A Grid Portal for an Undergraduate Parallel

Programming Course

Juan Tourino, Member, IEEE, Maria J. Martin, Jacobo Tarrio, Manuel Arenaz
Computer Architecture Group

Department of Electronics and Systems, University of A Coruia, Spain

Corresponding author: Juan Touriflo, Department of Electronics and Systems,
University of A Coruia, Campus de Elvifia, s/n, 15071 A Corufa, Spain (e-mail:

juan@udec.es)

Abstract
This paper describes an experience of designing and implementing a portal to support trans-
parent remote access to supercomputing facilities to students enrolled in an undergraduate parallel
programming course. As these facilities are heterogeneous, are located at different sites, and
belong to different institutions, grid computing technologies have been used to overcome these is-
sues. The result is a grid portal based on a modular and easily extensible software architecture
that provides a uniform and user-friendly interface for students to work on their programming lab

assignments.

Index Terms: Grid computing, grid portal, supercomputing, parallel programming

1 Introduction

Since 1998, the Department of Electronics and Systems (DES) at the University of A Coruna
(region of Galicia, Spain) has offered a one-semester elective course in parallel programming for
undergraduate fifth-year Computer Science (CS) students. The inclusion of parallel processing in
an undergraduate degree has been widely justified since the eighties [1] since parallel computers
have become much easier to use and much more widely available. It continued to be justified in the
nineties [2]-[4], and nowadays many universities offer specific courses to provide CS undergrad-
uates with real parallel processing experience [5] as an essential component to teaching parallel
programming concepts effectively. Three additional reasons have favored the introduction of a par-
allel programming course in the CS curriculum at the University of A Corufa: (a) there is an active
research group on parallel processing at DES; (b) there are powerful supercomputers available at
the Supercomputing Center of Galicia (CESGA) [6] in Santiago de Compostela (70 kilometers away
from DES), mainly used for scientific computing; (c) there is growing interest of small and medium
enterprises of Galicia in cluster architectures [7] because they deliver outstanding parallel perfor-
mance at a competitive cost. CS graduates skilled in parallel processing techniques are, therefore,
requested by both academic/scientific and enterprise environments.

Problems that arise in teaching a course in parallel programming include the difficulty in having
access to supercomputing resources and the time it takes to teach their effective use, as stated
in [8]. Wilkinson and Allen discourage the use of resources of supercomputing centers [9] because
the technicalities of supercomputers may be too much for an undergraduate course. Moreover,

their access must be controlled carefully by the center, and perhaps the centers are not equipped

to handle a large number of inexperienced students. Therefore, the choice is the use of a dedicated
local network of workstations for parallel programming.

Since the course was intended to be highly practical, a hybrid approach was followed: use
of local resources (both from DES and the School of Computer Science (SCS) at the University
of A Coruna), mainly for training purposes, and access to remote supercomputers (available at
CESGA) to assess the performance of parallel algorithms. This approach has several advantages:
students are more motivated if they have access to real supercomputers; and they have the chance
to implement the same algorithm using different architectures and parallel programming models,
which enable students to make objective performance comparisons (execution times, speedups,
complexity of algorithm development, etc.). Moreover, their curiosity for new machines stimulates
self-learning to go deeply into specific parallel processing issues of the target supercomputers.

The computers used in the course are administered by different institutions: DES, SCS, and
CESGA. As a minor drawback, tedious bureaucratic procedures are necessary to obtain accounts
for the students (mainly, access to the supercomputing center). However, the major drawback is the
impact on students in using a number of unrelated and geographically distributed systems. Thus,
each student has several accounts on machines with their own local file system (which involves
source code files being continuously transferred among the target machines), and with different
access, use, and security policies (e.g., restricted IP access that makes it difficult to login to the
machines from home). Once the student is logged on, he/she has to deal with different compilers,
libraries to be linked, and specific program execution commands for each machine and each parallel
programming model, as well as different job schedulers to submit and monitor parallel jobs.

All these issues outside the core course contents involve significant overhead time. These

4

problems were overcome in 2003 at the University of A Corufa by applying grid computing tech-
nologies [10] to facilitate the use of the diverse parallel processing platforms. Specifically, a grid
portal was developed that acts as a single point of entry to the geographically distributed comput-
ers used in the course and as a high-level, user-friendly environment for the students to manage
transparently their parallel jobs. No reported practical experiences on the application of a grid por-
tal to support the teaching of a course were found, but a few projects focused on setting up a grid
infrastructure for teaching purposes, such as ISILab [11] and ULabGrid [12]. ISILab is a distributed
environment that allows students to carry out remote lab experiments with real electronic instru-
ments and circuits via the web. The authors propose to map ISILab functionalities on a layered
grid model: from the grid infrastructure composed of diverse resources geographically scattered
(computers, storage systems, catalogues, networks, sensors, devices) to the user application layer
that controls the experiment execution. But this grid-oriented approach is under development using
proprietary protocols and APls, which limit reusability for other projects. ULabGrid is an architecture
based on standard grid technologies that enables educators to design collaborative, distant labora-
tories for students using a grid infrastructure. It allows students to run the software required for the
lab from everywhere at any time. But this approach was not conceived to access supercomputing
facilities, and it does not provide web access via a portal. A prototype of this architecture applied to
a flight simulator of an aeronautics lab is still being developed.

The rest of the paper is organized as follows: Section 2 describes the contents of the course
(both lectures and laboratory work) which provide the context for the design and development of the
grid portal. Section 3 focuses on the portal: requirements, software architecture components and
functionalities provided to ease the completion of the course assignments. Finally, conclusions are

5

drawn in Section 4.

2 Course content

The one-semester course consists of 60 hours (40 hours in-class instruction and 20 hours labo-
ratory). It attracts 20 students per year on average. All the students in the fourth year take a course
in advanced computer architecture which provides the architectural basis (including performance is-
sues) for the parallel programming course. Thus, the students have a solid background in advanced
topics, such as parallel computer architectures (shared memory, distributed memory), interconnec-
tion networks for parallel computers, cache coherence and memory consistency on multiproces-
sors, etc. Students are also skilled in C and Fortran 90 (taught in previous courses), which are the
prerequisite languages for the course. Prior to the introduction of the parallel programming course
in 1998, the advanced computer architecture course included a short parallel programming lab fo-
cused on the Parsys Supernode, a transputer-based machine (from 1990 to 1993), and PVM [13]

message-passing programming on a network of workstations (1994-1997).

2.1 Course lectures

The syllabus for the parallel programming course currently being offered is on the following lines.

1. Introduction

e Course organization

e Review of parallel computer architectures

e Parallel programming models

e Case study: computing Ttin parallel using numerical integration

2. Message-passing programming: MPI

MPI main features

Point-to-point communications

Collective communications

Derived data types

e Communicators and virtual topologies

e Overview of new functionalities in MPI-2

Recommended textbook: [14]. Web material: [15]

3. Shared memory programming: OpenMP

e OpenMP main features

Directives to exploit loop-level parallelism

Directives for task-level parallelism

Synchronization mechanisms

Runtime library and environment variables

Recommended textbook: [16]. Web material: [17]

4. Data-parallel programming: HPF

e HPF main features

Data distribution and alignment directives

Directives and constructs to express data parallelism

HPF intrinsic and library procedures

Extrinsic procedures

Recommended textbook: [18]. Web material: [19]

5. Parallel programming techniques: design of parallel programs

e Performance metrics for parallel programs

e Data partitioning techniques

e Techniques to enhance locality: exploiting memory hierarchy

e Load balancing techniques

e Case studies: parallel sorting, matrix multiplication, direct and iterative methods for

solving linear systems of equations, parallel FFT, parallel tree search

Recommended textbook: [20]. Web material: [21]

The course ends with Lecture 5 because its contents may be too abstract for students at the be-
ginning of the course without having experienced practical parallel programming using the specific
software taught in Lectures 2-4. Nevertheless, some topics of Lecture 5 are informally or intu-
itively introduced in the previous lectures, for instance: basic performance metrics such as speedup
or efficiency, load balancing techniques through OpenMP scheduling clauses, or data partitioning

8

strategies using HPF directives. With this basis set this lecture consolidates and completes the
learning of parallel programming techniques through practical case studies, thus these topics are

more easily assimilated by students.

2.2 Course laboratory

Lab work consists of the following assignments.

1. Training exercises. The students are provided with the skeleton of several example codes
of increasing difficulty to illustrate and experiment with the main concepts explained for each

programming model.

2. Comparison of programming models. The students have to implement the same parallel
algorithm (e.g., Gauss-Jordan elimination in the 2003 course) using MPI, OpenMP, and HPF

in order to compare practically the programming features associated with each model.

3. Algorithm performance contest. A well-specified algorithm is proposed to be implemented
in parallel (using MPI, since it provides more programming flexibility) on a particular super-
computer. The goal of the student is to maximize performance by taking into account both
programming and architectural issues. Some examples used in previous years are parallel
sorting algorithms, parallel matrix transposition, data redistributions (e.g., block-to-cyclic), or
parallel prefix/suffix operations. This contest stimulates creativity, in-depth study, as well as

experience sharing, discussion, and criticism (the best works are presented in class).

4. Course miniproject. It is an individual work proposed by the student under the supervision of

Table 1: Supercomputing resources available for the students

Computer Location Programming Short description
PC Network DES MPI (MPICH) 10 PCs (PIll 800 MHz),
(sky.des.udc.es) Fast-Ethernet network
Self-made SCI cluster DES MPI (ScaMPI) 10 racked dual-processor nodes
(muxia.des.udc.es) (PIV Xeon 1.8GHz), SCI network
Compag Beowulf cluster CESGA MPI (MPICH-GM) 16 racked single-processor nodes
(bw.cesga.es) HPF (Pl 1GHz), Myrinet 2000 network
SGl Origin 200 SCS OpenMP ccNUMA multiprocessor
(silgar.cecafi .fi .udc.es) (4 MIPS R10000 180 MHz)
HP Superdome CESGA OpenMP cluster of 2 64-processor ccNUMA systems
(sd.cesga.es) (Intel Itanium2 1.5 GHz)
Compaqg HPC320 CESGA OpenMP/MPI hybrid cluster of 8 4-processor SMP nodes
(sc.cesga.es) (Alpha EV68 1 GHz)

the teacher who determines if it has enough technical merit. The goal of this miniproject is
to put into practice as many theoretical contents as possible through the implementation of
a parallel algorithm, application, or library using a particular programming model. Message-
passing is usually the choice because students can install MPICH [15], a free implementation
of MPI, on their own PCs for an initial development of their codes before moving them to a
parallel computer. Students are encouraged to work on topics that have been studied in other
courses (thus these topics are familiar to them) to enhance interdisciplinary education. The
most popular fields selected for the miniproject are numerical computation, neural networks,

genetic algorithms, computer graphics, and image processing.

The resources currently available for the lab assignments are shown in Table 1. The “Program-
ming” column shows the parallel programming software used for each computer, which does not
indicate the only way to program that computer. Local resources are mainly devoted to training ex-

ercises and to the development and debugging of the other programming assignments before being

10

tuned, executed, and evaluated on a particular CESGA supercomputer.

3 Grid portal for the course lab

The lab resources listed in Table 1 (which may vary each year depending on availability) are het-
erogeneous and are administered by different institutions. These resources have been integrated
into a grid environment for the parallel programming lab. Grid computing [10] links different com-
puting resources that belong to different institutions (usually sited in distant physical locations) and
makes these resources available to users located at remote sites via public communication net-

works. Regarding this educational scope, the grid must provide the following basic functionalities.

e Authentication: students and computing resources must be authenticated to allow the former

to connect to the latter securely.

e Information service: an information service must provide students with both static and dy-
namic information about the setup and the status of the hardware and software resources of

the grid (e.g., resource characteristics and availability).

e Data transfer: students must be able to transfer securely and transparently their source codes

and associated data files between the different computers of the grid.

e Resource/job management: a unified mechanism must provide for resource allocation, re-

mote job submission, cancellation, monitoring, job input/output, etc.

These functionalities are provided by diverse software components which can be found inte-
grated in software packages called grid toolkits. The Globus toolkit [22], which aims to use com-

11

modity software and technologies, is becoming the de facto standard for grid computing. It provides
middleware services to support grid environments. These toolkits are designed to provide basic
grid services through low-level command-line interfaces, and thus a significant amount of learning
time and effort must be spent by their potential users. This situation would be a serious obstacle
to the effective adoption of the grid for instruction support, since the goal is precisely to enable
students to develop more easily their assignments on the lab resources. To alleviate this problem,
some easy and intuitive interfaces, such as grid portals that take the complexity of the grid away
from the user, have been developed. A grid portal is a web-based single point of entry to a grid
and its implemented services. The Grid Portal Development Kit (GPDK) [23], a set of higher-level
function libraries that provide a generic framework for the development of grid portals, was used to
implement the portal. The GridPort toolkit [24] also provides access to grid services through a web
interface by means of a set of Perl modules which wrap Globus. But the design of GridPort makes
code maintainability and portal customization more difficult than the approach taken by GPDK. A
recent promising successor to GPDK is the GridSphere portal framework [25] with a new architec-
ture based on portlets. The goal of this framework is to enable portal developers to implement new

portal interfaces and add new functionality more quickly.

3.1 Portal design and architecture

A customized grid portal for lab support has been designed using several standard software
components organized as a vertical stack, where each layer uses the services provided by the

lower layer (Fig. 1). In the upper layer, the user opens a connection to the secure Apache web

12

[Secure web server]

Java application server

‘ View JSP pages
Portal ‘ Controller Action classes
‘ Model Facade classes
GPDK class library
Submit Data User

Security jobs Information transfer || profiles

Middleware libraries

Java Sun Netscape
CoG JavaMail LDAP
Globus

Figure 1: Software architecture of the grid portal

server and makes an HTTP request. This request is forwarded to the Tomcat application server,
which is running the portal web application. Although GPDK provides a set of templates to generate
ready-to-run portals, they have not been used since they implement an ad hoc architecture based
on the use of program logic embedded in JSP pages, which presents many drawbacks. For exam-
ple, customization of the portal look for a particular site would probably involve changing some lines
of Java code, which is generally outside of what a website designer is willing to do. Conversely,
adding new functionalities to the portal would require the portal developer to design its appearance
at the same time. To avoid this issue, the Model-View-Controller (MVC) architecture [26] was used
to provide a greater separation between business logic and presentation. The MVC architecture
was used to design a new layer on top of GPDK (the Portal layer depicted in Fig. 1) and was im-
plemented using the Java Struts framework. In the MVC architecture, the Model contains data and
functionalities (e.qg., file transfer, job submission...); the View is the part of the portal that interacts

with the user (graphical display); and the Controller connects View and Model together and controls

13

the execution of the portal. The Model was implemented using customized, high-level methods
that make calls to functions of the lower layer, the GPDK class library that provides access to grid
services along with some portal-specific utilities (e.g., portal user profiles). GPDK uses the libraries
of the next layer: the Java Commaodity Grid (CoG) kit [27] (which provides Java counterparts of
the Globus C APIs) and some commodity libraries not specifically created for grid computing, but
used to access grid services (e.g., the Globus information service is based on the LDAP protocol).
Finally, in the lowest layer lies Globus, which provides the basic grid services.

This layered approach allows to add new computing resources straightforwardly. When a new
computer joins the grid, the associated information (e.g., number of processors or job managers
installed) is automatically transferred from the Globus information service at the lowest layer of
Fig. 1 to the upper layers, and the Portal View layer displays the interface to have access to the new
resource. Moreover, the strong separation between layers provided by the MVC architecture allows
the modification of the appearance of the portal (HTML code) without affecting the Java code that

implements the functionalities and vice versa, and allows the inclusion of new functionalities easily.

3.2 Portal features and functionalities

The portal described in the previous subsection provides easy and transparent access to the
available lab resources enumerated in Table 1. The basic functionalities of the portal are depicted
as a navigation diagram in Fig. 2. Itis a UML state diagram in which each portal page is represented
by a state, and each link between pages is represented as a transition between states. The portal

also includes links to useful course information: course schedule and news, and course material

14

Authenticated user

Initial > [authenticated]
. select resourge .
% Listresources |- = = = = = = Information
[list resources

| _submit_job I submitjobs | SUPMLL

[no wait]

I._ _ delete job . Delete job]

shaw_system 1098 [5\ ctem logs

NG J

Figure 2: Navigation diagram of the grid portal

(local and external) to enhance self-study.

The portal home page is shown in Fig. 3. Students must be authenticated and authorized to ac-
cess the grid resources. The DES system administrator issues and stores credentials (a certificate
and a private key with a lifetime of one semester) for each student on a credential server. There
are two alternative ways for students to log into the portal: using a username and password (with a
maximum lifetime of one week for security reasons), obtained by running the MyProxy package [28]
on the credential server; or using a proxy credential file that must be copied to the computer where
the student will launch the browser to access the portal (usually his/her home computer). This
file, also with a limited lifetime, is obtained by running the grid-proxy-init Globus command on the

credential server.

15

Once the student has been authenticated in the portal, the user's home page is displayed (see
Fig. 4). This page shows the available resources (which could be different depending on the user)
and detailed resource-level information, such as available processors and memory, average sys-
tem load, or description of available job queues. This information is obtained dynamically from the
Globus information service. The student has access to different functionalities from this page, such
as file transfer between computers of the grid, job submission, or user profile information (personal
data, certificate details, user preferences, user history). For illustrative purposes, Fig. 5 shows the
job submission page. It can be used to execute any program (OS commands, compilation com-
mands, parallel codes, etc.) on the selected machine of the grid. In this example, an 8-processor
MPI job is submitted to the muxia cluster. This computer provides two different job managers (in-
formation obtained dynamically from the grid and displayed in a menu): fork, for running interactive
jobs, and PBS (Portable Batch System), which was selected to launch the parallel job. The link
“List jobs” in the menu displays a complete list of the user’s jobs (see Fig. 6): job name, execution
node, current status (active or completed), submission date, and a link to the job output (if avail-
able). There is also a link to cancel a running job or to delete an entry from the list when the job is
finished.

Additionally, the course teachers have access to several parameters about the portal activity
(“System status” link): users currently connected, list of active and finished jobs, files transferred
per user, login/logout records, and other activity logs. These parameters provide useful information
on the individual and global use of the different computers of the grid. This information also turned
out to be useful to detect and discourage incidents and bad practices in the use of supercomputers
by students (e.g., massive submission of jobs, over-allocation of processors and memory, hung jobs

16

- Initial Page - Mozilla

. File Edit ¥iew Go Bookmarks Tools Window Help

o @ O @ Q |% https:gridportal.des udc.es/ I['.@'S‘S'eamh_] é;o.
b I

%, Parallel Programming Course
Code 614111630
Department of Electronics and Systems
University of & Corufia

Loginyit MyErosy | Welcome to the grid portal
Username: |jtarrio !
Password: W :
Login | Resst

Login with proxy file

Proxy: [fhomesjtartic Browse...
Logml Reset

ckp. des.nde. es
mixia. des.udo.es
silgar. cecafi.£i vdo.es

()Santiago

Contact e-mail:

juan@udc.es e
] & @F EJ @4 | Done | E

Figure 3: Portal home page with authentication

M-w Available Resources - Mozilla
. File Edit View Go Eookmarks Tools Window Help

A ®Q O @ O |‘§ hitps:#gridportal.des udc es/ I [Q_Seamh] Cgo
» I
Available Resources

| currentuser ' Resources

Jacoho Tarrio

Name:

Barreirn ' Hostname Memory CPUs Load

Ses_iufl in 00:59:47 muxiadesudces 1006 20 13%

SXPHY, | skydesudces 879 10 8%
Logout

fsilgar.oeoafi.ﬁ‘udc.es 1020 4 23%

sd.cesga.es 2043 128 10%
List resources
Submit job :
List johs ; Click on any resource name to get more information about it
File transfer :
Wiew profile
System status
Courselinks

e e B e S B B B B

D20 D b [=

IS

Figure 4: User's home page: resource list and menu of functionalities

17

* =~ Submil Job - Mozilla [=][efx]
. File Edit Wiew Go Bookmarks Tools Window Help

4 ®Q o @ Q |% https:/gridpartal des.udc esd | [CL Search] cgc
3 |

I Y

Jacobo Tarrio

I Barreiro Job name: |mpi-job
Session in 00:53:12 Host ! scheduler: | muxia.des.udc.es (phs) |
expiny: !

Logout Executable: [homesusermpisa.out
Arguments: |-procs 8

_ Avalue of zero (0) in the following fields means "do not set”

List resources ' Number of processors: |o

Submit joh : . A

Licticks : Maximum duration: o (m?nutea)
Eile transfer Maximum CPU time: IU— {minutes)
Wiew profile f .

System status i Minimum memory: o (MB)

Course links Maximum memory: [0 {MB)

¥ Submit parallel job using MPI
Options: v Send e-mail when job is finished

[~ Wait for job output
| Submit Job | ResetForm I

Tow S \:m;_g'_&

Figure 5: MPI job submission through the portal

/- Initial Page - Mozilla
. Eile Edit ¥iew Go Bookmarks Tools Window Help

& @Q O @ Q ‘% hitps:#/gridportal.des.udc es/ | ICA Search] ‘:;‘igo
ICE==

ListofdJobs

Jacobo Tarrio

Name:

) Barreiro Name Mode Status Date of submission Cutput Action
if;fr';“ ngogees | mpkjob muxia DONE Jun 18, 2004 12:57:33 PM NONE Delete
Logout ! hpfjob bw DONE Jun 18, 2004 2:01:52 PM View Delets

openmp-job silgar ACTIVE Jun 19, 2004 12:55:58 PM NONE Cancel
_‘ gather sky ACTIVE Jun 18, 2004 1:57:23 PM NONE Cance
List resources ;

Submit job

List jobs

Eile transfer

View profile

System status
Course links

M2 er 8l I SRR

Figure 6: List of user’s jobs

18

as a result of careless job running).

Regarding the dynamics of the lab, students first develop and debug their assignments using lo-
cal resources and submit their jobs to these resources in interactive mode through the portal. These
jobs usually have small workloads and input data sets to check code correctness. Next, source
codes are moved to CESGA supercomputers through the file transfer page. In the first contact with
a real supercomputing environment, many students become impatient and complain because they
are accustomed to obtain immediate results in the interactive execution on local resources. But now
their jobs are submitted to queues through the job submission page and, depending on the load of
the supercomputer (which can be checked from the resource portal page), some time is required to
gain resource access since CESGA supercomputers are used by researchers from the three Gali-
cian universities and from CSIC, a national research institute. Students are advised to finish their
assignments far enough in advance to allow for supercomputers that may be overloaded close to
the assignment deadline. Nonetheless, students rapidly adapt to this new environment and expe-
rience the power of supercomputers by using more processors and larger workloads for their jobs.
They also use specific profilers (usually linked to their codes) that study the application behavior
and report performance statistics (e.g., CPU time, communication time, cache behavior) to guide
performance tuning. At this stage, students become fully conscious that programming portability
does not mean performance portability because performance results largely depend on the target
machine. Students are provided in the lectures with basic information about available profiling tools
or compiler options for each programming model, but they must experiment with them on their own.

The effective use of these tools is an additional factor for the teacher to evaluate the assignments.

19

4 Conclusions

In this paper, a grid portal to support an undergraduate parallel programming course was de-
scribed. Although grid technology is primarily intended to enable large-scale scientific research
projects to better utilize and share distributed resources, it has been successfully applied in an
educational environment. The portal provides an intuitive and homogeneous interface to the ge-
ographically distributed and dynamically changing supercomputing resources available for the lab
assignments. Thus, the portal allowed students to focus on the course subjects instead of dealing
with irrelevant and time-consuming technical issues, such as job submission or file transfer between
computing resources, which helped to improve student performance.

The experience of the authors has shown that it is feasible for undergraduates to have access to
supercomputing facilities, and that their assignments do not interfere with the research activities of
the supercomputing center. This situation results because of the relatively small number of students
enrolled in the course, and in general, the assignments are designed so that they are not very
CPU and memory consuming (a maximum of a few CPU hours, reasonable enough for students to
exploit the power of the supercomputer). Moreover, CESGA enthusiastically supports the course
as a medium to promote and extend the use of parallel computing technologies in Galicia.

The introduction of the portal was valued very highly by the students, who have even provided
feedback on the portal design and functionalities. They highlighted the 24-hour access to super-
computing facilities from home requiring only a browser, unlike other courses where hardware or
software resources can only be accessed from on-campus machines. This fact, together with the

motivation of programming production supercomputers, caused the students to spend many extra

20

hours at home on the assignments, as revealed by the statistics provided by the portal. The for-
mat of the lab assignments described in Section 2.2 also stimulated self-study (mainly the course
miniprojects) which, in some cases, became research. In fact, this course turned out to be a good
way to recruit Ph.D. students to work in the area of parallel processing.

Although the portal was developed for CS undergraduates, it could be used at the graduate level
not only for CS students but also for students from diverse disciplines of science and engineering
(such as mathematics, physics, chemistry, biology, and civil, mechanical, or aerospace engineer-
ing), enrolled in a computational science/engineering program, who need parallel programming as
an essential tool to solve large-scale problems in their fields. The portal also opens new possibili-
ties for teaching parallel programming in the context of international Master’'s and Ph.D. programs
as a means to enable universities from different countries share their supercomputing resources for
teaching purposes. It could also provide a remote parallel programming lab to students in countries
that lack supercomputing infrastructures. The traditional educational links between Spain and Latin
America offer a potential scenario for these purposes. Ongoing initiatives currently under develop-
ment such as Gridcole [29], a collaborative learning environment that uses grid services technology,
would be potentially appropriate in this context to provide integration of supercomputing capabilities
or other specific resources at different locations in a wide area.

The development of the portal required a significant learning curve to acquire background in the
technologies shown in Fig. 1. But grid computing is still evolving, and it is expected that grid tools
will be easier to set up and use so that they are more accessible to a wide audience not familiar
with grid technologies but who might wish to build a grid portal for teaching purposes. Once built, a
key issue is to obtain organizational support to manage the portal. Thus, currently the departmen-

21

tal system administrator performs basic portal management tasks, such as portal accounting and
authentication (e.g., student credentials), portal availability (maintenance of web, application and
credential servers), or incident reporting on the grid infrastructure (e.g., unavailability of supercom-

puting resources). The URL for the portal home page is http://gridportal.des.udc.es.

Acknowledgments

This work was supported by a Teaching Innovation Grant (UDC-TIC03-057) from the University
of A Coruna, by the Galician Government (Xunta de Galicia, Projects PGIDITO2TIC00103CT and
PGIDIT04TIC105004PR), and by the CrossGrid European Project (IST-2001-32243). We gratefully
thank CESGA for providing access to its supercomputing facilities. Also thanks to the Editor-in-Chief

and three anonymous referees for their helpful comments.

References

[1] Butler, R.M., Eggen, R.E., and Wallace, S.R., “Introducing parallel processing at the undergrad-
uate level,” Nineteenth ACM Technical Symposium on Computer Science Education, Atlanta,

GA, pp. 63-67, Feb. 1988.

[2] Hintz, T., “Introducing undergraduates to parallel processing,” IEEE Transactions on Education,

vol. 36, no. 1, pp. 210-213, Feb. 1993.

[3] Toll, W.E., “Decision points in the introduction of parallel processing into the undergraduate cur-

riculum,” Twenty-sixth ACM Technical Symposium on Computer Science Education, Nashville,

22

TN, pp. 136-140, Mar. 1995.

[4] Nevison, C.H., “Parallel computing in the undergraduate curriculum,” IEEE Computer, vol. 28,

no. 12, pp. 51-56, Dec. 1995.

[5] Adams, J., Nevison, C., and Schaller, N.C., “Parallel computing to start the millennium,” Thirty-
first ACM Technical Symposium on Computer Science Education, Austin, TX, pp. 65-69, Mar.

2000.

[6] Supercomputing Center of Galicia, http://www.cesga.es [Last visited: Nov. 2004].

[7] IEEE Task Force on Cluster Computing, http://www.ieeetfcc.org [Last visited: Nov. 2004].

[8] Youssefi, J.A., and Zemoudeh, K., “A course in parallel processing,” IEEE Transactions on Edu-

cation, vol. 40, no. 1, pp. 36-40, Feb. 1997.

[9] Wilkinson, B., and Allen, M., “A state-wide senior parallel programming course,” IEEE Transac-

tions on Education, vol. 42, no. 3, pp. 167-173, Aug. 1999.

[10] Foster, I., and Kesselman, C. (editors), The Grid: Blueprint for a New Computing Infrastructure.

San Francisco, CA: Morgan Kaufmann Publishers, 1998.

[11] Bagnasco, A., and Scapolla, A.M., “A grid of remote laboratory for teaching electronics,” Sec-
ond International LeGE-WG Workshop on e-Learning and Grid Technologies, Paris, France,

Mar. 2003.

[12] Ardaiz, O., Artigas, P, D 1az de Cerio, L., Freitag, F., Gallardo, A., Messeguer, R., Navarro,
L., Royo, D., and Sanjeevan, K., “ULabGrid, an infrastructure to develop distant laboratories for

23

undergrad students over a grid,” First European Across Grids Conference, Santiago de Com-

postela, Spain, Feb. 2003, Lecture Notes in Computer Science, vol. 2970, pp. 265-272, 2004.

[13] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V., PVM: Parallel
Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel Computing. Cambridge,

MA: The MIT Press, 1994.

[14] Pacheco, P.S., Parallel Programming with MPI. San Francisco, CA: Morgan Kaufmann Pub-

lishers, 1997.

[15] The Message Passing Interface (MPI) Standard, http://www-unix.mcs.anl.gov/mpi[Last visited:

Nov. 2004].

[16] Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., and Menon, R., Parallel Pro-

gramming in OpenMP. San Francisco, CA: Morgan Kaufmann Publishers, 2001.

[17] OpenMP Architecture Review Board, http://www.openmp.org [Last visited: Nov. 2004].

[18] Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele Jr., G.L., and Zosel, M.E., The High

Performance Fortran Handbook. Cambridge, MA: The MIT Press, 1994.

[19] The High Performance Fortran Home Page, http://dacnet.rice.edu/Depts/CRPC/HPFF [Last

visited: Nov. 2004].

[20] Wilkinson, B., and Allen, M., Parallel Programming Techniques and Applications Using Net-

worked Workstations and Parallel Computers. Upper Saddle River, NJ: Prentice-Hall, 1999.

24

[21] Foster, I., Designing and Building Parallel Programs. Boston, MA: Addison-Wesley, 1995,

http://www-unix.mcs.anl.gov/dbpp/ (book and resources on-line) [Last visited: Nov. 2004].

[22] Foster, I., and Kesselman, C., “Globus: A metacomputing infrastructure toolkit,” Interna-
tional Journal of Supercomputer Applications, vol. 11, no. 2, pp. 115-128, Summer 1997,

http://www.globus.org [Last visited: Nov. 2004].

[23] Novotny, J., “The grid portal development kit” Concurrency and Computation:
Practice and Experience, vol. 14, nos. 13-15, pp. 1129-1144, Nov./Dec. 2002,

http://www.doesciencegrid.org/projects/GPDK [Last visited: Nov. 2004].

[24] Thomas, M., Mock, S., Dahan, M., Mueller, K., Sutton, D., and Boisseau, J.R., “The Grid-
Port toolkit: A system for building grid portals,” Tenth IEEE Symposium on High Performance
Distributed Computing, San Francisco, CA, pp. 216-227 , Aug. 2001, https://gridport.npaci.edu

[Last visited: Nov. 2004].

[25] Novotny, J., Russell, M., and Wehrens, O., “GridSphere: A portal framework for building collab-
orations,” First International Workshop on Middleware for Grid Computing, ACM/IFIP/USENIX
International Middleware Conference, Rio de Janeiro, Brazil, pp. 178-185, Jun. 2003,

http://www.gridsphere.org [Last visited: Nov. 2004].

[26] Singh, I., Stearns, B., and Johnson, M., Designing Enterprise Applications with the J2EE

Platform. Boston, MA: Addison-Wesley, 2002.

[27] von Laszewski, G., Foster, |., Gawor, J., and Lane, P., “A Java commaodity grid kit,” Concurrency
and Computation: Practice and Experience, vol. 13, nos. 8-9, pp. 645-662, Jul./Aug. 2001.

25

[28] Novotny, J., Tuecke, S., and Welch, V., “An online credential repository for the grid: MyProxy,”
Tenth IEEE International Symposium on High Performance Distributed Computing, San Fran-

cisco, CA, pp. 104-111, Aug. 2001.

[29] Bote-Lorenzo, M.L., Hernandez-Leo, D., Dimitriadis, Y.A., Asensio-Pérez, J.l., Gémez-
Sanchez, E., Vega-Gorgojo, G., and Vaquero-Gonzalez, L.M., “Towards reusability and tai-
lorability in collaborative learning systems using IMS-LD and grid services,” Advanced Tech-

nology for Learning, vol. 1, no. 3, pp. 129-138, 2004.

26

