the functionality of AdCIM, o�er limitless possibilities.

85

Chapter 7

Advanced Con�guration Extraction:

the Sendmail File

As covered in Section 4.1, there are many �at �le con�guration formats which
follow a simple line- or section-oriented structure, with only small di�erences. Never-
theless, in some cases, there are con�guration formats that have grown very complex
with time, to the point of being largely handled using macro languages.

An extreme case is sendmail.cf, the con�guration �le for the mail delivery sys-
tem Sendmail. This �le is considered to be an example of unfriendliness and com-
plexity, so it has become common to use an intermediate �le written in the M4
macro processing language [49] from which to generate a �nal sendmail.cf. The
original sendmail.cf �le is currently considered so low-level that the reference book
about Sendmail con�guration [15] advises against direct modi�cation, as new ver-
sions could radically change its format. The con�guration is thus managed with the
intermediate M4 macro �le, sendmail.mc.

This chapter presents an example of extension of the System Data Layer (see
Chapter 4) to manage the Sendmail con�guration format, shown in Section 7.1.
The CIM model extension developed to represent it is detailed in Section 7.2, and
the process to transform the con�guration into this representation is covered in
Section 7.3. Finally, conclusions are drawn in Section 7.4.

87

88 Chapter 7. Advanced Con�guration Extraction: the Sendmail File

1 divert(−1)dnl
2 dnl #
3 dnl # This is the sendmail macro con�g �le for m4. If you make changes to
4 dnl # /etc/mail/sendmail.mc, you will need to regenerate the
5 dnl # /etc/mail/sendmail.cf �le by con�rming that the sendmail−cf package is
6 dnl # installed and then performing a
7 dnl #
8 dnl # make −C /etc/mail
9 dnl #
10 dnl #include(`/usr/share/sendmail−cf/m4/cf.m4')dnl
11 divert(0)
12 VERSIONID(`setup for Red Hat Linux')dnl
13 OSTYPE(`linux')dnl
14 dnl #
15 dnl # default logging level is 9, you might want to set it higher to
16 dnl # debug the con�guration
17 dnl #
18 dnl de�ne(`confLOG_LEVEL', `9')dnl
19 dnl #
20 dnl # Uncomment and edit the following line if your outgoing mail needs to
21 dnl # be sent out through an external mail server:
22 dnl #
23 de�ne(`SMART_HOST',`smtp.myisp.com')dnl
24 dnl #
25
26 FEATURE(`no_default_msa',`dnl')dnl
27
28 LOCAL_RULE_0
29 R$∗ <@ $=w . $=m> $∗ $#local $: $1 @here.ourdomain
30
31 dnl # The following causes sendmail to additionally listen to port 465, but
32 dnl # starting immediately in TLS mode upon connecting. Port 25 or 587 followed
33 dnl # by STARTTLS is preferred.
34 dnl #
35 DAEMON_OPTIONS(`Port=smtps, Name=TLSMTA, M=s')dnl
36
37 MAILER(smtp)dnl
38 MAILER(procmail)dnl

Figure 7.1: Example entries of a sendmail.mc �le

7.1. Con�guration Format

The organization of the sendmail.mc �le (an example can be seen in Fig. 7.1)
is basically line-based. It has two types of constructs: built-ins (in lowercase) and
macros (normally in uppercase). The most used built-in instruction is dnl, which
discards all characters until the next line (including newline characters). Its main
purpose is to avoid blank lines in the output, but here is used also as a comment
line marker (e.g. in lines 2�10). The divert built-in (line 1) also redirects all text
following it (and discards it when called with a negative number) and thus serves
as a block comment marker.

7.1 Con�guration Format 89

SendmailMcUnknownSettingDataSendmailMcSettingData

1

*

SendmailMcContains

SendmailMcDefineSettingData

SendmailMcUserSettingData

SendmailMcHeaderSettingData

SendmailMcDomainSettingData

SendmailMcFeatureSettingData

SendmailMcMasqueradeSettingData

SendmailMcDaemonSettingData

VariableName: string
VariableValue: string
NegativeDefinition: boolean
Comment: string

FeatureName: string
FeatureParameters: string[]

LocalUserName: string
ExposedUserName: string

SendmailMcMailerSettingData

MailerName: string

LocalDomain: string

MasqueradeAs: string

SendmailMcTrustAuthMechSettingData

Mechanism: string[]

DaemonAddr: string
DaemonFamily: string
DaemonListen: string
DaemonModify: string
DaemonName: string
DaemonPort: string
DaemonReceiveBufSize: string
DaemonSendBufSize: string
UnknownProperty: string

OsType: string
Version: string
Include: string
Divertsection: string

InstanceID: string
OrderId: integer
Comment: string

SettingData

InstanceID: string
Content: string

Figure 7.2: CIM representation of the Sendmail con�guration

After the comment header comes the mandatory VERSIONID macro, which helps
to di�erentiate between con�gurations, and OSTYPE. define, the most important
M4 built-in, appears in line 23. It is used for setting variables or macro expansions
(there is also undefine for negative de�nitions). FEATURE in line 26 is similar to
define, but accepts several arguments depending on the �rst argument, the feature
name. DAEMON_OPTIONS (line 35) also accepts many arguments concerned with System
Log con�guration, but as comma-separated name-value pairs. In a more abstract
level of con�guration, macros like MAILER (lines 37�38) expand to entire blocks of
con�guration which can be tuned with appropriate FEATURE and define built-ins.

The sendmail.mc format also has macros to write low level, sendmail.cf style
con�guration, like LOCAL_RULE_0 (lines 28�29). This instruction rede�nes rule group
0. In Sendmail rule groups are used for address rewriting tasks, and are de�ned using
a special rule language. For example, the rule in line 29 rewrites local addresses to
include also the local domain.

90 Chapter 7. Advanced Con�guration Extraction: the Sendmail File

7.2. CIM Representation

There are multiple non-trivial ways of representing this con�guration meaning-
fully in CIM. The representation used in this work (shown in Figure 7.2) was devel-
oped with these principles in mind:

Seamless round-tripping: No relevant information should be discarded from
the con�guration. The process from con�guration to CIM and back should
not be destructive and should conserve ordering.

Support for unknown constructs: The mapping should handle and gracefully
represent unknown parts of the con�guration.

Security and e�ciency: As part of supporting unknown data, these data should
be coded to avoid injection attacks and compressed to maintain e�ciency.

The representation derives from the CIM standard SettingData class, which
represents settings, and has a free-form string as key. The top class of the CIM
mapping is SendmailMcSettingData, which adds a key property that stores the order
of a block in the �le, and a Comment property which stores the dnl segments pre-
ceding the represented construct. This class contains the rest of the subclasses via
the SendmailMcContains association. There are two types of subclasses, the class
of known components of the con�guration and the class for unknown components
(SendmailMcUnknownSettingData).

Known classes correspond with the constructs mentioned in the previous section.
The heading divert block and version and operating system are grouped inside the
class SendmailMcHeaderSettingData; define and undefine are also aggregated in class
SendmailMcDefineSettingData, and the rest of constructs are modelled individually,
with concrete parameters in the case of SendmailMcDaemonSettingData and string
arrays in the case of SendmailMcFeatureSettingData.

SendmailMcUnknownSettingData obeys the three design principles mentioned at
the beginning of this section by representing unknown constructs as a string, com-
pressing it and codifying the result in Base64 to be storable in repositories like LDAP
(which does not allow strings with arbitrary characters). This encoding also enforces
the third design principle, making secure the unknown (and untrustable) informa-
tion. Representing unknown information in this manner also avoids breakage when
new constructs appear in future versions of the con�guration or are not recognized

7.3 Transformation Process 91

sendmail.mc Martel Sax Filter XSLT miniCIM

Figure 7.3: Process to transform the Sendmail con�guration to miniCIM

1 def divert():
2 return Martel.Re("(?P<divert>divert[(]−?\d+[)]((?!divert[(]−?\d[)]).∗\R∗)∗divert[(]−?\d+[)]\s∗)")+dnl()
3 def include():
4 return Martel.Re("(?P<include>include[(]`∗(?P<include−�le>[^)',]∗)'∗[)])\s∗")+dnl()
5 def versionid():
6 return Martel.Re("VERSIONID[(]`∗(?P<version>[^')]∗)'∗[)]\s∗")+dnl()
7 def ostype():
8 return Martel.Re("OSTYPE[(]`∗(?P<ostype>[^')]∗)'∗[)]\s∗")+dnl()
9 def de�ne():
10 return Martel.Re("(?P<de�ne>de�ne[(]`∗(?P<variable>[^)',]∗)'∗(,\s∗`∗(?P<value>[^`')]∗)'∗)?)[)]\s∗")+dnl()
11 def unde�ne():
12 return Martel.Re("(?P<unde�ne>unde�ne[(]`∗(?P<variable>[^)',]∗)'∗[)])\s∗")+dnl()
13 def feature():
14 return Martel.Re("(?P<feature>FEATURE[(]`∗(?P<name>[^)`',]∗)'∗(,\s∗`∗(?P<parameter>[^,`)']∗)'∗){0,9}[)])\s∗")+dnl()
15 def exposed():
16 return Martel.Re("EXPOSED_USER[(]`∗((?P<exposed_user>[^'),]∗)[,']+\s∗)+[)]\s∗")+dnl()
17 def daemon_options():
18 return Martel.Re("(?P<doptions>DAEMON_OPTIONS[(]`∗(\s∗(?P<option_name>[^`),'=]∗)=(?P<option_val>[^`),'=]∗),?)+'∗[)])\

s∗")+dnl()
19
20 def unknown():
21 return Martel.Re("(?P<unknown>(?!^[\s]∗$)^.∗\R∗)\s∗")+dnl()
22 def dnl():
23 return Martel.Opt(Martel.Re("(?P<dnl>(dnl.∗\R)+)\s∗"))
24
25 �elds=Martel.Rep(Martel.Alt(divert(),include(),versionid(),ostype(),de�ne(),unde�ne(),feature(),exposed(),daemon_options(),local_domain(),

local_user(),input_mail_�lter(),masquerade_as(),masquerade_domain(),trust_auth_mech(),mailer(),unknown()))
26 format=Martel.Group("input",Martel.Group("data",�elds))
27 XMLstr= StringIO()
28 parser = format.make_parser()
29 parser.setContentHandler(SendmailContentHandler(XMLstr))
30 parser.parseFile(open(sys.argv[1]))
31 print(XMLstr.getvalue())

Figure 7.4: Excerpts from the Martel program used for parsing sendmail.mc to XML

correctly. In these cases, the information is handled and stored transparently as
unknown while it is not supported in AdCIM. This encoding process is also applied
to dnl and divert comment blocks.

7.3. Transformation Process

The process to transform the format shown in Section 7.1 to the CIM mapping
in Fig. 7.2 is outlined in Fig. 7.3. First, the sendmail.mc text �le is processed using
Martel expressions such as the ones in Fig. 7.4. This step creates an initial XML tree
that is re�ned and tweaked with a SAX �lter (shown in Fig. 7.5), which fuses certain
types of adjacent nodes (like comment nodes) and implements Base64 codi�cation.
Finally, the result is processed by an XSLT stylesheet (partly shown in Fig. 7.6)

92 Chapter 7. Advanced Con�guration Extraction: the Sendmail File

1 eliminate_mixed_content = ['data','de�ne','feature','include','daemon_options','unde�ne','trust_auth_mech','input_mail_�lter']
2 eliminate_mixed_content_2 = ['version','ostype','exposed_user','local_domain','local_user','masquerade_as','masquerade_domain','mailer','

unknown']
3 b64_elements = ['dnl','divert','unknown']
4
5 class SendmailContentHandler(saxutils.XMLGenerator):
6 "insert the CIM schema in the <input> element"
7
8 def __init__(self, output=sys.stdout, encoding='UTF−8'):
9 self._out = output
10 self._encoding = encoding
11 self._nomixed = 0
12 self._unknownend = 0
13 self._b64=0
14 saxutils.XMLGenerator.__init__(self)
15
16 def startElement(self,name,attrs):
17 pre�x, local=SplitQName(name)
18 if self._unknownend and local!='unknown':
19 self._out.write("</unknown>")
20 self._unknownend=0
21 if (local!='unknown' or not self._unknownend) and local!='input':
22 saxutils.XMLGenerator.startElement(self,name,attrs)
23 if local == 'input':
24 self._out.write("<input �lename='")
25 self._out.write(os.path.basename(sys.argv[1]))
26 self._out.write("'>")
27 with open("cimxml−2.17−schema−opt−pre.xml") as schema:
28 for line in schema:
29 self._out.write(line)
30 if �lter(lambda x: local == x,b64_elements):
31 self._b64=1
32 if �lter(lambda x: local == x,eliminate_mixed_content):
33 self._nomixed=1
34 elif �lter(lambda x: local == x,eliminate_mixed_content_2):
35 self._nomixed=0
36 elif self._nomixed>=1:
37 self._nomixed+=1
38
39 def characters(self,ch):
40 if self._nomixed != 1:
41 if self._b64:
42 saxutils.XMLGenerator.characters(self,base64.b64encode(zlib.compress(ch,6)))
43 else:
44 saxutils.XMLGenerator.characters(self,ch)
45
46
47 def endElement(self,name):
48 self._emptydnl=0
49 pre�x, local=SplitQName(name)
50 if �lter(lambda x: local == x,b64_elements):
51 self._b64=0
52 if local == 'unknown':
53 self._unknownend=1
54 else:
55 saxutils.XMLGenerator.endElement(self,name)
56 if �lter(lambda x: local == x,eliminate_mixed_content+eliminate_mixed_content_2):
57 self._nomixed=1
58 elif self._nomixed>=1:
59 self._nomixed−=1

Figure 7.5: Excerpts from the SAX �lter used after parsing sendmail.mc to XML

which outputs miniCIM instances. The �nal result can be seen in Fig. 7.7.

The Martel expressions in Fig. 7.4 use regular expressions with some Python
idioms. For example, named groups such as ?P<divert> in line 2 are translated as
XML elements sharing their name and content. Since they can appear anywhere in
the document, the expression scanning dnl comments (in lines 22�23) is invoked at
the end of the line. The expressions define and undefine are detected in lines 9�
12; define has two parameters and undefine one. A more complex case is that

7.3 Transformation Process 93

1 <xsl:template match="ostype">
2 <CIM_SendmailMcHeaderSettingData>
3 <InstanceID><xsl:value−of select="$�lename"/>−<xsl:value−of select="position()"/></InstanceID>
4 <OsType><xsl:value−of select="$current"/></OsType>
5 <xsl:if test="preceding−sibling::version">
6 <Version><xsl:value−of select="preceding−sibling::version"/></Version>
7 </xsl:if>
8 <xsl:if test="preceding−sibling::include">
9 <Include><xsl:value−of select="preceding−sibling::include"/></Include>
10 </xsl:if>
11 <OrderId><xsl:value−of select="position()"/></OrderId>
12 <xsl:if test="preceding−sibling::divert">
13 <DivertSection><xsl:value−of select="codify:encode(preceding−sibling::divert)"/></DivertSection>
14 </xsl:if>
15 <Comment>
16 <xsl:if test="preceding−sibling::dnl">
17 <xsl:for−each select="preceding−sibling::dnl">
18 <value>
19 <xsl:value−of select="codify:encode(current())"/>
20 </value>
21 </xsl:for−each>
22 </xsl:if>
23 </Comment>
24 </CIM_SendmailMcHeaderSettingData>
25 </xsl:template>
26 <xsl:template match="de�ne|unde�ne">
27 <CIM_SendmailMcDe�neSettingData>
28 <InstanceID><xsl:value−of select="$�lename"/>−<xsl:value−of select="position()"/></InstanceID>
29 <VariableName><xsl:value−of select="variable"/></VariableName>
30 <xsl:if test="value">
31 <VariableValue><xsl:value−of select="value"/></VariableValue>
32 </xsl:if>
33 <OrderId><xsl:value−of select="position()"/></OrderId>
34 <NegativeDe�nition>
35 <xsl:choose>
36 <xsl:when test="local−name($current)='de�ne'">FALSE</xsl:when>
37 <xsl:otherwise>TRUE</xsl:otherwise>
38 </xsl:choose>
39 </NegativeDe�nition>
40 <Comment><value><xsl:value−of select="codify:encode(preceding−sibling::dnl[following−sibling::∗[local−name(.)!='dnl'][1]=$current

])"/></value></Comment>
41 </CIM_SendmailMcDe�neSettingData>
42 </xsl:template>
43 <xsl:template match="feature">
44 <CIM_SendmailMcFeatureSettingData>
45 <InstanceID><xsl:value−of select="$�lename"/>−<xsl:value−of select="position()"/></InstanceID>
46 <FeatureName><xsl:value−of select="name"/></FeatureName>
47 <xsl:if test="parameter">
48 <FeatureParameter>
49 <xsl:for−each select="parameter">
50 <value>
51 <xsl:value−of select="current()"/>
52 </value>
53 </xsl:for−each>
54 </FeatureParameter>
55 </xsl:if>
56 <OrderId><xsl:value−of select="position()"/></OrderId>
57 <Comment><value><xsl:value−of select="codify:encode(preceding−sibling::dnl[following−sibling::∗[local−name(.)!='dnl'][1]=$current

])"/></value></Comment>
58 </CIM_SendmailMcFeatureSettingData>
59 </xsl:template>
60 <xsl:template match="unknown">
61 <CIM_SendmailMcUnknownSettingData>
62 <InstanceID><xsl:value−of select="$�lename"/>−<xsl:value−of select="position()"/></InstanceID>
63 <Content><xsl:value−of select="codify:encode(.)"/></Content>
64 <OrderId><xsl:value−of select="position()"/></OrderId>
65 <Comment><value><xsl:value−of select="codify:encode(preceding−sibling::dnl[following−sibling::∗[local−name(.)!='dnl'][1]=$current

])"/></value></Comment>
66 </CIM_SendmailMcUnknownSettingData>
67 </xsl:template>

Figure 7.6: Excerpts from the XSLT stylesheet to output sendmail.mc data to
miniCIM

of FEATURE (lines 13�14) which takes up to nine optional arguments. Other special
case is the DAEMON_OPTIONS expression (lines 17�18), with comma-separated attribute

94 Chapter 7. Advanced Con�guration Extraction: the Sendmail File

value pairs. When no other rule matches, the rule in lines 20�21, which is given the
lowest matching priority, classi�es input lines as unknown data. This rule uses the
regular expression negative lookahead operator ?! to ignore blank lines. This parsing
produces many XML elements of the same type that are adjacent, especially dnl

and unknown, which should be fused, since they are logically the same and their
separation is a side e�ect of the parsing process. Comment and unknown elements
must also be encoded into Base64. This is the function of the SAX �lter shown in
Fig. 7.5. It begins declaring lists of elements depending on if they need to be fused
or encoded (lines 1�3). Line 5 declares the �lter as inheriting from the Python base
class for SAX �lters, saxutils.ContentHandler, and initialises its internal variables
in the __init__ initialiser method (lines 8�14).

SAX �lters de�ne methods overriding certain XML parsing events. This �lter
overrides the startElement (lines 16�37), characters (lines 39�44) and endElement

methods (lines 47�59). The �rst and last methods are associated with the opening
and closing of elements, and the second one with the parsing of character data inside
an element. startElement begins getting the pre�x and local name of the opened
element (line 17), and sets the parser variables accordingly if they appear in the lists
declared above. The characters method simply encodes the characters with Base64
if the element requires it, such as with dnl or divert. The endElement method is
more interesting since it controls element fusion. If the local name of the element
and the variables are set correctly it calls the endElement method of the superclass
(line 55), which prints the closing tag normally. If not, it skips this step, eliminating
the tag, and sets variables to prevent printing the opening tag of the following XML
element in line 22. The result is that the two elements are fused and appear as one
in the output.

After the SAX �lter, the resulting XML tree is passed through the stylesheet
of Fig. 7.6. Lines 1�25 process the header, including OSTYPE, VERSION and include

directives (lines 4�10) and the divert section (lines 12�14). Lines 26�42 process the
define and undefine constructs, and the FEATURE directive is processed in lines 43�
59, including a loop in lines 49�53 to support its variable number of parameters;
and, �nally, lines 60�67 handle unknown data. Lines 11, 33, 56 and 64 maintain a
counter to preserve ordering in the miniCIM data, and lines 15�23, 40, 57 and 65

aggregate all preceding dnl comments into a Comment attribute.

The result of this transformations of the Sendmail con�guration �le, in Fig. 7.7,
is represented in miniCIM instances that follow the diagram in Fig. 7.2. The
original �le is reconstructed by ordering the instances by their OrderId attribute

7.4 Conclusions 95

1 <SendmailMcSettingData>
2 <InstanceID>unknown.mc−0</InstanceID>
3 <OrderId>0</OrderId>
4 </SendmailMcSettingData>
5 <SendmailMcHeaderSettingData>
6 <InstanceID>unknown.mc−1</InstanceID>
7 <OsType>linux</OsType>
8 <Version>setup for Red Hat Linux</Version>
9 <OrderId>1</OrderId>
10 <DivertSection>eJx1UM1OAyEQvvcpJvHQNnEXTfYNP
11
12 7PUYuqMhc2du0mTITemad/n7WO/HHc/VE19yw==
13 </DivertSection>
14 <Comment>
15 <value>eJxLycvh</value>
16 </Comment>
17 </SendmailMcHeaderSettingData>
18 <SendmailMcDe�neSettingData>
19 <InstanceID>unknown.mc−2</InstanceID>
20 <VariableName>SMART_HOST</VariableName>
21 <VariableValue>smtp.myisp.com</VariableValue>
22 <OrderId>2</OrderId>
23 <NegativeDe�nition>FALSE</NegativeDe�nition>
24 <Comment>
25 <value>eJxdjjFuAkEMRfuc4kspAIkLbHpEsxJV0s
26
27 uPzPVK9W3X4dvTTViWA==</value>
28 </Comment>
29 </SendmailMcDe�neSettingData>
30 ...
31 <SendmailMcFeatureSettingData>
32 <InstanceID>unknown.mc−22</InstanceID>
33 <FeatureName>no_default_msa</FeatureName>
34 <FeatureParameter>
35 <value>dnl</value>
36 </FeatureParameter>
37 <OrderId>22</OrderId>
38 <Comment>
39 <value>eJxLycvhSsnLUXBzdQwJDXLVSEnNSayMT8
40 5ITc4u1gRKcAEAuv8LKw==</value>

41 </Comment>
42 </SendmailMcFeatureSettingData>
43 ...
44 <SendmailMcUnknownSettingData>
45 <InstanceID>unknown.mc−33</InstanceID>
46 <Content>eJzz8Xd29IkPCvVxjTdQ4ApS0VKwcVBQsS1
47
48 WpeTnJmbmcQEAsLgSxw==</Content>
49 <OrderId>33</OrderId>
50 <Comment>
51 <value>eJxLycvh</value>
52 </Comment>
53 </SendmailMcUnknownSettingData>
54
55 <SendmailMcDaemonSettingData>
56 <InstanceID>unknown.mc−36</InstanceID>
57 <DaemonPort>smtp</DaemonPort>
58 <DaemonAddr>127.0.0.1</DaemonAddr>
59 <DaemonName>MTA</DaemonName>
60 <OrderId>36</OrderId>
61 <Comment>
62 <value>eJw1jkEKwkAMRfc9xQf3xYrgGdyJeIE4k+
63
64 xTkUNT5USF25+o+QJyyVK/</value>
65 </Comment>
66 </SendmailMcDaemonSettingData>
67 ...
68 <SendmailMcContains namespace="dc=udc">
69 <Antecedent>
70 <ref classname="SendmailMcSettingData">
71 <InstanceID>unknown.mc−0</InstanceID>
72 <OrderId>0</OrderId>
73 </ref>
74 </Antecedent>
75 <Dependent>
76 <ref classname="SendmailMcHeaderSettingData">
77 <InstanceID>unknown.mc−1</InstanceID>
78 <OrderId>1</OrderId>
79 </ref>
80 </Dependent>
81 </SendmailMcContains>

Figure 7.7: CIM rendition of sendmail.mc data

and decoding sequentially each instance. In this result, we can see a coded Un-
known block (lines 44�53), and dnl comments also follow the same format (e.g. in
lines 14�16). Finally, in lines 68�81 there is an instance of the inclusion associa-
tion SendmailMcContains which associates the container instance (with OrderId 0,
lines 1�4) with the header instance (lines 5�17).

7.4. Conclusions

In this chapter the Sendmail con�guration format was shown as a specially com-
plex case of con�guration �le. Next, a possible CIM representation of this format
with support for round-tripping and unknown constructs was described. A pro-
cess to translate from the original con�guration �le to miniCIM formatted data
and back was also explained. The principles and techniques shown in this scenario
can be applied to a wide scope of con�guration formats with ease, widening the

96 Chapter 7. Advanced Con�guration Extraction: the Sendmail File

range of application of AdCIM and lessening the negative impact of con�guration
maintenance and version changes.

Chapter 8

Grid Integration

Grids constitute a category of heterogeneous systems, as geographically dis-
tributed collections of forcibly heterogeneous machines maintained by di�erent or-
ganizations, and only linked through the use of a common middleware that authen-
ticates their users and enables their controlled access to computing resources.

Grid systems thus coordinate resources not subject to centralized control, us-
ing standard, open, general purpose protocols and interfaces, to deliver nontrivial
qualities of service. There are several middleware tools that provide the needed
infrastructure for Grid systems. The Globus Toolkit [33] is the one used in this
work due to its widespread adoption and use. It is based on the Open Grid Services
Architecture (OGSA) [34], an Open Grid Forum (OGF) architectural speci�cation
de�ning a service-oriented Grid computing environment.

A key aspect in Grid environments is the management and monitoring of the
resources. Their heterogeneity and the need of interoperability between di�erent
middleware solutions for Grids explain the need of a common model of information
in order to allow the exchange of resource information both inside a Grid and across
Grids.

In this chapter we present an infrastructure integrating the AdCIM framework
and the Monitoring and Discovery System (MDS) component of Globus [91], that
allows to access and query CIM information in a Grid system via a new Operation
Provider, enabling more expressive queries for improving resource management. The
developed infrastructure can be used for Grid resource discovery, fault diagnosis,
scheduling, accounting and many other applications. We have also developed a new

97

98 Chapter 8. Grid Integration

Information Provider to retrieve CIM information, and an Index Service backend to
store CIM data in persistent storage, instead of into main memory, the default with
Globus. The scalability of this backend is assessed, taking comparative benchmark
results of memory usage and response times against the default storage method in
Globus.

The structure of this chapter is as follows. Section 8.1 details the integration
of AdCIM with the MDS information service in Globus and our new Information
Provider. Section 8.2 presents benchmarks showing the scalability using the new
Information Provider with our database-backed backend compared with using the
memory-backed default one. In Section 8.3 some work related with this chapter is
covered. Finally, Section 8.4 concludes the chapter.

8.1. Integration of MDS and CIM

This section covers the integration of AdCIM with the MDS component of
Globus. It begins with an overview of the Globus MDS component (Section 8.1.1),
describes the CIM internal Java representation used in the new components (Sec-
tion 8.1.2), followed with a description of the new Information Provider (Section 8.1.3)
and database backend (Section 8.1.4), and ends describing the queries supported by
the new Operation Provider (Section 8.1.5). Figure 8.1 shows an overview of this
integration.

8.1.1. Globus MDS

The Globus Monitoring and Discovery System version 4 (MDS4) is the com-
ponent of the Globus Toolkit tasked with publishing the information needed for
resource discovery and monitoring functionality. Unlike previous versions, MDS4
is based on Web Services Resource Framework (WSRF) services instead of on an
LDAP directory, so the Data Persistence Layer of AdCIM must be adjusted with
this in mind. MDS4 is sometimes de�ned as having an �hourglass� structure, as
can be seen in Fig. 8.2, in which the sources of information at the base communi-
cate with �sinks� (or information users) at the top via a �narrower� middle section
which represents both the MDS web service interface and the common information
schemata used in the stored information. Thus, MDS4 does not have a standard
schema (the information must be encoded in XML, though), but sources and sinks

8.1 Integration of MDS and CIM 99

GT4 Container

Information
Provider

Query Service

Stored
Queries

CIM instances

CIM schema

Globus

X
Pa

th

Index Service

System Data Layer

Uses

Java Instances

CIM Model

Operation Provider

Relational
DB

Backend

Figure 8.1: Overview of the AdCIM and MDS4 integration

usually need to agree on one schema to communicate. In a sense, this integration
makes CIM a standard schema for Grid management applications.

MDS4 comprises two main services: the Index Service publishes, updates and
manages the life cycle of resource information, and the Aggregator Framework de-
�nes three mechanisms for source applications to publish their data:

The QueryAggregatorSource polls periodically the values of several WSRF
properties.

The SubscriptionAggregatorSource registers itself as the listener of a WS-
Noti�cation subscription, normally linked to a WSRF property.

The ExecutionAggregatorSource invokes code which periodically returns
XML-encoded information.

The last version of Globus (4.2.1) o�ers the UsefulRP system [38], which enables
the gathering of data from various sources and their automatic transformation to
Java instances using an XML Schema. This system greatly simpli�es the use of

100 Chapter 8. Grid Integration

WS interfaces

Queuing systemsMonitoring software

Standard Schemas
(GLUE, CIM, etc..)

Globus Services

Information Users (Portals, Brokers, Diagnosis, etc...)

Figure 8.2: MDS4 �hourglass� representation

XML-based sources and integrates them better than the ExecutionAggregatorSource
by representing them as WSRF objects.

8.1.2. Internal Representation of the Model

Figure 8.3 shows the Uni�ed Modelling Language (UML) model of the CIM
internal representation used in the new Operation Provider, Information Provider
and backend. As can be seen in the �gure, the CIM information is modelled using
a metaschema approach, so CIM classes are treated as instances of the CIMClass-
Information, as opposed to being translated directly as classes in the internal rep-
resentation. This has the advantage of being much more �exible when new CIM
classes are introduced (as only new instances of CIMClassInformation have to be
considered), and easy to implement. The drawback is the additional overhead, since
some implicit object qualities like the number and type of its properties have to be
represented as objects and validation has to be explicit. Indications, triggers and
methods are excluded, since they are not needed for resource information querying.

Quali�ers are not treated equally. The most important ones (like those indicating
the name of the superclass, if a property is a key, if a class is abstract, and so on) are
mapped as properties of CIMClassInformation or CIMProperty. Non-critical quali�ers

8.1 Integration of MDS and CIM 101

Property

RelationInformation

relationType : String

RelationInstance

ClassInstance

Referencereferences

Component

1

properties

1

references

ClassInformation

superclassName

referenceClass

keys

properties

instantiatedClassName

propertyType : String
units : String
classOrigin : String
isKey : boolean
multivalued : boolean
values : List<String>
enumeration : List<String>
enumMapping : List<String>

Qualifier

characteristics

properties
1

1

isAbstract: boolean
superclassName: String

name: String
description: String

getType():int

qualifierType: String
values: List<String>

Figure 8.3: UML diagram of the internal CIM representation

are represented with the CIMQualifier class. This mapping avoids having to access
a separate instance each time an important quali�er is used, but it still allows to
de�ne new quali�ers.

References are represented by a special class named CIMReference instead of
being represented by properties. Inheritance is explicit, with each class inheriting
properties and key properties by direct copy from its parent.

The types of the properties are simpli�ed to standard Java types: integer values
are converted to Java long, real numbers to double, strings and characters to the
String class, and �nally, dates and times to java.util.Calendar.

Summarizing, the internal representation of the model has been devised trying
to improve both performance and �exibility, and also to conserve expressive power.

8.1.3. CIM Information Provider

This section covers the development of an Information Provider for CIM man-
agement information. The management information in CIM format is generally
provided via non-WSRF querying APIs. The choice is thus limited to use either the
ExecutionAggregatorSource or the UsefulRP system. The former only provides valid
XML documents to Aggregator Sinks, whereas the latter can transform these XML
data into Java objects, which can be managed in a programmatic way. Therefore,

102 Chapter 8. Grid Integration

CIM INDEX SERVICE

Java Instances

AdCIM framework

miniCIM
/ CIM-XML

CIM Interface

Transformer

Producer

Listener
(CIM class 1) ... Transformer

Producer

Listener
(CIM class N)

Resource Property Provider

<<delegate>>

T
as

k
P

ro
vi

de
r

T
as

k
P

ro
vi

de
r

Managed Element(s)

Query

Figure 8.4: CIM Information Provider

UsefulRP was used to implement the CIM Information Provider due to its more ex-
tensive functionality. Our implementation of the CIM Information Provider follows
the Ganglia Information Provider [57] as a rough guide. This Information Provider
is part of GT4 (see Fig. 8.1); it collects information from sources encoded with the
XML mapping of the Grid Laboratory Uniform Environment (GLUE) Schema [37].

Figure 8.4 shows a diagram of the proposed Information Provider. Inside it,
several components assume di�erent responsabilities:

The Producers serve as mediators between clients and the Information Provi-
der, decoupling them. They allow to transform the data obtained from the

8.1 Integration of MDS and CIM 103

client into the format required by both listeners and transformers. GT4 pro-
vides an interface for this purpose, which returns a Java DOM representation
of an XML Element class. Due to the memory requirements imposed by the
DOM tree representation, an Information Producer is de�ned for each CIM
class to obtain its instances. This limits the size of the received XML docu-
ments and avoids performance bottlenecks.

The Transformers perform the transformation of CIM-XML into instances of
Java object classes de�ned inside GT4. This transformation is made trans-
parently by the UsefulRP framework if the XML document is de�ned with
an XML Schema. This schema represents CIM instances and their relations
including properties and references, involving some modi�cations needed for
the representation of persistent entities such as the insertion of extra �elds.
It also supports strongly typed queries, not supported with the default MDS4
mechanism. We have also de�ned an XSLT stylesheet to remove redundancy
and normalize data.

The Listeners are noti�ed periodically of the information from the sources to
be updated in MDS4. The implementation provided by GT4 maintains the
subscripted information in one object attribute and de�nes methods to query
it. Each listener receives the CIM information from a producer and delegates
its storage to the CIM Index Service.

The Task Providers link each listener with a producer and invokes them pe-
riodically. We have de�ned our own task provider, which provides producers
with the necessary formatted parameters to obtain management information
and also noti�es the corresponding listener of new CIM instances.

The Resource Property Provider is a front-end class that de�nes an API to
access the information obtained by the Information Provider. It keeps a list of
listeners that manage this information. We have de�ned a CIM specialization
to support the new database backend.

8.1.4. Database Backend

The MDS4 Index Service collects monitoring and discovery information from
this Information Provider to be queried in a single location. The default GT4 im-
plementation of the Index Service stores the collected data in memory. Maintaining

104 Chapter 8. Grid Integration

this information in memory entails both performance and scalability problems when
large amounts of CIM data are subscribed.

Thus, two backend components have been developed: one of them stores the
information in a database and the other maintains the information in memory, like
the Globus default solution does. Java Persistent API (JPA) [8], a Sun Microsystems
speci�cation, was used for the database access. JPA describes an object/relational
mapping API to manage relational data in Java applications. More speci�cally, we
have used the Apache implementation of the standard, OpenJPA [4]. This choice
has been motivated by the integration of Globus Toolkit with this implementation
since version 4.2, and because OpenJPA provides con�gurable support for a broad
range of databases.

In Section 8.2, the performance and memory consumption of these backends is
assessed.

8.1.5. CIM Operation Provider

In order to improve the integration of the CIM model with MDS4, a new Opera-
tion Provider was developed, the CIM Operation Provider. It allows to query CIM
information subscribed in the CIM Index Service in a simpler and more e�cient way
than the default GT4 one.

The CIM Operation Provider incorporates the following composable operations,
which can be used by the clients to query available CIM instances:

Obtaining all instances of a particular CIM class.

Obtaining all instances of a particular CIM class �ltered by some property
values.

Obtaining all instances of a particular CIM relation with certain values in
some of its references, so CIM associations can be navigated.

An example of composition of these queries can be seen in Fig. 8.5. The expres-
sion corresponding to this tree searches computers with a processor speed of 2GHz
or more, Linux operating system installed and that are currently running it or have
reset capabilities. It is represented as a string using in�x operators to make it more
intuitive for users. At execution time, each operator is evaluated with the result of
the recursive evaluation of its children as argument.

8.2 Experimental Results 105

Figure 8.5: Example query tree

Search paths are evaluated by �rst �nding all the instances at the end of the
association that satisfy the conditions on their properties, and then working back-
wards, navigating through the associations trying to �nd the origin instance. This
method is used to avoid semantic-changing situations in 1-to-N associations that
could arise when the search is done breadth-�rst from the origin node.

The resulting implementation allows arbitrary stacking of conditions on associ-
ated nodes, and arbitrarily large expressions based on these predicated nodes.

8.2. Experimental Results

Some experiments were carried out to show the scalability and e�ciency of the
proposed CIM Information Service. The experiments were run on a Grid in which
each node had a 3GHz Intel Core Duo E8400 and 2GB RAM running Linux kernel
2.6.27. Globus Toolkit version 4.2.1 was used.

To ensure that the measures were taken in all cases under the same conditions,
the Globus container was executed always with the minimum number of services
and without performing unnecessary background tasks. Three di�erent scenarios
were considered:

106 Chapter 8. Grid Integration

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

G
lo
b
u
s
C
o
n
ta
in
e
r
H
e
a
p
(M

b
)

Input size (instances)

Default

Modi�ed - memory backend

Modi�ed - DB backend

Figure 8.6: MDS memory usage experimental results

1. Default MDS: In this case, the CIM information is obtained and queried using
the default mechanisms provided by GT4. The data subscription is carried
out with the ExecutionAggregatorSource, which executes scripts periodically
and provides the resulting XML data to the Index Service. The querying of
this information is done with the wsrf-query client, which uses the prede�ned
Operation Provider to make XPath queries over the information available in
the Index Service.

2. Modi�ed MDS - memory backend: This service obtains the information from
our CIM Information Provider and stores it in memory. The information
queries are carried out with the cim-query client, which was implemented to
query the information to the CIM Operation Provider.

3. Modi�ed MDS - database backend: The container is executed with the imple-
mented CIM Index Service. The di�erence with the previous scenario is that
in this case the information is maintained in a database through the use of our
database backend.

The �rst experiment measures the memory consumption in each scenario. The
memory consumed is measured as the size of the heap used by the Globus container.
Figure 8.6 shows the results when the number of CIM instances increases. It can
be observed that in the default solution (scenario 1) memory consumption increases
sharply with the number of CIM instances. This can lead to a bottleneck in Grid
systems in which the monitoring and discovery of information is organized in a hi-
erarchical form and nodes may have information from several others, collecting too

8.2 Experimental Results 107

0

2

4

6

8

10

12

14

16

18

20

22

0 2000 4000 6000 8000 10000 12000

S
e
c
o
n
d
s
(s
)

Input size (instances)

Default

Modi�ed - memory backend

Modi�ed - DB backend

Figure 8.7: MDS response time experimental results

many data. A meaningful improvement is achieved by the solutions that use the
UsefulRP providers (scenarios 2 and 3). This is because the information is repre-
sented through Java instances instead of through an XML DOM tree. Therefore, in
case of memory consumption constraints, any of these two solutions would perform
well. The �nal solution, maintaining the CIM information either in memory or in
a database, are chosen conditioned to the requirements imposed by each concrete
environment.

Another experiment was carried out to measure the penalties in the response time
to query CIM information caused by the use of a database instead of maintaining
data in memory. The results obtained are depicted in Fig. 8.7. These results show
that the response time to query the information increases when the CIM Information
Provider is used to handle the CIM information, especially when the information is
maintained in a database. This is because both the search of the instances with cer-
tain values in their attributes and the querying of the database (with the consequent
creation of the corresponding instances) incur in performance penalties compared
with the DOM tree access made by the default Operation Provider of GT4.

This provider uses the XPath 1.0 API included in Xalan-Java to implement the
XPath queries over the available information maintained in memory. This imple-
mentation of the API uses the DTM (Document Table Model) interface, which was
designed speci�cally to optimize performance and minimize storage of the XPath
and XSLT implementations. Nevertheless, the usage of XPath 1.0 means that val-
ues are not strongly typed, and operations such as searching value ranges in a data
type are di�cult to implement. Conversely, since UsefulRP uses an XML Schema to

108 Chapter 8. Grid Integration

perform the transformation to instances, this representation based on Java objects
allows typed queries with more complexity and functionality than XPath queries.

Summarizing, the use of the proposed CIM Information Service o�ers improved
query semantics at the expense of slightly larger delays in queries. The tests have
also shown a signi�cant improvement in memory consumption.

8.3. Related Work

Nowadays many e�orts within the Globus Alliance are being invested on improv-
ing the information subscribed to the Index Service of GT4 by increasing the types
of information sources [39]. The latest versions of the toolkit have included a series
of Information Providers for the most popular monitoring and management tools
(Ganglia, Nagios, Condor, etc.). In this way, the management information for GT4
services like GRAM or RFT is completed with the monitoring and management
information coming from several sources.

However, currently the majority of the production Grid projects use some forms
of the GLUE schema instead of CIM for the description of grid resources (e.g.
EGEE [27], TeraGrid [68], OSG [74]...). This is because they rely on Grid middle-
ware that operates with this schema, such as Globus or gLite. One exception is the
NAREGI project [67], which uses its own middleware (NAREGI Middleware) that
supports an extension of the CIM schema. The main purpose of the GLUE Schema
is to de�ne a common resource information model to be used as a base for the Grid
Information Service (GIS), both for resource discovery and for monitoring activities.
CIM o�ers better modelling characteristics and covers other areas of computing not
directly related to Grids, but which can be useful to their management.

CIM has already been used as information model to build di�erent monitoring
systems for Grid infrastructures. In Mao et al. [56] a monitoring system of web re-
sources, RMCS, is presented. Experimental results have shown that the system pro-
vides scalable and �exible capabilities and satis�es the web application requirements.
The work presented by Ravelomanana et al. [87] is another example of CIM-based
grid monitoring system. Tursunova et al. [99] present a way to develop monitoring
applications for Grid systems using CIM. However, unlike our framework, these ap-
proaches work independently of the monitoring and management service provided
by the Grid middleware, so they must be used separately.

8.4 Conclusions 109

An approach to include CIM information in the Index Service of Globus was
proposed by Wang et al. [100]. It implements a transformation from CIM format
to the GLUE Schema. The same idea was followed by Nakada et al. [65] to achieve
interoperability among di�erent grid middleware that use di�erent resource infor-
mation schemata. This solution is quite limited since occasionally a correspondence
between both models cannot be found, as the CIM model covers much more scope
than the GLUE schema and allows its extension with de�nitions that represent a
speci�c environment.

CIS [59] is another Information Service using CIM as the underlying informa-
tion model. It can be deployed in UNiform Interface to COmputing REsources
(UNICORE) [28] Grids to obtain information about resources and services.

With regard to the persistent storage, Aloisio et al. [2] have developed, within
the European GridLab project, a Grid information service (named iGrid) based on
the MDS of GT2 that maintains the management information in a database as does
the solution presented in this chapter. While the prerequisites of performance and
scalability are achieved, this system was designed for GT2, which has a very di�erent
architecture and uses di�erent technologies than GT4.

8.4. Conclusions

The application of our AdCIM framework proposed in this chapter enables the
use of CIM information in the management and monitoring of Grids. A series of
components for the MDS4 have been presented to adapt GT4 to CIM: a new In-
formation Provider using the UsefulRP framework, and a database-backed backend
for the Index Service which obtains a good trade-o� between memory consumption
and response time, compared with the default memory-backed method.

Chapter 9

Application to Wireless Mesh

Networks

The focus of AdCIM on heterogeneous infrastructures makes possible its appli-
cation to very useful and interesting networks, such as Wireless Mesh Networks
(WMNs), which leverage existing wireless infrastructures to o�er great �exibility
and resilience.

This chapter is structured as follows. First, Section 9.1 gives background in-
formation about Wireless Mesh Networks and de�nes the application of AdCIM
to them. Next, Section 9.2 contains an analysis of the mesh router con�guration
and the entities it represents. Section 9.3 elaborates about the mapping of these
entities to CIM and its implementation. Setion 9.4 details the transformation of
the CIM model to an ontological representation which supports reasoning processes,
useful for semantic checking, diagnosis and recovery tasks that are specially suited
to WMNs due to their distributed and dynamic nature. This aspect is developed in
Section 9.4. Section 9.5 covers related works and, �nally, conclusions are drawn in
Section 9.6.

9.1. AdCIM meets Wireless Mesh Networks

Wireless Mesh Networks (WMN)s [1] extend the Wireless LAN architecture by
replacing the classical wired distribution system with a wireless, self-organizing and
self-healing infrastructure. This allows for an easy and cheap deployment of access

111

112 Chapter 9. Application to Wireless Mesh Networks

LDAP

OSGi Configuration
 (XML)

miniCIM instances

Wireless Mesh Network

XSLT

AdCIM functionality

CIM-based Ontological
Representation (OWL)

Reasoner

(A
Bo
x) (T

B
ox)

XSLT

XSLT

XSLT

miniCIM Schema

XForms
generated

Web interface

XSLT

HTTP+
REST

Figure 9.1: Application of the AdCIM framework to WMN management

points where cabling is costly. A WMN consists of access points and client nodes.

The access points (also simply called mesh routers) form a mesh of �xed nodes,
known as the network infrastructure or backbone. The backbone can rely on various
radio technologies for interconnection (amongst them IEEE 802.11). These access
points have a double function: that of providing access to roaming clients, and of
relaying data for other routers. Some of the routers act as gateways for connectivity
with other wireless mesh networks, or other types of networks, including wired ones
(see left side of Fig. 9.1).

The coverage of a wireless mesh network is extended by means of multi-hop
communications. Therefore the mesh routers have additional functions, besides
those present in regular access points, to support mesh networking (i.e. routing
capabilities), functions which are very important to manage for the performance
and health of the network.

There is currently a lack of frameworks for the integrated con�guration of WMN
routers, so this chapter explores the application of the AdCIM framework to the
con�guration of WMN routers. The chosen approach is shown in Fig. 9.1. The
router con�guration is mapped to the CIM model and then converted using XSLT
into CIM instances (in miniCIM format). Then the functionality of the AdCIM
framework can be exploited, including persistence in LDAP directories and the gen-
eration of web forms to manipulate these instances. The modi�ed data can then be
transformed back to its original format and uploaded to the router. These CIM data
can also be transformed to a Web Ontology Language (OWL) [105] based semantic
representation, which allows to check the internal consistency of the con�guration

9.2 Con�guration Analysis 113

and infer new data.

We chose the con�guration of a modular wireless router developed by the Image
Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT) RP team [51].
This router con�guration is managed using the Open Services Gateway initiative
(OSGi) [79] Java-based framework. OSGi adds infrastructure for on-the-�y manage-
ment and deployment of modules, and to support starting, stopping and uninstalling
them independently. An overview of the architecture of the router can be seen in
Fig. 9.2.

Kernel

new

C Library
libmadwifi.so

C Library
libethernet.so

Modular Architecture

Figure 9.2: Wireless mesh router architecture

Using the CIM model and its OWL representation opens new possibilities to
diagnose mesh network problems or to simulate the e�ect of a proposed con�guration
change globally. It also provides a higher level view that hides OSGi implementation
details and that is generalizable to routers with other architectures which could then
be managed homogeneously.

9.2. Con�guration Analysis

The router subject to study provides a naming schema and structure for the
con�guration attributes that conform to the standard OSGi Con�guration Service,
detailed in [80], which is the component of OSGi tasked with managing the settings
of other services and their persistence. It de�nes con�guration objects that contain
con�guration dictionaries, a collection of name-value pairs that represent the settings
of an OSGi service; objects also have a PID (persistent identi�er) as primary key.

114 Chapter 9. Application to Wireless Mesh Networks

1 <con�gurations>
2 <level name="device">
3 <level name="ethernet">
4 <level name="interface">
5 <con�guration name="br31">
6 <String name="Con�gurationType">interface</String>
7 <Integer name="UpdateType">0</Integer>
8 <String name="device.deviceType">ethernet</String>
9 <String name="device.ethernet.broadcast">0.0.0.0</String>
10 <Short name="device.ethernet.�ags">1</Short>
11 <String name="device.ethernet.ip">130.79.91.223</String>
12 <Boolean name="device.ethernet.ipDesactivated">false</Boolean>
13 <StringArray name="device.ethernet.ipv6addresses"/>
14 <Integer name="device.ethernet.mtu">1500</Integer>
15 <String name="device.ethernet.netmask">255.255.254.0</String>
16 <Boolean name="device.ethernet.usingDHCP">false</Boolean>
17 <String name="device.interfaceName">br31</String>
18 <String name="device.virtualName">br31</String>
19 <String name="service.bundleLocation"> �le:ap−bundles/devmng_eth.jar </String>
20 <String name="service.pid"> device.ethernet.interface.br31 </String>
21 </con�guration>
22 </level>
23 </level>
24 </level>
25 </con�gurations>

Figure 9.3: Wireless mesh router con�guration for an IP interface

OSGi services can register themselves to a PID to receive a dictionary, or can also
register to a con�guration factory to receive an arbitrary number of dictionaries
registered in the factory.

The LSIIT router stores its con�guration objects as XML data in the format
seen in Fig. 9.3. Con�guration objects have structured PIDs located in a hierarchy
similar to that of Java packages. Properties in the dictionary are represented as
subelements named after their type, their actual name translated as an attribute.
Con�guration objects and factories can also refer to one another using these PIDs.

Con�guration objects also contain sets of properties for some OSGi services that
map into conceptual entities, sometimes as an exact match, others as several related
entities. In the following points, several of these entities are detailed:

Services. There are three services in the router con�guration: SNMP, Bridging and
Telnet. Each has a very di�erent con�guration: SNMP only needs to be set as
started or stopped, Bridging needs a list of network interfaces; so the mapping of
each service is di�erent in each case.

IP Interfaces. These entities represent various virtual interfaces on top of the wire-
less interfaces. Their set of properties includes IP address and netmask and Dynamic
Host Con�guration Protocol (DHCP) status. While their con�guration location is
named device.ethernet.interface, they mostly represent IP con�gurations, with

9.3 Con�guration Mapping to CIM 115

two properties MTU and Flags) representing transport level properties. IP Interfaces
can be related to wireless interfaces or be implemented by the Bridging service.

Logical Wireless Interfaces. They represent the aspects of wireless interface con-
�guration that reside in a higher level than physical con�guration. These aspects
include encryption algorithms and settings, Remote Authentication Dial In User
Service (RADIUS) server con�guration, Virtual Local Access Network (VLAN) con-
�guration, Service Set IDenti�er (SSID), MAC �ltering, and Optimized Link State
Routing Protocol (OLSR) related parameters [14] like the link quality level, window
size or link hysteresis control. Each one of these entities are generally associated
with an IP interface and a physical wireless interface.

Physical Wireless Interfaces. They represent the low-level settings of a wireless
interface and are bound one-to-one to a logical interface. These settings include
transmission channel (or optionally frequency) and transmission power. They have
regulatory restrictions depending on country of usage to avoid interference with
other equipment, but these limits are not modelled in the con�guration.

Other entities. They include a generic IP routing default gateway setting and pass-
word information. There are also entities to represent virtual LAN settings.

These con�guration entities are abstracted and mapped to higher-level preexist-
ing entities and extensions from the CIM model in the next section.

9.3. Con�guration Mapping to CIM

This section covers the mapping from the original format of the router con-
�guration to the CIM model that is later translated to OWL. According to the
classi�cation presented by Rivière and Sibilla [88], this mapping follows the �recast�
philosophy, since �concepts� are mapped. It also follows the principle of abstract
translation, since redundant information is removed. Finally, the organization is in-
dependent, since the resulting model is standard. In Fig. 9.4, a CIM class hierarchy
to map the router con�guration is proposed. In this section we explore both the
mapping and the XSLT templates that implement it.

116 Chapter 9. Application to Wireless Mesh Networks

ElementSettingsData

SwitchService

SwitchesAmong
0..1

*P
ro

v
id

e
sE

n
d
p
o
in

t

0..1

*

SettingData

bundleLocation: String
factoryPid: String
pid: String

BridgeAddress: string
NumPorts: uint16
BridgeType: uint8 {enum}
BridgeAddressType: uint16 {enum}

PortNumber: uint16

IPv4Address: string
IPv6Address: string
Address: string {D}
SubnetMask: string
AddressType: uint16 {D,enum}
AddressOrigin: uint16 {E}
...

*

*
EndPointIdentity

StaticIPAssignmentSettingData

BindsTo

*
*

System

S
y
ste

m
D

e
v
ice

ElementSettingsData

*

*

WirelessLANEndpoint

PortImplementsEndpoint

* *

EthernetPort

Po
rtIm

p
le

m
e
n
tsE

n
d
p

o
in

t

*

isCurrent
isDefault

*w

*w

11

SystemDevice

S
y
ste

m
D

e
v
ice

ServiceAccessPoint

...

1

1*w

*w

HostedService

HostedServiceAccessPoint

1

*w

H
o
ste

d
S
e
rv

ice

TelnetSettingData

*

*

OSGiConfFactorySettingData RadiusSettingData

E
le

m
e
n
tS

e
ttin

g
sD

a
ta

*

 New class
 Extended
{E} Experimental (as of CIM 2.17)
{D} Deprecated

IPAssignmentSettingData

*

ConcreteComponent
*

SNMPService

H
o
ste

d
S
e
rv

ice

1

*w

OSGIConfSettingData
*

IPProtocolEndpoint

SwitchPort

WirelessPort

TelnetService

Legend

Figure 9.4: CIM mapping class hierarchy for the router con�guration

9.3.1. CIM Class Semantics

The CIM mapping presented in Fig. 9.4 can be separated in two abstraction lev-
els, one including the OSGIConfSettingData and OSGIConfFactorySettingData classes,
and representing all OSGi-related structures and identi�ers, and the other level rep-
resenting abstract entities. The latter includes some specialized service classes, such
as SNMPService. SwitchService represents the bridging facility and is associated to
a list of SwitchPort instances associated to an IPProtocolEndpoint instance. The
bridging service also generates an IP interface of its own, related with Provides-

Endpoint instances. These IPProtocolEndpoints instances, which represent IP in-
terfaces, are related to an IPAssignmentSettingData instance which indicates if the
parameter setting is static or via DHCP. In the �rst case, it is further associated
with a StaticIPAssignmentSettingData instance which contains the IP data. There
are cases in which no IP assignment data are given.

IPProtocolEndpoint instances can be associated to a WirelessLANEndpoint in-
stance which represents logical wireless interfaces. Each one can have several RA-

9.3 Con�guration Mapping to CIM 117

DIUS con�gurations, represented by the RadiusSettingData class. The maximum
transfer unit value of IP interfaces is moved to the EthernetPort class. Finally,
physical wireless interface data are included in WirelessPort instances, related to
WirelessLANEndpoint by the PortImplementsEndpoint association.

All service and interface classes are weak entities with regard to the containing
system, so appropriate HostedService and HostedServiceAccessPoint associations
are made for services and service access points. These associations are also very
useful for navigating through the data. The two abstraction levels simplify the
recovery of the original con�guration �le and, at the same time, avoid pollution of
OSGi speci�c attributes on abstract entities.

9.3.2. Mapping Considerations

The properties of an OSGi dictionary are usually directly mapped to CIM prop-
erties. CIM property types in the output are speci�ed in a schema. In the case of
multiple choice values their numerical representation is changed to an enumeration
of schema-restricted string values.

There are some properties that are not mapped at all to CIM, such as boolean
values that control the expression of others. For example, device.ethernet.ip-

Desactivated in line 12 of Fig. 9.3 determines if the IP interface has a valid IP
con�guration. In the resultant CIM instances, there are no invalid �elds, since
almost all can be omitted instead of having invalid values.

9.3.3. XSLT Implementation

The implementation of the transformations is done with two XSLT stylesheets:
one that transforms the XML OSGi con�guration data into CIM data and another
one that does the opposite. The result of the application of the �rst stylesheet to
the con�guration shown in Fig. 9.3 can be seen in Fig. 9.5.

Internally, the �rst stylesheet has a general function that can create the correct
miniCIM representation of any particular CIM association with only its name and
the classes related by it. The input �le is read recursively and the default action is
to store the OSGi related attributes and instances. If the con�guration PID matches
certain values, appropriate templates that create CIM classes and associations are
invoked. The generated instances are processed in a second pass to add relationships

118 Chapter 9. Application to Wireless Mesh Networks

1 <CIM_OSGiConfSettingData namespace="dc=udc">
2 <BundleLocation>
3 �le:ap−bundles/devmng_eth.jar
4 </BundleLocation>
5 <InstanceID>device.ethernet.interface.br31</InstanceID>
6 <Con�gurationType>interface</Con�gurationType>
7 <UpdateType>0</UpdateType>
8 </CIM_OSGiConfSettingData>
9
10 <CIM_IPProtocolEndpoint namespace="dc=udc">
11 <SystemCreationClassName>
12 CIM_ComputerSystem
13 </SystemCreationClassName>
14 <SystemName>LSIIT</SystemName>
15 <CreationClassName>
16 CIM_IPProtocolEndpoint
17 </CreationClassName>
18 <Name>device.ethernet.interface.br31</Name>
19 <Caption>br31</Caption>
20 </CIM_IPProtocolEndpoint>
21
22 <CIM_ElementSettingData namespace="dc=udc">
23 <IsCurrent>Is Current</IsCurrent>
24 <ManagedElement>
25 <ref classname="CIM_IPProtocolEndpoint"
26 namespace="dc=udc">
27 <CreationClassName>
28 CIM_IPProtocolEndpoint
29 </CreationClassName>
30 <Name>device.ethernet.interface.br31</Name>
31 <SystemCreationClassName>
32 CIM_ComputerSystem
33 </SystemCreationClassName>
34 <SystemName>LSIIT</SystemName>
35 </ref>
36 </ManagedElement>
37 <SettingData>
38 <ref classname="CIM_OSGiConfSettingData"
39 namespace="dc=udc">
40 <InstanceID>
41 device.ethernet.interface.br31
42 </InstanceID>
43 </ref>
44 </SettingData>
45 </CIM_ElementSettingData>
46
47

48 <CIM_IPAssignmentSettingData namespace="dc=udc">
49 <InstanceID>br31</InstanceID>
50 <AddressOrigin>Static</AddressOrigin>
51 </CIM_IPAssignmentSettingData>
52 <CIM_StaticIPAssignmentSettingData namespace="dc=udc">
53 <InstanceID>br31−static</InstanceID>
54 <IPv4Address>130.79.91.223</IPv4Address>
55 <SubnetMask>255.255.254.0</SubnetMask>
56 <GatewayIPv4Address>130.79.91.254</GatewayIPv4Address>
57 </CIM_StaticIPAssignmentSettingData>
58
59 <CIM_ElementSettingData namespace="dc=udc">
60 <ManagedElement>
61 <ref classname="CIM_IPProtocolEndpoint"
62 namespace="dc=udc">
63 <CreationClassName>
64 CIM_IPProtocolEndpoint
65 </CreationClassName>
66 <Name>device.ethernet.interface.br31</Name>
67 <SystemCreationClassName>
68 CIM_ComputerSystem
69 </SystemCreationClassName>
70 <SystemName>LSIIT</SystemName>
71 </ref>
72 </ManagedElement>
73 <SettingData>
74 <ref classname="CIM_IPAssignmentSettingData"
75 namespace="dc=udc">
76 <InstanceID>br31</InstanceID>
77 </ref>
78 </SettingData>
79 </CIM_ElementSettingData>
80
81 <CIM_ConcreteComponent namespace="dc=udc">
82 <GroupComponent>
83 <ref classname="CIM_IPAssignmentSettingData"
84 namespace="dc=udc">
85 <InstanceID>br31</InstanceID>
86 </ref>
87 </GroupComponent>
88 <PartComponent>
89 <ref classname="CIM_StaticIPAssignmentSettingData"
90 namespace="dc=udc">
91 <InstanceID>br31−static</InstanceID>
92 </ref>
93 </PartComponent>
94 </CIM_ConcreteComponent>

Figure 9.5: Excerpt from the output of transforming the con�guration of Fig. 9.3
into miniCIM format

which are ine�cient to add in the �rst pass, such as the one between SwitchPort

and IPProtocolEndpoint, which would require processing sections of the input several
times.

The second stylesheet, which converts CIM data back to the OSGi con�gura-
tion, uses XSLT functions to follow arbitrary CIM associations and rebuilds the
OSGi con�guration by retrieving the CIM classes representing OSGi con�gurations
and factories and navigating associations from them. A second pass is required to
structure the �le in the level hierarchy of OSGi con�gurations by recursively parsing
the PID values of each con�guration.

The two stylesheets use the pattern-matching capabilities of XSLT to allow exten-

9.4 Ontology Representation 119

sibility: recognized elements trigger special case processing and unknown elements
would only be mapped at the OSGi level, without stopping the transformation.

9.4. Ontology Representation

If we only transform the wireless con�guration data into a CIM model as we do
in Section 9.3, we would have a semi-formal representation that includes a taxo-
nomical classi�cation and domain knowledge, but this representation is not formal
because many domain constraints and metadata are not expressed explicitly, and it
is not possible to infer new information and reason over the data without a priori
knowledge of the semantics of the domain (see Quirolgico et al. [86]). For example,
in the domain of WMNs, the channel information of a wireless interface really maps
into a range of frequencies that could be barred because of national regulation or
other equipment used in the installations. The existence of several useable bands,
proprietary wi-� protocols and directional antennas further complicates the issue.
The use of an ontology and an o�-the-shelf reasoner (a program implementing logical
procedures) would allow us to deduce a con�ict in those situations.

Another important motivation is con�guration semantic checking, as seen in the
works of Sinz et al. [93] and Glasner and Sreedhar [36], in which logical constraints
are veri�ed in the Apache con�guration �le. These constraints are in a higher
semantic level because they are not concerned with mere well-formedness, but with
semantic integrity (e.g. �Every server must have a con�guration�, �Virtual hosts
addresses must be contained in the address of their server�).

Performing this checking with ontologies has many advantages; for example,
problems in higher levels of abstraction can be traced logically by the reasoner
to lower level causes, and other con�guration formats can be expressed with the
same model, so the checking can be applied unchanged to very di�erent formats of
con�guration.

The rest of this section covers this representation. First, Section 9.4.1 presents
some background information about the OWL ontology language and its formalisms.
Next, Section 9.4.2 explains the transformation made from CIM concepts and entities
to OWL concepts and entities. Finally, Section 9.4.3 gives commented examples of
application and implementation details.

120 Chapter 9. Application to Wireless Mesh Networks

Letter Description Logic Characteristic

AL Attributive Language, has atomic negation, concept intersection, univer-

sal restriction and limited existential quanti�cation.

C Complement of complex (non-atomic) concepts.

S ALC with transitive roles.

H Role hierarchy (subproperties).

O Nominals (concepts de�ned by enumerated individuals).

I Inverse roles.

N Cardinality restrictions (maximum, minimum cardinality of a role).

R Re�exivity, irre�exivity, disjointness and inclusion of roles (implies H).

Q Quali�ed cardinality restrictions (maximum and minimum of a role re-

stricted to a particular concept).

U Concept Union (Implied by ALC and DeMorgan).

Table 9.1: Expressivity characteristics in description logics

9.4.1. The Web Ontology Language

OWL (Web Ontology Language) [105] is a W3C standard extending its Resource
Description Framework (RDF) for the speci�cation of metadata. OWL can represent
formally knowledge domains organized as hierarchical classi�cations and supports
reasoning tasks on them, such as concept satis�ability and consistency. OWL is
based on the description logics formalism and supports three levels of expressivity:
OWL Lite, OWL-DL, and OWL Full, which represent various compromises between
expressivity and computability.

Among OWL Lite, DL and Full we have chosen OWL-DL for its better balance
between expressivity and e�ciency. Lite is too restrictive and Full is undecidable
and also less e�cient. Expressing the key uniqueness in CIM instances can only be
done in OWL Full (since it entails having inverse functional datatype properties),
but this constraint does not represent semantic errors in the original document so
there is no bene�t in expressing it.

An interesting feature in ontological processing is the formal enactment of poli-
cies. A rule language like Semantic Web Rule Language (SWRL) [106] allows to
specify Horn-like rules of the form H ← B1, . . . , Bn, in which the head H is asserted
if all the body atoms B1...n are true. These rules can be used to enact policies on
concrete individuals, but not on generic concepts since, as Motik et al. [63] show, the
combination of OWL-DL and unrestricted SWRL rules is undecidable (not guaran-
teed to end in the worst case). Nevertheless, they also show that if the reasoner

9.4 Ontology Representation 121

restricts rule variables to known individuals, they become decidable. SWRL rules
can also extend OWL when more expressivity is needed (e.g. role composition like
in a hypothetical property uncleOf) or there is no reasoner support (e.g. reasoning
and mathematical operations with datatypes).

OWL is based on description logics, basically fragments of �rst order logic (FOL,
hereafter), in turn, propositional logic with existential and universal quanti�ers. Full
FOL is not used because of its undecidability and computational intractability.

Description logics di�er in the expressivity retained (or added) from FOL. Ex-
pressivity characteristics are symbolised by a letter in Table 9.1. The subset of OWL
we have used, OWL-DL, is described as SHOIN (D) (D indicates that it operates
with integer and string datatypes as domain), so the supported operations are those
in the following expression:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C |≥ nS |≤ nS | a1, . . . , an (9.1)

In description logic, a concept is a set of individuals, and a role is a binary re-
lationship between concepts. Then, C and Ci are concepts, A an atomic concept,
R.C describes a role or property, and ai are named individuals. S is a property
name and n is an integer number that indicates its minimum or maximum cardinal-
ity. The supported operations include negation, union and intersection, existential
and universal quanti�cation, number restrictions and named individuals. The roles
as relationships can be also transitive. Known facts or �axioms� are grouped in
the knowledge base, divided in the Terminological Box (TBox) which hierarchically
groups axioms about concepts and roles and their mutual inclusion, and the As-
sertional Box (ABox) (see right part of Fig. 9.1), which contains knowledge about
individuals (and their inclusion in a class). A reasoner can perform several tasks
with that information, such as classifying instances in classes, restructuring the class
hierarchy and detecting inconsistencies. We have used the open-source reasoner Pel-
let [13], which has support for both OWL and SWRL.

9.4.2. CIM Transformation to OWL

Works like the ones by Heimbigner [43], Majewska et al. [55] and García et
al. [35] have already implemented mappings of CIM to OWL-DL, and they remark

122 Chapter 9. Application to Wireless Mesh Networks

the lack of equivalences for some CIM constructs in OWL. Our mapping is closer
to the second and third works, and was implemented with an XSLT stylesheet.
Table 9.2 shows some of the mappings from the CIM schema to OWL TBox of our
transformation.

We have adapted some of the ideas of previous works and rejected others; for
example, mapping CIM key properties was problematic and it was not implemented,
so a unique name was assigned to each instance based on the class name and a unique
ID generated by the XSLT stylesheet.

Our associations mapping tries to simplify their closure and preserves the se-
mantics of cardinality. Since OWL properties are binary, separate instances for
associations are required to house possible association attributes.

Once the pertinent classes from the CIM schema are translated into TBox de�ni-
tions, the con�guration �le is translated entirely into ABox assertions. Nevertheless
the separation is not perfect, because of the world closure conditions, described next.

A great part of the mapping process is concerned with providing axioms to
obtain world closure. OWL reasoners operate following by default the Open World
Assumption, so unstated facts are not false, merely unknown. This is mainly to
ensure interoperability and that the addition of new knowledge does not invalidate
previous conclusions. Unfortunately, it has the side e�ect of making membership by
negation very hard to verify. This is because it requires negation as failure, and only
works if there is no possible additional knowledge that invalidates the negation.

In this case, since the con�guration �le is the universe of discourse we can pre-

CIM entity OWL TBox mapping

Class <owl:Class>, de�ned as a closed set of individuals using <owl:OneOf>

SubClass <rdfs:subClassOf>, all subclasses declared as disjoint to one another

Properties DataProperties with appropriate types to map CIM types

References cardinality 1 ObjectProperty. Inverse properties are inferred

automatically by the reasoner

Association subclasses of Association. Each instance limited to DataProperty

and two cardinality 1 ObjectProperties

Cardinality Normal in DataProperty. ObjectProperty in associated classes

by limiting the cardinality of inverse object properties

Key Not implemented, causes undecidability without being needed

Table 9.2: CIM to OWL mapping

9.4 Ontology Representation 123

vent this by listing the instances of every instantiated class (including associations),
restricting the cardinality of associations to exactly one, and de�ning all individuals
pairwise disjoint. This e�ectively closes the world and allows reasoning with nega-
tions. Having to specify these axioms can be viewed as a drawback of OWL, but it
also gives �exibility to open certain parts of the world, for example parts modi�able
by unknown external imports or concerning unknown extension modules.

9.4.3. OWL Reasoning Implementation in AdCIM

Once the information contained in the miniCIM schema and instances is trans-
lated to TBox and ABox axioms, additional axioms are introduced in an included
�le that verify some conditions. This section shows some examples of applicable
restrictions for con�guration checking. To better understand this section, refer to
Fig. 9.4.

The �rst example shows a simple case in which uncon�gured entities are detected;
in this case, ports in a switching service that are not con�gured. The following set
of rules avoid the possibility of the switching service failing due to miscon�guration
and causing a malfunction in the node:

SwitchPort_Undefined ≡ SwitchPort ∩ (9.2a)

¬(∃EndpointIdentitySystemElement−.EndpointIdentity) (9.2b)

This restriction declares an unde�ned port in a switching service as a port not
represented with a network endpoint. This is checked by the presence of an inverse
property from association EndpointIdentity, x− in term 9.2b. The values of these
inverse properties are inferred automatically by the reasoner. Since this restriction
uses negation as failure, the possible instances of the EndpointIdentity association
and SwitchPort must be closed for it to work.

The e�ects of a con�guration error are made to cascade to other entities de�ning
intermediate classes (OWL-DL does not support composition of properties). The
reasoner automatically determines the proper evaluation order, and the cascading
can be made arbitrarily deep. The types of errors detected by this process are impor-
tant in wireless nodes, since obscure high-level errors might have simple motivations
solvable on-the-�y. The following set of rules shows how to chain miscon�guration

124 Chapter 9. Application to Wireless Mesh Networks

conditions across relationships to detect miscon�gured IP addresses:

Not_current_IP_setting ≡ (9.3a)

ElementSettingData ∩ (9.3b)

(∃ElementSettingDataIsCurrent = false | xsd : string) ∩ (9.3c)

(∃ElementSettingDataSettingData.IPAssignmentSettingData) (9.3d)

Unconfigured_IP_Endpoint ≡ IPProtocolEndpoint ∩ (9.3e)

((∀ElementSettingDataManagedElement−.Not_current_IP_setting) (9.3f)

∪ (¬(∃ElementSettingDataManagedElement−.IP_setting))) (9.3g)

BindsTo_Unconfigured_IP_Endpoint ≡ (9.3h)

BindsTo ∩ (∃BindsToAntecedent.Unconfigured_IP_Endpoint) (9.3i)

The term 9.3c selects IP setting instances that are not currently used, term 9.3d
deselects ElementSettingData instances not related to IP settings, and the special
intermediate class Unconfigured_IP_Endpoint is de�ned as one Endpoint with no IP
settings (9.3e), or an Endpoint in which none are current (9.3f). Finally, term 9.3h
declares a subclass of the association BindsTo grouping those instances that bind with
Unconfigured_IP_Endpoint instances. In that way, semantic errors are propagated
so they can help diagnose problems in top-level entities.

Policies are also implemented by SWRL rule chaining. SWRL allows both
straightforward composition without intermediate classes, and performing inequality
comparisons with datatype ranges (instead of only supporting equality comparisons).
Some OWL reasoners translate the rules and relevant OWL axioms to another rule
engine, sometimes changing the semantics, but the Pellet reasoner integrates them
fully with OWL axioms. These rules, for example, detect wireless ports that have
illegal frequencies depending on the legislation of the country:

WirelessPortChannel(?x, ?y) ∧ swrlb : multiply(?y5, ?y, 5) (9.4a)

∧ swrlb : add(?z, ?y5, 2412)→WirelessPortFrequency(?x, ?z) (9.4b)

9.4 Ontology Representation 125

located(Japan, ?y) ∧ ComputerSystem(?y) ∧ (9.4c)

∧ SystemDeviceGroupComponent(?z, ?y) ∧ (9.4d)

∧ SystemDevicePartComponent(?z, ?a) ∧ WirelessPort(?a) ∧ (9.4e)

∧ WirelessPortChannel(?a, ?b) ∧ swrlb : greaterThanOrEqual(?b, 2500) (9.4f)

→ IllegalFrequency_WirelessPort(?a) (9.4g)

located(USA, ?y) ∧ ComputerSystem(?y) ∧ (9.4h)

∧ SystemDeviceGroupComponent(?z, ?y) ∧ (9.4i)

∧ SystemDevicePartComponent(?z, ?a) ∧ WirelessPort(?a) ∧ (9.4j)

∧ WirelessPortFrequency(?a, ?b) ∧ swrlb : greaterThanOrEqual(?b, 2467) (9.4k)

→ IllegalFrequency_WirelessPort(?a) (9.4l)

Since the legal spectrum depends on the country, it �rst determines the location
of the system housing the wireless ports in terms (9.4c, 9.4h), and then �nds their fre-
quency (9.4d-9.4g, 9.4i-9.4l). Since these frequencies are usually expressed as chan-
nels, terms 9.4a and 9.4b calculate the frequency by using SWRL built-in operations.
Finally, the frequency of each port is compared with the legal maximum (terms 9.4f,
9.4k) and minimum (not shown). If this value is out of limits (for example, chan-
nel 13 in the USA), the ports are classi�ed in the IllegalFrequency_WirelessPort

subclass.

ComputerSystem(?y) ∧ SystemDeviceGroupComponent(?z, ?y) ∧ (9.5a)

∧ SystemDevicePartComponent(?z, ?a) ∧ (9.5b)

∧ SystemDeviceGroupComponent(?z, ?y1) ∧ (9.5c)

∧ SystemDevicePartComponent(?z, ?a1) ∧ WirelessPort(?a) ∧ (9.5d)

∧ WirelessPort(?a1) ∧ WirelessPortFrequency(?a, ?b) ∧ (9.5e)

∧ WirelessPortFrequency(?a1, ?b1) ∧ swrlb : subtract(?delta, ?b, ?b1) ∧ (9.5f)

∧ swrlb : lessThanOrEqual(?delta, 24)→ interferes(?a, ?a1) (9.5g)

More complex policies and taxonomies are de�ned using SWRL to de�ne new
properties. In the following example, WirelessPort instances are de�ned as interfer-
ing one another (i.e. a symmetric property) if their frequency di�erence is less than
25 MHz (term 9.5g). This property can be used in turn in more complex rules. For

126 Chapter 9. Application to Wireless Mesh Networks

example, if throughput degradation between two ports is detected, an interference
can explain its origin.

9.5. Related Work

Some research has been done in the area of managing wireless mesh networks.
An interesting scheme for troubleshooting faults in WMNs based on a simulator
is presented by Qiu et al.. [85] The approach is novel and suitable for automated
fault detection in WMNs. In Kim and Shin [50] a scheme for accurate measurement
of link quality in a wireless mesh network is introduced. Link quality experiences
�uctuations and often induces performance degradation. Accurately measuring it
is therefore important for multiple reasons: routing, fault diagnosis or identifying
high-quality channels. In Zhang and Fang [111] the challenges and fundamentals of
security operations are enumerated, and an attack resilient security architecture for
WMNs (ARSA) is presented. This schema involves the existence of WMN operators,
but does not rule out the possible use of them in the context of community WMNs.

For the con�guration and accounting of WMNs, commercial solutions are avail-
able from Nortel [71] or LocustWorld [53]. Nortel makes use of the Network Oper-
ations Support System (NOSS), a system software component that o�ers central-
ized monitoring and managing operations. The NOSS consists of the Enterprise
Network Management System (ENMS), FTP, Remote Authentication Dial In User
Service (RADIUS), Dynamic Host Con�guration Protocol (DHCP) and Simple Net-
work Time Protocol (SNTP) servers. ENMS provides performance, con�guration
and fault management, and discovers every wireless Access Point (AP). The DHCP
server provides dynamic IP addresses for wireless APs and mobile nodes. The RA-
DIUS server performs mobile and wireless AP authentication, authorization and
accounting. The FTP server stores con�guration �les downloaded by the wireless
APs when turned on. The SNTP server provides the wireless APs time parame-
ters needed for timestamping events. The solution stands out for a high number of
nodes in the network, but is limited by the centralised management approach (i.e.
centralised NOSS).

Staub et al. [95] tackle the challenges of defective con�gurations or errors in
mesh routers, and propose a distributed automated recon�guration architecture.
The approach uses Cfengine [10] to distribute con�guration and updates among
the nodes in the WMN backbone. Each node asks its neighbours for con�guration

9.6 Conclusions 127

updates, and �pulls� the new con�guration to its storage. This allows simple over-
writing of the current con�guration, which is backed up for fall back in case of an
erroneous new con�guration, but it does not allow for extraction and analysis of the
current state of the network.

There are works that use ontologies or formal models for con�guration data:
Sinz et al. develop in [93] a CIM-based formal model much alike description logics
mentioned in Section 9.4.1 (except for the use of predicates with arity greater than
2), which is used to check for inconsistencies on Apache con�guration �les, as Glasner
and Sreedhar do in [36], but with a custom OWL model and with more emphasis on
decidability. García et al. [35] make a transformation of the CIM model into OWL
and use SWRL rules, but they do not give details about the implementation and the
problems of mixing rules and description logics. The work by Quirolgico et al. [86]
is an earlier exploratory e�ort that used RDF Schema instead of OWL (which was
still being standardized), so it lacked cardinality restrictions, used in [93], [36] and
in the case study of this chapter for certain structural constraints.

9.6. Conclusions

We have presented the application of AdCIM to a real mesh network router,
by analyzing its con�guration, �rst separating its format and underlying entities,
and de�ning a CIM mapping that supports the complete expression of the router
con�guration, with special care for storing format intricacies without polluting more
abstract objects. This mapping and its opposite (from CIM objects to router con-
�guration) was implemented through XSLT stylesheets, �nally allowing these data
to be stored and used to create web forms by the AdCIM framework (see Fig. 6.7
in Chapter 6).

Our approach allows for the representation and o�-line analysis of the current
state of the WMN and also presents it in an integrated manner that is used to
prevent broken con�guration states before their application. This o�-line analy-
sis is done using an ontological model that allows detection of semantic errors and
con�icts. Policy enforcement is also supported, and the semantical representation
widens the range of application by both discovering unforeseen equivalences (e.g., a
new property value is inferred and a policy is triggered), and by using the associ-
ations in the underlying CIM model, for example by employing both the physical
location and vendor of a product to enforce rules.

Chapter 10

Conclusions and Future Work

In this chapter, we wrap up the description of the work done in this Thesis and
provide some insights on the future research direction.

10.1. Conclusions

In this work we have outlined AdCIM, a model-driven framework based on the
CIM model and aimed to the development of integrated system administration ap-
plications for distributed systems. Its model-driven nature means that it is capable
of rapid prototyping and adaptation to complex scenarios, such as those described
in Chapters 7, 8 and 9. AdCIM provides XSLT stylesheets that produce several
artifacts from the schema, so extensions and modi�cations on it can be rapidly
transformed into database schemata, forms or XML Schema documents. These ar-
tifacts are also guaranteed to preserve semantics and constraints, since they are
directly derived from the schema.

AdCIM also supports the extraction of CIM data from several con�guration
sources, and specially from �at �le con�gurations, prevalent on Unix systems, but
also supports the WMI system in Windows systems, �rmware con�gurations and
other sources. In the case of �at �les, complex con�gurations such as the Sendmail
con�guration �le are supported, as covered in Chapter 7.

AdCIM also derives database schemata, as part of the supported artifacts, and
using provided XSLT stylesheets supports transparent persistence of CIM data on
LDAP repositories. The performance of these XSLT stylesheets is shown to be both

129

130 Chapter 10. Conclusions and Future Work

scalable and multicore-aware. Part of this good performance is due to the use of our
miniCIM format, which minimizes the overhead of using XML-encoded CIM data.
This is possible using a derived XML Schema to de�ne an e�cient encoding.

XForms forms are generated for the manipulation of CIM instances. They pro-
vide a general, user-friendly, model-driven access to management and con�guration
data. These forms are easily prototypable, but at the same time support CSS cus-
tomization and can be displayed in any common browser. Their access to the CIM
data is mediated using a REST web service interface that exposes these data for
web clients and external applications.

Last, but not least, the semiformal CIM speci�cation is complemented with
added constraints and de�nitions to build an OWL formal ontological speci�cation,
with support for formal reasoning capabilities and for the enforcement of policies
based on Horn rules.

Summarizing, AdCIM provides infrastructure for:

E�cient representation and extension of the CIM model using a custom XML
representation (called miniCIM).

Grammar-based extraction of con�guration and management information as
miniCIM instances. As a complex case study, we have adapted this process to
the con�guration of the Sendmail mail agent.

Transparent persistence of miniCIM data into a repository (an LDAP direc-
tory, although AdCIM is repository-independent), including schema mapping.
We have shown how this persistence support scales near linearly in multicore
systems.

Querying and modifying miniCIM information backed by the repository through
REST-style web services.

Pregeneration and styling of XForms web user interfaces for the administration
applications that can communicate directly with web services.

Formal ontological speci�cation of management domains with support for rea-
soning processes and policy enforcement.

These software components are assembled to abstract, integrate and associate
all con�guration and management data in a coherent whole. The application devel-
opment task is expedited by framework-provided XSLT stylesheets and the use of

10.2 Future Work 131

integration technologies, such as REST web services, XForms and XSLT. Although
the framework footprint in deployed nodes depends on the implementation chosen
for the repository, XSLT processors and XForms, we have achieved a small footprint
(less than 1 Mb) for the core XSLT transformation functionality by using a C-based
XSLT processor with compressed XML inputs.

The AdCIM project also has a homepage at http://adcim.des.udc.es.

10.2. Future Work

Future work includes:

The study of other distributed repositories. Although LDAP has good replica-
tion characteristics it is possible to do a complete mapping with good perfor-
mance (see Chapter 5), there is still some impedance due to the comparative
simplicity of the LDAP data model, and currently it is not possible to real-
ize queries on persisted associations without using the AdCIM framework. It
would be useful to conduct queries using only standard tools in a repository
that did not require modifying and qualifying attribute names. Another in-
teresting possibility would be a distributed persistence solution that did not
require dedicated repository nodes and could survive extreme cases of network
separation or disconnection.

Advanced use of ontologies. Chapter 9 formulates ontological processes which
chain error conditions, do domain conversions and detect miscon�gurations,
but there is still much work to be done in this area, specially on fault inference,
complementation of network discovery, service availability prediction, failure
simulation, load prediction, and many more diagnosis and prediction processes.

Development of diagnosis and automatic recovery in complex situations. This
objective would use ontological tools to achieve continued operation on net-
works in which the number and quality of nodes are not known. The processes
would start with a de�nition of the tasks needed and the relationships and hard
dependences generated by these tasks and would try to map and enforce these
on an ad-hoc or unknown network.

Extension to other management domains. For example, cloud computing o�ers
new domains, like the modelization of common functionality of several cloud

http://adcim.des.udc.es

132 Chapter 10. Conclusions and Future Work

solutions, the modelization of the security and integrity of sensitive documents,
provisioning with cost and scalability prediction, computation time estimation,
and the extraction of the con�guration for the cloning and customization of
tailored virtual machines for speci�c computing tasks. All these domains would
bene�t greatly from the use of ontologies. Additionally, sensor networks could
be another interesting domain for AdCIM to cover.

Bibliography

[1] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey.
Computer Networks, vol. 47, num. 4, pages 445�487, 2005. Cited in p. 111

[2] G. Aloisio, M. Cafaro, I. Epicoco, S. Fiore, D. Lezzi, M. Mirto, and S. Mo-
cavero. iGrid, a novel grid information service. In Advances in Grid Computing

- Proceedings of the European Grid Conference, EGC 2005, volume 3470 of
Lecture Notes in Computer Science, pages 506�515, Amsterdam, The Nether-
lands, February 2005. Cited in p. 109

[3] P. Anderson and A. Scobie. LCFG: the next generation. In Proceedings of the

UK Unix & Open Systems User Group Large Installation Systems Administra-

tion Winter Conference, UKUUG/LISA 2002, London, UK, February 2002.
Available at: http://www.lcfg.org/doc/ukuug2002.pdf. Cited in p. 24

[4] Apache Software Foundation. OpenJPA User's Guide. Available
at: http://openjpa.apache.org/builds/1.2.0/apache-openjpa-1.2.0/

docs/manual/ [Last accessed 10 March 2010]. Cited in p. 104

[5] Apache Software Foundation. XSLTC documentation. 2001. Available
at: http://xml.apache.org/xalan-j/xsltc/index.html [Last accessed 10
March 2010]. Cited in p. 21

[6] M. Bajohr and T. Margaria. MaTRICS: a service-based management tool
for remote intelligent con�guration of systems. Innovations in Systems and

Software Engineering, vol. 2, num. 2, pages 99�111, July 2006. Cited in p. 23

[7] K. Birman and F. Schneider. The monoculture risk put into context. IEEE

Security & Privacy, vol. 7, num. 1, pages 14�17, January-February 2009. Cited
in p. v, 1

133

http://www.lcfg.org/doc/ukuug2002.pdf
http://openjpa.apache.org/builds/1.2.0/apache-openjpa-1.2.0/docs/manual/
http://openjpa.apache.org/builds/1.2.0/apache-openjpa-1.2.0/docs/manual/
http://xml.apache.org/xalan-j/xsltc/index.html

134 BIBLIOGRAPHY

[8] R. Biswas and E. Ort. The Java Persistence API - a simpler programming
model for entity persistence. May 2006. Available at: http://java.sun.com/
developer/technicalArticles/J2EE/jpa/ [Last accessed 10 March 2010].
Cited in p. 104

[9] D. Booth, H. Haas, and F. McCabe. Web services architecture. 2004. Available
at: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ [Last accessed
10 March 2010]. Cited in p. 42

[10] M. Burgess and R. Ralston. Distributed resource administration using
Cfengine. Software Practice & Experience, vol. 27, num. 9, pages 1083�1101,
September 1997. Cited in p. 24, 126

[11] Chiba Project. 2008. Available at: http://chiba.sourceforge.net/ [Last
accessed 10 March 2010]. Cited in p. 72

[12] J. Clark and S. DeRose. XML Path Language (XPath) version 1.0. 1999.
Available at: http://www.w3.org/TR/xpath/ [Last accessed 10 March 2010].
Cited in p. 18

[13] K. Clark and B. Parsia. Pellet: the open source OWL DL reasoner. 2009. Avail-
able at: http://clarkparsia.com/pellet [Last accessed 10 March 2010].
Cited in p. 121

[14] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).
October 2003. Available at: http://www.ietf.org/rfc/rfc3626.txt [Last
accessed 10 March 2010]. Cited in p. 115

[15] B. Costales, C. Assmann, G. Jansen, and C. Saphiro. Sendmail, Fourth Edi-

tion. O'Reilly & Associates, Inc., Sebastopol, USA, October 2007. Cited in p.

87

[16] Côdeazur brasil. DENG, the modular XML browser engine. 2006. Available
at: http://deng.com.br [Last accessed 10 March 2010]. Cited in p. 72

[17] A. Dalke. Martel. 2008. Available at: http://www.dalkescientific.com/

Martel/ [Last accessed 10 March 2010]. Cited in p. 38

[18] DataPower. XML accelerator XA35. 2009. Available at: http://www-01.

ibm.com/software/integration/datapower/xa35/ [Last accessed 10 March
2010]. Cited in p. 21

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://chiba.sourceforge.net/
http://www.w3.org/TR/xpath/
http://clarkparsia.com/pellet
http://www.ietf.org/rfc/rfc3626.txt
http://deng.com.br
http://www.dalkescientific.com/Martel/
http://www.dalkescientific.com/Martel/
http://www-01.ibm.com/software/integration/datapower/xa35/
http://www-01.ibm.com/software/integration/datapower/xa35/

BIBLIOGRAPHY 135

[19] N. Desai. bcfg2. In Proceedings of the 20th USENIX Conference on Systems

Administration, LISA 2006, Washington DC, USA, December 2006. Cited in

p. 24

[20] I. Díaz, G. Fernández, M. J. Martín, P. González, and J. Touriño. Integrat-
ing the Common Information Model with MDS4. In Proceedings of the 9th

IEEE/ACM International Conference on Grid Computing, Grid 2008, pages
298�303, Tsukuba, Japan, September 2008. Cited in p. vii, 2

[21] I. Díaz, C. Popi, O. Festor, J. Touriño, and R. Doallo. Ontological con�gu-
ration management for wireless mesh routers. In Proceedings of the 9th IEEE

International Workshop on IP Operations and Management, IPOM 2009, vol-
ume 4773 of Lecture Notes in Computer Science, pages 116�129, Venice, Italy,
October 2009. Cited in p. vii, 2

[22] I. Díaz, J. Touriño, J. Salceda, and R. Doallo. A framework focus on con�gura-
tion modeling and integration with transparent persistence. In Proceedings of

the 19th IEEE International Parallel and Distributed Processing Symposium,

IPDPS 2005, Workshop on System Management Tools for Large-Scale Parallel

Systems, page 297a, Denver, USA, April 2005. Cited in p. vii, 2

[23] Distributed Management Task Force (DMTF). Common Information Model
(CIM) Standards. 2008. Available at: http://www.dmtf.org/standards/cim
[Last accessed 10 March 2010]. Cited in p. vi, 2, 11

[24] Distributed Management Task Force (DMTF). Speci�cation for the represen-
tation of CIM in XML. May 2002. Available at: http://www.dmtf.org/

standards/documents/WBEM/DSP201.html [Last accessed 10 March 2010].
Cited in p. 27

[25] E. Dolstra and A. Löh. NixOS: a purely functional Linux distribution. In Pro-

ceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2008, pages 367�378, Victoria, Canada, September 2008.
Cited in p. 22

[26] J. Dunkel, R. Bruns, and A. Holitschke. Comparison of JavaServer pages and
XSLT: a software engineering perspective. Software Practice & Experience,
vol. 34, num. 1, pages 1�13, January 2004. Cited in p. 18

[27] Enabling Grids for E-sciencE. Available at: http://www.eu-egee.org/ [Last
accessed 10 March 2010]. Cited in p. 108

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/documents/WBEM/DSP201.html
http://www.dmtf.org/standards/documents/WBEM/DSP201.html
http://www.eu-egee.org/

136 BIBLIOGRAPHY

[28] D. W. Erwin. UNICORE - a grid computing environment. Concurrency and

Computation: Practice and Experience, vol. 14, num. 13-15, pages 1395�1410,
2002. Cited in p. 109

[29] R. Evard. An analysis of Unix system con�guration. In Proceedings of the 11th
USENIX Conference on Systems Administration, LISA 1997, pages 179�194,
San Diego, USA, October 1997. Cited in p. 37

[30] R. T. Fielding and R. N. Taylor. Principled design of the modern web ar-
chitecture. ACM Transactions on Internet Technology, vol. 2, num. 2, pages
115�150, May 2002. Cited in p. 11, 80

[31] J. Finke. Generating con�guration �les: the director's cut. In Proceedings of

the 17th USENIX Conference on Systems Administration, LISA 2003, pages
195�204, San Diego, USA, October 2003. Cited in p. 59

[32] J. Finke. An improved approach for generating con�guration �les from a
database. In Proceedings of the 14th USENIX Conference on Systems Admin-

istration, LISA 2000, pages 29�38, New Orleans, USA, December 2000. Cited
in p. 59

[33] I. Foster. Globus Toolkit version 4: software for service-oriented systems.
Journal of Computer Science and Technology, vol. 21, num. 4, pages 513�520,
July 2006. Cited in p. 97

[34] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the Grid: an
open grid services architecture for distributed systems integration. 2002. Avail-
able at: www.globus.org/alliance/publications/papers/ogsa.pdf [Last
accessed 10 March 2010]. Cited in p. 97

[35] F. J. García Clemente, G. Martínez Pérez, J. A. Botía Blaya, and A. F. Gómez-
Skarmeta. On the application of the semantic web rule language in the de�-
nition of policies for system security management. In Proceedings of the 4th

On the Move to Meaningful Internet Systems Workshops, OTM 2005, volume
3762 of Lecture Notes in Computer Science, pages 69�78, Agia Napa, Cyprus,
October 2005. Cited in p. 121, 127

[36] D. Glasner and V. Sreedhar. Con�guration reasoning and ontology for web. In
Proceedings of the 4th IEEE International Conference on Services Computing,

SCC 2007, pages 387�394, Salt Lake City, USA, July 2007. Cited in p. 119, 127

www.globus.org/alliance/publications/papers/ogsa.pdf

BIBLIOGRAPHY 137

[37] Globus Alliance. Globus Toolkit 4.0 web services monitoring and discov-
ery system: cluster monitoring information and the GLUE resource prop-
erty. Available at: http://www.globus.org/toolkit/docs/4.0/info/key/

gluerp.html [Last accessed 10 March 2010]. Cited in p. 102

[38] Globus Alliance. Globus Toolkit 4.2.1 web services monitoring and dis-
covery system: UsefulRP Guides. Available at: http://www.globus.org/

toolkit/docs/4.2/4.2.1/info/usefulrp/usefulrp.pdf [Last accessed 10
March 2010]. Cited in p. 99

[39] Globus Alliance. Globus Toolkit monitoring and discovery system information
providers. Available at: http://www.globus.org/toolkit/docs/latest-

stable/info/providers/ [Last accessed 10 March 2010]. Cited in p. 108

[40] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain, P. Murray,
and P. Toft. The SmartFrog con�guration management framework. ACM

SIGOPS Operating Systems Review, vol. 43, num. 1, pages 16�25, January
2009. Cited in p. 24

[41] J. Green�eld, K. Short, S. Cook, and S. Kent. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. John Wiley &
Sons, 2004. Cited in p. vi, 2

[42] D. Grisby. Free high performance ORB. 2008. Available at: http://omniorb.
sourceforge.net/ [Last accessed 10 March 2010]. Cited in p. 43

[43] D. Heimbigner. DMTF - CIM to OWL: a case study in ontology conversion.
In Proceedings of the 16th Conference on Software Engineering and Knowledge

Engineering, SEKE 2004, pages 470�473, Ban�, Canada, June 2004. Cited in

p. 121

[44] International Electrotechnical Commission (IEC). Energy management system
application program interface (EMS-API) - part 301: Common Information
Model (CIM) base. November 2003. Available at: http://webstore.iec.ch/
webstore/webstore.nsf/artnum/033912!OpenDocument&Click= [Last ac-
cessed 10 March 2010]. Cited in p. 22

[45] International Organization for Standardization and International Electrotech-
nical Commission Joint Technical Committee (ISO/IEC JTC). Document
description and processing languages. 1996. Available at: http://www.

http://www.globus.org/toolkit/docs/4.0/info/key/gluerp.html
http://www.globus.org/toolkit/docs/4.0/info/key/gluerp.html
http://www.globus.org/toolkit/docs/4.2/4.2.1/info/usefulrp/usefulrp.pdf
http://www.globus.org/toolkit/docs/4.2/4.2.1/info/usefulrp/usefulrp.pdf
http://www.globus.org/toolkit/docs/latest-stable/info/providers/
http://www.globus.org/toolkit/docs/latest-stable/info/providers/
http://omniorb.sourceforge.net/
http://omniorb.sourceforge.net/
http://webstore.iec.ch/webstore/webstore.nsf/artnum/033912!OpenDocument&Click=
http://webstore.iec.ch/webstore/webstore.nsf/artnum/033912!OpenDocument&Click=
http://www.y-adagio.com/public/sc34wg2/index.htm
http://www.y-adagio.com/public/sc34wg2/index.htm

138 BIBLIOGRAPHY

y-adagio.com/public/sc34wg2/index.htm [Last accessed 10 March 2010].
Cited in p. 17

[46] International Organization for Standardization (ISO). Standard General-
ized Markup Language (SGML). 1986. Available at: http://www.iso.org/

iso/catalogue_detail.htm?csnumber=16387 [Last accessed 10 March 2010].
Cited in p. 17

[47] Internet Engineering Task Force (IETF). Available at: http://www.ietf.

org/ [Last accessed 10 March 2010]. Cited in p. 51

[48] M. Kay. The Saxon XSLT processor. 2009. Available at: http://saxon.sf.
net [Last accessed 10 March 2010]. Cited in p. 21, 66

[49] B. W. Kernighan and D. M. Ritchie. The M4 macro processor. Technical
report, Bell Laboratories, Murray Hill, 1977. Cited in p. 87

[50] K.-H. Kim and K. G. Shin. On accurate measurement of link quality in multi-
hop wireless mesh networks. In Proceedings of the 12th Annual International

Conference on Mobile Computing and Networking, MOBICOM 2006, pages
38�49, Los Angeles, USA, September 2006. Cited in p. 126

[51] Laboratoire des Sciences de l'Images, de l'Informatique et de la Télédétection
(LSIIT). Project NEMO. 2008. Available at: https://lsiit-cnrs.unistra.
fr/rp-fr/index.php/DemoIPv6Nemo [Last accessed 10 March 2010]. Cited in

p. 113

[52] D. Lee and W. W. Chu. Comparative analysis of six XML schema languages.
ACM SIGMOD Record, vol. 29, num. 3, pages 76�87, September 2000. Cited
in p. 29

[53] LocustWorld. Bio-diverse networking. 2009. Available at: http://www.

locustworld.com/ [Last accessed 10 March 2010]. Cited in p. 126

[54] P. Loshin. Big book of Lightweight Directory Access Protocol (LDAP) RFCs.
Academic Press, Inc., Orlando, USA, 2000. Cited in p. 50, 54

[55] M. Majewska, B. Kryza, and J. Kitowski. Translation of Common Information
Model to Web Ontology Language. In Proceedings of the 7th International

Conference on Computational Science, ICCS 2007, volume 4487 of Lecture
Notes in Computer Science, pages 414�417, Beijing, China, May 2007. Cited

in p. 121

http://www.y-adagio.com/public/sc34wg2/index.htm
http://www.y-adagio.com/public/sc34wg2/index.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
http://www.ietf.org/
http://www.ietf.org/
http://saxon.sf.net
http://saxon.sf.net
https://lsiit-cnrs.unistra.fr/rp-fr/index.php/DemoIPv6Nemo
https://lsiit-cnrs.unistra.fr/rp-fr/index.php/DemoIPv6Nemo
http://www.locustworld.com/
http://www.locustworld.com/

BIBLIOGRAPHY 139

[56] H. Mao, L. Huang, and M. Li. Web resource monitoring based on Common
Information Model. In Proceedings of the 2006 IEEE Asia-Paci�c Conference

on Services Computing, APSCC 2006, pages 520�525, GuangZhou, China,
December 2006. Cited in p. 108

[57] M. Massie, B. Chun, and D. Culler. The Ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, vol. 30,
num. 5-6, pages 817�840, June 2004. Cited in p. 102

[58] O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, and S. Abeck.
A management-aware software development process using design patterns. In
Proccedings of the 8th IFIP/IEEE International Symposium on Integrated Net-

work Management, IM 2003, pages 579�592, Colorado Springs, USA, March
2003. Cited in p. 22

[59] A. S. Memon, M. S. Memon, P. Wieder, and B. Schuller. CIS: an information
service based on the Common Information Model. In Proceedings of the 3rd

IEEE International Conference on e-Science and Grid Computing, pages 465�
473, Bangalore, India, December 2007. Cited in p. 109

[60] Microsoft Corporation. Windows Services for UNIX 3.5 white paper. 2004.
Available at: http://technet.microsoft.com/en-us/library/bb463214.

aspx [Last accessed 10 March 2010]. Cited in p. vi, 1

[61] Microsoft Corporation. WMI - Windows Management Instrumentation.
June 2000. Available at: http://msdn.microsoft.com/en-us/library/

aa394582(VS.85).aspx [Last accessed 10 March 2010]. Cited in p. 37, 40

[62] J. C. Mogul. Clarifying the fundamentals of HTTP. In Proceedings of the

11th International Conference on World Wide Web, WWW 2002, pages 25�
36, Honolulu, USA, May 2002. Cited in p. 80

[63] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
In Proceedings of the 3rd International Semantic Web Conference, ISWC 2004,
volume 3298 of Lecture Notes in Computer Science, pages 549�563, Hiroshima,
Japan, November 2004. Cited in p. 120

[64] Mozilla Corporation. Mozilla XForms project. 2008. Available at: http:

//www.mozilla.org/projects/xforms/ [Last accessed 10 March 2010]. Cited
in p. 72

http://technet.microsoft.com/en-us/library/bb463214.aspx
http://technet.microsoft.com/en-us/library/bb463214.aspx
http://msdn.microsoft.com/en-us/library/aa394582(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa394582(VS.85).aspx
http://www.mozilla.org/projects/xforms/
http://www.mozilla.org/projects/xforms/

140 BIBLIOGRAPHY

[65] H. Nakada, K. Saga, Y. Saeki, H. Sato, M. Hatanaka, and S. Matsuoka. Job
invocation interoperability between NAREGI Middleware Beta and gLite. In
Proceedings of the 9th IEEE International Conference on High Performance

Computing in Asia Paci�c Region, pages 298�303, Seoul, Korea, October 2008.
Cited in p. 109

[66] U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, and Y. Li. Current approaches
to XML management. IEEE Internet Computing, vol. 6, num. 4, pages 43�51,
July 2002. Cited in p. 59

[67] National Research Grid Initiative. Available at: http://www.naregi.org/

index_e.html [Last accessed 10 March 2010]. Cited in p. 108

[68] National Science Foundation (NSF). The TeraGrid project. Available at:
http://www.teragrid.org/ [Last accessed 10 March 2010]. Cited in p. 108

[69] A. Nikolaidis, G. Doumenis, G. Stassinopoulos, M.-P. Drakos, M. Anasta-
sopoulos, and S. D'Haeseleer. Management tra�c in emerging remote con�g-
uration mechanisms for residential gateways and home devices. IEEE Com-

munications Magazine, vol. 43, num. 5, pages 154�162, May 2005. Cited in p.

44

[70] G. J. Noer. Cygwin32: a free Win32 porting layer for UNIX. In Proceedings

of the 2nd Conference on USENIX Windows NT, WINSYM 1998, page 4,
Seattle, USA, August 1998. Cited in p. vi, 1

[71] Nortel. WMN Solutions. 2009. Available at: http://www2.nortel.

com/go/solution_content.jsp?segId=0&catId=W&parId=0&prod_id=

47160&locale=en-us [Last accessed 10 March 2010]. Cited in p. 126

[72] Object Management Group (OMG). CORBA/IIOP speci�cations. 2008.
Available at: http://www.omg.org/technology/documents/corba_spec_

catalog.htm [Last accessed 10 March 2010]. Cited in p. 42

[73] Object Management Group (OMG). XMLDOM: DOM/Value mapping spec-
i�cation. 2001. Available at: ftp://ftp.omg.org/pub/docs/ptc/01-04-

04.pdf [Last accessed 10 March 2010]. Cited in p. 42

[74] Open Science Grid (OSG). Available at: http://www.opensciencegrid.org/
[Last accessed 10 March 2010]. Cited in p. 108

http://www.naregi.org/index_e.html
http://www.naregi.org/index_e.html
http://www.teragrid.org/
http://www2.nortel.com/go/solution_content.jsp?segId=0&catId=W&parId=0&prod_id=47160&locale=en-us
http://www2.nortel.com/go/solution_content.jsp?segId=0&catId=W&parId=0&prod_id=47160&locale=en-us
http://www2.nortel.com/go/solution_content.jsp?segId=0&catId=W&parId=0&prod_id=47160&locale=en-us
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm
ftp://ftp.omg.org/pub/docs/ptc/01-04-04.pdf
ftp://ftp.omg.org/pub/docs/ptc/01-04-04.pdf
http://www.opensciencegrid.org/

BIBLIOGRAPHY 141

[75] OpenLDAP Foundation. OpenLDAP. 2008. Available at: http://www.

openldap.org [Last accessed 10 March 2010]. Cited in p. 59

[76] Orbeon. Orbeon Presentation Server. 2009. Available at: http://www.

orbeon.com [Last accessed 10 March 2010]. Cited in p. 72

[77] Organization for the Advancement of Structured Information Standards (OA-
SIS). Available at: http://www.oasis-open.org [Last accessed 10 March
2010]. Cited in p. 54, 57

[78] Organization for the Advancement of Structured Information Standards (OA-
SIS). The DSMLv2 standard. 2002. Available at: http://www.oasis-

open.org/specs/index.php [Last accessed 10 March 2010]. Cited in p. 54

[79] OSGi Alliance. Open Services Gateway initiative. 2007. Available at: http:
//www.osgi.org/Main/HomePage [Last accessed 10 March 2010]. Cited in p.

113

[80] OSGi Alliance. OSGi Service Platform Service Compendium, release 4. 2007.
Available at: http://www.osgi.org/Specifications/HomePage. Cited in p.

113

[81] L. D. Paulson. Building rich web applications with Ajax. Computer, vol. 38,
num. 10, pages 14�17, October 2005. Cited in p. 79

[82] M. Peltier. MTrans, a DSL for model transformation. In Proceedings of the

6th International Enterprise Distributed Object Computing Conference, EDOC

2002, pages 190�199, Lausanne, Switzerland, September 2002. Cited in p. 23

[83] H. Post and C. Sinz. Con�guration lifting: veri�cation meets software con�g-
uration. In Proceedings of the 23rd IEEE/ACM International Conference on

Automated Software Engineering, ASE 2008, pages 347�350, L'Aquila, Italy,
September 2008. Cited in p. 22

[84] A. Pras, T. Drevers, R. van de Meent, and D. A. C. Quartel. Comparing
the performance of SNMP and web services-based management. IEEE Trans-

actions on Network and Service Management, vol. 1, num. 2, pages 72�82,
December 2004. Cited in p. 44

[85] L. Qiu, P. Bahl, A. Rao, and L. Zhou. Troubleshooting wireless mesh networks.
ACM SIGCOMM Computer Communication Review, vol. 36, num. 5, pages
17�28, October 2006. Cited in p. 126

http://www.openldap.org
http://www.openldap.org
http://www.orbeon.com
http://www.orbeon.com
http://www.oasis-open.org
http://www.oasis-open.org/specs/index.php
http://www.oasis-open.org/specs/index.php
http://www.osgi.org/Main/HomePage
http://www.osgi.org/Main/HomePage
http://www.osgi.org/Specifications/HomePage

142 BIBLIOGRAPHY

[86] S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, and E. Stokes. Toward a
formal Common Information Model ontology. In Proceedings of the 5th Inter-

national Conference on Web Information Systems Engineering, WISE 2004,
volume 3307 of Lecture Notes in Computer Science, pages 11�21, Brisbane,
Australia, November 2004. Cited in p. 119, 127

[87] S. Ravelomanana, S. C. S. Bianchi, C. Joumaa, and M. Sibilla. A contex-
tual Grid monitoring by a model driven approach. In Proceedings of the 3rd

Advanced International Conference on Telecommunications and International

Conference on Internet and Web Applications and Services, AICT-ICIW 2006,
pages 37�43, Guadeloupe, French Caribbean, February 2006. Cited in p. 108

[88] A.-I. Rivière and M. Sibilla. Management information models integration:
from existing approaches to new unifying guidelines. Journal of Network and
Systems Management, vol. 6, num. 3, pages 333�356, September 1998. Avail-
able at: http://www.springerlink.com/content/u29k27h30500k55w. Cited
in p. 115

[89] J. Salceda, I. Díaz, J. Touriño, and R. Doallo. A middleware architecture for
distributed systems management. Journal of Parallel and Distributed Com-

puting, vol. 64, num. 6, pages 759�766, June 2004. Cited in p. vii, 2

[90] R. Salz. ZSI: The Zolera SOAP infrastructure. 2005. Available at: http://

pywebsvcs.sourceforge.net/zsi.html [Last accessed 10 March 2010]. Cited
in p. 43

[91] J. Schopf, I. Raicu, L. Pearlman, N. Miller, C. Kesselman, I. Foster, and
M. D'Arcy. Monitoring and discovery in a web services framework: function-
ality and performance of Globus Toolkit MDS4. MCS Preprint 1315-0106,
Argonne National Laboratory, January 2006. Cited in p. 97

[92] J. Schott, A. Westerinen, J.-P. Martin-Flatin, and P. Rivera. Common infor-
mation vs. information overload. In Proceedings of the 8th IFIP/IEEE Net-

work Operations and Management Symposium, NOMS 2002, pages 767�781,
Florence, Italy, April 2002. Cited in p. 22

[93] C. Sinz, A. Khosravizadeh, W. Küchlin, and V. Mihajlovski. Verifying CIM
models of Apache web-server con�gurations. In Proceedings of the 3rd Inter-

national Conference on Quality Software, QSIC 2003, pages 290�297, Dallas,
USA, November 2003. Cited in p. 22, 119, 127

http://www.springerlink.com/content/u29k27h30500k55w
http://pywebsvcs.sourceforge.net/zsi.html
http://pywebsvcs.sourceforge.net/zsi.html

BIBLIOGRAPHY 143

[94] D. D. Spinellis. Outwit: UNIX tool-based programming meets the Windows
world. In Proceedings of the 6th USENIX Annual Technical Conference, ATEC

2000, pages 149�158, San Diego, USA, June 2000. Cited in p. vi, 1

[95] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun. Secure remote man-
agement and software distribution for wireless mesh networks. In Proceedings

of the 7th International Workshop on Applications and Services in Wireless

Networks, ASWN 2007, Santander, Spain, May 2007. Cited in p. 126

[96] F. Strauss and T. Klie. Towards XML oriented internet management. In Proc-

cedings of the 8th IFIP/IEEE International Symposium on Integrated Network

Management, IM 2003, pages 505�518, Colorado Springs, USA, March 2003.
Cited in p. 23

[97] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving con�guration
management with operating system causality analysis. In Proceedings of the

21st ACM Symposium on Operating Systems Principles, SOSP 2007, pages
237�250, Stevenson, USA, October 2007. Cited in p. 23

[98] Y. Sun, T. Li, Q. Zhang, J. Yang, and S. Liao. Parallel XML transformations
on multi-core processors. In Proceedings of the 3rd IEEE International Con-

ference on e-Business Engineering, ICEBE 2007, pages 701�708, Hong Kong,
China, October 2007. Cited in p. 21, 66

[99] S. Tursunova, T. Son, and Y. Kim. Grid resource management with
tightly coupled WBEM/CIM local management. In Proceedings of the 11th

IEEE/IFIP Network Operations and Management Symposium, NOMS 2008,
pages 983�986, Salvador, Brazil, April 2008. Cited in p. 108

[100] L. Wang, M. Kunze, and J. Tao. From CIM to GLUE: translate resource
information of virtual machines to computational grids. In GI/ITG Kommu-

nikation und Verteilte Systeme, Fachgespräch �Virtualisierung�, pages 55�63,
Paderborn, Germany, February 2008. Cited in p. 109

[101] D. Wood. Guidelines for CIM-to-LDAP directory mappings. 2000. Available
at: http://www.dmtf.org/standards/documents/DEN/DSP0100.pdf [Last
accessed 10 March 2010]. Cited in p. 59

[102] World Wide Web Consortium (W3C). Available at: http://www.w3.org/

[Last accessed 10 March 2010]. Cited in p. 17

http://www.dmtf.org/standards/documents/DEN/DSP0100.pdf
http://www.w3.org/

144 BIBLIOGRAPHY

[103] World Wide Web Consortium (W3C). Cascading Style Sheets, level 2 CSS2
speci�cation. May 1998. Available at: http://www.w3.org/TR/REC-CSS2/

[Last accessed 10 March 2010]. Cited in p. 11

[104] World Wide Web Consortium (W3C). Extensible Stylesheet Language Family
(XSL). 1997. Available at: http://www.w3.org/Style/XSL/ [Last accessed
10 March 2010]. Cited in p. 18

[105] World Wide Web Consortium (W3C). OWL - Ontology Language for the
Web. 2004. Available at: http://www.w3.org/TR/2004/REC-owl-features-
20040210/ [Last accessed 10 March 2010]. Cited in p. 112, 120

[106] World Wide Web Consortium (W3C). Semantic Web Rule Language (SWRL).
2004. Available at: http://www.w3.org/Submission/SWRL/ [Last accessed 10
March 2010]. Cited in p. 120

[107] World Wide Web Consortium (W3C). XForms 1.0 (third edition). 2007.
Available at: http://www.w3.org/TR/2007/REC-xforms-20071029/ [Last
accessed 10 March 2010]. Cited in p. 11, 69

[108] World Wide Web Consortium (W3C). XML Schema. October 2004. Available
at: http://www.w3.org/TR/xmlschema-0/ [Last accessed 10 March 2010].
Cited in p. 29

[109] S.-M. Yoo, H.-T. Ju, and J. W.-K. Hong. Performance improvement meth-
ods for NETCONF-based con�guration management. In Proceedings of the

9th Asia-Paci�c Network Operations and Management Symposium, APNOMS

2006, volume 4238 of Lecture Notes in Computer Science, pages 242�252, Bu-
san, Korea, September 2006. Cited in p. 44

[110] J.-H. Yoon, H.-T. Ju, and J. W.-K. Hong. Development of SNMP-XML trans-
lator and gateway for XML-based integrated network management. Interna-
tional Journal of Network Management, vol. 13, num. 4, pages 259�276, July
2003. Cited in p. 23

[111] Y. Zhang and Y. Fang. ARSA: an attack-resilient security architecture for
multihop wireless mesh networks. IEEE Journal on Selected Areas in Com-

munications, vol. 24, num. 10, pages 1916�1928, October 2006. Cited in p.

126

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/2007/REC-xforms-20071029/
http://www.w3.org/TR/xmlschema-0/

Glossary

Assertional Box (ABox)

The part of an ontology which contains knowledge about individuals and their
assigned class. 121�123

Asynchronous JavaScript and XML (AJAX)

A group of web technologies that enable web applications to retrieve and up-
date data (usually JSON or XML) in the background without interfering in
page display and interaction. 78, 79

Access Point (AP)

A network device that interconnects wireless interfaces between them and
optionally to other network. 126

Base64

A binary codi�cation scheme for transmitting and storing arbitrary binary
contents as ASCII characters. In its MIME encarnation, it codi�es 3 bytes
into 4 ASCII characters. 43, 55, 90�92, 94

Blocks Extensible Exchange Protocol (BEEP)

A framework for creating network protocols that abstracts common features
and facilitates protocol development. 44

Basic Encoding Rules (BER)

A set of rules de�ned by the International Telecommunication Union (ITU) as
part of Abstract Syntax Notation One (ASN.1) to encode abstract structures
of data types into byte streams. 44

145

146 Glossary

Component Object Model (COM)

A Microsoft component interface for interprocess communication and inter-
change of executable objects among di�erent languages. It includes the DCOM
distributed object interface for remote object invocation. 40, 45

Common Object Request Broker (CORBA)

A standard de�ned by the Object Management Group (OMG) that de�nes
interfaces for the intercommunication of components written in di�erent lan-
guages and architectures. These components can also be invoked transparently
in distributed contexts. 35, 42, 43, 45, 47

Cascading Style Sheets (CSS)

A language which describes the presentation characteristics of HTML and
XML languages, such as layout, colors, fonts and accessibility. A CSS style-
sheet supports several display devices at the same time and the selective over-
riding of rules. 69, 72, 77, 78

Dynamic Host Con�guration Protocol (DHCP)

A networking protocol used mainly for the centralized con�guration of the IP
addresses and other necessary parameters of network connectivity for client
machines of a network. 114, 126

Distributed Management Task Force (DMTF)

An organization tasked with the development of system management stan-
dards for enterprise environments. 2, 8, 27, 59

Distinguished Name (DN)

In LDAP, a unique entry name consisting of the entry RDN comma-appended
to the parent DN. 52�57, 59, 60, 62

Domain Name System (DNS)

A distributed directory system for assigning names to �xed IPs in the Internet
or in a private network. It is based on a hierarchy of servers associated with a
domain responsible of the naming of the machines under it. 50

Document Object Model (DOM)

A standard IDL-based object representation for XML trees that also de�nes
common tree modi�cation operations. It is the most supported interface to

Glossary 147

manipulate XML data, but implementations must hold all the tree in memory.
21

Directory Services Markup Language (DSML)

An XML-based LDAP interchange format for the description of LDAP entries
and operations. 8, 10, 54, 57, 58, 63, 66

Document Style Semantics and Speci�cation Language (DSSSL)

A Scheme-based stylesheet language for the transformation and displaying of
SGML documents. 17, 18

Interface Description Language (IDL)

A language for the de�nition of software interfaces in a language- and architecture-
independent way. 42

International Electrotechnical Commission (IEC)

An international non-pro�t standards organization that de�nes standards for
electrical technologies. 22

Internet Engineering Task Force (IETF)

An international volunteer-based standards organization which de�nes new
Internet standards. 2, 51

Inetd

A Unix daemon tasked with the management of Internet exposed services. 13,
38

Java Server Pages (JSP)

A Java templating technology that generates dynamic web pages from small
scripts embedded on the webpage or special markup instructions that are
compiled dynamically as Java bytecode. 18

Lightweight Directory Access Protocol (LDAP)

A protocol developed to simplify access to directory services. 3, 8, 10, 49�51,
53, 54, 56�63, 67, 72, 80, 90, 98, 112, 129

148 Glossary

LDAP Interchange Format (LDIF)

A text-based LDAP data interchange format for the description of LDAP
entries and operations. 8, 10, 54, 56�59, 62, 66

markup

A system of annotations in text content that gives syntactical and structural
meaning not intrinsic to that text. 18, 78

Monitoring and Discovery System (MDS)

A framework included in the Globus grid toolkit that enables the generic
publication and consumption of grid information. 97�99

Monoculture

In computing, a situation in which all or almost all of the computing resources
in an organization are of the same platform. 1

NETwork CONFiguration (NETCONF)

An IETF standard that provides XML-based mechanisms to install, manipu-
late and delete the con�guration of network devices. 44

Network Information Service (NIS)

A directory service developed by Sun Microsystems for the distribution and
synchronization of con�guration data of Unix systems like host and user data.
1

Open Database Connectivity (ODBC)

A standard language- and architecture-independent API for using relational
databases. It is based on the use of drivers for each database system. 1

Open Grid Forum (OGF)

A community organization for the standardization of Grid computing. 97

Open Grid Services Architecture (OGSA)

An Open Grid Forum (OGF) architectural speci�cation de�ning a service-
oriented Grid computing environment. 97

Glossary 149

Object Identi�er (OID)

A guaranteed world-unique identi�er assigned by the IANA organization. It
is hierarchical and consists of an arbitrary length sequence of dot-separated
numbers. Organizations are assigned a branch and can de�ne local hierarchies
adding new levels of numbers. 64, 65

Optimized Link State Routing Protocol (OLSR)

An IP routing protocol designed for mobile ad-hoc networks. It is based on
the dissemination of topology and route information on the discovered network
nodes. 115

Open Services Gateway initiative (OSGi)

A Java-based framework de�ning life-cycle managed componented services
that can collaborate transparently and interchangeably across several ma-
chines. 113�115, 117, 118

Open Systems Interconnection (OSI)

A past e�ort to de�ne an open common network protocol stack for large net-
works. It was replaced by TCP/IP due to implementation and performance
problems. 50

Web Ontology Language (OWL)

A knowledge representation language to de�ne ontologies proposed by the
W3C based on Description Logics and which comes in three �avors: OWL-
Full, OWL/DL and OWL-Lite. 112, 113, 115, 119�124, 127, 130

Portable Operating System Interface for Unix (POSIX)

A set of common APIs supported by Unix-like Operating Systems. 1

Remote Authentication Dial In User Service (RADIUS)

A protocol for the authentication, authorization and accounting of external
users on a dial-up or wireless service. 115, 126

Redundant Array of Independent Disks (RAID)

A term encompassing several methods to combine several hard disks to ensure
reliability and obtain better performance with some storage costs. 13

150 Glossary

Resource Description Framework (RDF)

A W3C standard that de�nes a triple based metadata representation for web
resources. 119

Relative Distinguished Name (RDN)

In LDAP, an entry name consisting of an attribute and value present in the
entry and designated as identi�er. 52, 53, 55, 59

Registry

A registry is a database specialised in gathering information about a large
number of entities. 1, 40

Representational EState Transfer (REST)

A type of web service architecture that promotes a single URL for every re-
source and the use of the common HTTP operators to manipulate them. 69,
79, 80, 130

Request for Comments (RFC)

An IETF memorandum to promote discussion or adoption of new Internet
technologies. 54

Remote Procedure Call (RPC)

A class of inter-process communication technologies that generally abstract
calls to procedures of other processes, normally on remote machines, so the
call appears to clients as made inside the same process. 80

Simple API for XML (SAX)

An event-based API for XML parsers that allows streaming processing of XML
documents. Using SAX documents can be processed before being completely
received and without storing them in memory. 38, 91, 94

Scheme

A minimalist LISP dialect. As such, is a declarative language using lists as
the main data type. 17

Standard Generalized Markup Language (SGML)

A 1986 ISO standard technology to de�ne generalized markup languages. 17,
18

Glossary 151

Simple Network Management Protocol (SNMP)

An IETF management protocol for monitoring and controlling network de-
vices. 23, 44, 114

Simple Network Time Protocol (SNTP)

A simpler form of the Network Time Protocol (NTP) geared for embedded
devices with less hardware requirements. 126

Simple Object Access Protocol (SOAP)

An XML-based protocol for the implementation of web services based on Re-
mote Call Procedures (RPC) or document interchange. The meaning of the
acronym was abandoned after version 1.2. 43, 44, 80

Structured Query Language (SQL)

A widely used standardized language for access to relational databases based
on relational algebra. 18

Secure SHell (SSH)

A protocol for remote shell access to Unix-like systems which o�ered better
security and encryption. 44

Service Set IDenti�er (SSID)

A string identi�er of up to 32 characters which identi�es a wireless network.
115

Semantic Web Rule Language (SWRL)

A W3C proposal for a rule language based on Horn rules. 120, 121, 124, 125,
127

System Log

In Unix systems, a typical denomination of background system processes, and
by extension of system services. 88

Terminological Box (TBox)

The part of an ontology that de�nes concepts, roles and their inclusion hier-
archy. 121�123

152 Glossary

Uni�ed Modelling Language (UML)

A generalized modelling language for software engineering. 100

UNiform Interface to COmputing REsources (UNICORE)

A open source European Grid computing initiative. 109

Uniform Resource Identi�er (URI)

An Internet-wide identi�er that names and describes an Internet-accessible
resource. 80

Uniform Resource Locator (URL)

The part of a URI that de�nes the server where a resource is available and the
protocol needed to access it. 74, 79, 80

Virtual Local Access Network (VLAN)

A group of host machines that communicate as if they were connected to the
same Local Access Network independently of their location. 115

Windows Management Instrumentation (WMI)

A Microsoft interface for de�ning CIM-based instrumentation for Windows
systems. 37, 40, 47

Wireless Mesh Networks (WMN)

A type of wireless network arranged in a mesh topology. 111, 112, 119, 126,
127

Web Services Resource Framework (WSRF)

A set of speci�cations for stateless web services, used in the Globus toolkit.
98, 99

World Wide Web Consortium (W3C)

An international standards organization for World Wide Web technologies. 2,
17, 18, 29, 69, 119

eXtensible Markup Language (XML)

A simpli�cation of the SGML standard used for encoding a large range of
documents and messages and read them with common parsers. 7, 8, 10, 17�
19, 23, 25, 27, 29, 31, 35, 37, 38, 40, 42�45, 47, 54, 57, 58, 66, 69, 70, 74,
78�80, 91, 92, 94, 98, 99, 114, 117

Glossary 153

eXtensible Sheet Language Transformations (XSLT)

An XML-based declarative language for expressing arbitrary transformations
on XML data. 2, 3, 8, 10, 11, 16�19, 21, 23, 27, 29, 31, 33, 35, 40, 58, 59, 62,
63, 66, 69, 72, 73, 80, 91, 112, 115, 117, 118, 121, 122, 127, 129

	Introduction
	I The AdCIM Framework
	Framework Overview
	Framework Layers
	Framework Deployment
	Base Technologies
	The CIM Model
	XSLT

	Related Work

	Modelling Layer
	Application and Extension of the CIM Model
	XML Representations of CIM
	Schema Transformation
	Conclusions

	System Data Layer
	Sources of Configuration and Management Data
	Configuration Data Extraction
	Text File Configurations
	WMI Data

	Distributed Client Data Transport
	Data Transport Experimental Results
	Conclusions

	Data Persistence Layer
	Directory Databases
	The LDAP Protocol: Origin and Design
	LDAP Interchange Formats

	AdCIM Persistence in LDAP
	miniCIM to LDIF Stylesheet
	DSML to miniCIM Stylesheet
	miniCIM Schema to LDAP Schema Stylesheet
	Persistence Stylesheet Benchmarks

	Conclusions

	Application Layer
	XForms
	XForms Use in AdCIM
	Web Data Interface
	Conclusions

	II Advanced Applications
	Introduction to Part II
	Advanced Configuration Extraction: the Sendmail File
	Configuration Format
	CIM Representation
	Transformation Process
	Conclusions

	Grid Integration
	Integration of MDS and CIM
	Globus MDS
	Internal Representation of the Model
	CIM Information Provider
	Database Backend
	CIM Operation Provider

	Experimental Results
	Related Work
	Conclusions

	Application to Wireless Mesh Networks
	AdCIM meets Wireless Mesh Networks
	Configuration Analysis
	Configuration Mapping to CIM
	CIM Class Semantics
	Mapping Considerations
	XSLT Implementation

	Ontology Representation
	The Web Ontology Language
	CIM Transformation to OWL
	OWL Reasoning Implementation in AdCIM

	Related Work
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Glossary

