Communication Avoiding and Overlapping for
Numerical Linear Algebra

Evangelos Georganas*!, Jorge Gonzilez-Dominguez'!, Edgar Solomonik*,
Yili Zheng?, Juan Tourifio" and Katherine Yelick**
*Dept. of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720
TDepartment of Electronics and Systems, University of A Corufia, A Corufia, Spain
fLawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract—To efficiently scale dense linear algebra problems to
future exascale systems, communication cost must be avoided or
overlapped. Communication-avoiding 2.5D algorithms improve
scalability by reducing inter-processor data transfer volume
at the cost of extra memory usage. Communication overlap
attempts to hide messaging latency by pipelining messages and
overlapping with computational work. We study the interaction
and compatibility of these two techniques for two matrix mul-
tiplication algorithms (Cannon and SUMMA), triangular solve,
and Cholesky factorization. For each algorithm, we construct
a detailed performance model which considers both critical
path dependencies and idle time. We give novel implementations
of 2.5D algorithms with overlap for each of these problems.
Our software employs UPC, a partitioned global address space
(PGAS) language that provides fast one-sided communication. We
show communication avoidance and overlap provide a cumulative
benefit as core counts scale, including results using over 24K cores
of a Cray XE6 system.

I. INTRODUCTION

Communication cost is a significant factor in application
performance, and hardware trends indicate that the cost of data
movement within and between nodes will continue to grow
relative to the cost of computation. With exascale computing
as the long-term goal, the community needs to develop tech-
niques that minimize communication cost through better algo-
rithms, programming techniques, systems software and archi-
tecture. In this paper, we consider two techniques to minimize
the performance impact of communication: communication-
avoiding algorithms reduce the volume of communication,
while communication overlapping reduces the impact of each
communication event by overlapping it with computation or
with other communication [1], [2]. We explore a set of parallel
communication avoiding algorithms for dense linear algebra
that are provably optimal in their communication volume and
have been shown to substantially reduce communication and
thus improve performance [3]. They are particularly beneficial
for strong scaling (computing the same total problem-size on
more processors). These so-called “2.5D” algorithms trade-
off extra memory and, in some cases, more messages in
favor of reduced use of bandwidth. Communication overlap
changes neither volume nor the number of messages, but

IEvangelos and Jorge contributed equally to this work and are listed
alphabetically.

lowers the per-message cost. To maximize the potential for
overlap, we use one-sided communication as provided by the
UPC language [4] and schedule the communication to be
hidden whenever possible.

Communication avoidance and communication overlap may
appear to be orthogonal optimization strategies, but there
are complicated interactions and trade-offs if they are used
together. With performance models incorporating both com-
munication avoidance and overlap, we systematically study
how to combine and balance these two techniques for various
linear algebra algorithms with different problem sizes given
the target system configurations.

We believe this is the first study that combines commu-
nication overlap with communication avoiding linear algebra
algorithms, and does so at the scale of tens of thousands cores.
Specifically, we made the following contributions:

o Developed communication avoiding and overlapping im-
plementations for three popular linear algebra com-
putations: matrix-multiplication, triangular solve and
Cholesky factorization.

e Measured the performance of these algorithms on tens of
thousands of processors, which are the first experimental
results on 2.5D implementations of triangular solve and
Cholesky factorization.

o Compared the performance of 4 versions of each algo-
rithm, i.e., a 2D and 2.5D algorithm, with and without
overlap.

o Provided a methodology for performance modeling of
communication avoiding and overlapping algorithms.

o Analyzed the performance trade-offs of communication
avoidance versus communication overlap, and their com-
bination, under different situations.

In the following sections, we will first provide the neces-
sary background for the classical (2D) and communication-
avoiding (2.5D) algorithms, and then have more detailed dis-
cussions on applying communication overlapping techniques
to these algorithms.

II. BACKGROUND

We studied parallel algorithms for three problems: Matrix
Multiplication (MM), Triangular Solve (TRSM) and Cholesky
factorization. For MM, we compare Cannon’s algorithm [5]

with a broadcast-based SUMMA [6]. Parallelization of TRSM
and Cholesky are more complex due to the introduction of
a longer critical path in the problem. We describe 2.5D
algorithms for each of these problems [3]. This optimization
attempts to avoid communication at the cost of a controlled
increase in memory usage.

A. Matrix multiplication

Matrix multiplication of two square n-by-n matrices com-
putes the product

k

We study classical matrix multiplication, which computes all
n® multiplications, though the reduced-complexity Strassen’s
algorithm [7] can also minimize communication and outper-
form the classical algorithm in a high-performance setting [8].
Since each of the n® multiplications can be done indepen-
dently, parallelization is very simple to load balance and
schedule.

Performing computation by blocks reduces the amount of
data that must be moved between processors, as well as in
a memory hierarchy. 2D algorithms distribute matrices in
blocks among processes and communicate on a 2D grid of
p processors. SUMMA performs communication with row
and column broadcasts on this 2D grid. While SUMMA can
flexibly be formulated in terms of rank-1 updates, to minimize
messages it is best to block these updates into bundles of up
to n/ /P Alternatively, these broadcasts can be done via all-
gathers as implemented in the Elemental framework [9].

Cannon’s algorithm performs shifts of data among near-
neighbor processes on a 2D grid of p processors, with blocks
of size n/,/p-by-n/./p. The algorithm starts by performing a
skew on the initial matrices along rows and columns of the
processor grid. The blocks are lined up so that at each subse-
quent step, only a single shift needs to be done between each
block multiplication. The advantage of Cannon’s algorithm
over SUMMA is that it can reduce the latency cost by using
near-neighbor sends rather than collective communication. On
the other hand, Cannon’s algorithm is hard to generalize to
non-square processors grids.

3D matrix multiplication [10], [11], [12], [13] is a differ-
ent parallelization of the problem, which partitions the 3D
computational graph rather than the matrices. This algorithm
stores blocks of A, B and a temporary C' matrix redundantly
and performs independent updates on the copies of C', which
are combined using a reduction operation at the end. Given
sufficient memory, the 3D algorithm is provably optimal in
both number of messages and amount of data communicated
between processors. The effective block size becomes n/p'/3.
The 2.5D formulation of this algorithm controls the trade
off between memory usage and communication by replicating
the matrix to fill up as much extra memory as available. In
particular, on p processors, the 3D algorithm stores p'/? matrix
copies, while the 2.5D algorithm works for any number of
copies ¢ € [1,p'/3]. The 2.5D algorithm typically operates

with a block size of n/ \/1% Algorithm 1 describes the 2.5D
version of the SUMMA algorithm of a grid of processors
II with ¢ layers of processors, each computing a different
contribution to the matrix C. The 2.5D version of Cannon’s
algorithm, described in [3], also asymptotically minimizes
both bandwidth and latency costs.

Algorithm 1: [C] = 2.5D-SUMMA(A,B,I1,n,c)
Input: On a cuboid grid I, n-by-n matrix A and n-by-n
matrix B, are each spread over II[:, :, 0]
Output: square n-by-n matrix C' = A - B spread over
I, 2, 0]

Replicate A and B on each II[:, :, k|, for k € [1, ¢]

// Perform outer products on processor layers in parallel:
parallel for k =0to k=c— 1 do
// Each layer performs n/c rank-1 updates:
pipelined for t =1 to t = n/c do
Broadcast Al:, k- n/c+t] on columns of II[:, :, k]
Broadcast B[k - n/c+t,:] on rows of II[:, :, k]
Cr:=Cr+ Als,k-n/c+1t]- Blk-n/c+t,:]

end
end
// Compute C via a sum reduction:
C=35_4Ch

B. Triangular solve

Triangular solve (TRSM) is used to compute a matrix X,
such that X - U = B, where U is upper-triangular and B
is a dense matrix. This problem has dependencies across the
columns of X, while each row of X can be computed inde-
pendently. For n-by-n matrices, solving this problem has the
same asymptotic computational cost as matrix multiplication.
The problem has also been shown to require at least as much
communication as matrix multiplication [14].

TRSM can be parallelized on a 2D processor grid with
broadcasts or all-gathers used for communication between
processors, similar to SUMMA. At each step of the 2D
algorithm, a block-column of X is computed. This block-
column can then be used to update the trailing matrix B. In
particular, if we consider partitioning the matrices in blocks

Ui U12]

x| g

=[B1 B,

the computation proceeds as follows,

1) compute column via TRSM, X; = B; - Ul_ll,

2) compute update via product, B, = By — X3 - Ujo,

3) compute next column via TRSM, X, = By - U{QI.
If the matrices are subdivided in blocks among processes, it
is necessary to communicate the sub-matrices U;; and later
Uss along columns of the process grid, and to communicate
the matrices X; and U;2 when performing the update.

Until X, is computed, processes on the right portion of the
processor grid are not occupied. Therefore, X is typically

| I NN RN
| EEEENEEE RN

| I NN |

Fig. 1. 2.5D Cholesky ’fat panel’ update broadcast.

taken to be a thin panel of the matrix, which yields signif-
icantly better load-balance. Communication is minimized by
employing a block-cyclic layout, where each process owns
multiple sub-blocks of the matrices. In particular, each process
II[4, j] owns blocks {X,U, B}y where k& = i + r/p and
I = j + q/p for each r,q. The communication of X; and
Uis, needed to perform each update, becomes the dominant
communication cost in this distribution.

2.5D TRSM lowers the bandwidth cost with respect to the
2D algorithm, when additional memory is available [3]. The
2.5D algorithm employs an additional level of block hierarchy,
by performing the update in two stages. The matrices are
partitioned into O(c) ’fat’ panels. Each fat panel of X is
computed with the entire processor grid, arranged in a 2D
rectangular layout of /pc —by-\/;z% processors. After each one
of these 2D TRSMs, the rest of the ’fat’ panels are updated.
This big update is done as c independent outer-products, one
on each layer. The update is accumulated redundantly and
combined via reductions by panel. For more details on the
data layout and communication in this algorithm see [3].

C. Cholesky factorization

Cholesky factorization computes the factorization of a sym-
metric positive definite matrix A, into product of a lower
triangular matrix and its transpose, A = L - LT. The se-
quential algorithm performs a modified version of Gaussian
Elimination. This algorithm has a dependency path across both
columns and rows of L. So, parallelization of this algorithm
must efficiently handle symmetry as well as load balance with
consideration of both dependency paths.

We recall the 2D parallel algorithm for Cholesky by con-
sidering the factorization in blocks,

Aqq Agl _ Lqq 0) L{l Lgl
As1 Agg Loy Lo 0o LL|-

We can start in the top left corner and compute L as follows,

1) factorize block via Cholesky, A;; = Lq; - Lﬂ,
2) update panel via TRSM, Loy = Aoy - LflT,

3) compute update via product, Asy = Aoy — Loy - L1},

4) compute next block via Cholesky, Agy = Log - LL,.
Communication is required to send Lj; across process
columns, Lo; across process rows and LI, across process
columns. Thus, the parallelization is very similar to TRSM,
except that the sequential factorization needed to compute L1
must be done before the panel TRSM. Further, less computa-
tion is involved in the symmetric update, while communication
volume stays just as large.

2.5D Cholesky is decomposed hierarchically in the same
fashion as 2.5D TRSM. Figure 1 demonstrates how updates
are decomposed among processor layers and done on different
matrix copies. Again, these updates are accumulated redun-
dantly, which uses extra memory, but reduces the bandwidth
cost of the algorithm. A block-cyclic layout is again necessary
to achieve load-balance and minimize latency. Though, we
note that the 2.5D parallelization actually slightly increases
latency cost, which is necessary to reduce bandwidth [3].

III. EXPERIMENTAL PLATFORM

Before starting the discussion on applying communication
overlapping techniques to the aforementioned linear algebra
algorithms, we describe the hardware and software environ-
ments for our implementation because they are helpful to
understand some of the design decisions we choose. While our
ideas are generally applicable to all systems, we take a step
further to optimize the tunable parameters specifically for our
experimental platform.

A. Hardware

Our target system is a Cray XE6 supercomputer with
153,216 compute cores and 217 TB of memory in total. Each
Cray XE6 node has 24 cores, grouped by 6 in 4 Non-Uniform
Memory Access (NUMA) domains. CPU cores have faster
access speed to local memory within the same NUMA domain
but have slower access speed to remote memory in other
NUMA domains. Inter-node communication is done through
the custom Cray Gemini Network, which is a high-bandwidth
and low-latency 3-D torus interconnect with hardware RDMA
support. Table I lists the specifications of our experimental
system. Cray XK-6, a sister model of Cray XE6 with GPUs,
also uses the same Gemini interconnect. Therefore, we expect
our techniques and software developed to be beneficial to a
large class of many-petaflop systems important to the broad
supercomputing community.

B. Software

We choose Unified Parallel C (UPC) [4] , a PGAS extension
of C99, to implement our applications. Modern networks, such
as the Gemini interconnect in Cray XE6, have special hard-
ware support for RDMA offloading that facilitates communi-
cation overlapping. Shan et al. [15] demonstrated that PGAS
languages, such as UPC and CAF, can deliver substantially
better performance for non-blocking point-to-point communi-
cation over MPI on Cray XE6 because Gemini allows remote-
node references to be pipelined in these programming models.

1) Computation efficiency: Figure 2 shows the efficiency
of the linear algebra routines used in our implementations
for different matrix sizes. For example, dgemm attains peak
efficiency at 8MB matrix size (a 1024-by-1024 matrix of
double type).

Performance of BLAS Routines

System Cray XE6

Processor AMD Opteron “Magny-Cours”
Clock rate 2.1 GHz

Peak performance per core 8.4 Gflops

Cores per NUMA domain 6

NUMA domains per node 4 (packaged in 2 sockets)
Total cores per node 24

Private L1 data cache per core 64 KB

Private L2 data cache per core 512 KB

Shared L3 cache per NUMA domain | 6 MB

Memory bandwidth 25.6 GB/s

Memory per node 32 GB DDR3-1066 ECC

Compiler Cray Compiler
Interconnect Gemini 3-D Torus
Peak Bandwidth (per direction) 7 GB/s

TABLE I

SPECIFICATIONS OF THE CRAY XE6 USED FOR OUR EXPERIMENTS

In addition, the global address space of UPC improves our
programming productivity for implementing global matrices
with complex blocked data-layouts.

As in many scientific applications, the communication pat-
terns in the algorithms that we studied can be conveniently
expressed by collective communication, which is usually opti-
mized for the hardware platform by the vendor. The collectives
in the current UPC 1.2 specification don’t meet our needs
because: 1) they don’t support collectives within a subset
of threads (i.e., no equivalent of MPI communicators); 2)
they lack some of the necessary collective operations such
as reduce and allreduce for arrays. Thus we use MPI
collectives to supplement UPC in our implementation.

Though hardware RDMA can transfer data without CPU
intervention, it usually requires non-trivial amount of CPU
cycles for initialization. Therefore, hardware RDMA is more
suitable for long messages, whose cutoff size is system-
specific. For short messages, the best latency is attained
by attentive CPU polling. Collective communication often
requires even more CPU resources to proceed because they
usually use more complicated algorithms that cannot be simply
offloaded to the network. Thus we use a dedicated Pthread to
handle communication progress when overlapping collective
communication with computation.

We use a hybrid (process/thread) parallelization model for
all our benchmark runs. Specifically, we run one process per
NUMA domain and one thread per core within the NUMA
domain. Each UPC thread is mapped an OS process and each
process uses 6 OS threads, 1 thread per core, via Pthreads and
multi-threaded BLAS/LAPACK libraries. We implement our
parallel algorithms using local linear algebra routines provided
by vendor-optimized libraries.

C. Performance characteristics

To guide our optimization with performance modeling, we
develop a suite of micro-benchmarks to measure the system
parameters of the target computer. In addition, these perfor-
mance numbers can also tell us the practical efficiency upper
bound of the respective operations.

90 T T T T T
—— dgemm /'P_‘-I'LL\
80 (--f-- dtrsm [S L ——
---4@---- dpotrf /|/_ ------- ®

Percentage of Machine Peak

0 ' """""""" ! ! ! ! !
32 128 512 2048 8192 32768

Matrix Size (KBytes)

131075

Fig. 2. Efficiency of the BLAS routines used in our algorithms. Run with 6
cores in a NUMA domain.

2) Network performance: We use the methodology in [16],
[17], [18] to measure the LogGP parameters of the inter-
connect. Figure 3 shows the inter-node network bandwidth
for different message sizes. The network bandwidth peaks at
512KB messages.

Bandwidth of upcmemget()

6200 r T T T
—— bandwidth) | 1
6000 1 L T
5800
2 _,|/
g 5600 /-
2 5400 /
=
E 5200 /
2 5000 /
©
§ 4800 /
4600 /
4400
4200 IF 1 1 1 1 1
32 128 512 2048 8192 32768 131075
Matrix Size (KBytes)
Fig. 3. Inter-node network bandwidth using UPC one-sided communication

IV. SUMMA
A. Overlapping communication and computation

As explained in Section II-A, the SUMMA algorithm
performs the matrix product based on broadcasts and outer
products. The main part of the 2D and 2.5D algorithm consists
of a loop where each thread takes part in two broadcasts
(related to the grid row and column, respectively) and per-
forms one BLAS matrix product (dgemm) per iteration. We
develop new versions of both the 2D and 2.5D algorithms
that overlap communication and computation by starting the

broadcast of the next iteration while the dgemm of the current
iteration is being performed. Most of UPC compilers provide
support for overlapping through asynchronous upc_memget,
upc_memput and upc_memcpy functions. However, they are
limited to point-to-point communications. In order to overlap
the broadcast we create one Pthread that performs the part of
this broadcast that corresponds to that UPC thread. Thus, one
core of the NUMA region is only used for communication and,
at the same time, the other five cores are used for computation
by calling the multithreaded BLAS routines.

B. Implementation details

Despite the fact that UPC supports distributed arrays with
blocked and cyclic layouts, it does not support blocking in
multiple dimensions which is necessary for implementing
the 2D block and block-cyclic layouts. Therefore, instead
of using the UPC distributed arrays directly, we exploit the
global address space to build a distributed data structure called
directory. This data structure uses global pointers, which can
refer to memory associated with other UPC threads. After
initializing this data structure with the appropriate pointers,
each UPC thread makes a local copy of the structure. Then,
every time it needs to access memory belonging to another
UPC thread, it looks up the local directory and finds the
corresponding global pointer. This lookup is fast since it
involves local data. Finally, the UPC thread uses the obtained
global pointer to access the data. We found these directories
convenient for a few reasons. First, they facilitate the indexing
over layers in the 2.5D algorithms. To incorporate the notion
of layers into the dictionary, it is sufficient to add an auxiliary
dimension to the data structure. Second, adding blocking levels
into our data distributions degenerates into modifying some
tunable parameters in the data structure. This was helpful for
the 2.5D algorithms where we deploy a two-level 2D block
cyclic layout and this additional level of blocking is substantial
in controlling load balance and latency.

The memory requirements of each algorithm and the over-
heads included by their optimizations should be taken into
account in order to find the most suitable option for each
scenario. In 2D SUMMA, each UPC thread must keep one
square block of size n/,/p-by-n/,/p per matrix. Additionally,
two buffers of the same size are necessary to keep the data of
the blocks of the input matrices that must be multiplied during
each iteration. Thus, they need 5n2/p elements. The number
of blocks that must be kept at the same time in the 2.5D
algorithm are the same (3 blocks for the original matrices and
2 for the current iteration). The only difference is that their
dimension is n/ \/]% and the memory requirements 5n%c/p
elements (overhead of c).

When applying overlapping, we need to double the buffer
size in order to keep, at the same time, the blocks of the current
iteration that are being multiplied and the blocks needed in
the next iteration whose broadcast is being forwarded. Thus
the memory requirements are increased in 2n?/p and 2n2c/p
elements because of using overlapping in the 2D and 2.5D
algorithms, respectively.

C. Experimental results

The percentage of peak flops of the target system described
in Section III obtained by each SUMMA algorithm are il-
lustrated in the graphs of Figure 4. These results were taken
using double precision from 1,536 to 24,576 cores (from 256
to 4,096 UPC threads). Results for the 2.5D algorithms were
obtained using different values for the replication factor c,
showing always the best (in these scenarios ¢ = 4). On 1,536
cores, for a matrix size of 32,768-by-32,768 doubles, replica-
tion (2.5D algorithms) could not be done due to insufficient
memory.

First, these results prove that communication avoiding and
overlapping techniques are complementary as the version that
combines them obtains the best performance for a large
number of cores (even double of performance than the basic
2D version for 24,576 cores). Comparing both techniques, the
more cores we use the more significant is the improvement
obtained by the 2.5D algorithms. However, they are not very
beneficial for 1,536 cores, and the overlapped 2D version is
the best option. The reason is that, although the time due to the
broadcasts of the loop decreases, the overhead introduced by
the initial replication and the final reduction of the matrices
across layers offsets the reduced intra-layer communication.
Thus, we see that the overlapping technique is more beneficial
for a low/medium number of cores while communication
avoidance has more influence while we increase this number,
although the two techniques can be combined.

V. CANNON’S ALGORITHM
A. Overlapping communication and computation

The structure of Cannon’s algorithm is quite similar to that
of SUMMA. Apart from the initial skew of the matrices, the
main difference is that in each iteration the threads only need
to shift the blocks of the input matrices by rows/columns of
the grid. Similarly to SUMMA, the Cannon’s 2D and 2.5D
algorithms have been optimized by forwarding the shift of the
blocks needed in the next iteration and overlapping it with the
BLAS matrix product of the current iteration. Two options
arise for this overlapping: using Pthreads as in SUMMA
or the asynchronous upc_memget functions available in the
compilers. We have developed a benchmark that compares
the overlapping capabilities of each approach and determined
that the usage of asynchronous copies is better than Pthreads,
especially as the computation costs can also be divided among
the 6 cores of the NUMA region. Therefore, overlapping in
Cannon’s is implemented using asynchronous upc_memget
functions.

B. Implementation details

In the 2D algorithm, instead of synchronizing all threads at
each iteration so that each of them takes the data from the next
one, we use one buffer so that each UPC thread can store two
blocks of each matrix at the same time. The blocks used in the
iteration ¢ 4+ 1 will be kept in the part of the memory where
the blocks used in 7 — 1 were stored. Therefore, the blocks
that must be shifted to another UPC thread (the ones used

SUMMA on Hopper (n=16384)
35 T
13} —+— 2D
. - 2D-overlp
30 < - 255D
£ 2.5D-overlp

Percentage of Machine Peak

0
1536

6144
Number of cores

24576

SUMMA on Hopper (n=32768)

70|.J T
—— 20
60 . --43-- 2D-overlp
2.5D
e £\ 2.5D-overlp
50 A%

Percentage of Machine Peak

6144
Number of cores

Fig. 4. Performance of the SUMMA algorithm

for computation in iteration ¢) are not corrupted because of
copying the next ones. The shifts are made by the the receiving
UPC thread using upc_memget.

The memory requirements of Cannon’s algorithm are also
quite similar to those of SUMMA. The block sizes are again
n/\/p and n/\/p/c in the 2D and 2.5D cases, respectively.
Since one buffer is needed to shift the blocks of the input
matrices the memory requirements are 5n2/p and 5n2c/p too.
Thus, again the memory overhead because of using the 2.5D
version is indicated by c. The overlapping technique only
needs memory to store two blocks of each input matrix so
it does not lead to any memory overhead.

C. Experimental results

A study of the performance of the different versions of
Cannon provides two insights. On the one hand, the observed
performance is better than SUMMA (for instance, around
25% for 24,576 cores). The reason is that the latency cost is
reduced because of using point-to-point communications with
upc_memget instead of collectives. This issue is even more
significant in PGAS languages with one-sided communications
because the source and destination threads do not need to
be synchronized. On the other hand, the conclusions of the
comparison among the different approaches are quite similar
to SUMMA, in spite of using a different technique to apply
overlapping (asynchronous upc_memget instead of Pthreads):
communication avoidance seems to be more beneficial for a
large number of cores while overlap help more at a smaller
scale.

Figure 5 shows the performance breakdown using 1,536 and
24,576 cores for a 16,384x16,384 matrix in order to help us to
explain the reasons for this behavior. The communication label
represents the time of the point-to-point copies within the loop.
The initial shift also includes the broadcast along the layers
used in the 2.5D approaches. When using 1,536 cores, the
communication and computation times of the 2D algorithm are
very similar, so the overlapping technique improves the perfor-
mance significantly. The 2.5D approach significantly reduces
the communication time, but not enough to compensate for the

overhead introduced by the broadcast of the initial shift and
the final reduction. Furthermore, its combination with overlap
is not especially worthy as communication and computation
times are not balanced. However, for 24,576 cores, the differ-
ence between the communication and computation times in the
2D algorithm limits the influence of the overlapping technique
and the application of the communication avoidance is worthy
even with the overheads (especially combined to overlapping
communication and computation as their execution times are
similar).

Performance Breakdown for Cannon (n=16384)

2500 T T I
I nitial shift
maseem communication
Seseasesn computations
2000 e W synchronization
e _reduction
% 1500 [;
o : :
E 3 3 ‘
= 1000 f) 3 i ;
)] 3 : -
; m B =
2D (1536) 2.5D (1536) 2D (24576) 2.5D (24576)
Fig. 5. Performance breakdown of the Cannon algorithm using 1,536 and

24,576 cores for a 16,384x16,384 matrix

VI. TRIANGULAR SOLVE

A. Overlapping communication and computation

The main bottleneck of the 2D triangular solve is the update
of the matrix using dgemm (matrix multiplication): By = By —
X1 -Ujo. Since, in this case, the block U, is always available
to be broadcast along the columns of the grid, we opted to
overlap this update with the broadcast of the blocks of U
needed in the dgemm call of the following iteration, using the
Pthreads mechanism also applied in SUMMA.

B. Implementation details

The 2D TRSM has been described in Section II-B. However,
we develop a different 2.5D approach to the one explained
in [3]. This new approach follows the same scheme as 2.5D
algorithms (using c layers if there is enough memory) but
without minimizing the total amount of communication. The
communication times just decrease because we reduce the
number of cores involved in each broadcast and, thus, the
contention of the network. This algorithm takes advantage of
the rows of X that can be computed independently to avoid
the reductions and, in general, minimizes the communication
and synchronization among layers. The initial distribution of
the matrices in one layer is the same as for the 2D algorithm,
a block-cyclic distribution along the \/1% threads in each
dimension. Thus, if each UPC thread has r blocks in each
dimension, the block size is n/r\/p/c-by-n/r/p/c. In the
beginning, we replicate the triangular matrix along layers (as
input matrices in the 2.5D algorithms for the matrix product)
but distribute the rows of each block of X among them. We
remark that there are two levels of blocking for X, each UPC
thread has 72 rectangular blocks of n/cry/p/c-by-n/r\/p/c
elements. With this distribution, each layer computes a subset
of the rows of X via a 2D TRSM with its \/]%—by-\/]%
grid of threads. The distributed rows must be gathered once
the layers finish their computation.

In this new 2.5D TRSM, most of the computation is
completely independent among layers because only one syn-
chronization is necessary to know the moment when all them
have finished and the final gather must be performed. The main
advantage of this approach over the algorithm shown in [3] is
that it replaces the c reductions across layers with only one
final gather. Besides, it keeps the advantage of reducing the
communication times with respect to the 2D approach because
the broadcasts within one layer involve less UPC threads and
are faster. The 2.5D algorithm can also overlap the matrix
update of the current iteration with the broadcast of the blocks
of U needed in the next one.

With regard to the memory requirements we remark that in
this problem there are two matrices of different type: X, which
is a dense matrix and U, which is a triangular matrix where
only the elements above the main diagonal are stored. In the
2D algorithm, where 7 is the factor that indicates the number
of blocks per thread in each dimension in the block-cyclic
distribution, the block size is n/r,/p-by-n/r,/p. In the dense
matrix X, each thread owns n/,/p rows and columns so they
must store n?/p elements of this matrix. Nevertheless, only
blocks above or in the main diagonal of matrix U are stored
so UPC threads do not need the same amount of memory. We
consider the UPC threads with the largest requirements which
are r(r + 1)/2 blocks. It means that n2(r + 1)/2rp elements
of the initial triangular matrix must be stored in the worst
case. Furthermore, additional buffers are needed to perform
the broadcasts (one column block of X and one row block of
U). Simplifying, the memory requirements of the 2D TRSM
are n%(r? + 5r + 2)/2pr? elements.

In the 2.5D algorithm the initial matrices are distributed
in a 2D block-cyclic way among the UPC threads within the
first layer. Thus, these threads will need the same amount of
blocks but with size n/r\/p/c-by-n/r\/p/c. As the number
of blocks to store in the buffers is also the same as in the 2D
algorithm, the memory requirements are multiplied by c.

The overlapping technique for TRSM only increases the
memory requirements because of an additional buffer needed
to store the data of U that will be used in the next iteration
update. Thus, the 2D and 2.5D algorithms need n?/rp and
n? /rpc more elements, respectively.

C. Experimental results

The experimental evaluation of TRSM is shown in Figure 6.
The matrix size is up to 65,536-by-65,536 doubles because
of needing only two matrices. As in the previous algorithms,
the 2.5D algorithm with overlap is the best choice for almost
all the scenarios. Studying both techniques independently, the
minimization of contention reduces the communication time
more significantly than the overlapped 2D approach when
using a large number of cores. Nevertheless, the best option
for the smallest scenario (1,536 cores and matrices of 32,768-
by-32,768 doubles) is again the overlapped 2D algorithm.

VII. CHOLESKY FACTORIZATION
A. Overlapping communication and computation in Cholesky

As in the triangular solve, the bottleneck of the 2D Cholesky
factorization is the update of the trailing matrix Ay, =
Aoy — Lo - L2T1 (described in Section II-C). This update
can be decomposed in two phases: first, the required sub-
blocks of Ls; and LQT1 are received via two consecutive
broadcasts and then dgemm operations follow to update the
corresponding blocks of As,. However we should emphasize
that the dependencies of Cholesky differ substantially from
those of triangular solve. In this case the dependencies are
across columns and rows of the original matrix. Furthermore,
the critical path includes the factorization of the diagonal
matrix blocks in a sequential way.

Due to the aforementioned dependencies, we opted to over-
lap computation and communication in the update of trailing
matrix. These operations are illustrated in Figure 7. Initially
we factorize the first column of blocks and we execute two
back to back broadcasts to transfer it to the involved UPC
threads. Note that we store the received blocks in auxiliary
buffers. Then, instead of updating the whole trailing matrix,
we update only the second column of blocks with dgemms and
continue with its factorization. This slight modification creates
a pipeline and provides an overlapping opportunity at the next
step. While we broadcast the second column of factorized
blocks, we can simultaneously update the rest of the trailing
matrix using the buffered first column of factorized blocks.
This part of the trailing matrix is depicted with yellow color
in Figure 7 and the two back to back broadcasts are depicted
with blue arrows. As soon as the two overlapped operations
synchronize, we update with dgemms only the third column
of blocks in respect to the second factorized column (which is

Triangular Solve on Hopper (n=32768)

35
o —— 2D
% ’ --{=}-- 2D-overlp |
<@ 25D
e 2.5D-overlp

Percentage of Machine Peak

1
6144
Number of cores

0
1536 24576

Triangular Solve on Hopper (n=65536)
50

—+— 2D

451 F+-- 2D-overlp 5
5 <@ 255D
8 40 g e 2.5D-overlp
2 35 e
<
g 30
= N
5 25
&
€ 20
[9)
o
o 15
o

10

5

1536

Number of cores

Fig. 6. Performance of the triangular solver

.
S
Sin NN
=
T

St e il o

Fig. 7. Overlapping computations and communication in 2D Cholesky

just received), then we factorize it and the same overlapping
schedule remains active until the whole matrix is factorized.

The memory overhead for this overlapping schedule consists
of the auxiliary buffers for two columns of blocks (one buffer
for the blocks received from the row broadcast and one buffer
for the blocks received during the column broadcast). In order
to fill the pipeline and to initiate the overlapping schema, only
two broadcasts are required. In other words, all except two of
the consecutive broadcasts are overlapped with computations.
This kind of overlapping hides both the bandwidth/latency
costs of the two broadcasts and also the idle times resulting
from them.

The 2.5D algorithm decomposes the updates of the trailing
matrix on different layers as it is depicted in Figure 1. So
each layer is responsible for updating its matrix using a sub-
panel of columns (the red ones in Figure 1). Since we are
implementing a two level blocking as previously described,
each red sub-panel consists of multiple columns of blocks.
Thus we can adopt a similar overlapping schema as in the 2D
algorithm. Initially we broadcast the first of these columns and
we store the received blocks in auxiliary buffers. At the next
step, we update the trailing matrix with dgemms using the
buffered blocks and simultaneously broadcast the second of

the columns. Again the memory overhead due to overlapping
is the space needed for two auxiliary column-buffers.

B. Implementation details

Since the input matrix A is symmetric, we must store
only the elements lying on and below the diagonal. So, in
Figure 1 the gray blocks are not stored, instead their values can
be obtained explicitly by transposing their symmetric blocks.
Thus, the transfer of Lo; across rows and L1, across columns
that are mentioned in Section II-C, are implemented as two
consecutive team broadcasts: During the second broadcast,
the UPC threads lying on the diagonal send to their column-
team the blocks received from their row-sender during the first
broadcast. Finally, we emphasize here that the 2.5D algorithm
deploys a two level blocking: On a first level, we block
the matrix into “fat panels” on each layer and the result
of this blocking is shown in Figure 1. At a next level we
further block each “fat panel”. This two level blocking is
crucial for achieving load-balancing and minimizing latency.
Moreover, 2.5D Cholesky proceeds in logical steps where it
first factorizes a column of “fat panels” and then updates the
trailing matrix. To take significant advantage from the 2.5D
algorithm we should have as many “fat panels” as possible in
our matrix decomposition. In this case, we will spend more
time on the updates of trailing matrices, which can be done
at high computational efficiency.

Regarding the exact memory requirements, the 2D algo-
rithm has to store n? /2 elements (i.e. half of the matrix A)
and since we utilize p UPC threads, each thread stores n?/(2p)
elements. If we apply the 2D block-cyclic layout r times
in each dimension, each thread allocates two communication
buffers with total size 2n?/(pr) elements. This means that
the aggregate memory overhead for the 2D algorithm with
overlapping consists of 2n?/r elements. Finally, in the 2.5D
algorithm we store c replicas of the initial matrix and on
each replica we assign p/c threads. Hence, all the memory
requirements are multiplied by a factor of ¢ for 2.5D and 2.5D
with overlapping respectively.

Cholesky on Hopper (n=32768)

30 T
—+— 2D
-- - 2D-overlp
25l 25D g
T - 2.5D-overlp

Percentage of Machine Peak

0
1536

6144
Number of cores

24576

Fig. 8.

C. Experimental results

The experimental results for Cholesky factorization are
shown in Figure 8. We conclude that overlap helps improve
the performance of both 2D and 2.5D algorithms. However,
2.5D does not incur as much benefit from overlap as 2D
does because of the “fat panel” factorization phase, where no
overlap is exploited by our implementation. If we examine
the two optimization techniques independently, we observe
that overlap gives significant boost to the 2D Cholesky fac-
torization. On the other hand, communication avoidance is
not beneficial up to 6,144 cores, while on 24,576 cores the
2.5D version meets the performance of the 2D algorithm.
As explained in the previous section, we want as many ‘“fat
panels” as possible in the 2.5D case and this can lead to
very small block sizes. The latter fact implies reduced BLAS
efficiency which in turn increases both computation and idle
times'. For this reason, we expect the 2.5D algorithm to
give a significant performance boost when the input matrix is
even larger. Finally, from the given strong scaling graphs one
can infer that overlapping is beneficial in weak scaling too.
In theory, the ratio of computation/communication remains
the same as we weak-scale, so overlapping should provide
equivalent gains. For 1,536 cores and n=32,768 overlapping
decreases the execution time of the 2D version by 24% and
similarly for 6,144 cores and n=65,536 (i.e. 4x cores and 4 x
problem size) the decrease in execution time via overlapping
is 26%.

VIII. METHODOLOGY FOR CONSTRUCTING
PERFORMANCE MODELS

In this section we describe the general methodology of
developing detailed performance models for the aforemen-
tioned algorithms. Our ultimate objective is to maximize the
performance for any given problem, so we opt to design
detailed performance models that indicate the algorithm to

' An optimization we are working on is to aggregate the BLAS operations
into larger rectangular blocks so that we can avoid the side-effect of reduced
BLAS efficiency

Cholesky on Hopper (n=65536)

50 :
18} —F— 2D
45 F1-- 2D-overlp s
™ - @ 25D
40 S e 2 5D-overlp .

Percentage of Machine Peak

Number of cores

Performance of Cholesky

execute and, additionally, provide an auto-tuning framework
for the tunable parameters among the various algorithms.

Our performance models track the execution flow of each
algorithm and estimate the completion time for every encoun-
tered operation, whether it is a BLAS call or a communication
operation. In regard to the overlapped operations, the models
predict the execution time as the maximum expected comple-
tion time of each individual operation. So, the models measure
the execution time in the critical path taking into account the
computation time, possible idle time due to load imbalance,
and the communication time. To make accurate estimates for
the BLAS and communication calls, the models employ input
arguments which are machine and algorithm dependent.

First of all, a problem set-up is defined by the matrix
dimension n and the available number of processors p. The
algorithms that leverage a 2D block cyclic distribution for
the matrix partitioning have an extra parameter r that defines
how many times we apply this 2D block cyclic distribution
on the input matrix (i.e. if the distribution is simply pure
block 2D then r = 1). Finally, the 2.5D algorithms have a
parameter c that specifies the replication factor. For Cholesky
and triangular solve, a 2D block cyclic distribution is applied
on each replicated layer since we have implemented a two
level blocking as it is described in Sections VI and VII. So,
given the parameters n, p, r, ¢ we can find out the block
size that each BLAS call operates on and we can specify
the exact number of processors and words involved in each
communication operation.

All the previous parameters are platform independent. We
should somehow support the computation and communication
estimations with some additional machine dependent parame-
ters. Specifically, we utilize the following multithreaded BLAS
routines: dgemm, dpotrf, and dtrsm. We run micro-benchmarks
on the target platform to get the efficiency of each routine as
a function of the input matrix size. The corresponding results
for the multithreaded BLAS routines with six threads on
Hopper are illustrated in Figure 2. From these results we can
make an accurate prediction about the execution time of each
BLAS call since we know the exact block size of the inputs.

Real and estimated times for SUMMA (n=16384)
4000 T T

T T
EEm computation

3500 BBEEESaS communication

3000
2500 |
(]
£
5 2000
£
" 1500 |
1000 4
500 —
0
2D 2D-est 2.5D 2.5D-est
Fig. 9.

Furthermore, we model each point-to-point communication
based on the number of the transferred words, the network
bandwidth and the latency. The last two parameters depend on
the message size, thus we benchmark the network performance
using the LogGP model as explained in Section III-C. The
model for the collective operations uses the same parameters,
the number of participating processes and a binomial function.

An overview of the accuracy of our performance models
is shown in Figure 9. We use SUMMA and Cholesky with
1,536 cores as examples. Our methodology provides models
that predict correctly the computation and idle times. How-
ever, their estimations of the communication times are very
optimistic. The reason is that the contention of the network
significantly influences the performance of the algorithms but
it is not included in the LogGP model. Via the inclusion of
the contention in the models, they could potentially estimate
correctly the performance of the algorithms. We refer the
reader to [19] for the exact equations resulting from this
methodology.

IX. CONCLUSION

Minimizing communication cost in parallel algorithms is
key to improving performance for current and future su-
percomputers. Through the case studies of four numerical
algorithms, we have demonstrated that combining communi-
cation avoiding and overlapping techniques is effective and
can significantly reduce execution time in most cases. The
priority of applying these two techniques depends on the
algorithm, the problem size and the machine configuration.
The trade-offs between communication avoidance and overlap
include computation cost, communication cost, and memory
usage. We developed performance models that could be used
to predict the benefits of these optimization techniques but
we also found that estimating communication time precisely
was very difficult in the presence of unpredictable network
contention.

In addition, we have a couple of interesting observations
about parallel programming models in our research: 1) Hard-
ware RDMA support in modern interconnects enables very

Real and estimated times for Cholesky (n=65536)

35000 T T T T
Em computation+idle
BEEESaS communication
30000
25000 E
20000 E

Time (ms)

15000

10000

5000

2D 2D-est

2.5D

2.5D-est

Comparison of the real and the estimated performance for SUMMA and Cholesky in experiments with 1,536 cores

efficient communication overlapping with PGAS languages
such as UPC in our case. 2) Our implementations employed
three different parallel programming models (UPC, MPI and
Pthreads) to meet our algorithmic needs and fully realize the
hardware potential. However, this is unfavorable in terms of
programming productivity and indicates that more research in
parallel programming is still much needed.

While we have successfully showed how to use com-
munication avoiding and overlapping techniques to improve
performance for a few linear algebra problems, many research
questions remain, for example: 1) Can we automate the process
of applying these optimizations and selecting the right param-
eters by using performance models and empirical search? 2)
Can we extend communication avoidance and overlap to other
interesting problems, especially those of irregular parallelism?
and 3) What new hardware features can assist these two
techniques? We hope our work will inspire more future work
in the quest of minimizing communication cost.

ACKNOWLEDGMENT

This research was supported in part by the Office of Science
of the U.S. Department of Energy (DE-AC02-05CH11231),
DARPA (HRO011-10-9-0008), the Ministry of Science and
Innovation of Spain (TIN2010-16735) and the Ministry of
Education of Spain under the FPU research grant AP2008-
01578. The third author was supported by a Krell Department
of Energy Computational Science Graduate Fellowship, grant
number DE-FG02-97ER25308. This research used resources
of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
U.S. Government.

[1]

[2]

[3]

[4]
[5]
[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing band-
width limited problems using one-sided communication and overlap,”
in Proc. 20th Intl. Parallel and Distributed Processing Symposium
(IPDPS’06), 2006.

R. Nishtala, P. H. Hargrove, D. O. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on BlueGene/P using one-sided
communication and overlap,” in Proc. 23rd Intl. Parallel and Distributed
Processing Symposium (IPDPS’09), 2009.

E. Solomonik and J. Demmel, “2.5D algorithms for parallel dense linear
algebra,” Concurrency and Computation: Practice and Experience,
2012, to appear.

“UPC language specifications, v1.2,” Lawrence Berkeley National Lab,
Tech. Rep. LBNL-59208, 2005.

L. E. Cannon, “A cellular computer to implement the kalman filter
algorithm,” Ph.D. dissertation, Montana State University, 1969.

R. van de Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency and Computation: Practice and
Experience, vol. 9, no. 4, pp. 255-274, 1997.

V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354-356, 1969.

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-optimal parallel algorithm for Strassen’s matrix mul-
tiplication,” UC Berkeley, Tech. Rep. EECS-2012-32, 2012.

J. Poulson, B. Maker, J. R. Hammond, N. A. Romero, and R. van de
Geijn, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Transactions on Mathematical Software,
2012, to appear.

E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph algo-
rithms,” SIAM Journal on Computing, vol. 10, no. 4, pp. 657-675, 1981.
R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,
“A three-dimensional approach to parallel matrix multiplication,” IBM
J. Res. Dev., vol. 39, pp. 575-582, 1995.

A. Aggarwal, A. K. Chandra, and M. Snir, “Communication complexity
of PRAMSs,” Theoretical Computer Science, vol. 71, no. 1, pp. 3-28,
1990.

S. L. Johnsson, “Minimizing the communication time for matrix mul-
tiplication on multiprocessors,” Parallel Computing, vol. 19, pp. 1235-
1257, 1993.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing
communication in linear algebra,” SIAM J. Mat. Anal. Appl., vol. 32,
no. 3, 2011.

H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann,
“A preliminary evaluation of the hardware acceleration of the Cray
Gemini interconnect for PGAS languages and comparison with MPL”
in Proc. 2nd Intl. Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computing Systems (PMBS’11),
2011, pp. 13-14.

C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands,
C. Iancu, M. Welcome, and K. Yelick, “An evaluation of current high-
performance networks,” in Proc. 17th Intl. Parallel and Distributed
Processing Symposium (IPDPS’03), 2003.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a
realistic model of parallel computation,” in Proc. 4th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, 1993, pp.
1-12.

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model,” Journal
of Parallel and Distributed Computing, vol. 44, no. 1, pp. 71-79, 1997.
E. Georganas, J. Gonzédlez-Dominguez, E. Solomonik, Y. Zheng,
J. Tourifo, and K. Yelick, “Communication avoiding and overlapping
for numerical linear algebra,” UC Berkeley, Tech. Rep., 2012, to
appear. [Online]. Available: http://bebop.cs.berkeley.edu

