
Design of Efficient Java
Communications for High
Performance Computing

Guillermo López Taboada

Department of Electronics and Systems

University of A Coruña, Spain

Department of Electronics and Systems

University of A Coruña, Spain

PhD Thesis

Design of Efficient Java

Communications for High

Performance Computing

Guillermo López Taboada

May 2009

PhD Advisors:

Juan Touriño Domı́nguez

Ramón Doallo Biempica

Dr. Juan Touriño Domı́nguez

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Design of Efficient Java Communications for High Perfor-

mance Computing” ha sido realizada por D. Guillermo López Taboada bajo nuestra

dirección en el Departamento de Electrónica y Sistemas de la Universidad de A

Coruña y concluye la Tesis Doctoral que presenta para optar al grado de Doctor en

Ingenieŕıa Informática con la Mención de Doctor Europeo.

En A Coruña, a 26 de Febrero de 2009

Fdo.: Juan Touriño Domı́nguez

Director de la Tesis Doctoral

Fdo.: Ramón Doallo Biempica

Director de la Tesis Doctoral

Vo Bo: Luis Castedo Ribas

Director del Dpto. de Electrónica y Sistemas

Resumen de la Tesis

Introducción

El lenguaje de programación Java se ha convertido rápidamente en uno de los

más populares tras su aparición a mediados de los años noventa. Entre las causas

de su pronta aceptación en numerosos ámbitos de aplicación están el tratarse de un

lenguaje orientado a objetos, ser independiente de la plataforma, su portabilidad, ser

inherentemente seguro, contar con una API muy extensa, y finalmente figurar como

el principal lenguaje de programación por número de desarrolladores y por formación

ofertada, tanto en el mundo académico como en el profesional. Su penetración en

el mundo de la web e Internet es especialmente importante, tanto en aplicaciones

cliente-servidor como en computación distribuida. No obstante, la presencia de Java

no está restringida a estos ámbitos, siendo una opción consolidada en muchos otros

(por ejemplo, en aplicaciones multimedia y de escritorio) e incluso una alternativa

emergente en la actualidad para su aplicación en computación de altas prestaciones

(High Performance Computing o HPC).

El creciente interés en Java para computación paralela está motivado por las

especiales caracteŕısticas del lenguaje, de enorme utilidad en este ámbito de aplica-

ción. Aśı, su inherente soporte para aplicaciones en red, el tratarse de un lenguaje

multithread (lo cual permite aprovechar de forma directa los sistemas multi-núcleo),

y el ser portable y multiplataforma, entre otras ventajas de Java, están contribuyen-

do a su adopción en el campo de la computación de altas prestaciones. El principal

inconveniente de Java en este ámbito ha sido, hasta ahora, su rendimiento inferior al

de los lenguajes que son compilados a código nativo de cada plataforma, los cuales

están más establecidos en este campo, especialmente Fortran y C. No obstante, en

v

vi

la actualidad el rendimiento ya no constituye un obstáculo insalvable. La tradicio-

nal diferencia de rendimiento entre Java y los lenguajes compilados espećıficamente

para cada plataforma se ha ido estrechando en los últimos años gracias al Just-In-

Time (JIT), la técnica de compilación de la Máquina Virtual de Java (JVM) que

proporciona al bytecode de Java rendimientos comparables al del código nativo.

Sin embargo, aunque Java obtiene rendimientos similares en códigos secuencia-

les a los lenguajes compilados, en aplicaciones paralelas su escalabilidad depende

en gran medida de la intensidad y eficiencia de las comunicaciones y/o accesos a

memoria compartida. De hecho, la inexistencia de mecanismos de comunicación efi-

cientes en Java tiene como consecuencia que sus aplicaciones paralelas presenten

peor escalabilidad que las que utilizan código nativo, ralentizando de este modo el

desarrollo de soluciones Java en computación de altas prestaciones.

En cuanto a la arquitectura y configuración de los sistemas utilizados en HPC

cabe destacar que actualmente se está incrementando significativamente el núme-

ro de núcleos de procesador instalados a fin de satisfacer la creciente demanda de

potencia de cálculo. Además, las arquitecturas clúster siguen siendo las más de-

mandadas, debido a su excelente ratio coste/rendimiento. Finalmente, la necesidad

de que las aplicaciones escalen con un mayor número de núcleos favorece la uti-

lización de redes de baja latencia (por ejemplo InfiniBand, Myrinet o SCI). Este

hecho, la popularización de los clusters con redes de baja latencia y con un número

cada vez mayor de núcleos por nodo, subraya la importancia del paralelismo y de

la programación multithread e h́ıbrida utilizando ambos paradigmas de memoria

compartida/distribuida.

Aśı, el actual escenario demanda lenguajes de programación que permitan un

desarrollo más productivo y que proporcionen un completo soporte multithread y

de servicios de red. Además, la agregación de nodos multi-núcleo en clusters por

medio de redes de altas prestaciones debe ir pareja del uso de un middleware de

comunicación que permita a las aplicaciones aprovechar el rendimiento de dichas

redes. El lenguaje de programación Java puede satisfacer estas demandas y constituir

una alternativa atractiva para la programación paralela en computación de altas

prestaciones, siempre y cuando sea capaz de dotarse de mecanismos de comunicación

eficientes en las actuales arquitecturas de computación.

vii

La presente Tesis Doctoral, “Design of Efficient Java Communications for High

Performance Computing”, parte de la hipótesis inicial de que es posible desarro-

llar aplicaciones Java en computación de altas prestaciones, un ámbito en el que el

rendimiento es crucial, siempre que esté disponible un middleware de comunicación

eficiente. Entre los objetivos de esta Tesis se hayan la evaluación del rendimiento

de Java en el marco de la computación de altas prestaciones y proporcionar nue-

vas herramientas para mejorar este proceso de evaluación y posterior análisis de los

resultados. Además, otra finalidad de este trabajo es el diseño y desarrollo de un

middleware de comunicación optimizado para Java, basado en sockets, aśı como do-

tar a Java de bibliotecas de comunicación que proporcionen mayores rendimientos

que alternativas previamente existentes. Entre los desarrollos implementados des-

tacan un middleware de comunicación no bloqueante a bajo nivel, una biblioteca

de paso de mensajes en Java, y una optimización del protocolo de la Invocación de

Métodos Remotos (RMI) para Java. Finalmente, la Tesis proporciona una gúıa de

recomendaciones y buenas prácticas en optimización del rendimiento de aplicaciones

Java en computación de altas prestaciones.

Metodoloǵıa de Trabajo

La metodoloǵıa de trabajo seguida en el desarrollo de la presente Tesis Doctoral,

ha consistido en:

Definir la lista de tareas a realizar en el tema de la Tesis, teniendo en cuenta

los trabajos previos y los recursos disponibles.

Determinar su secuencia u orden de ejecución, ateniéndose a las restricciones

que pudiesen existir y al orden más favorable.

Establecer su duración y la oportunidad de su desarrollo en un momento de-

terminado.

Organizar las acciones o tareas por bloques de cierta entidad que definan

etapas.

viii

Definir, para cada etapa, las metas a alcanzar (u objetivos concretos a lograr

en tiempo definidos), sabiendo que en cada etapa puede haber una o varias

metas.

Fijar para cada meta, dentro de cada etapa, la metodoloǵıa de trabajo a

emplear para lograrla (revisión bibliográfica, evaluación de proyectos previos,

análisis de la eficiencia de los desarrollos existentes en el ámbito de la Tesis,

análisis de aportaciones necesarias en el ámbito de trabajo, diseño e imple-

mentación de soluciones más eficientes en el área de investigación, evaluación

de las aportaciones realizadas y, en caso de ser de positivas y de entidad, difu-

sión posterior a través de congresos y revistas del ámbito de conocimiento; y,

finalmente, recopilación de las principales conclusiones en la presente memoria

de Tesis).

De este modo, la lista de tareas (Tn), agrupadas en bloques (Bn), desarrolladas

en la presente Tesis han sido:

B1 Estado actual de las comunicaciones en Java para computación de altas pres-

taciones.

T1.1 Selección del paradigma más apropiado para la computación de altas

prestaciones en Java. Se seleccionó el paso de mensajes debido a la mayor

escalabilidad de los sistemas de memoria distribuida, en los cuales cons-

tituye el principal paradigma de programación. Además, las bibliotecas

de paso de mensajes proporcionan, en general, rendimientos aceptables y

Java cuenta con numerosos proyectos de bibliotecas de paso de mensajes.

T1.2 Revisión de la literatura y proyectos desarrollados en Java para paso de

mensajes.

T1.3 Evaluación del rendimiento de las bibliotecas existentes de paso de men-

sajes en Java.

T1.4 Obtención de modelos anaĺıticos de rendimiento de comunicaciones colec-

tivas en paso de mensajes en Java. Estos modelos se obtuvieron en tres

clusters, con redes de interconexión Fast Ethernet y las redes de baja

latencia SCI y Myrinet.

ix

T1.5 Evaluación y modelado anaĺıtico de comunicaciones MPI utilizando las

tres redes de interconexión mencionadas en el punto anterior con finalidad

comparativa.

T1.6 Identificación de los principales problemas de rendimiento detectados: po-

bre rendimiento de las bibliotecas de comunicaciones de Java en clusters,

especialmente si se utiliza RMI, bibliotecas de paso de mensajes en Java

poco desarrolladas y con operaciones colectivas poco escalables.

B2 Análisis y desarrollo de un middleware de comunicaciones más eficiente en

Java.

T2.1 Determinación de la aproximación a seguir en el diseño de mecanismos

de comunicación eficientes en Java. Se selecciona una estrategia de abajo

a arriba, comenzando por el desarrollo de una biblioteca de comunicación

más eficiente en Java a bajo nivel (Java sockets).

T2.2 Análisis y diseño de necesidades de una implementación más eficiente

de sockets en Java (soporte de redes de baja latencia, un protocolo con

menos copias de datos, tanto en Java como en las funciones nativas del

sistema utilizadas, y reducción del coste que supone la serialización de

los datos que han de ser transferidos en Java).

T2.3 Desarrollo de un primer prototipo de solución: implementación de una

biblioteca de sockets de alto rendimiento en Java sobre TCP/IP.

T2.4 Desarrollo de la solución sobre una red de baja latencia: implementación

de una biblioteca de sockets en Java sobre SCI.

T2.5 Implementación de la biblioteca de sockets para Myrinet e InfiniBand.

T2.6 Desarrollo de un protocolo de comunicación a través de sockets en siste-

mas de memoria compartida, para permitir que aplicaciones basadas en

sockets mejoren su rendimiento en sistemas multi-núcleo.

T2.7 Identificación de necesidades en comunicaciones en Java: soporte más

eficiente de comunicaciones no bloqueantes sobre Java IO sockets.

T2.8 Análisis, diseño e implementación de una biblioteca de comunicaciones no

bloqueantes en Java, tanto sobre el API estándar de Java sockets como

sobre la biblioteca de sockets de alto rendimiento.

x

T2.9 Optimización del protocolo Java RMI, con el objeto de trasladar a las

aplicaciones basadas en RMI los beneficios del middleware desarrollado.

T2.10 Evaluación del rendimiento del middleware de comunicaciones desarro-

llado, especialmente en aplicaciones paralelas en Java.

B3 Análisis y desarrollo de una biblioteca de paso de mensajes en Java.

T3.1 Análisis, diseño y desarrollo de una biblioteca de paso de mensajes basada

en el middleware desarrollado. Se implementa un subconjunto importante

y perfectamente funcional de la API de mpiJava 1.2, la más utilizada ya

que mpiJava y MPJ Express, dos de las bibliotecas de paso de mensajes

en Java más extendidas, la implementan.

T3.2 Desarrollo de primitivas de comunicación colectiva para paso de mensajes

en Java utilizando algoritmos más escalables.

T3.3 Validación de las bibliotecas desarrolladas.

T3.4 Desarrollo de benchmarks en Java para paso de mensajes.

T3.5 Evaluación del rendimiento de Java con los benchmarks implementados y

haciendo uso del middleware y las bibliotecas desarrolladas en esta Tesis,

con especial atención al impacto que presentan en el rendimiento final.

T3.6 Documentación y difusión del trabajo desarrollado en la aplicación de las

bibliotecas desarrolladas en computación de altas prestaciones en Java.

B4 Determinación de las principales conclusiones y ĺıneas de trabajo futuras.

T4.1 Determinación de las principales conclusiones.

T4.2 Evaluación de las principales ĺıneas de investigación abiertas a ráız del

trabajo desarrollado.

T4.3 Redacción de la memoria final de la Tesis Doctoral.

El trabajo llevado a cabo en estas tareas ha sido recogido en la presente memoria.

Aśı, las tareas del primer bloque han sido desarrolladas en los caṕıtulos 1 y 2. El

segundo bloque constituye los caṕıtulos 3 y 4. Las tareas del tercer bloque están

recogidas en los caṕıtulos 5 y 6. Finalmente, el cuarto bloque está incluido dentro

del último caṕıtulo, el de las conclusiones.

xi

Asimismo, la lista de metas (M) asociadas con cada bloque (B) de la Tesis

Doctoral ha sido:

B1 Estado actual de las comunicaciones en Java para computación de altas pres-

taciones.

M1.1 Evaluación actual de los proyectos existentes en comunicaciones en Java

para computación de altas prestaciones, tanto del rendimiento proporcio-

nado como de sus principales aportaciones y carencias.

M1.2 Mejora de las herramientas disponibles para dicha evaluación (nuevos

modelos de rendimiento, técnicas de evaluación y desarrollo de nuevos

benchmarks).

B2 Análisis y desarrollo de un middleware de comunicaciones más eficiente en

Java.

M2.1 Middleware de comunicaciones en Java que del modo más transparente

posible para el usuario proporcione mejores rendimientos tanto en redes

de baja latencia (SCI, Myrinet, InfiniBand) como en sistemas de memoria

compartida (sistemas multi-núcleo). Además, debe extender las funcio-

nalidades existentes en la actualidad en Java, proporcionando comunica-

ciones no bloqueantes sobre la API de Java IO sockets.

M2.2 Desarrollo de un protocolo optimizado de Java RMI.

B3 Análisis y desarrollo de una biblioteca de paso de mensajes en Java.

M3.1 Implementación de una biblioteca de paso de mensajes en Java que mejore

el rendimiento de otras bibliotecas existentes aprovechando el middleware

de comunicaciones especificado en la meta M2.1.

M3.2 Evaluación en términos de impacto en el rendimiento final de aplicaciones

Java de los proyectos desarrollados en el marco de esta Tesis, aśı como

de sus principales aportaciones y carencias.

B4 Determinación de las principales conclusiones y ĺıneas de trabajo futuras.

M4.1 Memoria final de la Tesis Doctoral que recoge las principales conclusiones

y ĺıneas futuras de investigación.

xii

Los medios necesarios para realizar esta Tesis Doctoral, siguiendo la metodoloǵıa

de trabajo anteriormente descrita, han sido los siguientes:

Material de trabajo y financiación económica proporcionados fundamental-

mente por el Grupo de Arquitectura de Computadores de la Universidade da

Coruña, junto con la Xunta de Galicia (beca predoctoral), el Ministerio de

Educación y Ciencia (beca FPU AP2004-5984) y la Universidade da Coruña

(contrato de profesor ayudante).

Además, esta Tesis se ha financiado a través de los siguientes proyectos de

investigación:

• De financiación estatal (Ministerios de Ciencia y Tecnoloǵıa, Educación

y Ciencia, y Ciencia e Innovación) a través de los proyectos TIC2001-

3694-C02-02, TIN2004-07797-C02, y TIN2007-67537-C03-02, además de

la mencionada beca FPU AP2004-5984.

• De financiación autonómica a través de los proyectos PGIDT01-PXI10501-

PR, PGIDIT02-PXI10502IF, PGIDIT05PXIC10504PN, PGIDIT06PXIB-

105228PR, Programa de Consolidación de Grupos de Investigación Com-

petitivos (Ref. 3/2006 DOGA 13/12/2006) y Red Gallega de Compu-

tación de Altas Prestaciones (Grupos de Redes de Investigación 2007/147),

además de la beca predoctoral.

Financiación del Ministerio de Ciencia e Innovación de una ayuda de movilidad

para la participación de profesores en tribunales de Tesis convocados para la

mención europea en el t́ıtulo de doctor, TME2008-00739 (BOE 12/1/2009).

Acceso a material bibliográfico, a través de la biblioteca de la Universidade da

Coruña.

Acceso al software desarrollado en proyectos previos de comunicaciones en

Java.

Acceso a clusters con redes de baja latencia y/o múltiples procesadores/núcleos

por nodo:

• Clúster irixoa (Univ. de A Coruña, 2002). 10 nodos Pentium III 933 MHz

con 512 MB RAM interconectados mediante Fast Ethernet.

xiii

• Clúster bw (Centro de Supercomputación de Galicia, CESGA, 2003-2006).

16 nodos Pentium III a 1 GHz con 512 MB RAM interconectados me-

diante Myrinet.

• Clúster muxia (Univ. de A Coruña, 2003-actualidad). Inicialmente 8 nodos

dual Xeon 1.8 GHz y 1 GB RAM interconectados mediante redes SCI

y Gigabit Ethernet. Posteriormente se han incorporado 8 nodos dual

Xeon a 2.8/3.2 GHz con 2 GB de RAM (2003-2004-2005) y 8 nodos dual

Xeon de doble núcleo a 3.2 GHz y 4 GB de RAM (2006). La instalación

del clúster se financió gracias a los proyectos PGIDT01-PXI10501PR y

PGIDIT02-PXI10502IF, mientras que las sucesivas ampliaciones han si-

do a cargo de los proyectos TIC2001-3694-C02-02, TIN2004-07797-C02 y

PGIDIT05PXIC10504PN.

• Clúster starbug (Univ. de Portsmouth, Reino Unido, 2005-2006). Clúster

con 8 nodos dual Xeon a 2.8 GHz y 2 GB de RAM interconectados me-

diante SCI y Myrinet.

• Supercomputador Finis Terrae (CESGA, 2008-actualidad). 144 nodos

con 16 núcleos de procesador Itanium2 Montvale a 1.6 GHz y 128 GB

RAM interconectados mediante InfiniBand, además de contar con un

sistema Superdome de memoria compartida con 128 núcleos Itanium2

Montvale a 1.6 GHz y 1 TB RAM.

Dos estancias de investigación en el Distributed Systems Group de la Uni-

versidad de Portsmouth, Reino Unido, bajo la supervisión del Profesor Mark

Baker. Estas estancias, de 3.5 meses en 2005 y de 4 meses en 2006, permitieron

el desarrollo de las tareas T2.5 y T2.8. Además, brindaron la oportunidad de

establecer una relación de colaboración con los Profesores Bryan Carpenter y

Aamir Shafi, desarrolladores de buena parte de los proyectos más relevantes en

computación de altas prestaciones en Java, como son HPJava y muy especial-

mente las bibliotecas de paso de mensajes en Java mpiJava y MPJ Express. La

financiación de ambas estancias de investigación fue obtenida en concurrencia

competitiva en sendas convocatorias públicas de la Xunta de Galicia y del

Ministerio de Educación y Ciencia.

xiv

Conclusiones

La presente Tesis Doctoral, “Design of Efficient Java Communications for High

Performance Computing”, ha puesto de manifiesto que es posible desarrollar apli-

caciones Java en computación de altas prestaciones si se dispone de middleware y

bibliotecas de comunicación eficientes. El análisis del estado del arte en este tema

puso de manifiesto que Java carećıa de dicho middleware y bibliotecas, lo cual le

imped́ıa obtener rendimientos escalables en computación de altas prestaciones. Una

evaluación más profunda de la situación realizada con nuevos benchmarks y mode-

los desarrollados en esta Tesis identificó las causas de la falta de eficiencia en las

comunicaciones:

Carencia de soporte directo en redes de baja latencia.

Realización de copias de datos prescindibles en transferencias entre Java y las

bibliotecas de comunicaciones nativas del sistema.

Serialización de los datos a transmitir, siendo esta operación muy costosa.

Carencia de soporte eficiente a las comunicaciones no bloqueantes con Java

sockets IO.

Utilización de protocolos de comunicación no adaptados a clusters HPC.

Una vez analizadas las causas de la ineficiencia de las comunicaciones en Java

se procedió a diseñar soluciones que incrementasen su rendimiento, desarrollando

un middleware de comunicación eficiente para Java, denominado Java Fast Sockets

(JFS), una implementación de sockets de alto rendimiento que proporciona soporte

a redes de baja latencia (InfiniBand, Myrinet, SCI) e incrementa el rendimiento de

sistemas de memoria compartida. Además, se diseñó e implementó una biblioteca,

iodev, que proporciona comunicaciones no bloqueantes en Java, y que sirvió de base

para el desarrollo de una biblioteca de paso de mensajes en Java. Dicha biblioteca,

denominada F-MPJ, implementa algoritmos de operaciones colectivas más escalables

que otras implementaciones de paso de mensajes previas. Finalmente, la optimiza-

ción del protocolo de Java RMI para clusters con redes de baja latencia completó el

elenco de soluciones más eficientes para comunicaciones en Java.

xv

El análisis del impacto de las soluciones desarrolladas en el rendimiento final de

las aplicaciones paralelas en Java ha validado la hipótesis inicial, ya que ha sido

posible aumentar significativamente la escalabilidad de las aplicaciones Java en el

ámbito de la computación de altas prestaciones. No obstante, a la hora de imple-

mentar aplicaciones paralelas en Java es importante la optimización del rendimiento

del código Java, para lo cual también se ha proporcionado una gúıa de “buenas

prácticas” para desarrollar códigos más eficientes, recopiladas durante el desarro-

llo de los micro-benchmarks, benchmarks de kernels y aplicaciones utilizados en las

evaluaciones de rendimiento realizadas en esta Tesis.

Conviene destacar que aunque se ha demostrado que es posible el uso de Java

en HPC, es necesario seguir mejorando y extendiendo los proyectos iniciados en el

presente trabajo. Aśı, es de sumo interés el desarrollo de nuevas implementaciones

de sockets de alto rendimiento en Java, como los sockets SCTP (Stream Control

Transmission Protocol). Además, la orientación a mensajes del protocolo SCTP

lo hacen especialmente indicado para la implementación de bibliotecas de paso de

mensajes sobre él. En este sentido, seŕıa importante el completar la implementación

de la API de mpiJava 1.2 en F-MPJ. La integración de JFS y el protocolo RMI

optimizado en otros middleware de comunicación es también altamente interesante.

De este modo, seŕıa posible extender de forma significativa el alcance de las mejoras

de rendimiento obtenidas con las bibliotecas desarrolladas en esta Tesis.

Para concluir conviene tener presente que el auge de los sistemas multi-núcleo

demanda un mayor desarrollo de las soluciones en memoria compartida. Por tanto,

el desarrollo de una implementación eficiente de OpenMP en Java debe abordarse

de forma apremiante. Aśı seŕıa posible aunar las optimizaciones desarrolladas pa-

ra bibliotecas de memoria distribuida (JFS, iodev, RMI optimizado, F-MPJ) con

protocolos de memoria compartida, permitiendo explotar al máximo la arquitectura

de los clusters multi-núcleo: la comunicación en memoria compartida se realizaŕıa

intra-nodo mientras que las bibliotecas de comunicación eficientes seŕıan utilizadas

para transferencias inter-nodo.

xvi

Principales Contribuciones

Las principales aportaciones de esta Tesis son:

Una evaluación actual de Java para computación de altas prestaciones [61, 94],

con especial énfasis en su rendimiento en clusters con nodos con múltiples pro-

cesadores (multi-core o con hyper-threading) interconectados mediante redes

de baja latencia (InfiniBand, Myrinet y SCI).

La mejora de las herramientas disponibles para evaluar el rendimiento de

Java para programación paralela al proporcionar: (1) una suite de micro-

benchmarks de operaciones colectivas en paso de mensajes [87], (2) un mo-

delo anaĺıtico más exacto del rendimiento de dichas operaciones [94], el cual

ha permitido caracterizar de forma más precisa el rendimiento de las comuni-

caciones en Java para paso de mensajes sobre clusters de baja latencia [94],

y (3) una implementación en Java para paso de mensajes de los NAS Para-

llel Benchmarks [61], la suite de benchmarks estándar para la evaluación del

rendimiento de sistemas y lenguajes en computación de altas prestaciones.

El diseño y desarrollo de una biblioteca de sockets de alto rendimiento en

Java, Java Fast Sockets (JFS) [92]. El uso de JFS permite, de un modo trans-

parente para el usuario y las aplicaciones, incrementar el rendimiento de las

comunicaciones en Java. Aśı, el protocolo de comunicaciones implementado en

JFS reduce el número de copias de datos necesarias para realizar una comu-

nicación, evita la serialización de tipos de datos primitivos y proporciona el

soporte necesario para aprovechar la baja latencia y los elevados anchos de

banda tanto de redes de altas prestaciones como InfiniBand, Myrinet y SCI,

como de la memoria compartida en sistemas multi-núcleo.

El diseño e implementación de un middleware de comunicación en Java que

soporta de forma eficiente comunicaciones no bloqueantes sobre la API de

sockets IO, iodev [93], permitiendo de este modo aprovechar el rendimiento

proporcionado por JFS, en el caso de que esta biblioteca esté disponible en el

sistema.

xvii

El diseño y desarrollo de una implementación más eficiente de RMI para clus-

ters homogéneos [86], gracias a un protocolo más eficiente que reduce la can-

tidad de información a transmitir, aśı como el coste de las comunicaciones

mediante el uso de JFS. El impacto del uso de este protocolo es muy impor-

tante al estar basadas en RMI un amplio número de bibliotecas y aplicaciones

distribuidas.

El diseño e implementación de una biblioteca de paso de mensajes en Java,

Fast MPJ (F-MPJ) [93], que proporciona una mayor escalabilidad a las apli-

caciones paralelas en Java gracias al uso de iodev y a su implementación de

las operaciones colectivas utilizando algoritmos más eficientes.

Publications from the Thesis

Journal Papers (3)

G. L. Taboada, J. Touriño, and R. Doallo. F-MPJ: Scalable Java Message-

passing Communications on Parallel Systems. Journal of Supercomputing,

2009 (In press).

G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Message-

Passing Libraries on High-Speed Clusters. Intl. Journal of Computer Systems

Science & Engineering, 2009 (In press).

G. L. Taboada, J. Touriño, and R. Doallo. Java Fast Sockets: Enabling

High-speed Java Communications on High Performance Clusters. Computer

Communications, 31(17):4049-4059, 2008.

International Conferences (9)

G. L. Taboada, J. Touriño, R. Doallo, Y. Lin and J. Han. Efficient Java

Communication Libraries over InfiniBand. In Proc. 11th IEEE Intl. Conf. on

High Performance Computing and Communications (HPCC’09), Seoul, Korea,

2009.

D. A. Mallón, G. L. Taboada, J. Touriño, and R. Doallo. NPB-MPJ: NAS Par-

allel Benchmarks Implementation for Message-Passing in Java In Proc. 17th

Euromicro Intl. Conf. on Parallel, Distributed, and Network-Based Processing

(PDP’09), pages 181-190, Weimar, Germany, 2009.

xix

xx

G. L. Taboada, C. Teijeiro, and J. Touriño. High Performance Java Remote

Method Invocation for Parallel Computing on Clusters. In Proc. 12th IEEE

Symposium on Computers and Communications (ISCC’07), pages 233-239,

Aveiro, Portugal, 2007.

G. L. Taboada, J. Touriño, and R. Doallo. High Performance Java Sockets

for Parallel Computing on Clusters. In Proc. 9th Intl. Workshop on Java and

Components for Parallelism, Distribution and Concurrency (IWJacPDC’07),

page 197b (8 pages), Long Beach, CA, USA, 2007.

G. L. Taboada, J. Touriño, and R. Doallo. Non-blocking Java Communications

Support on Clusters. In Proc. 31st IEEE Conf. on Local Computer Networks

(LCN’06), pages 264-271, Tampa, FL, USA, 2006.

G. L. Taboada, J. Touriño, and R. Doallo. Non-blocking Java Communica-

tions Support on Clusters. In Proc. 13th European PVM/MPI Users’ Group

Meeting (EuroPVM/MPI’06), Lecture Notes in Computer Science vol. 4192,

pages 256-265, Bonn, Germany, 2006.

G. L. Taboada, J. Touriño, and R. Doallo. Designing Efficient Java Com-

munications on Clusters. In Proc. 7th Workshop on Java for Parallel and

Distributed Computing (IWJPDC’05), page 192 (8 pages), Denver, CO, USA,

2005.

G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Java

Message-Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters. In

Proc. 5th IEEE Intl. Conf. on Cluster Computing (CLUSTER’03), pages

118-126, Hong Kong, China, 2003.

G. L. Taboada, J. Touriño, and R. Doallo. Performance Modeling and Eval-

uation of Java Message-Passing Primitives on a Cluster. In Proc. 10th Eu-

ropean PVM/MPI Users’ Group Meeting (EuroPVM/MPI’03), Lecture Notes

in Computer Science vol. 2840, pages 29-36, Venice, Italy, 2003.

xxi

National Conferences (4)

D. A. Mallón, G. L. Taboada, J. Touriño, and R. Doallo. Implementación de

los NAS Parallel Benchmarks en Java con Paso de Mensajes. In Actas de las

XIX Jornadas de Paralelismo, pages 405-410, Castellón, Spain, 2008.

G. L. Taboada, J. Touriño, and R. Doallo. Bibliotecas de Comunicación

Eficiente en Clusters para Códigos Java. In Actas de las XVII Jornadas de

Paralelismo, pages 407-412, Albacete, Spain, 2006.

G. L. Taboada, J. Touriño, and R. Doallo. Configuración y Evaluación de

Bibliotecas de Paso de Mensajes Java en Clusters. In Actas de las XIV

Jornadas de Paralelismo, pages 193-198, Leganés, Spain, 2003.

G. L. Taboada. Estudio de la Programación de Clusters mediante Bibliote-

cas de Paso de Mensajes en Java. In Actas del I Certamen Arqúımedes de

Introducción a la Generación de Conocimiento, pages 1-24, Valencia, Spain,

2002.

Technical Reports (1)

B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbe, F. Huet, and G. L.

Taboada. Current State of Java for HPC. In INRIA Technical Report RT-0353,

pages 1–24, INRIA Sophia Antipolis, Nice, France, 2008, http://hal.inria.fr/-

inria-00312039/en/.

Abstract

There is an increasing interest to adopt Java as the parallel programming lan-

guage for the multi-core era. This interest demands scalable performance on hybrid

shared/distributed memory architectures. Although Java offers important advan-

tages, such as built-in multithreading and networking support, security, widespread

use, high programming productivity, portability and platform independence, the lack

of efficient communication middleware is an important drawback for its uptake in

High Performance Computing (HPC). This PhD Thesis presents the design, imple-

mentation and evaluation of several solutions to improve this situation. For this, it

has been designed, developed and evaluated a high performance Java sockets imple-

mentation (named JFS, Java Fast Sockets), in order to take advantage of high-speed

networks (SCI, Myrinet, InfiniBand) and shared memory (e.g., multi-core) machines.

Moreover, an efficient non-blocking communication support is provided through the

development of the iodev library, which allows to overlap communication and com-

putation. Finally, a Java message-passing library, Fast MPJ (F-MPJ), has been

implemented, which provides more scalable algorithms in collective communication

primitives. These middleware and libraries have been used in Java communication

protocols (e.g., RMI) and eventually in parallel applications, enhancing their perfor-

mance, especially thanks to the avoidance of the serialization of primitive data types,

commonly used in HPC. Furthermore, a collection of good programming practices

for performance have been gathered from the implementation of new Java parallel

codes, used for the performance evaluation and validation of the middleware and

libraries developed in this Thesis. The final and main conclusion is that the use of

Java for HPC is feasible, and even advisable when looking for productive develop-

ment, provided that efficient communication middleware is made available, such as

the projects presented in this Thesis, and following the guidelines for performance

optimization also suggested in this work.

A Karina

meu Amor

A meus pais

por tanto

Acknowledgments

This Thesis is not the result only of my own effort; there are many people

involved in this work whose support and dedication I want to acknowledge. First

and foremost, I want to acknowledge my PhD advisors Juan and Ramón for the

confidence they placed in me, and the support they gave me during all these years.

I cannot forget my colleagues in the Computer Architecture Group because they

made my experience in the lab easier during all these years. Furthermore, Javier,

Toño, o padriño, a madriña e a abuelita have always been there for me.

I gratefully thank Mark Baker for hosting me during my visits to the Distributed

Systems Group, University of Portsmouth, UK, and Bryan Carpenter and especially

Aamir Shafi for working side by side with me during that time and for their valuable

comments. I also thank Denis Caromel and his group for their valuable collaboration.

I also gratefully thank CESGA (Supercomputing Center of Galicia, Santiago de

Compostela, Spain) for providing access to the Finis Terrae supercomputer and the

Myrinet cluster.

Finally, but not least, I am thankful to the following institutions for funding

this work: the Computer Architecture Group and the Department of Electronics

and Systems for the human and material support, the University of A Coruña for

giving me the opportunity of starting a career in academia, and for financing my

attendance at some conferences, the Galician Government (Xunta de Galicia) for the

projects PGIDT01PXI10501PR, PGIDIT02PXI10502IF, PGIDIT05PXIC10504PN,

PGIDIT06PXIB105228PR, Consolidation Program of Competitive Research Groups

(Ref. 3/2006 DOGA 13/12/2006), High Performance Computing Galician Thematic

Network (2007/147), and a Pre-Doctoral Grant, and the Ministry of Education and

Science of Spain for the projects TIC2001-3694-C02-02, TIN2004-07797-C02-02 and

TIN2007-67537-C03-02, the FPU Grant AP2004-5984, and for a mobility grant for

inviting recognized professors to serve on the Thesis committee TME2008-00739.

Guillermo López Taboada

El necio es atrevido y el sabio comedido

(Fools rush in where angels fear to tread)

Spanish proverb

Contents

Preface 1

1. Java Communications for High Performance Computing 9

1.1. Java Sockets . 10

1.2. Java Remote Method Invocation (RMI) 12

1.3. Java Message-Passing Libraries . 13

1.4. Additional Java Communication Libraries 20

2. Performance Analysis of Message-Passing Communications 21

2.1. Message-Passing Performance Models 22

2.2. A New Model for Message-Passing Overhead 24

2.3. Message-Passing Micro-benchmarking 28

2.3.1. Cluster Hardware/Software Configuration 28

2.3.2. Analytical Models and Metrics 29

2.4. Analysis of the Performance Models 35

2.4.1. Point-to-Point Communication 35

2.4.2. Collective Communications 37

2.4.3. Model-based Performance Optimization 40

xxxi

xxxii CONTENTS

2.5. Kernel Benchmarking . 41

2.6. Analysis of the Kernel Benchmarking Results on Dual Nodes 45

2.6.1. Performance Analysis on Dual-Processor Nodes 45

2.6.2. Performance Analysis on SMT Dual-Processor Nodes 46

2.7. Chapter 2 Conclusions . 48

3. JFS: High Performance Java Fast Sockets 51

3.1. Efficient Java Socket Implementation 52

3.1.1. Serialization Overhead Reduction 52

3.1.2. Socket Protocol Optimization 53

3.1.3. Efficient Shared Memory Socket Communication 54

3.1.4. Efficient Java Sockets on High-speed Networks 56

3.1.5. JFS Application Transparency 57

3.2. JFS Performance Evaluation . 59

3.2.1. Experimental Configuration 59

3.2.2. JFS Micro-benchmarking on High-speed Networks 61

3.2.3. JFS on Gigabit Ethernet Jumbo Frames 68

3.2.4. Java Shared Memory Communication 69

3.3. Performance Impact on Parallel Applications 71

3.4. Chapter 3 Conclusions . 74

4. Efficient iodev Low-level Message-Passing and RMI Middleware 77

4.1. Low-level Message-Passing Devices Overview 78

4.2. iodev: Low-level Message-Passing Library 80

4.2.1. Design of the xxdev Low-level Communication Layer 81

CONTENTS xxxiii

4.2.2. Implementation of the iodev Communication Device 83

4.2.3. iodev Communication Protocols 85

4.2.4. Java Fast Sockets Support in iodev 89

4.3. Performance Evaluation of iodev . 91

4.3.1. Experimental Configuration 91

4.3.2. Point-to-point iodev Micro-benchmarking 92

4.4. High Performance Java RMI . 101

4.4.1. Transport Protocol Optimization 103

4.4.2. Serialization Overhead Reduction 104

4.4.3. Object Manipulation Improvements 105

4.5. Performance Evaluation of Java RMI for HPC 106

4.5.1. Experimental Configuration 106

4.5.2. Micro-benchmarking Results 107

4.5.3. Performance Impact on RMI-based Applications 109

4.6. Chapter 4 Conclusions . 113

5. Fast MPJ: Efficient Java Message-Passing Library 115

5.1. Efficient MPJ Communication . 116

5.2. MPJ Collective Algorithms . 118

5.3. F-MPJ Collective Primitives Algorithms 121

5.4. F-MPJ Performance Evaluation . 123

5.4.1. Experimental Configuration 123

5.4.2. Micro-benchmarking MPJ Point-to-point Primitives 124

5.4.3. Micro-benchmarking of MPJ Collective Primitives 126

xxxiv CONTENTS

5.4.4. MPJ Kernel and Application Benchmarking 128

5.5. Chapter 5 Conclusions . 131

6. Implementation and Evaluation of Efficient MPJ Benchmarks 133

6.1. NAS Parallel Benchmarks in Java . 134

6.2. NPB-MPJ: NAS Parallel Benchmarks for MPJ 137

6.2.1. NPB-MPJ Design . 137

6.2.2. NPB-MPJ Implementation . 138

6.2.3. NPB-MPJ Optimization . 138

6.3. NPB-MPJ Performance Evaluation 141

6.3.1. Experimental Configuration 141

6.3.2. Analysis of the NPB Results 142

6.3.3. NPB-MPJ Scalability on Gigabit Ethernet 146

6.3.4. NPB-MPJ Scalability on InfiniBand (x86-64 Cluster) 151

6.3.5. NPB-MPJ Scalability on InfiniBand and Shared

Memory (Finis Terrae) . 154

6.4. Chapter 6 Conclusions . 160

Conclusions 162

References 169

List of Tables

1.1. Overview of Java message-passing projects 18

1.2. Characteristics of Java message-passing projects 19

2.1. Myrinet: analytical models and peak aggregated metrics (lp = log2 p) 31

2.2. SCI-single: analytical models and peak aggregated metrics (lp = log2 p) 32

2.3. SCI-dual: analytical models and peak aggregated metrics (lp = log2 p) 33

2.4. SCI-dual SMT: analytical models and peak aggregated metrics (lp =

log2 p) . 34

2.5. Parameter values for latency (T) reduction through primitive substi-

tution . 42

2.6. Ratio TSCI−single(p)/TSCI−dual(p) . 47

2.7. Ratio TSCI−single(nd)/TSCI−dual(2× nd) 47

2.8. Ratio TSCI−dual(2× nd)/TSCI−dual SMT (4× nd) 47

3.1. CPU load percentage of sockets processing using Gigabit Ethernet

Jumbo Frames . 69

3.2. JFS performance improvement compared to Sun JVM sockets 76

xxxv

xxxvi LIST OF TABLES

5.1. Collective algorithms used in representative MPJ libraries (1selected

algorithm for short messages; 2selected algorithm for long messages;
3selectable algorithm for long messages and npes power of two) 122

6.1. NPB-MPJ Benchmarks Description 136

List of Figures

2.1. Comparison of Hockney’s model vs. proposed model 27

2.2. Measured and estimated latencies and bandwidths of Send 36

2.3. Measured and estimated bandwidths for Broadcast and Reduce . . . 38

2.4. Measured and estimated bandwidths for Scatter and Alltoall 39

2.5. Speedups of selected Java Grande kernels 44

3.1. Sun JVM socket operation . 54

3.2. JFS optimized protocol . 55

3.3. Java communication middleware on high-speed multi-core clusters . . 57

3.4. JFS core class diagram . 58

3.5. Java array communication latency on SCI 62

3.6. Java array communication bandwidth on SCI 62

3.7. Java array communication latency on Myrinet 64

3.8. Java array communication bandwidth on Myrinet 64

3.9. Java array communication latency on InfiniBand 65

3.10. Java array communication bandwidth on InfiniBand 65

3.11. Java array communication latency on Gigabit Ethernet 67

3.12. Java array communication bandwidth on Gigabit Ethernet 67

xxxvii

xxxviii LIST OF FIGURES

3.13. Java array communication latency on shared memory 70

3.14. Java array communication bandwidth on shared memory 70

3.15. MPJ LUFact kernel performance on Gigabit Ethernet and SCI 73

3.16. MPJ MolDyn application performance on Gigabit Ethernet and SCI . 75

4.1. xxdev low-level communications stack on high-speed multi-core clusters 80

4.2. Request.iwait method pseudocode 85

4.3. iodev eager protocol pseudocode . 86

4.4. iodev rendezvous protocol pseudocode 88

4.5. Point-to-point message-passing devices performance on Gigabit Eth-

ernet . 94

4.6. Point-to-point message-passing devices performance on SCI 96

4.7. Point-to-point message-passing devices performance on Myrinet . . . 97

4.8. Point-to-point message-passing devices performance on InfiniBand . . 99

4.9. Point-to-point message-passing devices performance on Shared Memory100

4.10. Java RMI layered architecture . 102

4.11. RMI send overhead of a 3 KB Object on SCI 102

4.12. Java RMI communication stack on high-speed multi-core clusters . . 104

4.13. Ping and ping-pong RMI benchmark sequence diagram 107

4.14. Performance results of RMI overhead of sending a 3 KB Object on SCI108

4.15. RMI integer array communication performance on Gigabit Ethernet . 110

4.16. RMI integer array communication performance on SCI 111

4.17. RMI object communication performance on Gigabit Ethernet and SCI 112

4.18. Performance of ProActive NPB MG and CG (Class C workload) . . . 113

LIST OF FIGURES xxxix

5.1. Overview of F-MPJ communication layers on HPC hardware 117

5.2. FT Broadcast pseudocode . 119

5.3. MSTBcast pseudocode . 119

5.4. Minimum-spanning tree algorithm for Broadcast 119

5.5. BKTAllgather and BDEAllgather pseudocode 120

5.6. Bucket algorithm for Allgather (BKTAllgather) 121

5.7. Bidirectional exchange algorithm for Allgather (BDEAllgather). In

the 2nd step, bidirectional exchanges occur between the two pairs of

processes p0 and p2, and p1 and p3 121

5.8. MPJ point-to-point primitives performance 125

5.9. MPJ collective primitives performance 127

5.10. Speedups of Crypt and LUFact JGF kernels 130

5.11. Speedups of JGF MolDyn application 131

6.1. NPB relative performance on the x86-64 cluster 143

6.2. NPB relative performance on the Finis Terrae 144

6.3. NPB Class A results on Gigabit Ethernet 147

6.4. NPB Class B results on Gigabit Ethernet 148

6.5. NPB Class A results on InfiniBand (x86-64 cluster) 152

6.6. NPB Class B results on InfiniBand (x86-64 cluster) 153

6.7. NPB Class A results on the Finis Terrae 156

6.8. NPB Class B results on the Finis Terrae 158

6.9. NPB Class C results on the Finis Terrae 159

Preface

Java has become a leading programming language soon after its release, espe-

cially in web-based and distributed computing environments, and it is an emerging

option for High Performance Computing (HPC) [3, 57, 82]. The increasing inter-

est in Java for parallel computing is based on its appealing characteristics: built-in

networking and multithreading support, object orientation, platform independence,

portability, security, it has an extensive API and a wide community of developers,

and finally, it is the main training language for computer science students. Moreover,

performance is no longer an obstacle. The gap between Java and native languages

performance has been narrowing over the last few years, thanks to the Just-in-Time

(JIT) compiler of the Java Virtual Machine (JVM) that obtains native performance

from Java bytecode. Nevertheless, although the performance gap is usually small

for sequential applications, it can be particularly large for parallel applications when

depending on communications performance. The main reason is the lack of efficient

Java communication middleware, which has hindered Java adoption for HPC.

Regarding HPC platforms, new deployments are increasing significantly the num-

ber of cores installed in order to meet the ever growing computational power de-

mand. This current trend to multi-core clusters underscores the importance of

parallelism and multithreading capabilities [30]. Therefore, this scenario requires

scalable parallel solutions, where communication efficiency is fundamental. This

efficiency not only depends heavily on the use of high-speed networks, such as In-

finiBand [45], Myrinet [14] or SCI [41], but more and more on the communication

middleware [104]. Furthermore, hybrid systems (shared/distributed memory archi-

tectures) increase the complexity of communication protocols as they have to com-

bine inter-node and intra-node communications, which may imply efficient communi-

cation overlapping. Hence, Java represents an attractive choice for the development

1

2 Preface

of communication middleware for these systems as it is a multithreaded language,

supports the heterogeneity of the systems and can rely on efficient communication

middleware that provides support on high performance communication hardware.

Thus, Java can take full advantage of hybrid architectures using shared memory for

intra-node communication and relying on efficient inter-node communication.

Work Methodology

The present PhD Thesis, “Design of Efficient Java Communications for High

Performance Computing”, deals with the initial hypothesis that it is possible to

develop Java applications for High Performance Computing (HPC), where perfor-

mance is essential, provided that an efficient communication middleware is made

available. Thus, the main objective of this work is the design and development of

such middleware for HPC.

The methodology used in this Thesis begins with the identification of the main

causes of inefficiency in this field, through an extensive evaluation of Java perfor-

mance in HPC. At this point, it is expected that new benchmarks and models have

to be developed as the evaluation of emerging solutions usually lacks such facilities.

Next, the work follows a bottom-up approach. Thus, it is first targeted at the design

and development of more efficient Java middleware, based on Java sockets, as well as

providing non-blocking support on Java IO sockets. Among the criteria for selecting

the API or protocol to be implemented are the lack of efficient implementations,

a wide range of applicability of the optimized middleware, and its user and appli-

cation transparency. The selection of Java IO sockets meets these criteria, as well

as the Java Remote Method Invocation (RMI) protocol and the implementation of

a more efficient Message-Passing in Java (MPJ) library. Thus, an optimized Java

RMI protocol for high-speed networks clusters and a more scalable MPJ library are

implemented on top of the previously developed middleware.

Finally, all these efforts have served to the main goal of improving Java communi-

cations performance. In fact, the performance analysis of Java parallel benchmarks

has shown that this goal has been accomplished. Additionally, not only Java com-

munications benefit from this Thesis, but also the Java code of HPC applications is

Preface 3

potentially improvable using the best programming practices for performance gath-

ered during the development of these communication libraries.

Contributions

The main contributions of this Thesis are:

1 An up-to-date performance evaluation of Java for HPC. An up-to-date review

of Java for HPC, which includes an extensive evaluation of the performance

of current projects [61, 94], has been provided. It has been put a special em-

phasis on the analysis of the impact on performance of the use of clusters with

multi-processor and multi-core nodes interconnected via high-speed networks

(InfiniBand, Myrinet and SCI).

2 A more accurate communication performance model. A more precise model for

the characterization of the performance of Java communications [94], together

with a message-passing micro-benchmark suite to derive the models [87] have

been proposed. The performance parameters for the model and some through-

put metrics obtained on several high-speed clusters are presented in [94], show-

ing better estimates than previous modeling techniques [88].

3 Design and development of the high performance Java Fast Sockets (JFS).

A high performance Java IO socket library, named Java Fast Sockets (JFS),

whose interoperability and transparency allow for immediate performance in-

creases in high-speed networks and shared memory environments [89, 90, 92]

has been designed and implemented. Thus, JFS:

Enables efficient communication on clusters interconnected via high-speed

networks (InfiniBand, Myrinet and SCI) through a general and easily

portable solution.

Avoids the need of primitive data type array serialization.

Reduces buffering and unnecessary copies in the socket communication

protocol.

4 Preface

Provides an efficient protocol for shared memory (intra-node) communi-

cation which shows a high impact on multi-core systems performance.

JFS optimizes both user applications and communication middleware, such as

RMI [86] and Java message-passing protocols [93].

4 Design and development of the iodev low-level non-blocking communication li-

brary. A low-level communication device which provides efficient non-blocking

communication on Java IO sockets, allowing communication overlapping [93,

96] has been implemented. This library runs on top of a Java IO sockets

implementation, and therefore can take advantage of JFS, if available. This

library is oriented to performance-critical communication middleware.

5 Design and development of an efficient Java RMI communication library. A

lightweight Java RMI protocol, whose main optimization is the reduction of

its processing overhead and its support on high-speed networks has also been

implemented.

6 Design and development of an efficient Java message-passing library, Fast

MPJ (F-MPJ). F-MPJ [93], a scalable and efficient Java message-passing li-

brary on top of iodev has been implemented. F-MPJ especially benefits from

the use of JFS as underlying layer of iodev, as this allows the avoidance of the

serialization overhead of primitive data type arrays, data structures commonly

used in HPC applications.

7 Implementation of an efficient Java message-passing collective library. F-MPJ

implements several algorithms per collective primitive which allows, thanks to

their selection at runtime, to significantly improve the performance of collective

message-passing primitives. Thus, according to our experimental results, Java

message-passing codes that without F-MPJ achieve their highest performance

running on 8-16 cores, can take advantage of the use of up to 128 cores showing

good scalability with F-MPJ.

8 New benchmarks in Java for HPC. Besides the message-passing micro-bench-

mark suite, a Java version of the NetPipe performance tool [102], and the

MPI counterparts of Message-Passing in Java (MPJ) codes from the Java

Grande Benchmark suite [84] have been implemented in order to compare

Preface 5

native and Java performance. Also, the NAS Parallel Benchmarks (NPB) suite

for MPJ (named NPB-MPJ) [61] has been implemented in order to analyze

MPJ libraries performance and to compare Java and native parallel libraries.

Additionally, the Java optimization techniques for parallel programming used

in the development of these benchmarks has been gathered, especially from

the NPB-MPJ.

Overview of the Contents

The Thesis is organized into seven chapters whose contents are summarized in

the following paragraphs.

Chapter 1, Java Communications for High Performance Computing, is intended

to give the reader a clear description of the goals and the basic concepts behind

the material presented in the Thesis. The chapter begins with a review of the Java

communication libraries for High Performance Computing (HPC). These libraries

allow the development of Java parallel applications, although their low performance

has been the main obstacle to their being embraced in HPC. The related litera-

ture provides a detailed discussion on the reasons for the poor performance of the

Java parallel applications, pointing out the inefficient communications as the main

cause. Thus, the main motivation of this Thesis is the design of efficient Java

communication libraries that increase the performance of Java parallel applications,

contributing to the adoption of Java for HPC. This Thesis is designed to test the

hypothesis that Java can be an interesting alternative for HPC, provided that an

efficient communication middleware is made available, due to its appealing features

of portability, inherent multithreading and networking support, and productive de-

velopment.

Chapter 2, Performance Analysis of Message-Passing Communications, discusses

current communication performance models in order to evaluate implementations of

communication primitives. Due to the lack of an appropriate model for this evalua-

tion purpose, a new model for the characterization of the communication overhead,

based on the linear model but more precise, is proposed. Thus, Java and native com-

munication performance models are derived from the experimental micro-benchmark

6 Preface

results using this more accurate analytical model. The proposed model obtains bet-

ter estimates than preceding ones and serves to identify inefficient communication

primitives. Furthermore, a model-based performance optimization process is pro-

posed, replacing an inefficient primitive by an efficient equivalent combination of

primitives. This chapter finishes with an evaluation of Java communication libraries.

For this purpose, representative benchmarks have been implemented in Java in order

to overcome the lack of standard Java benchmarks for the characterization of the

message-passing communication overhead. The impact on performance of the use

of systems with multiple hyper-threaded processors has been especially analyzed.

Chapter 3, JFS: High Performance Java Fast Sockets, presents a high perfor-

mance sockets implementation in Java. First, the design objectives of this library,

which overcomes many limitations of current sockets libraries for HPC, are pre-

sented. Next, the JFS communication protocols are described, together with their

implementation issues on high-speed cluster networks and shared memory systems.

Experimental results that show the efficiency of JFS protocols are presented towards

the end of the chapter. Finally, the impact of the use of JFS on the optimization of

Java message-passing protocols is shown.

Chapter 4, Efficient iodev Low-level Message-Passing and RMI Middleware, pre-

sents iodev, a low-level message-passing communication library, and the design of

an optimized Java RMI protocol for high-speed networks. Both solutions are im-

plemented on top of the middleware developed in the previous chapter. The iodev

communication device provides efficient non-blocking communications using Java IO

sockets. A related project, MPJ Express, has implemented its low-level communica-

tion library, niodev, using Java NIO sockets. However, these latter sockets already

provide non-blocking communication methods, whereas iodev has to implement the

non-blocking support on top of Java IO sockets. The chapter covers the main imple-

mentation similarities and differences between both approaches. Additionally, the

efficient coupling of iodev and JFS, and a comparative performance evaluation of

low-level communication devices, both Java and native implementations, on several

representative HPC scenarios is described. The analysis of the results states that the

combination of iodev+JFS improves Java communications, especially when avoiding

the serialization overhead. The chapter concludes with the description of the Java

RMI protocol optimization, which also shows an important performance increase.

Preface 7

Chapter 5, Fast MPJ: Efficient Java Message-Passing Library, presents Fast

MPJ (F-MPJ), a scalable and efficient Java message-passing library implemented

on top of the middleware developed in the previous chapter. The F-MPJ develop-

ment has been focused on the implementation of scalable collective primitives, based

on the iodev point-to-point communication. The runtime selection of collective al-

gorithms allows an important increase in communication performance, as shown in

the micro-benchmarking of the collective primitives and in the evaluation of the

impact of the use of F-MPJ+iodev+JFS on kernel/application benchmarks.

Chapter 6, Implementation and Evaluation of Efficient MPJ Benchmarks, pre-

sents the design, implementation and performance optimization of a suite of parallel

benchmarks (the NAS Parallel Benchmarks), taken as representative codes for the

development of Java message-passing applications. The development of this bench-

mark suite has been useful for gathering good programming practices for perfor-

mance in Java for HPC. The impact of these practices is discussed in this chapter.

Moreover, the chapter includes comprehensive benchmark results from the evalua-

tion of the developed benchmarks on InfiniBand and Gigabit Ethernet multi-core

clusters. Furthermore, an analysis of the impact of using different runtime configu-

rations (number of nodes and number of processes per node) is included.

Finally, the Conclusions chapter summarizes the main contributions of the Thesis

and outlines the main research lines that can be derived from the hypothesis proved,

that Java can be a viable alternative for HPC.

Chapter 1

Java Communications for High

Performance Computing

This chapter presents a review of Java communication libraries for High Per-

formance Computing (HPC). The evaluated projects can be classified, from lower

to higher level, in: Java sockets, Java Remote Method Invocation (RMI) proto-

cols, Java message-passing implementations, and finally, other Java communication

solutions. These libraries allow the development of higher level libraries and Java

parallel applications. However, the analysis of the related literature and, in the most

relevant cases, the direct evaluation of the projects have pointed out their usually

low performance, which has been the main obstacle for their embrace in HPC. Thus,

the main motivation of this Thesis is the design of efficient Java communication li-

braries that increase the performance of Java parallel applications, contributing to

the adoption of Java for HPC.

The present review discusses each project, trying to identify the main causes of

performance bottlenecks, in order to overcome them in the design and implemen-

tation of efficient communication middleware. Thus, the combination of efficient

communication libraries and the appealing features of Java such as portability, in-

herent multithreading and networking support, and a better productivity in code

development, turn Java into an interesting alternative for HPC.

Another alternative in Java for HPC is the use of Java threads or thread-based

projects, among which the Java OpenMP implementations, such as JOMP [50] and

9

10 Chapter 1. Java Communications for High Performance Computing

JaMP [55], are the most noticeable. These approaches are not covered in this The-

sis as they are limited to shared memory systems, which provide less scalability

than distributed memory machines. Moreover, they do not rely on communication

middleware.

The structure of this chapter is as follows: Section 1.1 presents Java sockets im-

plementations and high performance native sockets libraries. Section 1.2 describes

the Java RMI optimization projects. The most relevant Java message-passing li-

braries for HPC are shown in Section 1.3. Finally, Section 1.4 covers additional

Java communication libraries not included in the previous sections as they imple-

ment more specific APIs and middleware.

1.1. Java Sockets

Sockets are a low-level programming interface for networked communications,

which allows sending streams of data between applications. The socket API is

widely extended and can be considered the standard low-level communication layer

as there are socket implementations on almost every network protocol. Thus, sock-

ets have been the choice for implementing in Java the lowest level of networked

communication.

Java sockets are, like Java, fully portable, but their operation is limited to the

widely deployed TCP/IP protocol. However, although most clusters have high-speed

networks, such as InfiniBand, Myrinet or SCI, to boost communication performance,

Java can not take advantage of them as shown in [88] because it has to resort to

inefficient TCP/IP emulations for full networking support. These emulation libraries

present high start-up latency (the 0-byte message latency), low bandwidth and high

CPU load as shown in [12]. The main reason behind this poor throughput is that the

IP protocol was designed to cope with low speed, unreliable and prone to failure links

in WAN environments, whereas current cluster networks are high-speed, hardware

reliable and non-prone to failure in LAN environments. Examples of IP emulations

are IPoMX and IPoGM [70] on top of the Myrinet low-level libraries MX (Myrinet

eXpress) and GM, respectively, LANE driver [54] over Giganet, IP over InfiniBand

(IPoIB) [44], and ScaIP [15] and SCIP [29] on SCI.

1.1 Java Sockets 11

A direct implementation of native sockets on top of low-level communication

libraries can avoid the TCP/IP overhead, and thus performance could be increased.

Representative examples are next presented. FastSockets [79] is a socket imple-

mentation on top of Active Messages [31], a lightweight protocol with high-speed

network access. SOVIA [54] has been implemented on VIA (Virtual Interface Ar-

chitecture); and Sockets over Gigabit Ethernet [10] and GAMMAsockets [75] have

been developed for Gigabit Ethernet. The Socket Direct Protocol (SDP) over In-

finiBand [47] is the representative socket library of the Offload Sockets Framework

(OSF). Sockets-MX and Sockets-GM [70] are the developments on Myrinet, where

MX is intended to supersede GM thanks to a more efficient protocol implementation.

The high performance native sockets library on SCI is SCI Sockets [80]. However,

from these implementations only SDP, Sockets-MX/GM and SCI Sockets are cur-

rently available. The Windows Sockets Direct components for Windows platforms

provide access to certain high-speed networks. A related project is XenSocket [110],

an optimized socket library restricted to Xen virtual machine intra-node communi-

cation that replaces TCP/IP by shared memory transfers.

However, the previous socket libraries usually implement a subset of socket func-

tionality on top of low-level libraries, resorting to the system socket library for unim-

plemented functions. Thus, some applications such as kernel-level network services

and Java codes can request features not present in the underlying libraries and thus

failover to system sockets, which provides poorer performance.

A pioneer project in obtaining efficient Java sockets is NBIO [106], which provides

non-blocking communications in order to increase scalability in server applications.

This library has led to the introduction of significant non-blocking features in Java

NIO (New I/O) sockets. Nevertheless, NBIO does not provide high-speed network

support nor HPC tailoring. Ibis sockets partly solve these issues adding Myrinet

support and being the base of Ibis [73], a parallel and distributed Java computing

framework. However, their implementation on top of the Java Virtual Machine

(JVM) sockets limits the performance increase to serialization improvements.

This Thesis presents the design and development of the high performance Java

IO sockets implementation named Java Fast Sockets (JFS) (see Chapter 3). This

library significantly reduces communication overhead and provides efficient shared

memory and high-speed networks support. Thus, JFS is tailored to HPC, especially

12 Chapter 1. Java Communications for High Performance Computing

to multi-core clusters with high-speed networks. Moreover, by optimizing the widely

used socket API, parallel and distributed Java applications based on it can improve

performance transparently.

1.2. Java Remote Method Invocation (RMI)

The Java Remote Method Invocation (RMI) protocol allows an object running

in one JVM to invoke methods on an object running in another JVM, providing

Java with remote communication between programs equivalent to Remote Procedure

Calls (RPCs). The main advantage of this approach is its simplicity, although the

main drawback is the poor performance shown by the RMI protocol.

ProActive [5, 77] is an RMI-based middleware for parallel, multithreaded and

distributed computing focused on Grid applications. ProActive is a fully portable

“pure” Java (100% Java) middleware whose programming model is based on a Meta-

Object protocol. With a reduced set of simple primitives, this middleware simplifies

the programming of Grid computing applications: distributed on Local Area Net-

work (LAN), on clusters of workstations, or for the Grid. Moreover, ProActive

supports fault-tolerance, load-balancing, mobility, and security. Nevertheless, the

use of RMI as its default transport layer adds significant overhead to this middleware

operation.

Different frameworks have been implemented with the efficiency of RMI com-

munication on clusters as their goal. The most relevant ones are KaRMI [76],

RMIX [56], Manta [60] and Ibis RMI, part of Ibis [73]. KaRMI is a drop-in re-

placement for the Java RMI framework that uses a completely different protocol

and introduces new abstractions (such as “export points”) to improve communica-

tions specifically for cluster environments. However, KaRMI suffers from perfor-

mance losses when dealing with large data sets and its interoperability is limited to

the cluster nodes. RMIX extends Java RMI functionality to cover a wide range of

communication protocols, but the performance on high-speed clusters is not satis-

factory. The Manta project is a different approach for implementing RMI, based

on Java to native code compilation. This approach allows for better optimization,

avoids data serialization and class information processing at runtime, and uses a

1.3 Java Message-Passing Libraries 13

lightweight communication protocol. Serialization is the process of transforming

objects in byte series, in this case to be sent across the network. Finally, Ibis RMI

extends Java RMI to make it more suitable for grid computing. Looking for per-

formance, Ibis supports the Myrinet high-speed network and avoids the runtime

type inspection. However, the use of specific high-level solutions with substantial

protocol overhead and focused on Myrinet has restricted the applicability of these

projects. In fact, their start-up latency is from several times up to an order of

magnitude larger than socket latencies. Therefore, although previous Java com-

munication middleware (e.g., message-passing libraries) was usually based on RMI,

current Java communication libraries use sockets due to their lower overhead. In

this case, the higher programming effort required by the lower-level API allows for

higher throughput, key in HPC.

One of the objectives of this Thesis is to provide Java with a high performance

RMI implementation with high-speed networks support (see Section 4.4). This can

be done by optimizing the Java RMI protocol for cluster communications under some

basic assumptions for the target architecture, and using a high performance sockets

library that copes with the requirements of an RMI protocol for parallel computing

on high-speed clusters. As Java RMI is a widely spread API, many Java parallel

applications and communication libraries can benefit from this efficient Java RMI

implementation. Moreover, the goal is to optimize this protocol with the minimum

associated trade-offs. Thus, the solution is transparent to the user, it does not

modify the source code, and it is interoperable with other systems. The trade-off is

that this protocol is limited to clusters with a homogeneous configuration in terms

of JVM and architecture, although most clusters are under these conditions.

1.3. Java Message-Passing Libraries

Message-passing is the most widely used parallel programming paradigm as it is

highly portable, scalable and usually provides good performance. It is the preferred

choice for parallel programming distributed memory systems such as clusters, which

can provide higher computational power than shared memory systems. Regarding

the languages compiled to native code (e.g., C, Fortran), MPI [64] is the standard

interface for message-passing libraries.

14 Chapter 1. Java Communications for High Performance Computing

Soon after the introduction of Java, there have been several implementations

of Java message-passing libraries. Most of them have developed their own MPI-

like binding for the Java language. The two main proposed APIs are the mpiJava

1.2 API [21], which tries to adhere to the MPI C++ interface defined in the MPI

standard version 2.0, but restricted to the support of the MPI 1.1 subset, and the

JGF MPJ (Message-Passing interface for Java) API [22], which is the proposal of

the Message-Passing Working Group within the Java Grande Forum (JGF) [48] to

standardize the MPI-like Java API. The main differences among these two APIs lie

in naming conventions of variables and methods. For purposes of clarity, henceforth

the term “MPJ” will denote implementations of Message-Passing in Java libraries,

independently of the API they implement (mpiJava 1.2 or the JGF MPJ API). In

order to avoid confusion, the Message-Passing interface for Java API proposed by

the JGF will be always denoted as “JGF MPJ” API.

The Java message-passing libraries have followed different implementation ap-

proaches: (1) using Java RMI, (2) wrapping an underlying native messaging library

like MPI through Java Native Interface (JNI), or (3) using low-level Java sockets.

Each solution fits with specific situations, but presents associated trade-offs. The

use of Java RMI, a “pure” Java (100% Java) approach, as base for MPJ libraries,

ensures portability, but it might not be the most efficient solution, especially in

the presence of high speed communication hardware. The use of JNI has portabil-

ity problems, although usually in exchange for higher performance. The use of a

low-level API, Java sockets, requires an important programming effort, especially

in order to provide scalable solutions, but it significantly outperforms RMI-based

communication libraries. Although most of the Java communication middleware is

based on RMI, MPJ libraries looking for efficient communication have followed the

latter two approaches.

The mpiJava library [7] consists of a collection of wrapper classes that call a

native MPI implementation (e.g., MPICH or OpenMPI) through JNI. This wrapper-

based approach provides efficient communication relying on native libraries, adding a

reduced JNI overhead. However, although its performance is usually high, mpiJava

currently only supports some native MPI implementations, as wrapping a wide

number of functions and heterogeneous runtime environments entails an important

maintaining effort. Additionally, this implementation presents instability problems,

1.3 Java Message-Passing Libraries 15

derived from the native code wrapping, and it is not thread-safe, being unable to

take advantage of multi-core systems through multithreading.

As a result of these drawbacks, the mpiJava maintenance has been superseded

by the development of MPJ Express [9, 81, 69], a “pure” Java message-passing im-

plementation of the mpiJava 1.2 API specification. MPJ Express is thread-safe and

presents a modular design which includes a pluggable architecture of communication

devices that allows to combine the portability of the “pure” Java New I/O package

(Java NIO) communications (niodev device) with the high performance Myrinet sup-

port (through the native Myrinet eXpress –MX– communication library in mxdev

device).

MPJ/Ibis [16] is another MPJ library, part of the Ibis framework [73], which

also includes the Ibis sockets library (see Section 1.1) and the Ibis RMI implemen-

tation (see Section 1.2). Thus, like Ibis sockets and Ibis RMI, MPJ/Ibis can use

either “pure” Java communications, or native communications on Myrinet. More-

over, there are two low-level communication devices available in Ibis for MPJ/Ibis

communications: TCPIbis, based on Java IO sockets (TCP), and NIOIbis, which

provides blocking and non-blocking communication through Java NIO sockets. Nev-

ertheless, MPJ/Ibis is not thread-safe, does not take advantage of non-blocking com-

munication, and its Myrinet support is based on the GM library, which results in

poorer performance than the MX library.

Currently, MPJ Express and MPJ/Ibis are the most active projects in terms of

uptake by the HPC community, presence in academia and production environments,

and available documentation. These projects are also stable and publicly available

along with their source code.

Additionally, there have been several implementations of Java messaging libraries

for HPC [88]. Although most of them raised many expectations in the past, currently

they are out-of-date and their interest is quite limited. The most relevant ones (MPI-

like) follow:

JavaMPI [65], an MPI Java wrapper created with the help of JCI, a tool for

generating Java-to-C interfaces. The last version was released in January 2000.

JavaWMPI [62] is a Java wrapper version built on WMPI, a Windows-based

16 Chapter 1. Java Communications for High Performance Computing

implementation of MPI.

the commercial JMPI project [25] by MPI Software Technology (not to be

confused with [67]) was the first project (1999) that intended to build a pure

Java version of MPI specialized for commercial applications.

MPIJ is a pure Java MPI subset developed as part of the DOGMA project

(Distributed Object Group Metacomputing Architecture) [49]. MPIJ has been

removed from DOGMA since release 2.0.

JMPI [67], a pure Java implementation of the mpiJava 1.2 API developed for

academic purposes at the University of Massachusetts.

M-JavaMPI [59] is another wrapper approach with process migration support

that runs on top of the standard JVM. Unlike mpiJava and JavaMPI, it does

not use direct binding of Java programs and MPI. M-JavaMPI follows a client-

server message redirection model that makes the system more portable, that

is, independent of the MPI implementation.

CCJ [72], a pure Java communication library with its own MPI-like API,

similar to the JGF MPJ specification. It makes use of Java capabilities such

as a thread-based programming model or sending of objects.

PJMPI [63] is a pure Java message-passing implementation strongly compat-

ible with the MPI standard and developed at the University of Adelaide in

conjunction with a non-MPI message-passing environment called JUMP.

jmpi [28] is another pure Java implementation of MPI built on top of JPVM

(see at the end of this section). The project has been left idle since 1999.

MPJava [78] is the first Java message-passing library implemented on Java

NIO sockets, taking advantage of their scalability and high performance com-

munications. It uses its own MPI-like API.

Jcluster [109] is a message-passing library which provides both PVM-like and

MPI-like APIs and is focused on automatic task load balance across large-scale

heterogeneous clusters. However, its communications are based on UDP and

it lacks high-speed networks support.

1.3 Java Message-Passing Libraries 17

Parallel Java (PJ) [51] is a “pure” Java parallel programming middleware

that supports both an OpenMP-like shared memory programming (based on

threads and classes from the java.util.concurrent package) and an MPI-

like message-passing paradigm, allowing applications to take advantage of hy-

brid shared/distributed memory architectures. However, the use of its own

API hinders its adoption.

P2P-MPI [36] is a peer-to-peer framework for the execution of MPJ appli-

cations on the Grid. Among its features are: (1) self-configuration of peers

(through JXTA peer-to-peer interconnection technology); (2) fault-tolerance,

based on process replication; (3) a data management protocol for file trans-

fers on the Grid; and (4) an MPJ implementation that can use either Java

NIO or Java IO sockets for communications, although it lacks high-speed net-

works support. In fact, this project is tailored to grid computing systems,

disregarding the performance aspects.

JMPI (by Bang & Ahn) [11] (not to be confused with [67]) is an implementation

of the JGF MPJ API which can use either Java RMI or Java sockets for

communications. However, the reported performance is quite low (it only

scales up to two nodes).

Far less research has been devoted to PVM-like libraries. The most representative

projects were JavaPVM (renamed as jPVM [98]), a Java wrapper to PVM (last

released in 1998), and JPVM [33], a pure Java implementation of PVM (last released

in 1999). Performance issues of both libraries were studied in [108].

This important number of past and present projects is the result of the sustained

interest in the use of Java for parallel computing. One of the main objectives of this

Thesis is the design and implementation of an efficient Java message-passing library

(see Chapter 5). This library, named Fast MPJ (F-MPJ), takes advantage of JFS

in order to provide shared memory and high-speed networks support.

Tables 1.1 and 1.2 serve as a summary of the Java message-passing projects

discussed in this chapter.

18 Chapter 1. Java Communications for High Performance Computing

Table 1.1: Overview of Java message-passing projects

Project Activity Observations

jPVM 1996-1998 Java wrapper PVM implementation

JPVM 1996-1999 Pure Java PVM implementation

JavaMPI 1996-2000 Java wrapper MPI implementation

JavaWMPI 1998 Java wrapper MPI implementation on Windows

JMPI (commercial) 1998-1999 Pure Java MPI implementation

MPIJ 1999-2001 Pure Java MPI implementation

JMPI 2000-2002 Pure Java MPI implementation

M-JavaMPI 2002 Pure Java MPI implementation

CCJ 2001-2003 Pure Java MPI-like implementation

PJMPI 2000 Pure Java MPI implementation

jmpi 1998-1999 Pure Java MPI implementation on top of JPVM

MPJava 2003-2004 Pure Java MPI library

Jcluster 2002- Pure Java MPI and PVM implementations

Parallel Java 2005- Pure Java hybrid shared memory/MPI library

mpiJava 1998- Java wrapper MPI implementation

P2P-MPI 2005- Pure Java MPI implementation

MPJ Express 2005- Pure Java MPI implementation (+MX support)

MPJ/Ibis 2005- Pure Java MPI implementation (+GM support)

JMPI (Bang&Ahn) 2007 Pure Java MPI implementation

F-MPJ 2008- Pure Java MPI implementation (+JFS support)

1.3 Java Message-Passing Libraries 19

Table 1.2: Characteristics of Java message-passing projects

P
u
re

Ja
va

High-speed
network
support

API

Project M
y
r
in

e
t

In
fi
n
iB

a
n
d

S
C

I

m
p
iJ

a
v
a

1
.2

J
G

F
M

P
J

o
th

e
r

A
P

Is

URL
jPVM X

JPVM X X http://www.cs.virginia.edu/˜ajf2j/jpvm.html

JavaMPI X

JavaWMPI X

JMPI (commercial) X X

MPIJ X X

JMPI X X http://euler.ecs.umass.edu/jmpi/

M-JavaMPI X X

CCJ X X X http://www.cs.vu.nl/manta/ccj.html

PJMPI X X

jmpi X X

MPJava X X

Jcluster X X http://vip.6to23.com/jcluster/

Parallel Java X X http://www.cs.rit.edu/˜ark/pj.shtml

mpiJava X X X X http://www.hpjava.org/mpiJava.html

P2P-MPI X X http://www.p2pmpi.org

MPJ Express X X X http://mpj-express.org

MPJ/Ibis X X X http://www.cs.vu.nl/ibis/mpj.html

JMPI (Bang&Ahn) X X

F-MPJ X X X X X http://jfs.des.udc.es

20 Chapter 1. Java Communications for High Performance Computing

1.4. Additional Java Communication Libraries

Apart from Java sockets, RMI and message-passing implementations, several ad-

ditional projects, with more specific APIs, have been developed. These projects have

been focused on providing Java with full and more efficient support on high-speed

networks. Thus, several approaches have been followed: (1) VIA-based projects, (2)

Java Distributed Shared Memory (DSM) middleware on clusters, and (3) low-level

libraries on high-speed networks.

Javia [24] and Jaguar [107] provide access to high-speed cluster interconnects

through VIA, communication library implemented on Giganet, Myrinet, Gigabit

Ethernet and SCI [38], among others. More specifically, Javia reduces data copying

using native buffers, and Jaguar acts as a replacement of the JNI. Their main draw-

backs are the use of particular APIs, the need of modified Java compilers and the

lack of non-VIA communication support. Additionally Javia exposes programmers

to buffer management and uses a specific garbage collector.

Java DSM projects worth mentioning are CoJVM [58], JESSICA2 [111] and

JavaSplit [32]. As these are socket-based projects, they benefit from socket opti-

mizations, especially in shared memory communication [52]. However, they share

unsuitable characteristics such as the use of modified JVMs, the need of source code

modification and limited interoperability.

Other approaches are low-level Java libraries restricted to specific networks. For

instance, Jdib [42] accesses InfiniBand through the Mellanox Verbs Interface (VAPI)

or the OpenFabrics Alliance InfiniBand Verbs (IBV), which provide a low-level

API which directly exploits RDMA and communication queues. Thus, this library

achieves almost native performance on InfiniBand. Moreover, CORBA, an RPC

mechanism supported in Java and quite similar to RMI, has also been optimized on

high-speed networks [39].

Chapter 2

Performance Analysis of

Message-Passing Communications

In this chapter, Java and native message-passing libraries are analyzed on high-

speed clusters in order to estimate overheads. The goal of this task is to evaluate

the current state of Java for HPC, particularly for Myrinet and SCI clusters, and

compare its performance with native libraries results. A second objective is to iden-

tify inefficient primitive implementations. Thus, this analysis can guide developers

to improve the performance of their parallel applications. Additionally, a proposal

of an accurate analytical model for high-speed cluster communications as well as

a micro-benchmark suite [87] are made available to parallel programmers. These

tools provide a useful way to quantify the influence of the message-passing libraries

and system configuration on the overall application performance. This influence

has been validated through a kernel benchmarking. The obtained analytical perfor-

mance models are also useful for optimizing message-passing performance. Thus,

communication overhead can be reduced through replacing inefficient communica-

tion primitives by more efficient equivalent combinations of primitives.

The chapter is organized as follows: the next section introduces existing message-

passing performance models and analyzes their suitability for evaluation purposes.

As the accuracy and simplicity of these models have not been as expected, a new

linear model is proposed, focused on obtaining higher accuracy on high-speed clus-

ters. Section 2.2 presents the formulation of this model, some performance metrics

21

22 Chapter 2. Performance Analysis of Message-Passing Communications

derived from it, the micro-benchmarking process and a preliminary accuracy anal-

ysis. Section 2.3 presents experimental results: the communication performance of

two clusters with representative high-speed interconnects (SCI and Myrinet) has

been modeled and analyzed. A further discussion on the experimental results and

performance estimate is the focus of Section 2.4, together with a proposal of a model-

based performance optimization. Section 2.5 presents an analysis of the influence

of message-passing overhead on applications through a kernel benchmarking. Then,

Section 2.6 evaluates the influence of enabling the Simultaneous MultiThreading

(SMT), also known as hyper-threading on some Intel processors, on the overall per-

formance of a cluster with dual-processor nodes. This analysis has been performed

upon the results of the kernel benchmarking of Section 2.5. Finally, Section 2.7

concludes the chapter with a summary of its main contributions.

2.1. Message-Passing Performance Models

The appropriateness of existing communication models has been evaluated in

terms of their simplicity and accuracy for high-speed clusters. Models discussed in

this chapter can be classified into LogP-based and linear-based models.

The LogP model [26] characterizes communications by four parameters: net-

work communication time L, overhead o, gap g and number of processors P . Some

LogP variants have been proposed to support additional characteristics by adding

parameters to the model. Thus, LogGP [1] introduces G, gap per byte, to support

long messages; LoPC [35] and LoGPC [68] add C to model resource contention;

LogGPS [46] incorporates synchronization costs by adding S; and LogPQ [101] in-

troduces Q, referring to communication queues. Additional models are memory

logP [20] which applies and augments the original LogP model to estimate over-

heads in a hierarchical memory subsystem; parametrized LogP (P-LogP) [53], that

presents a gap g(m) that depends on the message size m; lognP [19], where n is

the number of layers with different communication overheads taken into account,

e.g., log3P can address the communication cost as a sum of middleware, memory

and interconnection network overheads; and HLogP [105], that is targeted to model

Grid systems.

2.1 Message-Passing Performance Models 23

Regarding the appropriateness of these models, LogP is too basic to perform a

thorough analysis. This model assumes single processor nodes and small messages,

determining that it is only effective when L dominates the overall communication

overhead. In this case, the influence of message size and the memory access per-

formance on communication overhead is negligible. The need to include these pa-

rameters has led models to include G, gap per byte, or the data size. However,

this is effective only in tightly synchronized communication patterns. In fact, the

contention C for message-processing resources is a significant factor in the total

application runtime for many fine-grain message-passing algorithms, particularly

on clusters. Nevertheless, LogP with additional G and/or C parameters usually

omits significant costs, such as the influence of the memory gap on performance.

Memory logP models this influence, although only for shared memory architectures.

The model lognP extends memory logP (in fact, memory logP is log1P) taking into

account the number of communication steps. Thus, log3P would describe communi-

cations on high-speed clusters: (1) communication memory/Network Interface Card

(NIC), (2) communication NIC/NIC, and (3) communication NIC/memory. Exper-

imental results from characterizing communication overhead using these models on

high-speed clusters report average absolute relative errors of 28% for LogGP predic-

tions, and of 5% for log3P [19]. Nevertheless, these accurate results are limited to

regular access patterns.

Linear models are also a popular method to characterize message-passing over-

head. These models are usually based on Hockney’s model for point-to-point com-

munications and on Xu and Wang’s model for collective primitives [100]. Thus, mes-

sage latency (T) of point-to-point communications is modeled as an affine function of

the message length n: T (n) = t0 + tbn, where t0 is the start-up time (the time taken

for the minimum message size, usually a zero length message) and tb is the transfer

time per byte. Communication bandwidth is easily derived as Bw(n) = n/T (n). A

generalization of the point-to-point model is used to characterize collective commu-

nications: T (n, p) = t0(p) + tb(p)n, where p is the number of processors involved in

the communication. This characterization of message-passing overhead is relatively

easy to develop and usually provides good predictions, but its simplicity is thought

to be a restricting factor to its accuracy.

The lack of accuracy of linear models on high-speed clusters affects both t0 and

24 Chapter 2. Performance Analysis of Message-Passing Communications

tb parameters. The combination into a unique parameter t0 of the overhead (o)

and network communication time (L) differentiated in the LogP model is consid-

ered to be only appropriate for long messages, not giving enough detail for short

messages [1]. Moreover, as linear models usually assume tb constant, the accuracy

of the models turned out to be much better on Ethernet-based than on high-speed

clusters, where different high performance communication protocols, with different

tb, are used depending on the message size. A previous work on modeling commu-

nication performance on high-speed clusters [88] has shown the limitations of the

Hockney’s model to predict performance accurately. In fact, Hockney’s model on

Fast Ethernet predicts performance with average absolute relative errors of 13% for

Send and 21% for collective communications. Hockney’s model on SCI presented

average absolute relative errors of 18% and 28%, respectively.

Once the linear model turned out to be unsuitable due to the dearth of accuracy,

the lognP model was selected as the most suitable choice among LogP-based models.

Nevertheless, apart from its lack of direct collective primitive support, it exhibits a

certain complexity in its formulation. Although the possibility of simplification by

ignoring some parameters exists, sometimes this is not an advantageous choice. In

fact, while too many parameters keep non-experts from drawing conclusions about

performance, too few parameters do not provide enough information.

2.2. A New Model for Message-Passing Overhead

This Thesis aims at using a model realistic enough to characterize more accu-

rately communication overhead despite the complexity of current communication

middleware, but simple enough for programmers to design and analyze parallel al-

gorithms overhead. As existing models do not fit completely this purpose, a new

linear model is proposed to address the main challenges posed by the modeling of

high-speed cluster communications. This model takes into account the influence of

different protocols involved in the communication process. This is done by aug-

menting the linear model described in [100] with a new parameter, ti, which is the

intercept from the linear regression of T (n) − t0 versus n. In high-speed clusters,

t0 is quite small and ti is usually higher. According to the previous considerations,

message latency (T) of point-to-point communications on high-speed clusters should

2.2 A New Model for Message-Passing Overhead 25

be modeled as T (n) = t0 + ti + tbn. Nevertheless, this tentative model predicts inac-

curately T for short messages (e.g., T (0) = t0 and the model predicts T (0) = t0+ti).

In order to solve this issue, ti must be weighted by the ratio of transfer time (tbn)

to the latency predicted by Hockney’s model (t0 + tbn). Thus, point-to-point com-

munications are modeled as:

T (n) = t0 + ti(
tbn

t0 + tbn
) + tbn

and collective communications are modeled generalizing the point-to-point model:

T (n, p) = t0(p) + ti(p)(
tb(p)n

t0(p) + tb(p)n
) + tb(p)n

Regarding point-to-point communications, this new model predicts accurately

T (0) = t0, and shows higher accuracy than Hockney’s model, especially for medium-

size messages. In fact, the highest relative difference between this model and Hock-

ney’s model occurs at a t0/tb-byte message. This maximum relative difference has

been obtained by setting the derivative of (Tproposed(n) − THockney(n))/THockney(n)

equals to zero and solving for n. This value, t0/tb, varies on high-speed clusters

from one KB to tens of KB, in the range of medium-size messages. In fact, Hock-

ney’s model usually underestimates latency of medium-size messages on high-speed

clusters. The reason for this is that message-passing libraries use different com-

munication protocols for short and long messages. Long message protocols usually

show lower tb than short message protocols, focused on lower t0. As tb is obtained

from a linear regression of T vs. n in which the long message performance dom-

inates, its value is quite similar to the tb of long message protocols. Thus, using

the obtained tb, short message latency is underestimated. In order to illustrate this

scenario, an example is provided: an MPI C primitive on an SCI cluster presents

t0 = 4µs, ti = 13µs and tb = 3.89ns/byte (see ScaMPI Send in Table 2.2). The

estimates of the models are THockney(4KB) = 20µs and Tproposed(4KB) = 30µs. As

Tmeasured(4KB) = 33µs the proposed model estimates performance more accurately.

The addition to Hockney’s model of a new explanatory variable (ti) has shown

that increasing slightly the complexity of the model, higher accuracy can be ob-

tained, specially for medium-size messages. A different alternative would be defining

26 Chapter 2. Performance Analysis of Message-Passing Communications

a function in pieces for each communication protocol. Nevertheless, this approach

requires knowledge about protocol boundaries.

The lack of a suitable micro-benchmark suite for evaluating message-passing

communication overhead, both in C and Java, has led to the implementation of a

suite [87], a set of tests for both C and Java codes adapted to the modeling needs,

with the following features, not found in any other suite: (1) it measures the overhead

of each message-passing operation, instead of obtaining the mean time of several

iterations; (2) before starting the actual benchmarking, 10,000 warm-up iterations

are run in Java in order to get JVM results with the Just-In-Time (JIT) compiler

enabled; (3) the C and Java codes implement the same benchmark algorithm for

comparison purposes; (4) it measures only the communication overhead in Java, not

including the serialization overhead when sending data other than byte arrays; and

(5) it includes all message-passing collectives, as usually some of them are missing

(such as Scan, Reduce scatter and Allreduce). Regarding point-to-point primitives,

a ping-pong test takes 150 measurements of the runtime varying the message size

in powers of four from 0 bytes. The minimum value has been chosen as test time

to avoid distortions due to timing outliers. Similar tests were applied to collective

primitives, but also varying the number of processors (from two up to the number of

available processors in the testbed). The parameter t0(p) was derived from a linear

regression of start-up times vs. p. The parameters ti(p) and tb(p) were derived

from a regression of T (n, p) − t0(p) vs. n and p. A Barrier was included to avoid

a pipelined effect and to prevent the network contention that might appear by the

overlap of collective communications executed on different iterations of the test.

Double precision addition was the operation used in reduction primitives (Reduce,

Allreduce, Reduce scatter and Scan).

In order to test the accuracy of the proposed model the average absolute relative

error of 20 random messages has been calculated for each primitive on SCI. The

results, a 7% error for Send and up to 7% for collective operations, depending on

the primitive and the number of processors, are much better than the 18% and 28%

error for Hockney’s model for Send and collective primitives, respectively.

Figure 2.1 illustrates, through bandwidth graphs, the better fitting of the band-

width experimentally measured by the proposed model compared to Hockney’s

model. Graph (a) shows Send bandwidth on Myrinet, and Graph (b) Broadcast

2.2 A New Model for Message-Passing Overhead 27

bandwidth on SCI. The complete details of the experimental results and models are

presented in Section 2.3. It can be seen that the estimates improve especially on

the native message-passing library (MPI C), as there are larger differences among

native communication protocols than among Java communication protocols for Java

message-passing (MPJ). Moreover, the proposed model is quite accurate for a t0/tb-

byte message (t0/tb is 1KB for MPI C and 11KB for MPJ), estimating significantly

better than Hockney’s model.

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180

200

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPI C measured Bw
Hockney’s model
Proposed model
MPJ measured Bw
Hockney’s model
Proposed model

(a) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

MPI C measured Bw
Hockney’s model
Proposed model
MPJ measured Bw
Hockney’s model
Proposed model

(b) Broadcast (SCI)

Figure 2.1: Comparison of Hockney’s model vs. proposed model

Two metrics are derived from the model: the asymptotic bandwidth Bwas(p) =

1/tb(p), the maximum throughput achievable when n → ∞, and the specific per-

formance π0(p) = 1/t0(p). Bwas shows long message performance, whereas π0 char-

acterizes short message bandwidth. Another metric is the aggregated asymptotic

bandwidth Bwag
as(p) = f(p)Bwas(p), defined as the ratio of the total number of bytes

transferred in the collective operation to the time required to perform the opera-

tion, as n→∞. The function f(p) is the relationship between the total number of

bytes transferred in the collective primitive and the message length. f(p) depends

on the communication pattern of each primitive: e.g., a Broadcast of n bytes to

p processors implemented with a binomial tree sends p − 1 messages of n bytes.

Thus, f(p) = p − 1 for Broadcast, Alltoall, Reduce and Scan; f(p) = (p − 1)/p for

Scatter and Gather; f(p) = 2(p − 1) for Allreduce; and f(p) = (p2 − 1)/p for All-

gather and Reduce scatter. Similarly, the aggregated specific performance is defined

28 Chapter 2. Performance Analysis of Message-Passing Communications

as πag
0 (p) = f(p)π0(p) to show the performance of a collective operation for short

messages. All these metrics for collective primitives are functions depending on p.

In order to have numbers rather than functions to straightforwardly compare the

performance of the different message-passing libraries, peak metrics have also been

used in our experimental results (see Tables 2.1–2.4): the peak aggregated band-

width Bwpag
as = max2≤p≤pmax Bwag

as(p), and the peak aggregated specific performance

πpag
0 = max2≤p≤pmax πag

0 (p), being pmax the maximum p available in the testbed. For

point-to-point communications Bwpag
as = 1/tb and πpag

0 = 1/t0.

2.3. Message-Passing Micro-benchmarking

2.3.1. Cluster Hardware/Software Configuration

The performance analytical models have been obtained from two high-speed

clusters. The first cluster consists of 16 single-processor nodes (Pentium III at 1 GHz

and 512 MB of memory) interconnected via Myrinet 2000 cards plugged into 64-bit

33 MHz PCI slots. The OS is Linux Red Hat 7.1, kernel 2.4, C compiler gcc 2.96, and

Java Virtual Machines (JVM) Sun 1.4.2 and 1.5.0. The second cluster consists of 8

dual-processor nodes (Pentium IV Xeon with hyper-threading at 1.8 GHz and 1 GB

of memory) interconnected via D334 SCI cards plugged into 64-bit 66 MHz PCI slots

in a 2-D torus topology. The OS is Red Hat 7.3, kernel 2.4, C compiler gcc 3.2.2, and

JVM Sun 1.5.0. Three different hardware configurations have been used for the SCI

cluster: SCI-single, running one message-passing process on each node; SCI-dual,

running two message-passing processes on each node; and SCI-dual SMT (with

Simultaneous MultiThreading –hyper-threading– enabled), running four message-

passing processes on each node. The hyper-threading allows one processor to operate

as two processors internally, with a potential increase in performance claimed to

be of about 30%, according to the manufacturer, Intel. Thus, a dual node with

hyper-threading enabled has 4 “virtual” processors. The other two configurations,

SCI-single and SCI-dual, have hyper-threading disabled.

Two MPI C libraries have been analyzed on the SCI cluster: ScaMPI (version

1.13.8), and SCI-MPICH (version 1.2.1), an MPICH implementation for SCI. Al-

though both MPI implementations show similar performance on SCI-single, ScaMPI

2.3 Message-Passing Micro-benchmarking 29

clearly outperforms SCI-MPICH on SCI-dual and especially on SCI-dual SMT.

Therefore, for clarity purposes, SCI-MPICH results on SCI-dual SMT are not shown.

MPICH-GM (version 1.2.4..8), a port of MPICH on top of GM (a low-level message-

passing system for Myrinet) was selected for the Myrinet cluster.

Three representative Java message-passing libraries (see Section 1.3) have been

selected: mpiJava [7] (version 1.2.5), used with Sun JVM 1.4.2 as mpiJava obtains

the best performance with this JVM, MPJ/Ibis [16] (version 1.4) and MPJ Ex-

press [81] (version 0.26), these latter two libraries used with Sun JVM 1.5.0 as they

require a JDK 1.5 or higher. The mpiJava library consists of a collection of wrap-

per classes that call a native MPI implementation through Java Native Interface

(JNI). On Myrinet, mpiJava calls MPICH-GM, whereas on SCI, it calls ScaMPI.

This wrapper-based approach provides efficient communication relying on native

libraries, adding just a small JNI overhead. Nevertheless, its major drawback is

the lack of portability, caused by the need of a native MPI implementation. This

problem is overcome with the use of “pure” Java message-passing libraries that

implement the whole messaging system in Java. Nevertheless, these libraries are

less efficient than their native counterparts. MPJ/Ibis is an MPI-like “pure” Java

message-passing implementation integrated in the Ibis framework [73]. It is im-

plemented on top of TCPIbis sockets (based on Java IO sockets). MPJ Express

is another MPI-like “pure” Java message-passing implementation based on Java

NIO sockets. It implements higher level MPI features than MPJ/Ibis, like derived

datatypes, virtual topologies and inter-communicators. It also includes a runtime ex-

ecution environment. Despite these differences, in terms of performance both “pure”

Java libraries behave similarly. Nevertheless, for conciseness, only one “pure” Java

message-passing library has been modeled, MPJ/Ibis. This implementation has

been selected as the representative library for showing slightly better performance

than MPJ Express, both for the micro-benchmarking (results of MPJ Express not

shown for clarity purposes) and the kernel benchmarking (see Section 2.5).

2.3.2. Analytical Models and Metrics

Table 2.1 presents the parameters of the latency models (t0(p), ti(p) and tb(p)) for

the standard Send and for collective communications on the Myrinet cluster. Two

30 Chapter 2. Performance Analysis of Message-Passing Communications

peak metrics derived from the models (πpag
0 and Bwpag

as , see Section 2.2) are also pro-

vided in order to show short and long message performance, respectively, as well as to

compare among libraries for each primitive. Regarding these two metrics, the higher,

the better. Tables 2.2, 2.3 and 2.4 present the same results for the different SCI

configurations: SCI-single, SCI-dual and SCI-dual SMT, respectively. These models

are valid for communications from two nodes up to the total number of processors of

the cluster. Thus, the models are valid for 2 ≤ p ≤ 16 on Myrinet, for 2 ≤ p ≤ 8 on

SCI-single, for 4 ≤ p ≤ 16 on SCI-dual, and for 8 ≤ p ≤ 32 on SCI-dual SMT. Both

t0(p) and ti(p) usually present O(p) complexities. However, transfer times, tb(p),

show O(log2 p) complexity in almost all collective communications, which reveals

a binomial tree-structured implementation of the primitives. Nevertheless, ineffi-

cient communication patterns have been detected on ScaMPI and MPJ/Ibis Scan

(they are O(p)). Other implementations, e.g., MPJ/Ibis Allreduce, performs badly.

In this particular case a Reduce followed by a Broadcast performs better than the

equivalent Allreduce. This statement can be obtained from the values of t0(p) and

tb(p) from the tables (e.g., tb Allreduce(p) > tb Reduce(p) + tb Broadcast(p)).

Native Communication Libraries

As can be observed from Tables 2.1–2.4, native primitives on the SCI cluster

show, in general, lower start-ups and transfer times per byte than on the Myrinet

cluster. These differences can be attributed to: (1) the lower theoretical start-up

of the network: 1.46µs for SCI and 7µs for Myrinet, (2) the higher theoretical

bandwidth of the PCI bus, 528 MB/s on the SCI cluster and 264 MB/s on the

Myrinet cluster, and (3) the higher computational power of the nodes, dual Pentium

IV Xeon at 1.8 GHz on the SCI cluster and Pentium III at 1 GHz on the Myrinet

cluster.

Regarding the performance metrics Bwpag
as and πpag

0 , it can be seen that ScaMPI

outperforms SCI-MPICH, except for Reduce scatter and Scan. Generally, these

metrics present the highest values (best performance) on SCI-dual, although com-

munication primitives with more complex communication patterns, such as Alltoall,

present the highest values on SCI-single.

2.3 Message-Passing Micro-benchmarking 31

Table 2.1: Myrinet: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Sen
d

MPICH-GM 9 20 5.330 111.1 187.6
mpiJava 15 20 5.360 66.67 186.6
MPJ/Ibis 65 69 5.951 15.38 168.0

Barr
ier

MPICH-GM −3 + 16dlpe N/A N/A 245.9 N/A
mpiJava 5 + 15dlpe N/A N/A 230.8 N/A
MPJ/Ibis 194 + 73p N/A N/A 11.01 N/A

Broa
dca

st
MPICH-GM 3 + 8dlpe 17 + 23dlpe 0.017 + 5.649dlpe 428.6 663.3

mpiJava 20 + 17dlpe 33 + 31dlpe 0.136 + 5.741dlpe 170.5 649.4
MPJ/Ibis 22 + 21p 3 + 24p 3.006 + 6.670dlpe 41.90 505.3

Sca
tte

r
MPICH-GM −7 + 9p 1 + 11p 4.271 + 0.412dlpe 45.45 158.9

mpiJava 42 + 10p 39 + 13p 4.336 + 0.421dlpe 9.146 156.3
MPJ/Ibis 37 + 19p 8 + 23p 4.421 + 0.673dlpe 6.667 135.9

Gath
er

MPICH-GM 7 + 5p 13 + 7p 3.782 + 0.503dlpe 29.41 165.4
mpiJava 47 + 5p 44 + 7p 4.981 + 0.174dlpe 11.19 140.4
MPJ/Ibis 78 + 8p 83 + 16dlpe 6.216 + 0.487dlpe 6.818 114.8

Allga
the

r
MPICH-GM −10 + 15p 3 + 19p 5.272 + 1.093dlpe 75.00 1653

mpiJava 30 + 17p 41 + 23p 8.489 + 0.479dlpe 52.77 1532
MPJ/Ibis 17 + 61p 4 + 72p 4.096 + 2.970dlpe 16.05 997.6

Allto
all

MPICH-GM −10 + 13p −6 + 16p 4.182 + 2.690dlpe 75.76 1004
mpiJava 37 + 15p 28 + 19p 7.371 + 1.83dlpe 54.15 1014
MPJ/Ibis 296 + 523p 213 + 465p 5.810 + 3.857dlpe 1.731 706.3

Redu
ce

MPICH-GM 12 + 3p 9 + 5p 2.698 + 10.83dlpe 250.0 326.0
mpiJava 45 + 4p 29 + 6p 5.161 + 11.16dlpe 137.6 301.2
MPJ/Ibis 107 + 98dlpe 63 + 100dlpe 7.618 + 15.38dlpe 30.06 217.0

Allre
duc

e MPICH-GM 18 + 4p 21 + 6p 3.219 + 16.35dlpe 365.9 437.2
mpiJava 44 + 6p 58 + 8p 4.319 + 15.39dlpe 214.3 455.4
MPJ/Ibis 223 + 290dlpe 381 + 256dlpe 5.536 + 22.03dlpe 21.69 320.3

Redu
ces

ctrMPICH-GM −3 + 13p 2 + 16p 9.326 + 10.81dlpe 77.97 303.2
mpiJava 24 + 15p 18 + 19p 11.37 + 11.51dlpe 60.37 277.6
MPJ/Ibis 13 + 76p 7 + 89p 13.91 + 17.83dlpe 12.97 187.0

Sca
n MPICH-GM 13 + 4p 31 + 6p −4.487 + 9.284b2lpc 194.8 357.7

mpiJava 50 + 6p 67 + 8p −0.234 + 10.15b2lpc 102.7 296.9
MPJ/Ibis −1 + 97p 9 + 112p 3.380 + 21.62p 9.671 42.94

32 Chapter 2. Performance Analysis of Message-Passing Communications

Table 2.2: SCI-single: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Sen
d

ScaMPI 4 13 3.890 250.0 257.1
SCI-MPICH 6 5 4.560 166.7 219.3

mpiJava 10 11 3.924 100.0 254.8
MPJ/Ibis 49 43 4.272 20.41 234.1

Barr
ier

ScaMPI 7 + 0.4p N/A N/A 686.2 N/A
SCI-MPICH −2 + 9dlpe N/A N/A 280.0 N/A

mpiJava 8 + 1.2p N/A N/A 397.7 N/A
MPJ/Ibis 133 + 48p N/A N/A 13.54 N/A

Broa
dca

st
ScaMPI 6dlpe 12 + 8dlpe −0.093 + 4.099dlpe 388.9 573.6

SCI-MPICH 6dlpe 17 + 7dlpe 3.403 + 2.987dlpe 388.9 566.1
mpiJava 33 + 7dlpe 59 + 9dlpe 0.391 + 4.451dlpe 129.6 509.3
MPJ/Ibis −7 + 15p −9 + 16p 0.720 + 4.870dlpe 61.95 456.6

Sca
tte

r
ScaMPI −5 + 6p 2 + 8p 2.714 + 0.251dlpe 71.43 252.4

SCI-MPICH 5 + 2p 19 + 5p 2.011 + 0.718dlpe 57.69 217.6
mpiJava 27 + 6p 58 + 11p 2.443 + 0.394dlpe 14.71 241.4
MPJ/Ibis 11p −16 + 16p 2.412 + 0.511dlpe 19.23 221.8

Gath
er

ScaMPI 4 + p 18 + 2p 0.612 + 1.222dlpe 93.75 272.6
SCI-MPICH 2 + 2p 22 + 3p 2.139 + 0.719dlpe 83.33 209.7

mpiJava 36 + p 53 + 4p 1.411 + 0.989dlpe 19.89 221.3
MPJ/Ibis 54 + p 6 + 2dlpe 1.333 + 0.970dlpe 14.11 229.1

Allga
the

r
ScaMPI −6 + 14dlpe 12 + 18dlpe 3.510 + 1.327dlpe 218.8 1051

SCI-MPICH −1 + 5p 13 + 9p 1.936 + 2.571dlpe 201.9 816.1
mpiJava 23 + 16dlpe 49 + 22dlpe 2.963 + 1.603dlpe 110.9 1013
MPJ/Ibis 32p −15 + 37p 1.101 + 2.679dlpe 30.76 861.8

Allto
all

ScaMPI −10 + 8p 3 + 11p 1.693 + 2.310dlpe 166.7 811.8
SCI-MPICH −6 + 9p 12 + 12p 2.412 + 2.230dlpe 106.1 769.1

mpiJava 22 + 9p 39 + 14p 2.347 + 2.120dlpe 74.47 804.0
MPJ/Ibis 92 + 307p 73 + 271p 1.408 + 2.658dlpe 2.747 746.1

Redu
ce

ScaMPI 1 + 6dlpe 7 + 9dlpe 9.834 + 1.761dlpe 368.4 463.1
SCI-MPICH 7 + 2p 18 + 4p −3.718 + 6.381dlpe 304.3 453.8

mpiJava 13 + 8dlpe 24 + 11dlpe 9.681 + 1.911dlpe 189.2 454.1
MPJ/Ibis 26 + 42dlpe 6 + 42dlpe 1.507 + 9.299dlpe 46.05 238.1

Allre
duc

e ScaMPI −1 + 12dlpe 11 + 15dlpe 9.281 + 2.536dlpe 400.0 828.9
SCI-MPICH 11 + 5p 14 + 6p 5.591 + 3.859dlpe 274.5 815.5

mpiJava 7 + 15dlpe 26 + 18dlpe 8.819 + 3.048dlpe 269.2 779.4
MPJ/Ibis −60 + 258dlpe 39 + 165dlpe 0.666 + 15.49dlpe 19.61 297.0

Redu
ces

ctr ScaMPI −1 + 8p 17 + 10p 12.51 + 2.068dlpe 125.0 420.8
SCI-MPICH −6 + 9p 5 + 12p 9.138 + 2.345dlpe 125.0 486.9

mpiJava 23 + 9p 39 + 12p 13.04 + 2.149dlpe 82.89 404.1
MPJ/Ibis 42 + 25p 31 + 29p 4.267 + 10.05dlpe 32.54 228.8

Sca
n ScaMPI −9 + 6p 13 + 9p −3.361 + 5.183p 333.3 183.7

SCI-MPICH −1 + 4p 10 + 10p 3.799 + 1.544b2lpc 225.8 701.8
mpiJava 19 + 7p 42 + 12p −5.423 + 8.299p 93.33 114.8
MPJ/Ibis −62 + 39p −77 + 43p −5.650 + 8.989p 62.50 105.6

2.3 Message-Passing Micro-benchmarking 33

Table 2.3: SCI-dual: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Barr
ier

ScaMPI 5 + 2dlpe N/A N/A 1154 N/A
SCI-MPICH −169 + 140dlpe N/A N/A 38.36 N/A

mpiJava 11 + dlpe N/A N/A 1000 N/A
MPJ/Ibis 204 + 42p N/A N/A 17.12 N/A

Broa
dca

st
ScaMPI −3 + 6dlpe 7 + 9dlpe −0.605 + 4.297dlpe 714.2 904.6

SCI-MPICH−11 + 11dlpe 3 + 18dlpe −0.531 + 4.919dlpe 454.5 783.5
mpiJava 21 + 7dlpe 39 + 12dlpe −0.629 + 4.371dlpe 306.1 889.9
MPJ/Ibis 6 + 15p 2 + 15p −2.096 + 4.887dlpe 60.97 859.5

Sca
tte

r
ScaMPI −12 + 6p 3 + 9p 2.199 + 0.339dlpe 62.50 272.1

SCI-MPICH 6 + 2p 21 + 7p 2.158 + 1.702dlpe 53.57 134.8
mpiJava 17 + 6p 38 + 13p 2.833 + 0.212dlpe 18.29 254.7
MPJ/Ibis −1 + 12p −21 + 17p 2.417 + 0.408dlpe 15.96 240.3

Gath
er

ScaMPI 7 + 2p 34 + 4p 0.921 + 0.949dlpe 50.00 266.1
SCI-MPICH −41 + 35p −3 + 53p 0.941 + 1.778dlpe 7.575 166.8

mpiJava 41 + p 51 + 6p 1.037 + 0.944dlpe 17.85 256.4
MPJ/Ibis 83 + 3p 70 + 4dlpe 0.968 + 0.995dlpe 8.177 253.5

Allga
the

r
ScaMPI 4 + 2p 24 + 4p 4.515 + 1.863dlpe 442.7 1332

SCI-MPICH 55 + 28p 63 + 33p 11.42 + 3.688dlpe 31.68 608.9
mpiJava 41 + 2p 49 + 4p 5.831 + 1.592dlpe 218.3 1306
MPJ/Ibis −51 + 50p −105 + 55p 2.713 + 2.374dlpe 20.13 1305

Allto
all

ScaMPI −24 + 14p 4 + 18p 0.369 + 4.499dlpe 93.75 816.7
SCI-MPICH −221 + 103p −193 + 121p −2.97 + 8.391dlpe 15.71 490.3

mpiJava 8 + 14p 35 + 21p 1.190 + 4.331dlpe 64.66 810.2
MPJ/Ibis −57 + 377p −84 + 315p −3.012 + 5.481dlpe 2.510 793.1

Redu
ce

ScaMPI 9 + p 8 + 2p 6.519 + 3.352dlpe 600.0 752.7
SCI-MPICH 38 + 23p 51 + 38p 8.017 + 3.695dlpe 36.94 657.9

mpiJava 24 + p 38 + 3p 7.598 + 3.616dlpe 375.0 679.9
MPJ/Ibis 74 + 38dlpe 1 + 48dlpe 1.748 + 8.176dlpe 66.37 435.4

Allre
duc

e ScaMPI 7 + 2p 9 + 4p 11.41 + 3.693dlpe 769.2 1145
SCI-MPICH 198 + 71p 228 + 83p −15.03 + 20.94dlpe 22.48 436.4

mpiJava 29 + 2p 41 + 5p 11.04 + 4.177dlpe 491.8 1081
MPJ/Ibis −61 + 288dlpe −3 + 192dlpe −9.143 + 22.39dlpe 27.50 373.1

Redu
ces

ctr ScaMPI −10 + 9p 3 + 11p 10.48 + 3.248dlpe 144.2 679.0
SCI-MPICH −673 + 216p −540 + 239p 7.711 + 3.62dlpe 19.63 718.2

mpiJava 22 + 8p 41 + 14p 11.31 + 3.761dlpe 106.2 604.7
MPJ/Ibis 62 + 24p 46 + 28p 3.563 + 9.245dlpe 35.73 393.1

Sca
n ScaMPI −5 + 4p 1 + 6p −2.939 + 5.050p 272.7 192.7

SCI-MPICH −24 + 82p 17 + 87p −0.726 + 2.015b2lpc 11.64 1604
mpiJava 16 + 5p 32 + 8p −4.596 + 7.903p 156.2 123.1
MPJ/Ibis −85 + 49p −33 + 48p −11.68 + 8.462p 27.03 135.3

34 Chapter 2. Performance Analysis of Message-Passing Communications

Table 2.4: SCI-dual SMT: analytical models and peak aggregated metrics (lp =
log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Barr
ier

ScaMPI 3 + 2dlpe N/A N/A 2067 N/A
mpiJava 8 + 4dlpe N/A N/A 1937 N/A
MPJ/Ibis 331 + 32p N/A N/A 22.88 N/A

Broa
dca

st
ScaMPI −7 + 7dlpe −3 + 11dlpe 3.210 + 4.480dlpe 1107 1210
mpiJava 45 + 9dlpe 57 + 14dlpe −1.097 + 5.719dlpe 344.4 1127
MPJ/Ibis 11 + 15p 37 + 13p −0.997 + 5.397dlpe 63.14 1191

Sca
tte

r
ScaMPI −17 + 6p 3 + 8p 0.519 + 1.150dlpe 28.22 220.4
mpiJava 18 + 8p 41 + 11p 1.63 + 0.937dlpe 10.67 197.0
MPJ/Ibis 9 + 13p −3 + 16p 0.553 + 1.295dlpe 7.743 197.2

Gath
er

ScaMPI 15 + 2p 83 + 5p −1.403 + 2.017dlpe 28.23 188.3
mpiJava 55 + 2p 131 + 9p −1.031 + 2.053dlpe 12.32 170.6
MPJ/Ibis 71 + 3p −39 + 44dlpe 0.344 + 1.835dlpe 9.211 149.6

Allga
the

r
ScaMPI −1 + 3p 45 + 5p 10.23 + 1.987dlpe 342.4 1585
mpiJava 74 + 2p 128 + 7p 9.648 + 2.238dlpe 231.7 1534
MPJ/Ibis −68 + 67p −162 + 79p 5.645 + 3.320dlpe 16.83 1437

Allto
all

ScaMPI −123 + 36p −83 + 43p −7.585 + 12.41dlpe 42.42 569.2
mpiJava −114 + 44p −45 + 60p −5.969 + 12.10dlpe 29.41 568.5
MPJ/Ibis −575 + 547p −773 + 465p −1.950 + 11.92dlpe 1.842 537.7

Redu
ce

ScaMPI 14 + p 31 + 2p 13.31 + 4.690dlpe 673.9 843.3
mpiJava 47 + p 77 + 3p 12.91 + 5.796dlpe 392.4 740.0
MPJ/Ibis 56 + 51dlpe −11 + 49dlpe 1.486 + 10.93dlpe 99.68 552.2

Allre
duc

e ScaMPI 15 + p 33 + 2p 22.31 + 5.513dlpe 1319 1243
mpiJava 51 + 2p 83 + 4p 20.70 + 7.131dlpe 539.1 1100
MPJ/Ibis −135 + 358dlpe 82 + 219dlpe −133.3 + 62.74dlpe 37.46 306.3

Redu
ces

ctr ScaMPI 7 + 8p 30 + 11p 18.72 + 4.798dlpe 121.6 748.5
mpiJava 44 + 8p 79 + 15p 15.92 + 6.586dlpe 106.6 654.4
MPJ/Ibis 81 + 27p 75 + 28p 6.588 + 11.09dlpe 33.83 515.3

Sca
n ScaMPI −3 + 5p 6 + 9p −7.813 + 5.407p 197.4 197.5

mpiJava 29 + 6p 41 + 11p −7.864 + 9.645p 140.3 103.1
MPJ/Ibis −120 + 58p −325 + 78p −5.730 + 8.071p 20.35 122.8

2.4 Analysis of the Performance Models 35

Java Communication Libraries

From the models it can be observed that mpiJava adds little overhead to the

underlying native message-passing library. In fact, mpiJava performance is quite

similar to the MPI results, especially for long messages for which this overhead is

almost negligible, as their peak aggregated bandwidths (Bwpag
as) are quite similar.

However, the peak aggregated bandwidth of mpiJava can be slightly overestimated

as its higher t0(p) values can slightly underestimate its tb(p) results (and hence

increase Bwpag
as). With respect to MPJ/Ibis, both the transfer time and, mainly,

the start-up time, increase significantly with respect to the native libraries. This

overhead corresponds to: (1) the additional communication layers involved in the

communication, TCPIbis sockets and Ibis Portability Layer (IPL), and (2) the in-

terpreted nature of the JVM, basic for the portability of the library. The most

immediate way of running this library on high-speed interconnects is on top of IP

emulation libraries: IP over GM on Myrinet and ScaIP on SCI. Nevertheless, in

order to ensure a fair comparison, MPJ/Ibis has been slightly adapted to run on

top of Sockets-GM on Myrinet, and on top of SCI Sockets.

Regarding peak performance metrics, it can be observed that MPJ/Ibis collec-

tive primitives generally present the highest values (best performance) for πpag
0 on

SCI-single configuration, except for reduction primitives (Reduce, Allreduce, Re-

duce scatter and Scan). However, MPJ/Ibis obtains the highest Bwpag
as performance

on SCI-dual and SCI-dual SMT.

2.4. Analysis of the Performance Models

2.4.1. Point-to-Point Communication

In order to assess the accuracy of the performance models derived in Section 2.3

Figure 2.2 shows experimentally measured (empty symbols) and estimated (filled

symbols) latencies and bandwidths of the Send primitive as a function of the mes-

sage length for the different networks. Bandwidth graphs are useful to compare

long message performance, whereas latency graphs serve to compare short message

performance.

36 Chapter 2. Performance Analysis of Message-Passing Communications

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

10

100

1 k

10 k

L
a
te

n
cy

 T
(n

)
(µ

s)

MPICH-GM

mpiJava

MPJ/Ibis

(a) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM

mpiJava

MPJ/Ibis

(b) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

10

100

1 k

10 k

L
a
te

n
cy

 T
(n

)
(µ

s)

ScaMPI
SCI-MPICH
mpiJava

MPJ/Ibis

(c) Send (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
SCI-MPICH
mpiJava

MPJ/Ibis

(d) Send (SCI-single)

Figure 2.2: Measured and estimated latencies and bandwidths of Send

Regarding MPI C point-to-point primitives (see Tables 2.1–2.2), asymptotic

bandwidths are 188 MB/s for MPICH-GM Send, and 257 MB/s for ScaMPI Send.

Thus, network bandwidth is limiting the performance of MPICH-GM on Myrinet

(the maximum bandwidth is 250 MB/s), but not especially on SCI (SCI maximum

bandwidth is 666 MB/s). Experimentally measured MPI C point-to-point start-

ups, 9µs on Myrinet and 4µs on SCI, are very close to the theoretical values of the

networks (see Section 2.3.2). The different computational power of the nodes has a

minor influence on these values.

With respect to the Java message-passing implementations, on the one hand,

mpiJava obtains results quite similar to its underlying MPI implementation. On the

other hand, MPJ/Ibis shows start-ups of 65µs on Myrinet and 49µs on SCI, and val-

ues of tb slightly higher (around 10%) than the native library values. This overhead,

2.4 Analysis of the Performance Models 37

quite distant from the theoretical values of the high-speed interconnects, especially

for t0, must be attributed to the messaging protocol (around 40µs overhead for t0

both on Myrinet and SCI). The underlying communication library, TCPIbis sock-

ets, shows t0 = 22µs on Myrinet, and t0 = 11µs on SCI, thanks to the use of high

performance sockets libraries (Sockets-GM and SCI Sockets). Using IP emulation

libraries TCPIbis obtains t0 = 196µs on Myrinet and t0 = 131µs on SCI. The ben-

efits of using the high performance native sockets libraries instead of IP emulations

are clear on MPJ/Ibis. However, using message-passing libraries based on RMI,

such as CCJ [72] or JMPI [67], the impact of the use of high performance sockets

libraries is reduced as the protocol overheads are much higher (from 0.5ms to 4ms),

as reported in [88].

2.4.2. Collective Communications

Measured and estimated bandwidths for some collective primitives are depicted

in the graphs of Figures 2.3 and 2.4. The results were obtained using the maximum

number of available processors for each cluster configuration (16 for Myrinet and

SCI-dual, 8 for SCI-single and 32 for SCI-dual SMT). Note that bandwidths are not

aggregated, as they are computed simply by dividing n by T (n, p). In many cases,

the estimated values (filled symbols) are hidden by the measured values (empty sym-

bols), which means a good modeling. As expected, the bandwidth of the mpiJava

routines and the underlying MPI C implementations are very similar (mpiJava calls

to native MPI have low overhead), and pure Java primitives show lower performance.

In fact, MPJ/Ibis tb is slightly higher than the native library value, and therefore,

the derived performance metric, Bwpag
as , presents slightly lower values than the MPI

libraries. Nevertheless, MPJ/Ibis shows much lower performance than the native

implementations for short messages. An example is the quite poor performance,

especially for short and medium-size messages, of the MPJ/Ibis Alltoall, which in-

volves an important number of short messages (see Figures 2.4(b), 2.4(d), 2.4(f)

and 2.4(h), and the metric πpag
0 in Tables 2.1–2.4).

A gap between Myrinet and SCI-single short message performance can be ob-

served for all the libraries evaluated. For instance, the 4 KB MPI C Broadcast

bandwidth is 3.3 times higher on SCI-single than on Myrinet (see Figures 2.3(a)

38 Chapter 2. Performance Analysis of Message-Passing Communications

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM

mpiJava

MPJ/Ibis

(a) Broadcast (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

25

30

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM

mpiJava

MPJ/Ibis

(b) Reduce (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

100

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(c) Broadcast (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(d) Reduce (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(e) Broadcast (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(f) Reduce (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
mpiJava
MPJ/Ibis

(g) Broadcast (SCI-dual w/SMT)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

25

30

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(h) Reduce (SCI-dual w/SMT)

Figure 2.3: Measured and estimated bandwidths for Broadcast and Reduce

2.4 Analysis of the Performance Models 39

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM

mpiJava

MPJ/Ibis

(a) Scatter (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM

mpiJava

MPJ/Ibis

(b) Alltoall (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava

MPJ/Ibis

(c) Scatter (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)
ScaMPI
SCI-MPICH
mpiJava

MPJ/Ibis

(d) Alltoall (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(e) Scatter (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(f) Alltoall (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180

B
a
n

d
w

id
th

 B
w

(n
)

(M
B

/s
)

ScaMPI
mpiJava
MPJ/Ibis

(g) Scatter (SCI-dual w/SMT)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

B
a

n
d

w
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(h) Alltoall (SCI-dual w/SMT)

Figure 2.4: Measured and estimated bandwidths for Scatter and Alltoall

40 Chapter 2. Performance Analysis of Message-Passing Communications

and 2.3(c)). Similarly, the 4 KB MPI C Reduce bandwidth is 2.8 times higher

on SCI-single (see Figures 2.3(b) and 2.3(d)). A higher t0 on Myrinet is the main

cause of this lower performance. Regarding the different system configurations, it

can be observed that the highest bandwidths are obtained by SCI-single (see Fig-

ures 2.3(c), 2.3(d), 2.4(c) and 2.4(d)), followed by SCI-dual, and finally by Myrinet

and SCI-dual SMT.

2.4.3. Model-based Performance Optimization

Message-passing performance models have been used to identify inefficient com-

munication primitives. From this process, it has been detected that ScaMPI and

MPJ/Ibis Scan show a linear complexity (O(p)), whereas the MPICH implementa-

tions, MPICH-GM and SCI-MPICH, present a logarithmic complexity (O(log2p)),

and therefore a more scalable primitive implementation. Other implementations,

e.g., MPJ/Ibis Allreduce, just show poor performance. To reduce the inefficiency, a

primitive can be replaced by a more efficient equivalent combination of primitives.

Examples of equivalences in message-passing libraries are: Broadcast=Scatter+ All-

gather (Van der Geijn algorithm [97]), Allgather=Gather+Broadcast, Reduce sca-

tter=Reduce+Scatterv and Allreduce=Reduce+Broadcast. The replacement of pri-

mitives is done for the combinations of n and p that satisfy the following inequality:

Toriginal primitive(n, p) > Tprimitive#1(n, p) + Tprimitive#2(n, p) based on the models,

where original primitive is equivalent to primitive#1+primitive#2.

For illustrative purposes, some examples of latency reduction using this approach

are presented in Table 2.5. Several combinations of n and p for replacing primitives

are shown, together with some examples of replacement. The obtained latency

reductions for these examples are shown in the last column. mpiJava examples have

been omitted as this library performs similarly to the underlying native library. The

Reduce scatter primitive has also been omitted as it is implemented in MPICH-

GM, ScaMPI and MPJ/Ibis using a Reduce followed by a Scatterv. The equivalent

combination of primitives behaves as in one of the following cases: (1) can present

lower start-ups than the original primitive (e.g., MPICH-GM, ScaMPI and MPJ/Ibis

Allgather in Table 2.5), and thus the replacement is done for short messages; (2)

can show lower transfer times than the original primitive (e.g., MPICH-GM, ScaMPI

2.5 Kernel Benchmarking 41

and MPJ/Ibis Broadcast), replacing the original primitive for long messages; (3) can

present both situations (e.g., MPJ/Ibis Allreduce), replacing always the original

primitive. The mean latency reduction of the examples shown in Table 2.5 is 37%.

This model-based performance optimization can be easily automatized. By de-

termining cross-over points between communication primitives and its equivalent

combinations, the message-passing library can replace inefficient primitives by their

equivalents at runtime. Related works on automatic collective communication opti-

mization [13, 103] use the P-LogP model, but it requires to know the algorithm used

in the collective implementation. Moreover, these works present only Broadcast and

Scatter optimizations, due to the higher complexity of their approaches. In fact,

in order to determine the best communication pattern, the optimization procedure

consists of finding out the best algorithm for each message size, and the best segment

size to fragment the message. This procedure must be repeated for each number

of processors considered, although the number of repetitions can be reduced with

the aid of the P-LogP model. The main contribution of our higher level approach

is its simplicity, as once the models of the collective primitives are obtained, the

performance optimization of the collectives is straightforward, without knowledge

of their concrete implementations or involving an additional and costly procedure.

2.5. Kernel Benchmarking

A kernel benchmarking has been carried out in order to analyze the impact of

message-passing overhead on the overall application performance. This benchmark-

ing has also served to analyze the influence of message-passing overhead on multiple

processor nodes (see Section 2.6). As will be shown, the results of both analyses are

consistent with the predictions obtained from the models. This process has been

carried out on the SCI cluster described in Section 2.3.1, and the selected bench-

marks have been the MPJ kernels from the Java Grande Forum (JGF) Benchmark

Suite [84] and their corresponding MPI C versions. The kernels are, from higher to

lower computation/communication ratio: Series, Crypt, SOR, Sparse and LUFact.

For each of them there are three predetermined problem sizes: small (A), medium

(B) and large (C). This benchmark suite is the most widely used in evaluation of

Java for HPC.

42 Chapter 2. Performance Analysis of Message-Passing Communications

Table 2.5: Parameter values for latency (T) reduction through primitive substitution

Library Testbed Parameter values{(n,p)} Example(n,p) T

B
ro

ad
ca

st

MPICH-GM Myrinet {(n>64KB,p=8),(n>78KB,p=16)} n=256KB,p=16 ↓ 20%

Sca
MPI SCI-single {(n>103KB,p=8)} n=256KB,p=8 ↓ 18%

SCI-dual {(n>128KB,p=16)} n=256KB,p=16 ↓ 13%

MPJ/I
bis

Myrinet {(n>273KB,p=8),(n>994KB,p=16)} n=512KB,p=8 ↓ 43%

SCI-single {(n>462KB,p=4),(n>202KB,p=8)} n=1MB,p=8 ↓ 53%

SCI-dual {(n>1173KB,p=16)} n=2MB,p=16 ↓ 9%

A
ll
ga

th
er

MPICH-GM Myrinet {(n<256B,p=8),(n<2KB,p=16)} n=256B,p=16 ↓ 20%

ScaMPI SCI-single {(n<128B,p=4),(n<256B,p=8)} n=128B,p=8 ↓ 43%

MPJ/I
bis

Myrinet {(n<25KB,p=8),(n<40KB,p=16)} n=1KB,p=8 ↓ 42%

SCI-single {(n<2KB,p=4),(n<7KB,p=8)} n=1KB,p=8 ↓ 35%

SCI-dual {(n<17KB,p=8),(n<45KB,p=16)} n=1KB,p=16 ↓ 50%

SCI-SMT {(n<66KB,p=8),(n<109KB,p=16)} n=1KB,p=16 ↓ 61%

A
ll
re

d
u
ce

MPJ/I
bis

Myrinet Replace always
n=1KB, p=8 ↓ 39%

n=256KB, p=8 ↓ 18%

SCI-single Replace always
n=1KB,p=8 ↓ 50%

n=256KB, p=8 ↓ 24%

SCI-dual Replace always
n=1KB,p=16 ↓ 44%

n=256KB, p=16 ↓ 41%

SCI-SMT Replace always
n=1KB,p=16 ↓ 52%

n=256KB, p=16 ↓ 65%

2.5 Kernel Benchmarking 43

Figure 2.5 shows the speedups obtained from running LUFact and Series kernels

using ScaMPI, mpiJava, MPJ/Ibis and MPJ Express on the SCI cluster. These

kernels have been selected as representatives of communication-intensive applica-

tions (LUFact) and computation-intensive applications (Series). In fact, LUFact

performs an important number of short message broadcasts (1000, 2000 and 4000

for problem sizes A, B and C, respectively), whereas Series only involves gathering

two long arrays (the size of each array is 80 KB, 800 KB and 8 MB for problem

sizes A, B and C, respectively). Labels in the x-axis represent the kernel problem

size (A,B,C) and the number of processes per node (1, 2 and 4; using SCI-single,

SCI-dual and SCI-dual SMT configurations, respectively). Regarding the speedup

results, ScaMPI shows generally the best scalability; mpiJava presents slightly lower

performance than ScaMPI; and MPJ/Ibis and MPJ Express results are lower than

mpiJava results. LUFact shows modest speedups, and even slowdowns for size A,

especially for A4, and also for size B with MPJ Express. Series presents significantly

higher speedups than LUFact, obtaining almost linear speedups (i.e., the speedups

are similar to the number of processes used) except for 32 processes. With re-

spect to the “pure” Java libraries, MPJ Express shows slightly better performance

than MPJ/Ibis for Series, whereas MPJ/Ibis performs better for LUFact. These

differences can be explained by the fact that MPJ/Ibis uses TCPIbis sockets as

communication technology, which has lower t0 but higher tb than Java NIO sockets,

base of MPJ Express. Thus, MPJ/Ibis performs better for applications with short

message communication patterns, whereas MPJ Express shows better performance

for medium and long message communication patterns.

Although Sparse, Crypt and SOR experimental results have also been analyzed,

they have been omitted for conciseness and only the main conclusions are presented.

Thus, on the one hand, Sparse results are slightly lower than LUFact speedups. On

the other hand, Crypt and SOR results are similar to Series results, but showing

lower speedups, especially for SOR. These results are consistent with the computa-

tion/communication ratio of the kernels, which is the main explaining factor of their

performance behavior.

44 Chapter 2. Performance Analysis of Message-Passing Communications

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

1/2

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(a) ScaMPI LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

8

16

32

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(b) ScaMPI Series

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

1/2

1/4

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(c) mpiJava LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

8

16

32
S

p
ee

d
u

p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(d) mpiJava Series

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

1/2

1/4

1/8

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(e) MPJ/Ibis LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

8

16

32

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(f) MPJ/Ibis Series

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

1/2

1/4

1/8

1/16

1/32

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(g) MPJ Express LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4

Size and Configuration

1

2

4

8

16

32

S
p

ee
d

u
p

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(h) MPJ Express Series

Figure 2.5: Speedups of selected Java Grande kernels

2.6 Analysis of the Kernel Benchmarking Results on Dual Nodes 45

From this benchmarking process, it has been observed that the poorest speedups

are obtained with communication-intensive kernels, especially with small problem

sizes and using MPJ/Ibis and MPJ Express. However, MPJ/Ibis and MPJ Ex-

press show speedups comparable with native libraries performance in the remaining

situations.

2.6. Analysis of the Kernel Benchmarking Results

on Dual Nodes

The kernel benchmarking has also served to analyze the influence of message-

passing overhead on dual nodes with and without hyper-threading enabled. This

analysis has been carried out on the SCI cluster using single, dual and dual SMT

configurations. ScaMPI and MPJ/Ibis have been selected as representative libraries

of native and Java message-passing libraries, respectively.

2.6.1. Performance Analysis on Dual-Processor Nodes

According to the graphs of Figure 2.5, LUFact speedups are higher using one

process per node than using two processes (i.e., A1 speedups > A2 speedups, B1

> B2, C1 > C2), whereas Series speedups remain similar. In order to quantify

the influence of using two processes per node instead of 1 a new metric has been

derived. This metric is the ratio TSCI−single(p)/TSCI−dual(p) for p processes, where

p nodes are used on SCI-single and p/2 nodes on SCI-dual. A ratio higher than

1 means that the kernel benefits from running p processes on SCI-dual, instead of

running on SCI-single. From Table 2.6 it can be observed that LUFact, Sparse and

SOR, communication-intensive kernels, do not benefit from using two processes per

node, whereas Series and Crypt, computation-intensive kernels, can slightly benefit

from this. The reason is that using two processes per node each process has avail-

able approximately half of the resources of the node, instead of the resources of the

whole node (as it happens with one process per node). As communication-intensive

kernels need more resources for communications than computation-intensive kernels

(the message-passing libraries use additional buffers and threads when communicat-

ing), the performance benefits of intra-node communication do not make up for the

46 Chapter 2. Performance Analysis of Message-Passing Communications

reduction of available resources for inter-node communication.

After assessing that running p processes on p/2 nodes instead of on p nodes only

improves performance on computation-intensive kernels, another interesting eval-

uation is the comparison of the kernel results on nd nodes assigning one process

per node against the kernel results on nd nodes with two processes per node. The

associated metric is the ratio TSCI−single(nd)/TSCI−dual(2×nd). A ratio higher than

1 means that the kernel benefits from running two processes per node instead of

running only one for a fixed number of nodes nd. From the discussion in Subsec-

tion 2.3.2, both t0 and tb are higher on SCI-dual than on SCI-single. Moreover,

the communication overhead is higher for 2 × nd processes instead of for nd pro-

cesses. Thus, clearly the communication cost is higher for TSCI−dual(2 × nd) than

for TSCI−single(nd). Nevertheless, the workload for each of the 2 × nd processes on

SCI-dual is approximately half of the workload for each of the nd processes on SCI-

single. Therefore, ratios slightly below 2 can be predicted for computation-intensive

kernels (Series and Crypt), whereas more modest ratios, even significant slowdowns,

can be predicted for communication-intensive kernels (LUFact, Sparse and SOR).

Table 2.7 presents the obtained ratios, that are in tune with these predictions.

2.6.2. Performance Analysis on SMT Dual-Processor Nodes

The influence of enabling the hyper-threading has not been taken into account in

the previous analyses. This influence can be characterized by the ratio of the runtime

on SCI-dual to the runtime on SCI-dual SMT, in both cases using nd nodes. Thus,

the metric is TSCI−dual(2×nd)/TSCI−dual SMT (4×nd), where the number of processes

is 2×nd on SCI-dual and 4×nd on SCI-dual SMT. A ratio higher than 1 means that

the kernel benefits from enabling hyper-threading, for a fixed number of nodes nd.

From Subsection 2.3.2, it can be predicted that both t0 and tb are higher on SCI-

dual SMT than on SCI-dual. From the first paragraph of Subsection 2.3.1 it can be

obtained that the computational performance should be slightly higher (around 30%

higher). Thus, it is expected that communication-intensive codes present poorer

performance on SCI-dual SMT than on SCI-dual, whereas computation-intensive

kernels increase their performance around 30%. Moreover, it is possible to achieve

higher performance improvements with benchmarks that especially benefit from

2.6 Analysis of the Kernel Benchmarking Results on Dual Nodes 47

Table 2.6: Ratio TSCI−single(p)/TSCI−dual(p)

Small Size (A) Medium Size (B) Large Size (C)
p = 4 p = 8 p = 4 p = 8 p = 4 p = 8

S
ca

M
P

I LUFact 0.93 1.03 0.69 0.82 0.56 0.64
Series 0.98 0.88 0.99 1.01 1.00 0.99
SOR 0.70 0.77 0.63 0.70 0.59 0.68

Sparse 0.56 0.51 0.47 0.53 0.46 0.50
Crypt 1.02 1.01 1.01 1.00 1.00 0.98

M
P

J/
Ib

is LUFact 0.86 0.91 0.88 0.92 0.68 0.79
Series 1.22 1.27 1.00 0.99 1.00 1.00
SOR 0.90 1.03 0.85 1.04 0.76 0.91

Sparse 0.89 0.81 0.94 0.83 0.86 0.79
Crypt 0.98 1.00 1.02 1.02 1.00 1.04

Table 2.7: Ratio TSCI−single(nd)/TSCI−dual(2× nd)

Small Size (A) Medium Size (B) Large Size (C)
4Nodes 8Nodes 4Nodes 8Nodes 4Nodes 8Nodes

S
ca

M
P

I LUFact 0.92 0.88 1.03 0.99 0.97 0.97
Series 1.83 1.77 1.99 1.90 1.99 1.92
SOR 1.02 1.02 0.99 0.99 0.98 0.98

Sparse 0.62 0.65 0.71 0.68 0.72 0.69
Crypt 1.66 1.34 1.78 1.62 1.78 1.72

M
P

J/
Ib

is LUFact 0.70 0.75 0.93 0.74 1.08 0.95
Series 2.18 2.03 1.95 1.82 1.93 1.88
SOR 1.01 0.82 1.10 0.94 1.08 0.96

Sparse 0.58 0.61 0.63 0.64 0.67 0.64
Crypt 1.65 1.44 1.87 1.76 1.89 1.84

Table 2.8: Ratio TSCI−dual(2× nd)/TSCI−dual SMT (4× nd)

Small Size (A) Medium Size (B) Large Size (C)
2Nodes 8Nodes 2Nodes 8Nodes 2Nodes 8Nodes

S
ca

M
P

I LUFact 0.61 0.39 0.78 0.55 0.88 0.72
Series 1.41 1.23 1.72 1.54 1.73 1.21
SOR 0.80 0.46 0.87 0.64 0.89 0.52

Sparse 0.54 0.53 0.74 0.63 0.88 0.65
Crypt 0.94 0.72 1.22 0.90 1.24 0.95

M
P

J/
Ib

is LUFact 0.46 0.49 0.60 0.48 0.70 0.69
Series 1.63 1.10 1.97 1.41 1.91 1.33
SOR 0.70 0.49 0.70 0.61 0.75 0.62

Sparse 0.44 0.39 0.44 0.39 0.49 0.43
Crypt 1.24 1.07 1.31 1.18 1.41 1.22

48 Chapter 2. Performance Analysis of Message-Passing Communications

parallelization, i.e. codes that show higher parallel efficiencies as the number of

processors increases. Table 2.8 shows the obtained ratios, that are in tune with

these predictions. Thus, computation-intensive kernels (Series and Crypt) benefit

from enabling hyper-threading (up to 41% performance increase for Crypt and 97%

for Series, which especially benefits from parallelization), whereas communication-

intensive kernels (LUFact, Sparse and SOR) reduce their performance, especially on

8 nodes.

It can be concluded that representative message-passing implementations do not

benefit from systems with multiple processor nodes. A solution could be the use

of multithreading instead of interprocess communication for handling intra-node

communications. The development of shared memory communication protocols for

intra-node communications and its combination with current inter-node protocols

would achieve higher performance. Nevertheless, the message-passing library must

implement thread-safe communication mechanisms, which are a highly interesting

feature for multi-core systems. Several related projects, e.g., USFMPI [18] and

pCoR [2], propose to integrate multithreading and message-passing communications.

2.7. Chapter 2 Conclusions

The characterization of the message-passing communication overhead on high-

speed clusters is extremely important. Message-passing performance is critical

for the overall system scalability and performance. Representative native MPI

(MPICH-GM, ScaMPI and SCI-MPICH) and Java message-passing libraries (mpi-

Java, MPJ/Ibis and MPJ Express) have been selected for performance modeling and

evaluation. For this purpose, an accurate message-passing communication model,

together with a message-passing micro-benchmark suite to derive these models, have

been proposed. The predictions obtained by this model have been validated against

experimental results obtaining better estimates than preceding models. The esti-

mates have shown only a 7% average absolute relative error. Moreover, performance

metrics derived from the models have been used to evaluate message-passing primi-

tives implementations and their performance on high-speed clusters. These models

have also served to identify inefficient communication primitives. To solve these

inefficiencies, some primitives can be replaced by a more efficient equivalent combi-

2.7 Chapter 2 Conclusions 49

nation of primitives. This process has obtained important latency reductions and

can be easily automatized.

From the analysis of message-passing performance, it can be concluded that

native libraries and mpiJava benefit from the low start-up and high bandwidth of the

high-speed interconnects. Nevertheless, these libraries are not portable. MPJ/Ibis

and MPJ Express overcome this issue, but this involves an important additional

overhead.

Besides the message-passing performance analysis on high-speed interconnects,

it has been carried out a kernel benchmarking. This process has been performed in

order to analyze the influence of message-passing overhead and the use of multiple

processor nodes on the overall application performance. The main conclusion is

that message-passing implementations, especially “pure” Java libraries, do not take

advantage of these systems.

Finally, this work intends to provide parallel programmers and library devel-

opers with guidelines for efficiently exploiting high-speed cluster interconnects and

multiple processor nodes. The design of low-level communication middleware that

increases Java performance on high-speed clusters, where far less research has been

done, is the next goal of the Thesis (Chapter 3).

Chapter 3

JFS: High Performance Java Fast

Sockets

The next objective of the Thesis is to provide parallel and distributed Java

applications with an efficient socket implementation, named Java Fast Sockets (JFS),

for high performance computing on multi-core clusters with high-speed networks. By

optimizing the widely used socket API, parallel and distributed Java applications

based on it improve performance transparently. Several projects have previously

attempted to increase Java communication performance, especially on high-speed

cluster networks, but they lack desirable features like those discussed in Section 1.1.

JFS optimizes the JVM socket protocol reducing communication overhead, es-

pecially for shared memory transfers. Among its main features, JFS: (1) provides

efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand);

(2) optimizes Java IO sockets, more popular and extended than NIO sockets; (3)

avoids the need for primitive data type array serialization; (4) significantly reduces

buffering and unnecessary copies; (5) implements an optimized shared memory pro-

tocol; and (6) it is user and application transparent, no source code modification is

necessary to use JFS.

The chapter is organized as follows: Section 3.1 presents the main design fea-

tures of JFS together with its efficient protocol implementation. Section 3.2 illus-

trates the results of the micro-benchmarking of JFS conducted on SCI, Myrinet,

InfiniBand and Gigabit Ethernet networks, as well as on shared memory. The re-

sults indicate that JFS obtains significant performance improvements over Sun JVM

51

52 Chapter 3. JFS: High Performance Java Fast Sockets

sockets. Moreover, JFS has also an important impact on the performance of final

applications. Section 3.3 analyzes this impact on representative parallel kernels and

applications. Finally, Section 3.4 concludes the chapter with a summary of its main

contributions.

3.1. Efficient Java Socket Implementation

The development of an optimized Java socket library poses several challenges

such as serialization overhead reduction and protocol performance increase, espe-

cially through a more efficient data transfer implementation. JFS has contributed

to these goals by: (1) avoiding primitive data type array serialization (see Subsec-

tion 3.1.1); (2) reducing buffering and unnecessary copies in the protocol (Subsec-

tion 3.1.2); and (3) providing shared memory communication with an optimized

transport protocol as will be shown in Subsection 3.1.3.

3.1.1. Serialization Overhead Reduction

Serialization imposes severe performance penalties as this process involves the

extraction of the byte values from the data to be sent. An example of this is shown

in Listing 3.1, where java.io.Bits.putInt() writes an integer val to the stream

b at the position off. As Java socket restriction of sending only byte arrays does

not hold for native sockets, JFS defines native methods (see Listing 3.2) to transfer

primitive data type arrays directly without serialization.

Listing 3.1: Example of a costly serialization operation of an integer value
stat ic void putInt (byte [] b , int o f f , int va l) {

b [o f f + 3] = (byte) (va l >>> 0) ;

b [o f f + 2] = (byte) (va l >>> 8) ;

b [o f f + 1] = (byte) (va l >>> 16) ;

b [o f f + 0] = (byte) (va l >>> 24) ;

}

Listing 3.2: JFS extended API for direct transfer of primitive data type arrays
j f s . net . SocketOutputStream . wr i t e (int buf [] , int o f f s e t , int l ength) ;

j f s . net . SocketOutputStream . wr i t e (double buf [] , int o f f s e t , int l ength) ;

j f s . net . SocketOutputStream . wr i t e (f loat buf [] , int o f f s e t , int l ength) ;

. . .

j f s . net . SocketInputStream . read (int buf [] , int o f f s e t , int l ength) ;

. . .

3.1 Efficient Java Socket Implementation 53

3.1.2. Socket Protocol Optimization

The operation of the Sun JVM sockets has been analyzed in order to avoid

its main performance bottlenecks in the implementation of JFS. Figure 3.1 dis-

plays the diagram of the operation of Sun JVM sockets representing the data struc-

tures used and the path followed by socket messages. A primitive data type array

transfer for representativeness and illustrative purposes has been selected. First,

ObjectOutputStream, the class used to serialize objects, writes sdata to a block

data buffer (blockdata). As recommended, serialized data is buffered in order to

reduce the number of accesses to native sockets. Then, the socket library uses

the JNI function GetByteArrayRegion(byte[] buf) to copy the buffered data to

jvmsock_buf, a native buffer that is dynamically allocated for messages longer than

2 KB (configurable size). The native socket library and its buffer nativesock_buf

are involved in the next copy. Then, data is transferred through the network thanks

to the network driver. The receiving side operates in reverse order, and thus the

whole process involves nine steps: a serialization, three copies, a network transfer,

another three copies and a deserialization. Potential optimizations detected in this

analysis in order to improve performance are the reduction in the number of copies

and the decrease of the serialization overhead.

These optimizations have been included in JFS as shown in Figure 3.2. The func-

tion GetPrimitiveArrayCritical(<primitive data type> {s|r}data[]) allows

native code to obtain through JNI a direct pointer to the Java array in order to

avoid serialization. Thus, a one-copy protocol can be implemented as only one

copy is needed to transfer sdata to the native socket library. However, data can be

transferred with a zero-copy protocol without involving the CPU on RDMA-capable

high-speed cluster interconnects (such as SCI, Myrinet and InfiniBand). This zero-

copy protocol obtains higher bandwidths and lower CPU loads than the one-copy

protocol, although RDMA imposes a higher start-up latency. Therefore, one-copy is

used only for short messages (size below a configurable threshold). A related issue

is the receiving strategy, where polling (a busy-loop waiting for message reception)

obtains lower start-up latency but higher CPU load than blocking. Thus, polling

is preferred only for short messages. These protocols and strategies are handled by

JFS. The whole optimized process involves up to two copies and a network commu-

nication in the worst case. Furthermore, a potential optimization has been detected

for shared memory communication, presented in the following subsection.

54 Chapter 3. JFS: High Performance Java Fast Sockets

<primitive data type> rdata[]

BufferedInputStream

byte buf[8KB]byte buf[8KB]

BufferedOutputStream

<primitive data type> sdata[]

ReceiverApplication

BlockDataInputStream

byte blockdata[1KB]

JAVA VIRTUAL MACHINEJAVA VIRTUAL MACHINE

SenderApplication

Java Socket Library

Y

jvmsock_buf=malloc(size)

char *nativesock_buf (configurable size) char *nativesock_buf (configurable size)

(copy buf[])
Unbuffering data

(SetByteArrayRegion(buf))

 5

Copy *jvmsock_buf to buf[]

char *jvmsock_buf (up to 64KB)

N

Y

jvmsock_buf=malloc(size)

 7

 8

Native Socket Library Native Socket Library

jvmsock_buf=2KBstaticbuffer

 6 Copy *nativesock_buf to *jvmsock_buf

Network Communication

BlockDataOutputStream

(ObjectOutputStream.write(sdata))
 1 Serialize sdata[]

N

Copy *jvmsock_buf to *nativesock_buf 4

char *jvmsock_buf (up to 64KB)

jvmsock_buf=2KBstaticbuffer Copy buf[]
to *jvmsock_buf

(GetByteArrayRegion(buf))

 3

 2 Buffering data
(copy blockdata[])

Java Socket Library

MAX_BUFFER_LEN

(default 2KB)

MAX_BUFFER_LEN

byte blockdata[1KB]

 9 Deserialize blockdata[]
(ObjectInputStream.read(rdata))

message size >

(default 2KB)

message size >

Figure 3.1: Sun JVM socket operation

3.1.3. Efficient Shared Memory Socket Communication

The emergence of multi-core architectures has increased the use of shared mem-

ory socket communication, the most efficient way to exchange messages between

two Java applications running on the same machine. However, JVM sockets han-

dle intra-node transfers as TCP/IP transmissions. Some optimizations exist, like

using a larger Maximum Transmission Unit (MTU) size, usually an order of mag-

nitude higher, in order to reduce IP packet fragmentation, but TCP/IP overhead

is still the throughput bottleneck. In order to reduce this performance penalty JFS

has implemented shared memory transfers resorting to UNIX sockets (or similar

lightweight non-TCP/IP sockets when available) and direct memory transfers, and

3.1 Efficient Java Socket Implementation 55

<primitive data type> rdata[]

ReceiverApplicationSenderApplication

<primitive data type> sdata[]

use
Y

Y

Communication

Shared Memory Transfer

N

sock_buf to
Copy *native−

*arr_rref

JAVA VIRTUAL MACHINE

use

JAVA VIRTUAL MACHINE

JFS JFS

Native Socket Library Native Socket Library

char *nativesock_buf(configurable size)char *nativesock_buf (configurable size)

Network

 local address?
 source is

Obtain array reference (arr_rref=
GetPrimitiveArrayCritical(rdata))

N

 is local address?
 destination

Obtain array reference (arr_sref=
GetPrimitiveArrayCritical(sdata))

 1

Y

Y

 2’

RDMA reception
into arr_rref

Send arr_sref

*nativesock_buf
Copy *arr_sref to

RDMA *arr_sref

 3

N

(optimization)

 4

 2

Y YR
ec

ei
ve

 s
d

at
a

in
to

 r
d

at
a

S
en

d
 s

d
at

a

 4’ transfer end

(move sdata into rdata)
Copy *arr_sref to *arr_rref

 3’

Shared memory

N N

(optimization)

zero−copy

protocol?

protocol?zero−copy

N

short message?short message?

Figure 3.2: JFS optimized protocol

therefore avoiding TCP/IP (see Figure 3.2). Thus, JFS first sends the sdata direct

pointer (arr_sref) to the receiver, which then moves sdata content into rdata

array through a native copy (memcpy or analogous). Finally, the sender polls for

the copy end notification, a control message or a flag setting by the receiver. JFS

greatly benefits from this optimization achieving memory-to-memory bandwidth,

although for short messages the start-up latency of this three-step protocol can be

enhanced by sending the data in only one transaction. This efficient shared memory

support, together with optimized inter-node transfers, allows socket-based parallel

applications to achieve good performance on multi-core clusters. This is due to the

combination of the scalability provided by the distributed memory paradigm and

the high performance of the shared memory communication.

JFS provides efficient socket communication through an optimized protocol.

However, the usefulness of these improvements depends on the range of potential tar-

get systems and applications. Thus, in order to extend this range, JFS adds efficient

56 Chapter 3. JFS: High Performance Java Fast Sockets

support for high-speed cluster interconnects (presented next in Subsection 3.1.4).

JFS also provides application transparency, in order to be used by Java applications

without source code modification, as will be shown in Subsection 3.1.5.

3.1.4. Efficient Java Sockets on High-speed Networks

JFS includes a high-speed cluster network support much more efficient than the

use of IP emulations. Thus, JFS relies on native socket operation that does not

experience problems with the JVM. An example is the avoidance of IPv6, preferred

by JVM sockets and usually not implemented for high-speed networks. This high-

speed interconnect support is implemented specifically for each network through

JNI, which provides native socket throughput to Java. JNI is also used by JVM

sockets, although their generic access to the network layer is inefficient for high-

speed networks as they do not take advantage of the underlying native libraries.

Figure 3.3 represents a schema of the components involved in socket operation

on high-speed networks. From bottom to top, the first layer is the Network In-

terface Card (NIC) for each high-speed network, on top of this layer is the NIC

driver (or shared memory protocol), next the TCP/IP emulations and the sockets

implementations, next the Java IO libraries (both JFS and JVM IO sockets), on

top of the sockets the Java communication middleware, and finally the parallel and

distributed applications. Java applications access Java sockets usually through Java

communication middleware, such as MPJ libraries, typically based either on RMI

or directly on sockets.

With respect to shared memory and Gigabit Ethernet communications, the Java

support is directly on the native sockets libraries. The SCI low-level drivers are

IRM (Interconnect Resource Manager) and SISCI (Software Infrastructure for SCI),

whereas SCILib is a communication protocol on top of SISCI that offers unidirec-

tional message queues. On SCI JFS resorts to SCI Sockets and SCILib, higher level

solutions than IRM and SISCI but still efficient libraries. On Myrinet and InfiniBand

JFS relies on Sockets-MX and Socket Direct Protocol (SDP), respectively, for pro-

viding Java applications with efficient communication. Moreover, JFS also provides

JVM sockets with high-speed network support in order to avoid IP emulations.

3.1 Efficient Java Socket Implementation 57

Infiniband Driver: OFEDMyrinet Driver: MXoM

UNIX TCP/IP TCP/IP Sockets IPoIBIPoMX SDP
Sockets Sockets

Infiniband NICMyrinet NICSCI NICShared Memory

SCI Drivers: IRM/SISCI

SCI Sockets/SCILibSCIP

Gigabit Ethernet NIC

Java IO sockets JFS

Shared Memory Protocol Gigabit Ethernet Driver

Sockets−MX

Java Communication Middleware

Parallel and Distributed Java Applications

(RMI−based, Socket−based or MPJ Middleware)

JNI

JVM IO sockets

Figure 3.3: Java communication middleware on high-speed multi-core clusters

Additionally, JFS aims to transparently obtain the highest performance on sys-

tems with several communication channels through a failover approach. Thus, JFS

first attempts to use the option with the highest performance. If this fails, it follows,

in descending order of performance, with the remaining communication channels

that are available.

3.1.5. JFS Application Transparency

By implementing the socket API, a wide range of parallel and distributed target

applications can take advantage transparently of the efficient JFS communication

protocol. As Java has a built-in procedure (setting factories) to swap the default

socket library, it is easy to replace the JVM sockets by JFS. However, the JVM

socket design has to be followed in order to implement a swappable socket library.

Figure 3.4 presents JFS core classes: PlainSocketImpl is the Sun JVM socket

implementation, FastSocketImplFactory creates custom JFS sockets, and the I/O

stream classes, whose package is java.net for Sun JVM sockets and jfs.net for

JFS. The stream classes are in charge of managing the transport protocol. The JFS

setting as the default socket library is shown in Listing 3.3. From then on the appli-

58 Chapter 3. JFS: High Performance Java Fast Sockets

java.net.PlainSocketImpl jfs.net.FastSocketImpl

SocketInputStream

SocketOutputStream

java.net.SocketImpl

jfs.net.FastSocketImplFactory

+ createSocketImpl()

Figure 3.4: JFS core class diagram

Listing 3.3: Swapping Java socket implementation
SocketImplFactory f a c t o ry = new j f s . net . FastSocketImplFactory () ;

Socket . setSocketImplFactory (f a c t o r y) ;

ServerSocket . s e tSocketFactory (f a c t o r y) ;

Listing 3.4: JFS launcher application code
[Swap Java socke t implementation]

Class c l = Class . forName (className) ;

Method method = c l . getMethod (”main” , parameterTypes) ;

method . invoke (null , parameters) ;

cation will use this implementation. As this procedure requires source code modi-

fication, Java’s reflection has been used in order to obtain a transparent solution.

Thus, a small application launcher swaps its default socket factory and then invokes

the main method of the target class (see Listing 3.4). The target application will

use JFS transparently even without source code availability.

JFS extends the socket API by adding methods that avoid serialization and

eliminate unnecessary copies when sending portions of primitive data type arrays.

Listing 3.5 presents an example of this feature. As JVM sockets can not send array

portions (except for parts of byte arrays) a new array must be created to store the

data to be serialized and then sent. This costly process is repeated at the receiver

side. Listing 3.5 shows the handling of this communication scenario in a portable way

in order to use the efficient JFS methods when they are available. This feature is of

special interest in communication middleware such as Java message-passing libraries

and RMI, yielding significant benefits to end applications without modifying their

source code.

3.2 JFS Performance Evaluation 59

Listing 3.5: JFS direct send of part of an integer array

i f (os instanceof j f s . net . SocketOutputStream) {
j fsExtendedAPI = true ;

j f s o s = (j f s . net . SocketOutputStream) os ;

}
oos = new ObjectOutputStream (os) ;

int i n t a r r a y [] = new int [2 0] ;

[. . .]

// Writing the f i r s t ten e lements o f i n t a r r ay

i f (jfsExtendedAPI)

j f s o s . wr i t e (i n t a r r ay , 0 , 1 0) ;

else {
int [] i n t s = (int []) Array . newInstance (int . class , 1 0) ;

System . arraycopy (i n t a r r ay , 0 , in t s , 0 , 1 0) ;

oos . writeUnshared (i n t s) ;

}

Parallel and distributed Java applications and, especially, communication mid-

dleware can benefit transparently from the higher performance of JFS on high-speed

networks and shared memory communication. This can be achieved without losing

portability, using particular JFS features such as serialization avoidance only when

this socket library is available. Moreover, this solution is interoperable as it can

communicate with JVM sockets, although relying only on features shared by both

implementations. Thus, the buffering and copying reduction could be used, but

not the high-speed network support nor the optimized shared memory transfers.

The subsequent sections evaluate JFS performance (Section 3.2) and its impact on

representative kernels and applications (Section 3.3).

3.2. JFS Performance Evaluation

3.2.1. Experimental Configuration

The testbed used for the performance evaluation of JFS is different from the two

high-speed clusters used in Section 2.3. Thus, a cluster of eight dual-processor nodes

(Pentium IV Xeon 5060 dual-core at 3.2 GHz, 4 GB of memory) interconnected via

SCI, Myrinet and Gigabit Ethernet has been used. The SCI NIC is a D334 card and

the Myrinet NIC is an “F” Myrinet 2000 card (M3F-PCIXF-2 Myrinet-Fiber/PCI-

X NIC). Both are plugged into 64-bit 66 MHz PCI slots. The Gigabit Ethernet

60 Chapter 3. JFS: High Performance Java Fast Sockets

NIC is an Intel PRO/1000 using a 3Com 2816-SFP Plus switch. A DGS-1216T

Dlink switch for evaluating Gigabit Ethernet Jumbo Frames performance has also

been used. The main differences between this cluster and the SCI cluster used in

Section 2.3 are the processor, a more recent dual-core Pentium IV Xeon at 3.2 GHz

instead of a Pentium IV Xeon at 1.8 GHz, and the amount of memory, 4 GB instead

of 1 GB. This cluster has been used for the SCI, Myrinet, Gigabit Ethernet, and

shared memory performance evaluation. Additionally, for InfiniBand benchmarking

a cluster that consists of 8 DELL SC430 nodes (Intel Pentium IV Prescott at 2.8

GHz, 1 GB of memory) interconnected via Mellanox MT25204 InfiniBand HCAs

(Single Port, 20 Gbps) through a HUAWEI Quidway S1224 switch has been used.

The OS of both clusters is Linux RedHat 4 (CentOS 4.4 and AS for the first and

the second cluster, respectively) with Linux kernel 2.6.9-42.ELsmp and C compiler

gcc 3.4.6. The JVM used is Sun JDK 1.5.0 07 as it obtains slightly better perfor-

mance than IBM JDK 1.5 for the benchmarks used in Sections 3.2 and 3.3. The

SCI libraries are SCI Sockets 3.1.4, DIS 3.1.11 (it includes IRM, SISCI and SCILib)

and SCIP 1.2.0; the Myrinet libraries are MX 1.1.1 and Sockets-MX 1.1.0, whereas

the InfiniBand libraries are Sockets Direct Protocol (SDP), IPoIB (the IP emulation

over InfiniBand) and the Open Fabrics Enterprise Distribution (OFED) drivers 1.2

(see Figure 3.3).

In order to micro-benchmark JFS performance, a Java socket version of Net-

PIPE [102] has been developed. The results considered in this section are half of

the round trip time of a ping-pong test running JIT compiled bytecode. In order to

obtain optimized JIT results, 10,000 warm-up iterations were executed before the

actual measurements. The performance of byte, integer and double arrays have been

benchmarked, as they are data structures frequently used in parallel and distributed

applications. For purposes of clarity the JNI array notation has been used. Thus,

B] denotes a byte array, I] an integer array and D] a double array. When using

serialization, it has been pointed out the procedure through the use of the keys

OOS and OBOS. OOS indicates a java.net.ObjectOutputStream object wrapping a

SocketOutputStream object, whereas OBOS is a java.net.ObjectOutputStream ob-

ject wrapping a BufferedOutputStream around the supplied SocketOutputStream.

OOS writes the serialized data directly to the stream in order to reduce the start-up

latency, whereas OBOS buffers the serialized data in a byte array (by default an 8 KB

3.2 JFS Performance Evaluation 61

buffer) in order to minimize the stream accesses and thus increase bandwidth. In

fact, OBOS usually outperforms OOS results, especially for long messages, as shown

for Gigabit Ethernet in Figures 3.11– 3.12. OBOS also obtains, in general, better

performance than OOS on the remaining interconnects and shared memory, and thus

for clarity purposes only the best results (OBOS) are shown (see Figures 3.5–3.10 and

3.13–3.14 for SCI, Myrinet, InfiniBand and shared memory performance).

3.2.2. JFS Micro-benchmarking on High-speed Networks

Figures 3.5-3.12 show the latencies and bandwidths of native and Java socket

libraries as a function of the message size, for byte, integer and double arrays on

SCI, Myrinet, InfiniBand and Gigabit Ethernet. The native libraries considered are

SCI Sockets, Sockets-MX, SDP and the native TCP/IP sockets, whereas the Java

sockets libraries are Sun JVM sockets and JFS. The latency graphs (at the top) serve

to compare short message performance, whereas the bandwidth graphs (bottom) are

useful to compare long message performance.

Figures 3.5 and 3.6 present latency and bandwidth results on SCI. The two

available transport layers with Java support, the IP emulation SCIP and JFS, obtain

significantly different results. Thus, JFS start-up latency is 6µs compared to 36-

48µs for SCIP, showing an overhead reduction of up to 88%. Regarding bandwidth,

JFS achieves up to 2366 Mbps whereas SCIP results are below 450 Mbps, up to

1305% performance increase for JFS (B]JFS vs. OBOS(D]) for a 2 MB message).

B], I] and D] JFS results are quite similar among them as they use the same

protocol, a direct send avoiding serialization. Thus, for clarity purposes, only B]

values are presented as the representative results under the label B],I],D] JFS. As

JFS is implemented on top of SCI Sockets (see Figure 3.3), its processing overhead

(the difference between JFS and SCI Sockets performance) can be estimated in

around 1-2µs for short messages, and approximately 5% bandwidth penalty for long

messages. Therefore, JFS obtains quite similar results to SCI Sockets, the high

performance native socket library on SCI. OBOS serialization imposes overheads on

start-up latencies around 5-6µs and 10-12µs using JFS and SCIP, respectively (JFS

start-up is 6µs, OBOS start-up over JFS is 11-12µs, Sun JVM sockets for B] on

SCIP is 36µs, whereas OBOS Sun JVM sockets start-up is 46-48µs). OBOS over SCIP

bandwidths are quite poor, under 400 Mbps. With respect to OBOS over JFS results,

62 Chapter 3. JFS: High Performance Java Fast Sockets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Array Communication (SCI)

B] Sun JVM sockets(SCIP)
OBOS(I]) Sun JVM sockets(SCIP)
OBOS(D]) Sun JVM sockets(SCIP)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
SCI Sockets

Figure 3.5: Java array communication latency on SCI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Array Communication (SCI)

B] Sun JVM sockets (SCIP)
OBOS(I]) Sun JVM sockets (SCIP)
OBOS(D]) Sun JVM sockets (SCIP)
OBOS(I]) Sun JVM sockets (JFS)
OBOS(D]) Sun JVM sockets (JFS)
B],I],D] JFS
SCI Sockets

Figure 3.6: Java array communication bandwidth on SCI

3.2 JFS Performance Evaluation 63

OBOS(D]) bandwidth is close to JFS (around 90%) thanks to its optimized native

implementation. Sun JVM provides optimized native methods for float and double

array serialization and a pure Java method for integer array serialization. Thus,

OBOS(I]) over JFS only obtains a 50% (around 1200 Mbps) of JFS performance for

long messages. However, for short messages, OBOS(I]) obtains better performance

than OBOS(D]).

Figures 3.7 and 3.8 present latency and bandwidth results on Myrinet. The best

Java sockets results have been obtained using JFS as transport layer, although us-

ing the IP emulation IPoMX the differences narrow as the message size increases,

showing similar long message bandwidth for byte arrays. The reason for this behav-

ior is the higher start-up latency of IPoMX (22/32µs for byte arrays and serialized

data, respectively) compared to JFS (7µs, up to 78% less than IPoMX), and that

the Myrinet NIC is the communication bottleneck limiting the maximum transfer

rate to 2 Gbps. In fact, the experimentally measured JFS and IPoMX bandwidths

can only increase up to 85% of this value (1700 Mbps). JFS Myrinet support is

based on Sockets-MX rather than Sockets-GM for its better performance. This has

been experimentally assessed on our testbed, where JFS resorting to Sockets-GM

obtained higher start-up latency (23µs) and lower bandwidths than using Sockets-

MX. The presented Sockets-MX results show that JFS overhead on Myrinet is quite

reduced, obtaining almost native performance. OBOS serialization imposes an over-

head on start-up latency of around 7-10µs. Regarding bandwidth, OBOS over JFS

performs better than using IPoMX. The native serialization method in OBOS(D])

(serialization implemented in native code) improves the performance of the pure

Java serialization method used in OBOS(I]) (100% Java implementation) only over

JFS, but not over IPoMX. However, B],I],D] JFS clearly outperforms OBOS results

with a performance increase of up to 412%.

Figures 3.9 and 3.10 present latency and bandwidth results on InfiniBand, where

both SDP and IPoIB have been used as underlying protocols. JFS has obtained

the best results, especially for long messages and when serialization is needed (i.e.

sending integer and double arrays). In this latter case, JFS throughput is up to 860%

higher than JVM sockets over IPoIB. This peak result (860%) has been obtained

with a 256 KB message, for which JFS obtains 6.7 Gbps and JVM sockets over

IPoIB 0.78 Gbps. Regarding start-up latency, JFS reduces significantly, up to 65%,

64 Chapter 3. JFS: High Performance Java Fast Sockets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Array Communication (Myrinet)

B] Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(IPoMX)
OBOS(D]) Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
Sockets-MX

Figure 3.7: Java array communication latency on Myrinet

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Array Communication (Myrinet)

B] Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(IPoMX)
OBOS(D]) Sun JVM sockets(IPoMX)
OBOS(I]) Sun JVM sockets(JFS)
OBOS(D]) Sun JVM sockets(JFS)
B],I],D] JFS
Sockets-MX

Figure 3.8: Java array communication bandwidth on Myrinet

3.2 JFS Performance Evaluation 65

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Array Communication (InfiniBand)

B] Sun JVM sockets (IPoIB)
OBOS(I]) Sun JVM sockets (IPoIB)
OBOS(D]) Sun JVM sockets (IPoIB)
OBOS(I]) Sun JVM sockets (JFS)
OBOS(D]) Sun JVM sockets (JFS)
B],I],D] JFS
SDP

Figure 3.9: Java array communication latency on InfiniBand

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Array Communication (InfiniBand)

B] Sun JVM sockets (IPoIB)
OBOS(I]) Sun JVM sockets (IPoIB)
OBOS(D]) Sun JVM sockets (IPoIB)
OBOS(I]) Sun JVM sockets (JFS)
OBOS(D]) Sun JVM sockets (JFS)
B],I],D] JFS
SDP

Figure 3.10: Java array communication bandwidth on InfiniBand

66 Chapter 3. JFS: High Performance Java Fast Sockets

the overhead of sending serialized data with JVM sockets over IPoIB, from 34µs

down to 12µs. JVM sockets over JFS show relatively low start-up latencies (around

19µs) but poor long message performance, with less than 1 Gbps bandwidth sending

serialized data. However, JVM sockets over IPoIB present the worst performance

sending serialized data, with results below 0.8 Gbps. This small gap in serialized data

performance between the use of JFS and IPoIB as underlying layer for JVM sockets

(around 0.2 Gbps) is due to the fact that the serialization is the main performance

bottleneck, and not the network communication. Whereas on SCI and Myrinet

the main performance bottleneck is the NIC, with 5.33 and 2 Gbps of theoretical

bandwidth, respectively, on the InfiniBand testbed, whose theoretical bandwidth is

16 Gbps, the network is not the main performance bottleneck. Thus, as shown, the

serialization imposes an important overhead on JVM sockets sending serialized data,

whereas JFS and SDP are limited by the PCI Express x4 bus (8 Gbps of theoretical

unidirectional bandwidth limit) in which the InfiniBand card is plugged. In this

scenario, with a higher theoretical bandwidth limit than on the SCI and Myrinet

testbed, the IP emulation layer over InfiniBand (IPoIB) obtains better performance

for B] than IPoMX on Myrinet and SCIP on SCI.

Figures 3.11 and 3.12 present latency and bandwidth results on Gigabit Ethernet.

There is not a significant difference in byte array performance between socket im-

plementations, although JFS slightly outperforms Sun JVM sockets for medium-size

messages. However, JFS performance improvement of sending integer and double

arrays (I] and D]) is up to 119%, result obtained for a 2 MB message, thanks to

avoiding serialization. It can be seen that the serialization imposes an overhead

of around 4µs in start-up latency for OOS(I])/OOS(D]), and of around 7µs for

OBOS(I])/OBOS(D]) due to the additional buffering overhead. The native serializa-

tion method used in OBOS(D]) only outperforms the pure Java method OBOS(I])

for long messages. Without buffering, i.e. using OOS(I])/OOS(D]), Java does not

take advantage of the use of the native method in OOS(D]). However, the Ethernet

protocol is the main performance bottleneck as it imposes high start-up latencies,

around 50µs, and low bandwidths, below the 1 Gbps maximum network transfer

rate, severely limiting throughput improvement. This analysis is confirmed by the

presented native TCP/IP sockets results, which show similar performance to Java

sockets implementations, due to the low processing overhead of the sockets layer.

3.2 JFS Performance Evaluation 67

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Array Communication (Gigabit Ethernet)

B] Sun JVM sockets
OOS(I]) Sun JVM sockets
OOS(D]) Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS
native TCP/IP sockets

Figure 3.11: Java array communication latency on Gigabit Ethernet

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Array Communication (Gigabit Ethernet)

B] Sun JVM sockets
OOS(I]) Sun JVM sockets
OOS(D]) Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS
native TCP/IP sockets

Figure 3.12: Java array communication bandwidth on Gigabit Ethernet

68 Chapter 3. JFS: High Performance Java Fast Sockets

Additionally, socket latencies are clustered around 50 and 120µs (see Figure 3.11)

caused by the operation of the Gigabit Ethernet driver on our testbed, which only

notifies the data reception to the sockets library with some latency intervals (e.g.,

around [45 − 50µs] and [110 − 120µs]). The effect of these clustered latencies can

also be observed for JFS in Figure 3.12 where the bandwidth for [1 KB − 16 KB]

messages presents a saw-tooth shape. Looking for potential improvements in order

to partly overcome these limitations the use of Gigabit Ethernet Jumbo Frames has

been evaluated.

3.2.3. JFS on Gigabit Ethernet Jumbo Frames

The Ethernet default Maximum Transmission Unit (MTU) of 1500 bytes has

been maintained for backward compatibility in order to handle any communication

between 10/100/1000 Mbps devices without any Ethernet frame fragmentation or

reassembly. Nevertheless, this is a rather small size that increases CPU load due to

handling numerous frames when sending long messages. A larger MTU reduces CPU

overhead and therefore increases long message bandwidth, although for medium-size

messages waiting for filling larger Ethernet frames increases latency. Jumbo Frames

is the technology that extends MTU size up to 9000 bytes.

The use of JFS with Jumbo Frames for MTU sizes of 3000, 4500, 6000 and

9000 bytes has been evaluated. Jumbo Frames increase slightly JFS long message

performance. For a 2 MB message the bandwidth rises from 892 Mbps, with the

default MTU, up to 932 Mbps using an MTU of 9000 bytes. This improved result is

93% of the maximum theoretical bandwidth, 4% more than using the default MTU.

Regarding medium-size messages, the use of Jumbo Frames increases JFS latency

in the range [1.5 KB − 256 KB] up to 90% (this peak latency increase was obtained

for a 6 KB message with an MTU of 9000 bytes). This latency increase is especially

high for [1.5 KB − 16 KB] messages, while for larger messages the negative impact

of Jumbo Frames is reduced as the message size increases.

An additional characteristic of the use of Jumbo Frames is the CPU commu-

nication processing offloading. Table 3.1 presents the CPU overhead of two Java

socket implementations in terms of percentage of CPU load (using a Xeon 3.2 GHz)

devoted to socket communication processing. The NetPIPE benchmark sending

3.2 JFS Performance Evaluation 69

from 9 KB up to 2 MB messages (range with Ethernet frame fragmentation) has

been used for measuring these values. It can be seen that Jumbo Frames reduce

significantly CPU overhead. Nevertheless, as Jumbo Frames trade off medium-size

message performance for CPU offloading, this is not an especially useful feature.

A general conclusion can be made that the use of Jumbo Frames is recommended

for applications sending only long messages. Regarding the CPU offloading, Jumbo

Frames contribution is not especially important as JFS already reduces CPU load

avoiding unnecessary buffering and extra copies. Thus, the JFS CPU load without

using Jumbo Frames (i.e., MTU=1500 bytes) is 60% lower than using Sun JVM

sockets (from 30% to 12%), as can be seen in Table 3.1, without trading off perfor-

mance for CPU offloading.

Table 3.1: CPU load percentage of sockets processing using Gigabit Ethernet Jumbo
Frames

MTU (bytes)
1500 3000 4500 6000 9000

Socket Sun JVM sockets 30% 25% 15% 16% 5%
Implementation JFS 12% 10% 4% 4% 3%

3.2.4. Java Shared Memory Communication

Figure 3.13 presents the performance of the JFS shared memory protocol (see

Subsection 3.1.3) for short messages. Although the default underlying library for

this protocol is UNIX sockets, JFS performance using TCP sockets is shown for

comparison purposes. JFS start-up latency is 8µs, half of Sun JVM sockets start-

up. However, this value is larger than the 6 and 7µs JFS start-up latencies on SCI

and Myrinet, respectively (see Subsection 3.2.2), as the underlying native library,

UNIX sockets, imposes higher start-up overhead than the native sockets on these

high-speed networks. In a multi-core scenario it is key to reduce the high start-up

latency of shared memory native communication. The optimization of UNIX sockets

implementation or the development of a high performance sockets library on shared

memory could reduce shared memory start-up overhead.

70 Chapter 3. JFS: High Performance Java Fast Sockets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Array Communication (Shared Memory)

B] Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS (TCP sockets)
B],I],D] JFS (UNIX sockets)
UNIX sockets

Figure 3.13: Java array communication latency on shared memory

 0

 5

 10

 15

 20

 25

 30

 35

 40

2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

G
b

p
s

]

Message size

 Java Array Communication (Shared Memory)

B] Sun JVM sockets
OBOS(I]) Sun JVM sockets
OBOS(D]) Sun JVM sockets
B],I],D] JFS (TCP sockets)
B],I],D] JFS (UNIX sockets)
UNIX sockets

Figure 3.14: Java array communication bandwidth on shared memory

3.3 Performance Impact on Parallel Applications 71

Figure 3.14 shows the significant bandwidth increase of JFS communication due

to the use of the optimized shared memory protocol for messages longer than 16 KB.

This protocol increases the peak bandwidth from 9 Gbps, using JFS without this

optimized protocol, up to 34 and 41 Gbps for JFS using TCP and UNIX sockets,

respectively. These peak bandwidths are obtained for [256 KB − 768 KB] message

sizes, as memory-to-memory transfers also obtain their peak bandwidths for this

range. The messages within this range have the whole data in cache (the L2 cache

in the testbed is 2MB and the sockets libraries use around 1 MB), thus significantly

increasing sockets performance. The cache invalidation technique has not been used

as it does not reflect the usual situation in a production environment. The per-

formance of the optimized shared memory protocol has also been measured for the

native UNIX sockets library, showing that JFS also obtains almost native perfor-

mance on shared memory. Sun JVM sockets performance is very poor, under 1.5

Gbps for integer and double arrays and under 6 Gbps for byte arrays. The observed

bandwidth increase is up to 4411%, peak value obtained by comparing a 512 KB D]

message sent with JFS (UNIX sockets) vs. sent with OBOS(D]) Sun JVM sockets.

3.3. Performance Impact on Parallel Applications

JFS micro-benchmarking has shown significant performance improvement, but

its usefulness depends on the impact on the overall application performance. The

range of JFS applicability covers socket-based MPJ applications and MPJ libraries

such as MPJ Express [81] and MPJ/Ibis [16], RMI applications and RMI-based

middleware (see two upper layers in Figure 3.3). In short, any socket-based parallel

or distributed Java application running on a cluster can use JFS. These applications

can benefit immediately from JFS thanks to its user and application transparency.

The impact of JFS on the overall message-passing application performance has been

analyzed in the current section where two MPJ benchmarks, LUFact and Moldyn,

from the Java Grande Forum (JGF) Benchmark Suite [17] have been selected for

evaluation. Additionally, the impact of a JFS-based RMI protocol optimization on

RMI applications will be presented in Section 4.5.

The testbed used for JFS-based message-passing evaluation has been the Xeon

5060 cluster with two interconnects: Gigabit Ethernet due to its wide deployment,

72 Chapter 3. JFS: High Performance Java Fast Sockets

and SCI as the JFS micro-benchmarking has achieved the best performance on this

cluster using this network (see Subsections 3.2.1 and 3.2.2). In order to isolate the

impact of these networks on performance, only one processor per node has been

used for running the benchmarks on up to 8 processors. Furthermore, two proces-

sors per node have been used for obtaining 16-processor results in order to analyze

the behavior of hybrid high-speed network/shared memory (inter-node/intra-node)

communication. As the trend is to move to multi-core clusters with high-speed

networks, the performance of this hybrid approach is of special interest.

Two message-passing benchmarks, LUFact, a matrix LU factorization kernel,

and Moldyn, a molecular dynamics N-body parallel simulation, have been selected

(specifically using their size C workloads) in order to analyze the performance impact

of the use of JFS-based Message-Passing in Java (MPJ) middleware. These bench-

marks have been run using three MPJ libraries: MPJ/Ibis, MPJ Express and Fast

MPJ (F-MPJ), our JFS-based MPJ implementation (further explained in Chapter

5). On SCI, JFS has been used instead of JVM sockets over SCIP as underlying

layer for MPJ/Ibis and MPJ Express (see Figure 3.3) in order to avoid the IP em-

ulation and thus ensure a fair comparison. Therefore, the three MPJ libraries use

the same underlying socket library on SCI and the performance differences are ex-

clusively due to their implementation. Thus, the benefits of the JFS-based F-MPJ

implementation can be easily noticed. In fact, only F-MPJ is labeled “over JFS” in

the key of Figures 3.15 and 3.16, as although MPJ/Ibis and MPJ Express use JFS

on SCI, they do not fully support JFS features, especially the serialization avoidance

(see Subsection 3.1.5).

Figure 3.15 shows MPJ LUFact runtimes and speedups. The performance differ-

ences on two, four and eight processors are explained exclusively by the performance

of these MPJ libraries on high-speed networks. However, results on sixteen proces-

sors combine network communication (inter-node) with shared memory communi-

cation (intra-node). F-MPJ over JFS significantly outperforms MPJ/Ibis and MPJ

Express, especially using sixteen processors and SCI, obtaining a speedup increase

of up to 179%. Both MPJ/Ibis and MPJ Express scale performance on only up

to eight processors, decreasing their speedups for sixteen processors. Nevertheless,

F-MPJ over JFS obtains higher speedups on sixteen processors than on eight pro-

cessors, although very slightly on Gigabit Ethernet, thanks to combining efficiently

its inter-node and intra-node communication.

3.3 Performance Impact on Parallel Applications 73

1 2 4 8 16
Number of Processors

0

2

4

6

8

10

12

R
u

n
ti

m
e

(s
ec

o
n

d
s)

0

1

2

3

4

5

6

S
p

ee
d

u
p

MPJ/Ibis
MPJ Express

F-MPJ over JFS

 MPJ LUFact Kernel (Gigabit Ethernet)

1 2 4 8 16
Number of Processors

0

2

4

6

8

10

12

R
u

n
ti

m
e

(s
ec

o
n

d
s)

0

1

2

3

4

5

6
S

p
ee

d
u

p

MPJ/Ibis
MPJ Express

F-MPJ over JFS

 MPJ LUFact Kernel (SCI)

Figure 3.15: MPJ LUFact kernel performance on Gigabit Ethernet and SCI

74 Chapter 3. JFS: High Performance Java Fast Sockets

Figure 3.16 shows MolDyn runtimes and speedups. MolDyn is a more computa-

tion-intensive code than LUFact, obtaining almost linear speedups on up to eight

processors. Nevertheless, for sixteen processors MPJ Express and MPJ/Ibis show

significantly worse performance than F-MPJ over JFS, which outperforms these

libraries up to 14% and 42% on Gigabit Ethernet and SCI, respectively. MPJ Ex-

press performs slightly better than MPJ/Ibis for this benchmark, except for sixteen

processors. However, these differences are small due to the limited influence of

communication overhead on the overall performance.

This analysis of MPJ libraries performance has also been useful for evaluating two

additional Java sockets libraries: Java NIO and Ibis sockets (see Section 1.1). Thus,

the differences observed among MPJ/Ibis, MPJ Express and the JFS-based MPJ are

predominantly explained by the socket libraries used in their implementation, Ibis

sockets, Java NIO and JFS, respectively. Although JFS has been used as underlying

runtime layer for MPJ/Ibis and MPJ Express on SCI, it has not replaced the socket

libraries used in their implementations, Ibis sockets and Java NIO, respectively, so

this analysis is valid. Thus, Java NIO sockets obtain the lowest performance, as

this implementation is more focused on providing scalability in distributed systems

rather than efficient message-passing communication. Ibis sockets outperform Java

NIO sockets, and are a good estimate for JVM sockets performance, according to

previous evaluations [91]. Finally, JFS clearly achieves the highest performance,

showing a significant impact on the overall performance of MPJ applications when

using a JFS-based MPJ implementation (F-MPJ).

3.4. Chapter 3 Conclusions

This chapter has presented Java Fast Sockets (JFS), an efficient Java communi-

cation middleware for high-speed clusters. JFS implements the widely used socket

API for a broad range of target applications. Furthermore, the use of standard Java

compilers and JVMs, and its interoperability and transparency allow for immediate

performance increase. Among its main contributions, JFS:

Enables efficient communication on clusters interconnected via high-speed net-

works (SCI, Myrinet, InfiniBand) through a general and easily portable solu-

tion.

3.4 Chapter 3 Conclusions 75

1 2 4 8 16
Number of Processors

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

(s
ec

o
n

d
s)

0

2

4

6

8

10

12

14

S
p

ee
d

u
p

MPJ/Ibis
MPJ Express

F-MPJ over JFS

MPJ MolDyn Application (Gigabit Ethernet)

1 2 4 8 16
Number of Processors

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

(s
ec

o
n

d
s)

0

2

4

6

8

10

12

14
S

p
ee

d
u

p

MPJ/Ibis
MPJ Express

F-MPJ over JFS

MPJ MolDyn Application (SCI)

Figure 3.16: MPJ MolDyn application performance on Gigabit Ethernet and SCI

76 Chapter 3. JFS: High Performance Java Fast Sockets

Avoids the need of primitive data type array serialization.

Reduces buffering and unnecessary copies.

Optimizes shared memory (intra-node) communication.

A detailed performance evaluation of JFS has been conducted on SCI, Myrinet,

InfiniBand and Gigabit Ethernet. Moreover, JFS performance on shared mem-

ory has been evaluated on a dual-core node. Table 3.2 summarizes the perfor-

mance improvement obtained. JFS has also enhanced the performance of communi-

cation-intensive parallel applications obtaining speedup increases of up to 179%

(LUFact benchmark on sixteen processors) compared to the analyzed socket-based

Java message-passing libraries. However, the observed improvements significantly

depend on the amount of communication involved in the applications. Additionally,

JFS reduces the CPU load of socket processing on Gigabit Ethernet up to 60% com-

pared to Sun JVM sockets (SCI, Myrinet and InfiniBand rely on the high-speed NIC

interconnect rather than on the CPU for the communication protocol processing).

Although JFS has significantly improved parallel and distributed Java applica-

tions performance, this library is also intended for middleware developers in order to

implement JFS-based higher level communication libraries like Java message-passing

and RMI implementations, as presented in subsequent chapters.

Table 3.2: JFS performance improvement compared to Sun JVM sockets

SCI Myrinet InfiniBand Gig. Eth. Shared mem.

Start-up reduction up to 88% up to 78% up to 65% up to 10% up to 50%

Bandwidth increase up to 1305% up to 412% up to 860% up to 119% up to 4411%

Chapter 4

Efficient iodev Low-level Message-

Passing and RMI Middleware

This chapter presents two Java communication middleware implementations: (1)

iodev, a low-level communication device especially designed to be the base of Java

parallel applications and higher level communication middleware such as message-

passing libraries; and (2) an optimization of the Java RMI protocol for high-speed

clusters. Both solutions are implemented on top of the Java Fast Sockets (JFS)

middleware developed in the previous chapter. Although Java NIO sockets already

provide features such as non-blocking communication methods, and thus some MPJ

libraries have implemented their communication support on these sockets (e.g., MPJ

Express [81] and P2P-MPI [36]), their use in message-passing middleware usually

results in lower performance than using Java IO sockets, which do not provide

non-blocking methods. Thus, the implementation of an efficient low-level message-

passing library should use Java IO sockets, and therefore implement the non-blocking

support on these sockets. The iodev message-passing device provides efficient non-

blocking communication on top of any Java IO sockets library, but it is on JFS

that iodev maximizes its throughput, especially on shared memory and high-speed

clusters and when avoiding the serialization overhead. The comparative performance

evaluation of iodev and other low-level communication devices, both Java and native

implementations, shows that iodev obtains almost native performance when using

JFS.

77

78 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

The optimization of the RMI protocol developed in this chapter is focused on: (1)

the overhead reduction of the RMI transport layer through the use of JFS and the

minimization of the amount of data to be transferred; (2) avoiding the serialization

overhead for primitive data type arrays thanks to JFS; and (3) maximizing the object

manipulation performance through a new serialization method for array processing,

and reducing the versioning information and the class annotations.

The structure of this chapter is as follows: Section 4.1 describes the design of

iodev. The novel issues in its implementation, together with its communication algo-

rithm operation, are shown in Section 4.2. The implementation details on different

underlying communication libraries are also covered in this section. The comparative

performance evaluation of iodev and other low-level message-passing communication

devices on Gigabit Ethernet, SCI, Myrinet, InfiniBand and shared memory is shown

in Section 4.3. This evaluation consists of a micro-benchmarking of point-to-point

communications. Section 4.4 presents the RMI protocol optimization. The perfor-

mance results of the micro-benchmarking of three RMI implementations, Sun JVM

RMI, KaRMI and the optimized RMI, on Gigabit Ethernet and SCI are discussed

in Section 4.5. Finally, Section 4.6 summarizes the main contributions presented in

this chapter.

4.1. Low-level Message-Passing Devices Overview

The use of pluggable low-level communication devices is widely extended in

message-passing libraries. Thus, MPICH/MPICH2 [40] include several devices that

implement the Abstract Device Interface (ADI/ADI3), the MPICH low-level mes-

saging API, on several communication layers (e.g., GM/MX for Myrinet, IBV/VAPI

for InfiniBand, and shared memory). Moreover, OpenMPI [74] also contains several

Byte-Transfer-Layer (BTL) communication devices (modules) in its implementation

(e.g., also on GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).

Regarding MPJ libraries, in MPJ Express the low-level xdev layer [8] provides com-

munication devices for different interconnection technologies. The two implementa-

tions of the xdev API currently available are niodev over Java NIO sockets, a “pure”

Java communication device, and mxdev over MX, a wrapper to a native library de-

vice for the Myrinet. Moreover, there is another device, not publicly available yet,

4.1 Low-level Message-Passing Devices Overview 79

on shared memory, based on Java threads [83].

In order to follow this approach, the xxdev (eXtended xdev) layer which presents

an API similar to xdev, but with several improvements, has been defined. The

motivation behind trying to stick to the xdev API is to favor the standardization

of the xdev/xxdev API as low-level Java communication layer in Java applications

and message-passing libraries. The improvements of xxdev compared to xdev are

the incorporation of additional functionalities (e.g., allowing the communication of

any serializable object without data buffering) and the use of a more encapsulated

design, as xdev references classes outside the standard Java library (from the mpjdev

–higher level messaging– and mpjbuf –buffering layer– packages of MPJ Express),

whereas xxdev does not. Thus, xxdev is more flexible (communicates any serializable

object), portable, modular and hence, more reusable than xdev.

The low-level xxdev layer provides a simple (only 13 methods, see Subsec-

tion 4.2.1) but powerful message-passing API, as it has served as base in the devel-

opment of our message-passing library Fast MPJ (F-MPJ, detailed in Chapter 5).

Moreover, the reduced set of methods in xxdev eases the implementation of xxdev

communication devices for specific interconnection technologies. However, iodev,

the implementation of the xxdev API using Java IO sockets, can run on top of JFS,

thus obtaining high performance on SCI, Myrinet, InfiniBand and Gigabit Ethernet

communications and on shared memory.

Figure 4.1 presents an overview of the layered design of the communication mid-

dleware developed in this Thesis on representative HPC hardware: high-speed inter-

connects and shared memory systems. From top to bottom, first the MPJ libraries,

such as F-MPJ, and the xxdev-based applications, which are implemented directly

on top of the low-level xxdev API for performance reasons, can be seen. The opti-

mization of the communications in this Thesis has been performed up to this upper

layer. Therefore, their underlying middleware, the iodev communication device, i.e.,

the implementation of the xxdev API on Java IO sockets, should provide efficient

communication. For purposes of clarity, we denote the IO sockets API as “Java IO

sockets”. Two implementations of Java IO sockets are considered in this work: the

default JVM IO sockets and JFS. In order to provide Java with high performance

communications the iodev device accesses HPC hardware through JNI using either

JFS or the standard JVM IO sockets (TCP). However, as already shown in Fig-

80 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

ure 3.3, the JVM IO sockets resort to IP emulations (SCIP, IPoMX and IPoIB on

SCI, Myrinet and InfiniBand, respectively), whereas JFS relies on high performance

native libraries (SCI Sockets, Sockets-MX and Sockets Direct Protocol –SDP– on

SCI, Myrinet and InfiniBand, respectively). These IP emulations and native li-

braries accessed by JFS and the JVM IO sockets are presented below the JNI layer

in Figure 4.1. IP emulations usually provide wider support but a higher communi-

cation overhead than high performance native sockets. In fact, JVM IO sockets are

usually only supported by IP emulations. Thus, iodev provides efficient communi-

cation over high performance native libraries through the use of JFS, if available.

If JFS is not available, iodev resorts to HPC hardware through the standard JVM

sockets and IP emulations, maintaining the portability of the solution. The design

and implementation details of the iodev operation are presented in the next section.

Infiniband Driver: OFEDMyrinet Driver: MXoM

UNIX TCP/IP TCP/IP Sockets IPoIBIPoMX SDP
Sockets Sockets

Infiniband NICMyrinet NICSCI NICShared Memory

SCI Drivers: IRM/SISCI

SCI Sockets/SCILibSCIP

Gigabit Ethernet NIC

iodevxxdev

Java IO sockets

MPJ Libraries (F−MPJ) / xxdev−based Applications

JFS

Shared Memory Protocol Gigabit Ethernet Driver

Sockets−MX

JNI

JVM IO sockets

Figure 4.1: xxdev low-level communications stack on high-speed multi-core clusters

4.2. iodev: Low-level Message-Passing Library

The iodev low-level message-passing communication device implements the xxdev

API on Java IO sockets. Although Java NIO sockets provide additional features not

present in Java IO sockets, such as the direct non-blocking communication sup-

port, which are quite useful for the implementation of communication middleware,

4.2 iodev: Low-level Message-Passing Library 81

the Java NIO sockets-based MPJ libraries usually show lower performance than the

ones implemented on top of Java IO sockets (see Sections 2.3, 2.5 and 3.3, where per-

formance results are presented for MPJ Express, based on Java NIO, and MPJ/Ibis,

on top of Java IO sockets). This lower performance could be due to a poor im-

plementation of the Java NIO sockets-based MPJ libraries, but this hypothesis was

discarded as it has been checked that the underlying socket implementation has

an important impact on the message-passing communication performance. In fact,

Java NIO sockets present higher start-up latencies than Java IO sockets, reducing

the performance of MPJ applications, especially for communication-intensive codes

(see Section 2.5). Therefore, iodev uses Java IO sockets, and thus it has to im-

plement efficiently the non-blocking communication support on this socket library.

Moreover, Java IO sockets have also been selected as underlying layer for iodev in

order to take advantage of the JFS middleware, the Java IO sockets developed in the

previous chapter, which provides shared memory and high-speed networks support.

Thus, iodev can rely either on the standard JVM sockets or on JFS, if it is available.

This combination of a portable JVM-based implementation with a custom solution

for HPC native libraries provides both portability and high performance.

Other options considered for the development of communication devices that

implement the xxdev API are RMI and asynchronous Java sockets [43], but they

have been discarded due to its high communication overhead and the lack of porta-

bility, respectively. Furthermore, both solutions do not provide high-speed networks

support. The following subsections present the design of the xxdev low-level commu-

nication layer, the iodev implementation together with its communication protocols

operation, and finally the efficient JFS support in iodev, which provides high perfor-

mance low-level message-passing communications for Java on shared memory and

high-speed networks.

4.2.1. Design of the xxdev Low-level Communication Layer

The xxdev API has been designed with the goal of being simple, providing only

basic communication methods in order to ease the development of xxdev devices.

A communication device is similar to an MPI communicator, but with reduced

functionality. Thus, the xxdev API, presented in Listing 4.1, is composed of 13

methods. Moreover, its API extends the MPJ Express xdev API, allowing the

communication of any serializable object instead of being limited to transfer only

82 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

the custom MPJ Express buffer objects. The newInstance method instantiates

the pluggable xxdev device implementations. The init method first reads machine

names, ports and ranks from a configuration file (passed as a parameter in args),

creates the connections, disables Nagle’s algorithm and sets socket buffers, both

for sending and receiving, to 512 KB. Then, the identification of the initialized

device is broadcast through all the open connections. Finally, the identifiers of the

communication peers are gathered in order to complete the initialization. The id

method returns the identifier (id) of the device. The finish method is the last

method to be called and completes the device operation.

The xxdev communication primitives only include point-to-point communica-

tion, both blocking (send and recv, like MPI Send and MPI Recv) and non-blocking

(isend and irecv, like MPI Isend and MPI Irecv). Synchronous communications

are also embraced (ssend and issend). These methods use as dst (destination)

and src (source) parameters the identifiers read from the configuration file. The

probe method waits until a message matching src, tag and context arrives. Its

non-blocking version, iprobe, checks if the message has been received. The peek

method (blocking) returns the most recently completed Request object, useful for

the Request.iwaitany implementation. Listing 4.2 presents the API of the Request

class, whose wait methods are used to complete the non-blocking communications.

Thus, each non-blocking primitive, isend/issend or irecv, returns a Request object

which handles the communication. A call to its iwait method blocks the code exe-

cution until the communication has been completed. The static method iwaitany

also blocks the calling thread until any of the requests from the array of Requests

reqs has been completed. The itest method checks the completion status of the

communication associated to the Request object. The cancel method cancels the

non-blocking operation.

All methods in the Device and Request classes handle runtime errors throwing

exceptions of type XxdevException. Thus, the interface of these methods should

include throws XxdevException after the parameter list, but it is not shown for

clarity purposes. Despite the simplicity of the xxdev API, a Java message-passing

library can implement its communications exclusively on top of it, as will be demon-

strated in Chapter 5, making an intensive use of non-blocking methods for commu-

nications overlapping.

4.2 iodev: Low-level Message-Passing Library 83

Listing 4.1: Public interface of the xxdev.Device class

public abstract class Device {
stat ic public Device newInstance (S t r ing deviceImpl) ;
public int [] i n i t (S t r ing [] a rgs) ;
public int id () ;
public void f i n i s h () ;

public Request i s end (Object buf , int dst , int tag) ;
public Request i r e c v (Object buf , int src , int tag , Status s t t s) ;

public void send (Object buf , int dst , int tag) ;
public Status recv (Object buf , int src , int tag) ;

public Request i s s end (Object buf , int dst , int tag) ;
public void ssend (Object buf , int dst , int tag) ;

public Status iprobe (int src , int tag , int context) ;
public Status probe (int src , int tag , int context) ;
public Request peek () ;
}

Listing 4.2: Public interface of the xxdev.Request class

public class Request {
public Status iwa i t () ;
public stat ic Status iwaitany (Request [] r eqs)
public Status i t e s t () ;
public boolean cance l () ;
}

4.2.2. Implementation of the iodev Communication Device

The iodev device implements the low-level multiplexed, non-blocking commu-

nication primitives on top of Java IO sockets. In iodev each process is connected

to every other process through two TCP sockets, one for sending and another for

receiving. This is a design decision in order to reduce synchronization overheads

when sending/receiving data to/from the same peer process. The access to these

sockets, both for reading and writing, is controlled by locks, as several threads have

read/write access to these sockets.

84 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

In iodev all communication methods are based on the non-blocking primitives

isend/irecv. Thus, blocking communication methods are implemented as a non-

blocking primitive followed by an iwait call. In order to handle the non-blocking

communications their Request objects are internally stored in two sets named

pending_sendRequestSet and pending_recvRequestSet.

An iodev message consists of a header plus data. The message header includes

the datatype sent, the source identification src, the message size, the tag, the

context and control information. In order to reduce the overhead of multiple

accesses to the network the iodev message header is buffered. Once the message

header buffer has been filled in, it is written to the network. The message data is

next sent to the network. Thus, only two accesses are required for each message,

although for very short messages (<4 KB) the header and data are merged in order

to perform a single socket write call. When source and destination of a message are

the same the socket communication is replaced by an array copy.

Regarding message identification, in iodev a message is unequivocally identified

by the triplet src, tag and context, although the wildcard values xxdev.Device.

ANY_SRC and xxdev.Device.ANY_TAG skip src and tag matching, respectively. The

message reception is carried out by both the input handler, a thread in charge

of receiving data (also known in the literature as the progress engine), and the

Request.iwait method. Usually, in message-passing libraries, both native and

Java implementations, only the input handler receives messages. This presents a

high reception overhead that consists of: (1) the reception of the message by the

input handler; (2) the notification of the reception to the Request object, which is

in a wait state; (3) waking up the Request object; and (4) context switching between

the input handler and the Request, in order to continue the process execution.

However, in iodev both the input handler thread and the Request.iwait method

receive messages. Thus, if Request.iwait receives the message the overhead of the

input handler reception is avoided.

Figure 4.2 shows the Request.iwait pseudocode in order to illustrate its recep-

tion operation. It can be seen that iodev implements a polling strategy together

with periodically issued yield calls, which decrease iwait thread priority in order to

not monopolize system CPU. This strategy allows to significantly reduce message

latency in exchange for a moderate CPU overhead increase, compared with the ap-

4.2 iodev: Low-level Message-Passing Library 85

proach where only the input handler receives data. This iodev approach yields

significant benefits, especially in communication-intensive codes, as message latency

reduction provides higher scalability than the availability of more CPU power.

Method Request.iwait():Status

if alreadyCompleted then
return status;

init timer();
while completed = false do

receive data();
if received the expected data then

completed ← true;

if timerelapsed > maxpolling−time then
current thread yield();
reset timer();

status ← new Status(statusDetails);
alreadyCompleted ← true;
return status;

Figure 4.2: Request.iwait method pseudocode

4.2.3. iodev Communication Protocols

The iodev device implements the eager and rendezvous protocols, targeted to

short and long messages, respectively. The threshold between these protocols is

configurable and usually ranges from 128 to 512 KB.

iodev Eager Protocol

The eager protocol is targeted to short messages, typically below 128 KB. It is

based on the assumption that the receiver has available storage space (otherwise an

out of memory exception is thrown), so there is no exchange of control messages

before the actual data transfer. This strategy minimizes the overhead of control

messages, that can be significant for short messages, although it adds the extra

copy overhead when the receiver is not waiting for the message.

86 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

Figure 4.3 shows eager protocol pseudocode. Regarding eager isend operation,

the sender writes the data under the assumption that the receiver will handle it. At

the receiver side there are two possible scenarios for the input handler (see pseu-

docode in Figure 4.3), depending on whether a matching receive has been already

posted or not. Thus, if a matching recvRequest exists the message is copied into

the destination buffer; otherwise, it will be stored in a temporary buffer, waiting for

Method isend(buffer,dst,tag,context):Request (Eager)

sendRequest ← new SendRequest(buffer,dst,tag,context);
send(dst,buffer);
sendRequest.completed ← true;
return sendRequest ;

Method input handler thread (Eager)

while running do
receive header(messageHeader);
rRequest ← new RecvRequest(messageHeader);
if rRequest in pending recvRequestSet then

recvRequest ← pending recvRequestSet.remove(rRequest);
recvRequest.buffer ← receive data();

else
rRequest.temp buffer ← receive data();
pending recvRequestSet.add(rRequest);

Method irecv(buffer,src,tag,context,status):Request (Eager)

rRequest ← new RecvRequest(buffer,src,tag,context,status);
if rRequest in pending recvRequestSet then

recvRequest ← pending recvRequestSet.remove(rRequest);
buffer ← recvRequest.temp buffer;
return recvRequest ;

else
pending recvRequestSet.add(rRequest);
return rRequest ;

Figure 4.3: iodev eager protocol pseudocode

4.2 iodev: Low-level Message-Passing Library 87

the corresponding irecv post. The input handler is constantly running during

iodev operation, from the init up to the finish call. This behavior is controlled

by a flag (running). The irecv operation (see Figure 4.3) also presents two sce-

narios, depending on whether the input handler has already received the message

or not. This iodev eager protocol implementation significantly reduces the short

message transfer overhead, allowing short message communication-intensive MPJ

applications to significantly increase their scalability.

iodev Rendezvous Protocol

The rendezvous protocol is targeted to long messages, typically above 128 KB. It

is based on the use of control messages in order to avoid buffering. Thus, the steps of

the protocol are: (1) the source sends a ready-to-send message; (2) the destination

replies with a ready-to-receive message; and (3) data is actually transferred. This

strategy avoids buffering although it increases protocol overhead. However, the

impact of the control messages overhead is usually reduced for long messages.

Figure 4.4 shows rendezvous protocol pseudocode. The isend operation consists

of writing a ready-to-send control message. At the receiver side there are three pos-

sible scenarios for the input handler (see pseudocode in Figure 4.4), depending on

the incoming message: (1) a ready-to-send message; (2) a ready-to-receive message;

or (3) a data message. In scenario (1) a ready-to-receive message reply is written if

a matching receive has been posted; otherwise, the ready-to-send message is stored

until such matching receive is posted. In (2) the actual transfer of the data is per-

formed through a forked thread in order to avoid input handler blockage while

writing data. In this case the input handler is run by the sender process and

therefore can access the source buffer. Finally, in (3) the input handler receives

the data. The irecv operation (see Figure 4.4) presents two scenarios, depending

on whether the input handler has already received the ready-to-send message or

not. Thus, it either replies back with a ready-to-receive message or stores the re-

ceive post, respectively. This iodev rendezvous protocol implementation contributes

significantly to Java message-passing scalability as it reduces the overhead of mes-

sage buffering and network contention. Therefore, scalable Java communication

performance can be achieved.

88 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

Method isend(buffer,dst,tag,context):Request (Rendezvous)

sendRequest ← new SendRequest(buffer,dst,tag,context);
pending sendRequestSet.add(sendRequest);
send(dst,ready-to-send Message);
sendRequest.completed ← false;
return sendRequest ;

Method input handler (Rendezvous)

while running do
messageHeader ← receive header();
request ← new Request(messageHeader);
if messageHeader from a ready-to-send Message then

if request in pending recvRequestSet then
pending recvRequestSet.remove(request);
send(src,ready-to-recv Message);

else
pending recvRequestSet.add(request);

else if messageHeader from a ready-to-receive Message then
Fork: rendez Write Thread :
begin

sendRequest ← pending sendRequestSet.remove(request);
send(dst,sendRequest.buffer);
sendRequest.completed ← true;

end
else if messageHeader from a dataMessage then

recvRequest ← pending recvRequestSet.remove(request);
recvRequest.buffer ← receive data();

Method irecv(buffer,src,tag,context,status):Request (Rendezvous)

rRequest ← new RecvRequest(buffer,src,tag,context,status);
if rRequest in pending recvRequestSet then
send(src,ready-to-recv Message);

else
pending recvRequestSet.add(rRequest);

return rRequest ;

Figure 4.4: iodev rendezvous protocol pseudocode

4.2 iodev: Low-level Message-Passing Library 89

4.2.4. Java Fast Sockets Support in iodev

The default sockets library used by iodev, JVM IO sockets, presents several

disadvantages for communication middleware: (1) this library has to resort to seri-

alization; (2) as Java can not serialize/deserialize array portions (except for parts of

byte arrays) a new array must be created to store the portion to be serialized/dese-

rialized; (3) JVM IO sockets perform an extra copy between the data in the JVM

heap and native memory in order to transfer the data; and finally, (4) this socket li-

brary is usually not supported by high performance native communication libraries,

so it has to rely on IP emulations, a solution which presents a poorer performance.

However, in order to avoid these drawbacks, iodev has integrated the high per-

formance Java sockets library JFS (see Chapter 3) in a portable and efficient way.

Thus, JFS boosts iodev communication efficiency by: (1) avoiding primitive data

type array serialization through an extended API that allows direct communica-

tion of primitive data type arrays (see Listing 4.3); (2) making unnecessary the

data buffering when sending/receiving portions of primitive data type arrays using

offset and length parameters (see JFS API in Listing 4.3 and its application in

Listing 4.4); (3) avoiding the copies between the JVM data and native memory

thanks to JFS’s zero-copy protocol; and (4) providing efficient support on shared

memory, and Gigabit Ethernet, SCI, Myrinet and InfiniBand networks through the

use of the underlying high performance native libraries specified in Figure 4.1.

Listing 4.3: JFS extended API for communicating primitive data type arrays directly

j f s . net . SocketOutputStream . wr i t e (byte buf [] , int o f f s e t , int l ength) ;
j f s . net . SocketOutputStream . wr i t e (int buf [] , int o f f s e t , int l ength) ;
j f s . net . SocketOutputStream . wr i t e (double buf [] , int o f f s e t , int l ength) ;

. . .
j f s . net . SocketInputStream . wr i t e (byte buf [] , int o f f s e t , int l ength) ;
j f s . net . SocketInputStream . read (int buf [] , int o f f s e t , int l ength) ;
j f s . net . SocketInputStream . wr i t e (double buf [] , int o f f s e t , int l ength) ;

. . .

Listing 4.4 presents an example of iodev code that takes advantage of the efficient

JFS methods when they are available, without compromising the portability of the

solution. The communication of part of an integer array (num_elements entries)

90 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

is straightforward with JFS: a single call to a method from the extended API of

JFS is enough (see Listing 4.3). Nevertheless, the same task using JVM IO sockets

requires: (1) the creation of a new array of the size of the slice to be sent; (2) copy

the num_elements entries to be transferred to the new array; and (3) the sending

of the new array through an ObjectOutputStream, which can involve up to nine

steps: a serialization, three copies, a network transfer, other three copies and a

deserialization, whereas JFS performs the same operation in only up to three steps

(see Subsection 3.1.2). This handling of JFS communications is of special interest

in message-passing libraries and, in general, in any communication middleware, as

Java applications can benefit from the use of JFS without modifying their source

code.

The integration of JFS in iodev has been done following this approach and thus

preserving its portability while taking full advantage of the underlying communica-

tion middleware. In fact, JFS, in the presence of two or more supported libraries,

prioritizes them depending on their performance: usually shared memory commu-

nication first, then high performance native socket libraries, and finally the default

“pure” Java implementation, which relies on TCP/IP sockets and IP emulations.

Listing 4.4: JFS-based support in iodev for sending parts of arrays

i f (os instanceof j f s . net . SocketOutputStream) {
j f sAv a i l a b l e = true ;
j f s o s = (j f s . net . SocketOutputStream) os ;

}
oos = new ObjectOutputStream (os) ;

[. . .]

// Writing i n t a r r a y [o f f s e t] . . . i n t a r r a y [o f f s e t+num elements−1]
i f (j f sAv a i l a b l e)

j f s o s . wr i t e (i n t a r ray , o f f s e t , num elements) ;
else {

int [] intBuf = (int []) Array . newInstance (int . class , num elements) ;
System . arraycopy (in t a r ray , o f f s e t , intBuf , 0 , num elements) ;
oos . writeUnshared (intBuf) ;

}

4.3 Performance Evaluation of iodev 91

JFS significantly outperforms JVM sockets, especially in shared memory, high-

speed networks and hence in hybrid shared/distributed memory architectures (e.g.,

high-speed multi-core clusters). Moreover, JFS is targeted to primitive data type ar-

ray communications, frequently used in HPC applications. Thus, the iodev low-level

message-passing communication device greatly benefits from the use of JFS. There-

fore, a communication middleware that takes advantage of iodev would improve

significantly its performance without losing portability, as will be experimentally

assessed in Chapter 5 for our Fast MPJ (F-MPJ) library.

4.3. Performance Evaluation of iodev

The evaluation presented in this section consists of a micro-benchmarking of

point-to-point primitives on two multi-core clusters. The iodev performance has

been compared with the MPJ Express library communication devices (niodev on

Java NIO sockets and mxdev on Myrinet), with mpiJava and with native MPI

libraries, using Gigabit Ethernet, SCI, Myrinet and InfiniBand NICs and on a shared

memory scenario.

4.3.1. Experimental Configuration

The testbed used for the performance evaluation of iodev on Gigabit Ethernet,

SCI, Myrinet and shared memory is the same as the one used in the JFS evaluation

(see Section 3.2). The only changes are the JVM and the C compiler, Sun JDK

1.6.0 05 and PGI pgcc 7.2 with the flags -O3 and -fast, respectively. However,

the InfiniBand results have been obtained on the Finis Terrae supercomputer [34],

ranked #427 in November 2008 TOP500 list [99] (14 TFlops), an Itanium2 (IA64)

Linux multi-core cluster (2400 cores). This supercomputer will be also used for the

performance evaluation of our MPJ library, Fast MPJ (F-MPJ), in the next Chapter

(see Section 5.4) due to its higher number of cores compared to the other high-speed

cluster used in this section (with only 32 cores).

The Finis Terrae consists of 142 HP Integrity rx7640 nodes, each of them with 16

Montvale Itanium2 (IA64) cores at 1.6 GHz and 128 GB of memory. The InfiniBand

NIC is a dual 4X IB port Mellanox Technologies MT25208 InfiniHost III Ex (16 Gbps

92 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

of theoretical effective bandwidth). The OS is SUSE Linux Enterprise Server 10 with

C compiler Intel icc 9.1 used with the flags -O3 and -fast. The InfiniBand driver

is OFED 1.2 (see Figure 4.1). The JVM is BEA JRockit 5.0 (R27.5). This JVM

has been selected as it shows the highest performance on this system, significantly

outperforming Sun JVM, the other JVM available for IA64 systems.

The Java low-level communication devices evaluated are niodev and mxdev from

MPJ Express 0.27 and iodev. Additionally, for comparison purposes the native MPI

libraries ScaMPI 1.13.8 on SCI, MPICH-MX 1.2.6 on Myrinet, MVAPICH2 1.0.2 on

InfiniBand, and MPICH2 1.0.6 on Gigabit Ethernet and shared memory have been

evaluated. This latter MPI library has been used, both for Gigabit Ethernet and

shared memory communication, with the ch3 device and its specific channel ssm

(sockets and shared memory), specially designed for its use on multi-core clusters

(sockets are used for inter-node communication, whereas shared memory is used for

intra-node transfers). Moreover, mpiJava 1.2.5x, an MPJ wrapper library on top

of these native MPI implementations (see Section 1.3), has also been benchmarked.

The benchmark results have been obtained at the communication device level for

niodev, mxdev and iodev, whereas the native MPI libraries have been benchmarked

at the MPI level due to the different APIs of their native low-level communication

devices. However, their performance results are comparable to those of the Java

communication devices as the high level layers of native MPI libraries usually add

quite low overhead (almost negligible) to their underlying low-level message-passing

devices. The mpiJava library has also been benchmarked at the MPI level as it

relies on a native MPI library for communication, not on a communication device.

4.3.2. Point-to-point iodev Micro-benchmarking

Figures 4.5–4.9 show experimentally measured point-to-point latencies and band-

widths for byte arrays using niodev (mxdev for Myrinet) and iodev over JFS. Ad-

ditionally, mpiJava and native MPI results are shown for comparison purposes.

As general observations shared among the different configurations evaluated in

this micro-benchmarking, it can be stated that:

MPI implementations always outperform Java libraries, except for iodev+JFS

4.3 Performance Evaluation of iodev 93

on shared memory.

The combination of iodev+JFS generally obtains the best performance among

the Java message-passing communication devices.

mpiJava shows the lowest long message bandwidth, due to the overhead of the

JNI copy of the message data between the Java heap and the MPI library.

This fact might seem to contradict the results of Section 2.3, where mpiJava

obtained almost native MPI performance. However, its low overhead on the

scenario ScaMPI/MPICH-GM + Sun JVM 1.4.2 was due to the avoidance of

the JNI copy of the message data in mpiJava, which depends on the system,

the MPI library and the JVM. Nevertheless, for the experimental configura-

tions used in the current section (the JVMs Sun 1.6 or JRockit 5.0 over the

native MPI libraries MPICH2, ScaMPI, MPICH-MX and MVAPICH2), it is

not possible to avoid this JNI data copy. In fact, modern JVMs do not im-

plement the pinning in memory of arrays from the Java heap, a feature that

allows mpiJava to wrap native MPI libraries with low overhead.

The start-up overhead added by mpiJava wrapping to native MPI is around

9µs, independently of the MPI library and high-speed network.

niodev presents the highest short message latencies, due to the high start-up

overhead of Java NIO sockets.

The network is the main performance bottleneck for the Gigabit Ethernet re-

sults (shown in Figure 4.5). Actually, measured bandwidths are below 1000 Mbps

and start-up latencies (the 0-byte message latency) are quite high (around 50µs),

imposing low performance for short messages. Moreover, the communication driver

delays communications, causing latencies to be around multiples of 50µs. Thus, the

communication library implementation has a minor impact on performance results.

In fact, the obtained results are quite similar among them. However, it is worth men-

tioning that mpiJava slightly outperforms niodev/iodev for short messages, whereas

its long message performance is around 30% lower than the Java communication de-

vices. The thresholds between eager and rendezvous send protocols can be observed

in the bandwidth graph at 128 KB for all libraries except iodev, which shows an

efficient implementation of the rendezvous protocol, without losing performance for

medium-size messages.

94 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 50

 60

 70

 80

 90

 100

 110

 120

 130

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

Java Communication Devices Performance (Gigabit Ethernet)

niodev
iodev+JFS

mpiJava
MPICH2(ssm)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

4MB2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Communication Devices Performance (Gigabit Ethernet)

niodev
iodev+JFS

mpiJava
MPICH2(ssm)

Figure 4.5: Point-to-point message-passing devices performance on Gigabit Ethernet

4.3 Performance Evaluation of iodev 95

Figure 4.6 presents the performance of the evaluated results on SCI. Regard-

ing short message performance, the native MPI implementation obtains the lowest

start-up latency, 4µs. The mpiJava wrapper adds an overhead of 9µs over the native

layer (the mpiJava start-up latency is 13µs). Moreover, the results of iodev+JFS

are quite similar to mpiJava performance for short messages (its start-up latency

is 14µs). Nevertheless, niodev shows poor performance for short messages, with a

start-up latency of 47µs. With respect to large message bandwidths, ScaMPI, the

native MPI, gets the best results, whereas iodev+JFS obtains the best performance

among Java libraries. In fact, the results of iodev+JFS are quite similar to the na-

tive performance (around 90−95% of ScaMPI results). Although mpiJava presents

similar bandwidths to iodev+JFS for messages up to 64 KB, for larger messages

the performance is around 60% of the ScaMPI results. The high start-up latency of

niodev has a great impact on its performance, achieving 85−90% of the iodev+JFS

performance only for 64 KB messages (the largest message size fo the eager protocol)

and for data transfers longer than 1 MB (rendezvous protocol), for which the impact

on performance of the high overhead of the rendezvous protocol is reduced. In fact,

for a 128 KB niodev message (see Figure 4.6) the rendezvous protocol (which in-

volves two extra control messages and the actual data transfer) obtains around half

of the performance that a 128 KB message would achieve using the eager protocol

(only one data transfer).

Figure 4.7 shows the performance results on Myrinet, among which mxdev and

iodev+JFS present quite similar overhead. Their start-up latencies are 17 and 16µs,

respectively, slightly higher values than the performance of mpiJava (13µs), which

represents again an overhead of 9µs over the start-up latency of the native layer,

MPICH-MX (4µs). Moreover, mxdev and iodev+JFS get similar large message

bandwidths to the native MPI. In fact, the Myrinet NIC is the performance bot-

tleneck for large messages, as its theoretical maximum bandwidth is 2000 Mbps.

Thus, MPICH-MX, mxdev and iodev+JFS obtain around 1800 Mbps, 90% of the

theoretical network bandwidth limit. The performance of mpiJava decreases as the

message size grows, lowering down to 800 Mbps for large messages, due to the extra

JNI data copy that occurs in this testbed between the Java heap and MPICH-MX.

96 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Communication Devices Performance (SCI)

niodev
iodev+JFS

mpiJava
ScaMPI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4MB2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Communication Devices Performance (SCI)

niodev
iodev+JFS

mpiJava
ScaMPI

Figure 4.6: Point-to-point message-passing devices performance on SCI

4.3 Performance Evaluation of iodev 97

 0

 5

 10

 15

 20

 25

 30

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Communication Devices Performance (Myrinet)

mxdev
iodev+JFS

mpiJava
MPICH-MX

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4MB2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Communication Devices Performance (Myrinet)

mxdev
iodev+JFS

mpiJava
MPICH-MX

Figure 4.7: Point-to-point message-passing devices performance on Myrinet

98 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

Figure 4.8 presents the results on the Linux IA64 InfiniBand testbed. The in-

stallation of mpiJava in this system was not possible as the combination of JRockit

JVM, MVAPICH2 and Linux IA64 system libraries is not supported by this wrapper

library. This is an example of the portability issues of mpiJava. As MPJ Express

competes in performance with mpiJava without large message penalties nor porta-

bility problems, it is clear that MPJ Express can supersede mpiJava as the reference

Java message-passing library, as stated in Section 1.3.

Regarding the performance results, there is a significant performance gap be-

tween Java (niodev and iodev+JFS) and native code due to the low performance of

the JVM implementations on Linux IA64 systems. Nevertheless, this Linux IA64

system allows the use of a higher number of cores (128) than the available processors

(8) on the InfiniBand Linux Intel Pentium IV cluster used in the previous chapter.

Thus, from now on, the InfiniBand performance results are obtained on this IA64

system. The micro-benchmarking of JFS over InfiniBand on this Pentium IV cluster

(see Subsection 3.2.2) has shown that its performance is quite similar to the native

SDP library. Thus, the latencies of short messages are only 1 µs higher than the

native layer and the large message bandwidth (from 128 KB) achieves 90% of the

native results. However, the start-up latency of the Java communication devices on

the InfiniBand IA64 system is quite high (62 and 88µs for iodev+JFS and niodev,

respectively), showing results more typical of Gigabit Ethernet than of a high-speed

network. As the message size grows the performance of Java communication devices

increases, obtaining bandwidths of up to 7.5 and 9 Gbps, for niodev and iodev+JFS,

respectively. However, MVAPICH2 shows bandwidths of up to 10.3 Gbps. Thus,

Java achieves up to 71% and 87% of the results of the native MPI for niodev and

iodev+JFS, respectively. The impact of the poor short message performance is so

important that the performance of the rendezvous protocol suffers from sending two

messages (the control message and the actual message data) instead of one (for the

eager protocol). Thus, iodev+JFS obtains lower performance for a 512 KB message

(rendezvous protocol) than for a 256 KB message (eager protocol) as the threshold

between protocols has been set to this value.

The shared memory results (Figure 4.9) have been obtained on the Gigabit Eth-

ernet/SCI/Myrinet cluster. The most noticeable result is that iodev+JFS outper-

forms MPICH2 for messages larger than 16 KB. The explanation of this fact is that

UNIX sockets, used by JFS, outperform the shared memory protocol implemented

4.3 Performance Evaluation of iodev 99

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Communication Devices Performance (InfiniBand)

niodev

iodev+JFS

MVAPICH2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

4MB2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Communication Devices Performance (InfiniBand)

niodev

iodev+JFS

MVAPICH2

Figure 4.8: Point-to-point message-passing devices performance on InfiniBand

100 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

204810245122561286432168

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Java Communication Devices Performance (Shared Memory)

niodev
iodev+JFS

mpiJava
MPICH2(ssm)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

4MB2MB1MB512KB256KB128KB64KB32KB16KB8KB4KB2KB1KB

B
a

n
d

w
id

th
 [

M
b

p
s

]

Message size

 Java Communication Devices Performance (Shared Memory)

niodev
iodev+JFS

mpiJava
MPICH2(ssm)

Figure 4.9: Point-to-point message-passing devices performance on Shared Memory

4.4 High Performance Java RMI 101

in the MPICH2 ssm channel, which obtains bandwidths only up to 6 Gbps. The

iodev+JFS performance falls from 512 KB, the maximum buffer size of the sockets.

The thresholds between eager and rendezvous send protocols can be observed in

the bandwidth graph at 128 KB for niodev and mpiJava. Moreover, the results of

mpiJava decrease as the message size grows, lowering down to half of the niodev

performance for large messages (for a 4 MB message niodev achieves 4000 Mbps

and mpiJava 2000 Mbps). The reason is the JNI overhead of the data copy between

the Java heap and the buffers of MPICH2 that occurs in this testbed.

4.4. High Performance Java RMI

Java RMI is a widely extended communication protocol that usually presents

poor performance on high-speed clusters, which has led to the development of sev-

eral RMI optimization projects (see Section 1.2). This section presents an RMI

protocol optimization for high-speed clusters named “Opt RMI” which takes ad-

vantage of JFS in a similar way to iodev (see Subsection 4.2.4). The design and

implementation of Opt RMI has been done bearing in mind: (1) the advantages/dis-

advantages of previous Java RMI optimization projects analyzed in Section 1.2; (2)

the transparency of the solution: it uses the standard API, increases the communi-

cation efficiency transparently to the user, no source code modification is required,

and it is interoperable with other systems; and (3) several basic assumptions about

the target architecture, high-speed clusters, such as a homogeneous cluster architec-

ture and the use of a single JVM; out of these basic assumptions about high-speed

clusters the Opt RMI library resorts to the JVM RMI implementation.

Java RMI has been designed following a layered architecture approach. Fig-

ure 4.10 presents, from bottom to top, the transport layer, responsible for managing

all communications, the remote reference layer, responsible for handling all refer-

ences to objects, the stub/skeleton layer, in charge of the invocation and execution,

respectively, of the methods exported by the objects; and the client and server

layer, also known as service layer. The activation, registry and Distributed Garbage

Collection (DGC) services are also part of this service layer.

In order to optimize the Java RMI protocol, an analysis of the overhead of

102 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

Client Server

Stub Skeleton

Transport Layer Transport LayerNet

Remote Reference Layer

Figure 4.10: Java RMI layered architecture

an RMI call has been accomplished. This overhead can be decomposed into four

categories: (1) Network or transport handling; (2) RMI Protocol processing, mainly

stub and skeleton operation; (3) Serialization; and finally (4) DGC. Figure 4.11

shows a typical Sun JVM RMI call runtime’s profile. It presents a 3 KB Object

RMI send on an SCI network using SCIP as transport layer. Around a 86% of the

overhead belongs to Network, 10% to the serialization process, 3.7% to Protocol,

and a meager 0.1% to DGC.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Sun JVM (SCIP)

L
a
te

n
c
y
 [

µ
s
]

RMI Call Overhead Profile

Network
Protocol
Serialization
DGC

86.2%

10%

3.7%
0.1%

Figure 4.11: RMI send overhead of a 3 KB Object on SCI

4.4 High Performance Java RMI 103

The overhead incurred by the different phases of an RMI call has been considered

in relative importance order to proceed with the optimization process. Thus, the

proposed improvements are: (1) network overhead reduction through the use of the

JFS support for high-speed networks; moreover, it is possible to optimize the RMI

protocol to reduce the amount of data to be transferred and the buffering in the RMI

network layer; (2) serialization avoidance for primitive data type arrays provided by

JFS (see Subsection 3.1.1); and (3) object manipulation optimization, changing the

protocol to reduce the information about objects that the RMI protocol includes in

each communication, selecting the minimum amount of data required to successfully

reconstruct a serialized object.

4.4.1. Transport Protocol Optimization

High Performance Sockets Support. The transport overhead can be re-

duced through the use of JFS, our high performance Java sockets implementation.

JFS provides shared memory and high-speed networks support (Gigabit Ethernet,

SCI, Myrinet and InfiniBand) on Java, and increases communication performance

avoiding unnecessary copies and buffering as well as the serialization of primitive

data type arrays (see Section 3.1).

Figure 4.12 shows an overview of the seven-layered communication stack for

RMI-based Java parallel and distributed applications on shared memory, Gigabit

Ethernet, SCI, Myrinet and InfiniBand. From bottom to top it can be seen the NIC

layer, the NIC drivers, the native sockets and IP emulation libraries, JNI (which

allows the Java access to native libraries), Java IO sockets implementations, Java

RMI implementations, and RMI-based Java applications. The contributions of the

Thesis depicted in Figure 4.12 are JFS and Opt RMI.

Reduction of Data Block Information. By default, all primitive data serial-

ized for communication are inserted in data blocks. In order to separate data from

different objects the data blocks are delimited by marks. To manage these blocks the

Java RMI protocol uses a special write buffer, with some locks to protect the data

integrity. The major goal of using this strategy for primitive data in serialization is

to deal correctly with the versioning issue.

104 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

Infiniband Driver: OFEDMyrinet Driver: MXoM

UNIX TCP/IP TCP/IP Sockets IPoIBIPoMX SDP
Sockets Sockets

Infiniband NICMyrinet NICSCI NICShared Memory

SCI Drivers: IRM/SISCI

SCI Sockets/SCILibSCIP

Gigabit Ethernet NIC

Java IO sockets JFS

Shared Memory Protocol Gigabit Ethernet Driver

Sockets−MX

JVM RMI / KaRMI / Opt RMI

RMI−based Applications

JNI

JVM IO sockets

Figure 4.12: Java RMI communication stack on high-speed multi-core clusters

In the Opt RMI protocol the removal of some versioning information (improve-

ment that will be described in Subsection 4.4.3) makes this data block strategy

useless. Thus, the management of the data to be transferred has been simplified,

without compromising the data integrity and correctness of the serialization and

deserialization procedures.

4.4.2. Serialization Overhead Reduction

Native Array Serialization. In earlier versions of Java RMI, primitive data

type arrays had to be serialized in an element-by-element and byte-by-byte approach.

For example, in a double array each element had to be processed obtaining the long

value that represents the bit layout of the double and then using a pair of operations

per byte (of the long): a boolean AND and a right shift to process the next byte

(except for the least significant one). However, in more recent JVM versions this

issue has been partially solved, implementing the serialization of double and float

arrays in native code, reducing significantly the serialization overhead.

In Opt RMI it has been implemented a generic method for array serialization

which can process directly arrays of any primitive data type as they were byte arrays.

This method relies on JFS and its serialization avoidance (see Subsection 3.1.1).

4.4 High Performance Java RMI 105

4.4.3. Object Manipulation Improvements

Versioning Information Reduction. For each object that is serialized, the

Java RMI protocol serializes its description, including its type, version number and

a whole recursive description of its attributes; i.e., if an attribute is an object, all

its attributes have to be described through versioning. This is a costly process,

because the version number of an object has to be calculated using reflection to

obtain information about the class.

This versioning information is important to deserialize the object and reconstruct

it on the receiving side, because sender and receiver can be running different versions

of the JVM. Under the assumption of a single JVM and a shared class path (e.g.,

through a shared file system) the proposed solution is to send only the name of

the class to which the object belongs, and reconstruct the object with the class

description at the receiving JVM. As both sides use the same JVM and share the

class path the interoperability is not compromised.

Class Annotation Reduction. Class annotations are used to indicate the

locations (as Java Strings) from which the remote class loaders have to get the

serialized object classes. This involves the use of specific URL class loaders. In a

high-speed cluster environment with a single JVM, it is useful to avoid annotating

classes from the java.* packages, as they can be loaded by the default class loader

that guarantees that serialized and loaded classes are the same.

This change has been restricted to java.* packages to preserve interoperability,

but it could also be applied to user classes. In fact, Opt RMI is interoperable, as it

uses the optimized protocol only for intra-cluster communication whereas it relies

on the JVM RMI for communicating with a machine outside the cluster. Thus, the

ability to use multiple class loaders is not compromised.

Array Processing Improvements. The Java RMI protocol processes arrays

as objects, with the consequent useless type checks and reflection operations. The

proposed solution is to create a specific method to deal with array serialization (see

Subsection 4.4.2), which provides several benefits in addition to the serialization

avoidance. Thus, this method avoids the type checking and reflection overheads.

Opt RMI implements an early array detection check, obtaining the array type using

the instanceof operator against a list of the primitive data types. This list has

106 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

been empirically obtained from the frequency of primitive data type appearance in

high performance Java applications. Thus, this list (in the order: double, integer,

float, long, byte, Object, char, boolean) optimizes the type casting compared to the

default list (Object, integer, byte, long, float, double, char, boolean). If an object

encapsulates a primitive data type array the proposed serialization method will

handle this array when serializing recursively the members of the object.

4.5. Performance Evaluation of Java RMI for HPC

4.5.1. Experimental Configuration

The testbed consists of two dual-processor nodes (Pentium IV Xeon EMT64 at

3.2 GHz –a one-core processor– with hyper-threading disabled and 2 GB of memory)

interconnected via SCI and Gigabit Ethernet. The SCI NIC is the same as described

in Subsection 2.3.1, whereas the remaining configuration is specific to this evaluation.

Thus, the Gigabit Ethernet NIC is a Marvell 88E8050 with an MTU of 1500 bytes.

The OS is Linux CentOS 4.2 with compilers gcc 3.4.4 and Sun JDK 1.5.0 05. The

SCI libraries are SCI Sockets 3.0.3, DIS 3.0.3 (it includes IRM, SISCI and SCILib),

and SCIP 1.2.0. JFS has also been used. Finally, the three RMI implementations

evaluated are the Sun JVM RMI of Sun JDK 1.5.0 05, KaRMI [76] from JavaParty

1.9.5, and our Opt RMI protocol.

In order to evaluate the RMI communication overhead, a Java RMI version of

NetPIPE [102] has been developed due to the lack of Java RMI micro-benchmarks.

Figure 4.13 shows the sequence diagram of the Java RMI ping and ping-pong tests,

although the results considered in this section are only the half of the round trip

time of the ping-pong test. The implementation issues of the Java RMI NetPIPE

benchmark (design, implementation and JIT performance) are similar to the issues

found in the development of the NetPIPE version for Java sockets presented in

Subsection 3.2.1. The current section presents the performance of integer and Object

arrays as they are common communication patterns in Java parallel and distributed

applications. Moreover, the impact of the use of the Opt RMI protocol on RMI-

based applications performance (see Subsection 4.5.3) has been analyzed.

4.5 Performance Evaluation of Java RMI for HPC 107

c:Client ps:PongServer

CLIENT SERVER

ping()

 return

 ping()

pong()

return

return

s:Server

Figure 4.13: Ping and ping-pong RMI benchmark sequence diagram

4.5.2. Micro-benchmarking Results

Figure 4.14 compares the overhead of three RMI implementations, Sun JVM

RMI, KaRMI (see Section 1.2) and Opt RMI sending a 3 KB Object on SCI, using

both SCIP and JFS as underlying layers. The measures presented (see Section 4.4

and Figure 4.11) are the mean of ten calls, showing a small variance among them.

The results show that Opt RMI reduces significantly the overhead of the other RMI

libraries: Sun JVM RMI over SCIP (65%), KaRMI over SCIP (60%), Sun JVM

RMI over JFS (53%) and KaRMI over JFS (45%). As can be seen, Protocol and

especially Network latencies have decreased significantly. The explanation for these

results is that sending an Object with several attributes (both Objects and primi-

tive data types) can be more costly in Sun JVM RMI and KaRMI than in Opt RMI

because of the overhead, in terms of data payload, imposed by the versioning infor-

mation and the class annotation. In this case, sending this particular 3 KB Object

involves a payload almost 3 times larger in Sun JVM RMI than in Opt RMI. Re-

garding KaRMI overhead, it is slightly lower than that of Sun JVM RMI. Although

Opt RMI shows the lowest overheads, the Opt RMI Serialization presents lower

performance than the Sun JVM one because the Opt RMI protocol has to obtain

the information on how to deserialize the object.

Figures 4.15 and 4.16 present the results for RMI integer array communication.

Regarding Gigabit Ethernet results, KaRMI shows the lowest latency for short mes-

sages (< 1 KB), but the highest communication overhead for larger messages. In

108 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

Sun JVM (SCIP) KaRMI (SCIP) Sun JVM (JFS) KaRMI (JFS) Opt RMI (JFS)

L
a
te

n
c
y
 [

µ
s
]

RMI Call Overhead Profile

Network
Protocol
Serialization
DGC

86.2%

10%

3.7%
0.1%

88.1%

8.9%

2.9%
0.1%

83.8%

12.7%

3.3%
0.2%

85.9%

10.8%
3.1%
0.2%

72.1%

17.6%
10.1%
0.2%

Figure 4.14: Performance results of RMI overhead of sending a 3 KB Object on SCI

this scenario the Opt RMI obtains slightly better results than Sun JVM RMI. With

respect to SCI graphs, KaRMI and Sun JVM RMI on SCIP show the poorest re-

sults. However, substituting JVM sockets over SCIP by JFS as transport protocol

improves the results significantly. In this case, KaRMI presents slightly better per-

formance than Sun JVM RMI, for all message sizes. Regarding the RMI bandwidth

on SCI, it can be seen that Sun JVM RMI and KaRMI performance drop for large

messages (> 256 KB) when using JFS due to a socket buffer size issue between the

socket library and these RMI implementations. However, both Sun JVM RMI and

KaRMI over JFS only obtain lower performance than over SCIP for [512 – 1536

KB] messages. Opt RMI does not present this performance degradation for large

messages. In fact, it significantly outperforms Sun JVM RMI and KaRMI for large

messages. Moreover, the Opt RMI presents significantly lower start-up latencies

than Java RMI and KaRMI over SCIP and slightly lower latencies than Java RMI

and KaRMI over JFS. Additionally, the Opt RMI obtains higher performance on

SCI than on Gigabit Ethernet, where the interconnection network limits severely

the performance (as presented in Sections 3.2.2 and 4.3.2). Finally, KaRMI also

shows better performance on SCI than on Gigabit Ethernet, as it has been designed

mainly for high-speed network communication.

4.5 Performance Evaluation of Java RMI for HPC 109

Figure 4.17 presents results of communicating arrays of medium-size (3 KB) Ob-

jects. Figure 4.14 already presented the performance profile of the results obtained

sending only one object. Regarding the benchmark results, the Opt RMI obtains

the best performance for arrays of up to 8 Objects. Although its latency for a single

Object is small, there is an important “extra” overhead for each Object processed,

greater than for KaRMI and Sun JVM RMI overheads. Thus, for arrays from 8

Objects Sun JVM RMI and KaRMI obtain better performance than Opt RMI on

Gigabit Ethernet and SCI, respectively. The Opt RMI “extra” overhead is caused

by its inability to detect that the Object sent did not change since previous RMI

calls. Nevertheless, the relatively poor results of Opt RMI sending Objects have lit-

tle influence on the performance of Java HPC applications as object communication

is not usual in these applications.

4.5.3. Performance Impact on RMI-based Applications

As Opt RMI reduces significantly the RMI overhead, the impact of its use in

an RMI-based middleware has been evaluated. The RMI-based ProActive middle-

ware [5, 77], as shown in [61], presents a poor scalability due to the significant

penalty that RMI overhead imposes on the overall performance of ProActive ap-

plications. Thus, it has been selected for performance evaluation using RMI and

Opt RMI, discarding KaRMI as it would require the reimplementation of ProAc-

tive using the KaRMI API. The benefits of using Opt RMI have been evaluated

using two representative communication-intensive applications, MG and CG, from

the ProActive NAS Parallel Benchmarks (NPB) [4]. MG is a 3D MultiGrid method

with a Poisson solver algorithm, whereas CG solves a structured sparse linear sys-

tem by the Conjugate Gradient method. Figure 4.18 shows MG and CG results

using Sun JVM RMI and Opt RMI on SCI, relying on their default support on this

network, SCIP and JFS, respectively. The high memory requirements of MG have

prevented this benchmark from being run on a single node. The MG speedups have

then been calculated using the runtime on two processors as reference. As can be

seen in the figure, Opt RMI increases speedup up to 24% for MG and up to 157%

for CG. Thus, Opt RMI allows to improve transparently the performance of RMI-

based middleware and applications, especially on high-speed networks. Therefore,

Opt RMI enables parallel and distributed RMI-based high-level programming with

less overhead than Sun JVM RMI.

110 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

204810245122561286432168

L
a
te

n
c
y
 [

µ
s
]

Message size [bytes]

 RMI Integer Array Communication (Gigabit Ethernet)

Sun JVM RMI
KaRMI

Opt RMI

 0

 100

 200

 300

 400

 500

 600

 700

4MB1MB256KB64KB16KB4KB1KB

B
a
n

d
w

id
th

 [
M

b
p

s
]

Message size

 RMI Integer Array Communication (Gigabit Ethernet)

Sun JVM RMI
KaRMI

Opt RMI

Figure 4.15: RMI integer array communication performance on Gigabit Ethernet

4.5 Performance Evaluation of Java RMI for HPC 111

 0

 50

 100

 150

 200

 250

 300

 350

 400

204810245122561286432168

L
a
te

n
c
y
 [

µ
s
]

Message size [bytes]

 RMI Integer Array Communication (SCI)

Sun JVM RMI (SCIP)
KaRMI (SCIP)

Sun JVM RMI (JFS)
KaRMI (JFS)

Opt RMI (JFS)

 0

 200

 400

 600

 800

 1000

4MB1MB256KB64KB16KB4KB1KB

B
a
n

d
w

id
th

 [
M

b
p

s
]

Message size

 RMI Integer Array Communication (SCI)

Sun JVM RMI (SCIP)
KaRMI (SCIP)

Sun Java RMI (JFS)
KaRMI (JFS)

Opt RMI (JFS)

Figure 4.16: RMI integer array communication performance on SCI

112 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 1 2 4 8 16 32

L
a
te

n
c
y
 [

µ
s
]

 Number of Objects

 RMI Object Array Communication (Gigabit Ethernet)

Sun JVM RMI
KaRMI

Opt RMI

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 4 8 16 32

L
a
te

n
c
y
 [

µ
s
]

 Number of Objects

 RMI Object Array Communication (SCI)

Sun JVM RMI (SCIP)
KaRMI (SCIP)

Sun JVM RMI (JFS)
KaRMI (JFS)

Opt RMI (JFS)

Figure 4.17: RMI object communication performance on Gigabit Ethernet and SCI

4.6 Chapter 4 Conclusions 113

1 2 4 8 16
Number of Processors

0

100

200

300

400

500

600

700

R
u

n
ti

m
e

(s
ec

o
n

d
s)

0

2

4

6

8

10

12

14

S
p

ee
d

u
p

MG (Sun JVM RMI over SCIP)

MG (Opt RMI over JFS)

CG (Sun JVM RMI over SCIP)

CG (Opt RMI over JFS)

Java ProActive NAS Parallel Benchmarks (SCI)

Figure 4.18: Performance of ProActive NPB MG and CG (Class C workload)

4.6. Chapter 4 Conclusions

This chapter has presented iodev, a low-level message-passing communication

device. Among its main contributions iodev:

Provides efficient non-blocking communication on Java IO sockets.

Takes advantage of high-speed networks through the use of JFS, the high

performance Java sockets implementation presented in Chapter 3.

Avoids the use of buffers for the message data.

Reduces the serialization overhead, especially for arrays of primitive data

types.

Implements a communication protocol that minimizes the start-up latency and

maximizes the bandwidth.

114 Chapter 4. Efficient iodev Low-level Message-Passing and RMI Middleware

The iodev communication device has been evaluated on shared memory, Gigabit

Ethernet, SCI, Myrinet and InfiniBand scenarios, outperforming significantly the

MPJ Express niodev device and mpiJava, obtaining similar performance to the

MPJ Express mxdev device on Myrinet, and showing competitive results (and even

higher on shared memory) compared to the native MPI libraries.

Additionally, this chapter has presented an efficient Java RMI implementation, a

communication middleware also based on JFS. The solution proposed is transparent

to the user (it does not need source code modification) and significantly improves

performance. The RMI protocol optimizations have been focused on:

Increasing the transport protocol performance through the use of the high per-

formance Java sockets library JFS and reducing the information to be trans-

ferred.

Providing a new method which deals with array communication, avoiding type

checks and taking advantage of the reduction of the serialization overhead using

JFS.

Reducing the versioning and data block information as well as class annota-

tions.

Experimental results have shown that the implemented RMI protocol optimiza-

tions reduce significantly the RMI call overhead, mainly on high-speed networks and

for communication patterns frequently used in Java HPC applications, especially for

arrays of primitive data types.

Chapter 5

Fast MPJ: Efficient Java

Message-Passing Library

This chapter presents Fast MPJ (F-MPJ), a scalable and efficient Java message-

passing library implemented on top of the low-level message-passing middleware

iodev developed in the previous chapter. The efficient communication support pro-

vided by iodev and JFS (see Chapter 3) allows F-MPJ to take advantage of high-

speed multi-core clusters (see Section 5.1). Moreover, the F-MPJ development has

been focused on the use of scalable collective algorithms (see Section 5.2). Thus,

F-MPJ has implemented several collective algorithms per primitive, allowing their

selection at runtime, as will be shown in Section 5.3. F-MPJ has been evaluated

on an InfiniBand multi-core cluster, outperforming significantly two representative

MPJ libraries: MPJ Express and MPJ/Ibis (see Section 5.4). This evaluation con-

sists of a micro-benchmarking of point-to-point and collective primitives, where F-

MPJ increases performance up to 60 times, and an analysis of the impact of the use

of F-MPJ+iodev+JFS on several kernel and application Java parallel benchmarks.

The main conclusion is that F-MPJ improves significantly MPJ performance and

scalability, thanks to the efficient point-to-point transfers and the collective primi-

tives implementation. Section 5.5 presents a summary of the main contributions of

this Chapter.

115

116 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

5.1. Efficient MPJ Communication

The current state of the art in Message-Passing in Java (MPJ) libraries has

been presented in Section 1.3. Then, the kernel benchmarking on three representa-

tive MPJ libraries, mpiJava, MPJ/Ibis and MPJ Express, presented in Section 2.5

has shown that the performance of the pure Java implementations (MPJ/Ibis and

MPJ Express) is significantly lower than native MPI, especially for communication-

intensive codes, whereas the mpiJava wrapper library, although achieves higher per-

formance than the pure Java libraries, presents associated drawbacks such as insta-

bility and lack of portability issues. The implementation efforts carried out in MPJ

Express, using Java NIO sockets and direct byte buffers, and in MPJ/Ibis, using

the high performance Ibis framework, have not bridged the gap with native MPI

implementations.

In order to overcome this performance limitation in Java communication li-

braries, more efficient communication middleware in Java, such as JFS and iodev,

have been implemented in this Thesis. This middleware serves as base to imple-

ment a high performance MPJ library, named Fast MPJ (F-MPJ). As the main

motivation of this Thesis is the design of efficient Java communication libraries, the

implementation of F-MPJ has been focused on increasing efficient point-to-point

and collective primitives performance. Thus, advanced MPI functionalities, such

as group, communicator and process topology management, have not been imple-

mented (e.g., only the MPI.COMM WORLD group has been defined). Moreover,

no additional tools for development (e.g., logging generation and debugging facili-

ties) and runtime environments are provided. F-MPJ implements the mpiJava 1.2

API [21], which has been selected as most of the MPJ codes publicly available use

this API (instead of the JGF MPJ specification [22]). Furthermore, the two most

active MPJ projects, mpiJava and MPJ Express, implement this API as well.

The implementation of the MPJ point-to-point primitives in F-MPJ is direct as

iodev already provides the basic point-to-point primitives (see Section 4.2). Never-

theless, collective message-passing primitives require the development of algorithms

that involve multiple point-to-point communications. MPJ application developers

use collective primitives for performing standard data movements (e.g., Broadcast,

5.1 Efficient MPJ Communication 117

Scatter and Gather) and basic computations among several processes (reductions).

This greatly simplifies code development, enhancing programmers productivity to-

gether with MPJ programmability. Moreover, it relieves developers from communi-

cation optimization. Thus, collective algorithms must provide scalable performance,

usually through overlapping communications in order to maximize the number of

operations carried out in parallel. An unscalable algorithm can easily waste the

performance provided by an efficient communication middleware.

Figure 5.1 presents an overview of the F-MPJ layered design on representative

HPC hardware. From top to bottom, it can be seen that a message-passing applica-

tion in Java (MPJ application) calls F-MPJ point-to-point and collective primitives.

These primitives implement the MPJ communications API on top of the xxdev layer,

whose implementation on Java IO sockets is iodev (see Section 4.2). The use of

iodev, especially in combination with JFS, allows F-MPJ to take full advantage of

shared memory and high-speed networks. The remaining layers in Figure 5.1 show

the supported HPC hardware, already presented in Section 4.1 and more specifically

in Figure 4.1.

Infiniband Driver: OFEDMyrinet Driver: MXoM

UNIX TCP/IP TCP/IP Sockets IPoIB

MPJ Point−to−Point Primitives

iodev

IPoMX SDP
Sockets Sockets

Sockets−MX

Infiniband NICMyrinet NICSCI NICShared Memory

MPJ Collective Primitives

xxdev

F−MPJ

JFSJava IO sockets

SCI Drivers: IRM/SISCI

SCI Sockets/SCILibSCIP

Gigabit Ethernet NIC

MPJ Application

Gigabit Ethernet DriverShared Memory Protocol

JNI

JVM IO sockets

Figure 5.1: Overview of F-MPJ communication layers on HPC hardware

118 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

5.2. MPJ Collective Algorithms

The design, implementation and runtime selection of efficient collective commu-

nication operations have been extensively discussed in the context of native message-

passing libraries [13, 23, 97, 103], but not in MPJ. Therefore, F-MPJ has tried to

adapt the research in native libraries to MPJ. As far as we know, this is the first

project in this sense, as up to now MPJ library developments have been focused on

providing production-quality implementations of the full MPJ specification, rather

than concentrating on developing scalable MPJ collective primitives.

The collective algorithms present in MPJ libraries can be classified in six types,

namely Flat Tree (FT) or linear, Minimum-Spanning Tree (MST), Binomial Tree

(BT), Four-ary Tree (Four-aryT), Bucket (BKT) or cyclic, and BiDirectional Ex-

change (BDE) or recursive doubling.

The simplest algorithm is FT, where all communications are performed sequen-

tially. Figure 5.2 shows the pseudocode of the FT Broadcast using either blocking

primitives (henceforth denoted as bFT) or exploiting non-blocking communications

(henceforth nbFT) in order to overlap communications. As a general rule, valid for

all collective algorithms, the use of non-blocking primitives avoids unnecessary waits

and thus increases the scalability of the collective primitive. However, for the FT

Broadcast only the send operation can be overlapped. The variables used in the

pseudocode are also present in the following figures. Thus, x is the message, root

is the root process, me is the rank of each parallel process, pi the i-th process and

npes is the number of processes used.

Figures 5.3 and 5.4 present MST pseudocode and operation for the Broadcast,

which is initially invoked through MSTBcast(x,root,0,npes-1). The parameters

left and right indicate the indices of the left- and right-most processes in the

current subtree. A variant of MST is BT, where at each step i (from 1 up to

dlog2(npes)e) the process pj communicates with the process pj+2i−1 . In a Four-ary

Tree algorithm at each step i (from 1 up to dlog4(npes)e) the process pj (node)

communicates with its up to four associated processes (children).

5.2 MPJ Collective Algorithms 119

Method Bcast(x,root)(bFT)

if me = root then
for i=0,...,npes-1 do

if me ! = i then
Send (x,pi);

else
Recv (x,root);

Method Bcast(x,root)(nbFT)

if me = root then
for i=0,...,npes-1 do

if me ! = i then
sreqi =Isend (x,pi);

else
rreq =Irecv (x,root);
Wait (rreq);

if me = root then
for i=0,...,npes-1 do

if me ! = i then
Wait (sreqi);

Figure 5.2: FT Broadcast pseudocode

Method MSTBcast(x,root,left,right)

if left = right then return;

mid = b(left+right)/2c;
if root ≤ mid then dest=right; else dest = left;

if me = root then Send (x,dest);
if me = dest then Recv (x,root);

if me ≤ mid and root ≤ mid then MSTBcast (x,root,left,mid);
else if me ≤ mid and root > mid then MSTBcast (x,dest,left,mid);
else if me > mid and root ≤ mid then MSTBcast (x,dest,mid+1,right);
else if me > mid and root > mid then MSTBcast (x,root,mid+1,right);

Figure 5.3: MSTBcast pseudocode

p0 p1 p2 p3

x
(a) Initial state

p0 p1 p2 p3

x →
(b) 1st Step

p0 p1 p2 p3

← x x →
(c) 2nd Step

p0 p1 p2 p3

x x x x
(d) Final state

Figure 5.4: Minimum-spanning tree algorithm for Broadcast

120 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

Figures 5.5 (left) and 5.6 show BKTAllgather pseudocode and operation. In

BKT all processes are organized like a ring and send at each step data to the pro-

cess at their right. Thus, data eventually arrives to all nodes. F-MPJ implements an

optimization by posting all irecv requests at BKT start-up. A subsequent synchro-

nization (barrier) prevents early communication that incurs in buffering overhead

when the irecv has not already been posted. The communications overlapping is

achieved through isend calls. Finally, the algorithm waits for the completion of all

requests. Figures 5.5 (right) and 5.7 present BDEAllgather pseudocode and opera-

tion, which requires that npes is a power of two. In BDE the message exchanged by

each process pair is recursively doubled at each step until data eventually arrives to

all nodes.

Method BKTAllgather(x)
prev = me - 1;
if prev < 0 then prev= npes - 1;
next = me + 1;
if next = npes then next=0;

current i = me;
for i=0,...,npes-2 do

current i = current i - 1;
if current i < 0 then
current i=npes-1;
rreqi=Irecv (xcurrent i,prev);

Barrier ();
current i = me;
for i=0,...,npes-2 do

sreqi=Isend (xcurrent i,next);
current i = current i - 1;
if current i < 0 then
current i=npes-1;

for i=0,...,npes-2 do
Wait (sreqi);
Wait (rreqi);

Method

BDEAllgather(x,left,right)

if left = right then return;
size = right − left + 1;
mid = b(left+right)/2c;
if me ≤ mid then

partner = me + bsize/2c;
else

partner = me − bsize/2c;

if me ≤ mid then
BDEAllgather (x,left,mid);

else
BDEAllgather (x,mid+1,right);

if me ≤ mid then
Send (xleft:mid,partner);
Recv (xmid+1:right,partner);

else
Send (xmid+1:right,partner);
Recv (xleft:mid,partner);

Figure 5.5: BKTAllgather and BDEAllgather pseudocode

5.3 F-MPJ Collective Primitives Algorithms 121

p0 p1 p2 p3

x0→
x1→

x2→
x3→

(a) 1st Step

p0 p1 p2 p3

x0 x0→
x1 x1→

x2 x2→
x3→ x3

(b) 2nd Step

p0 p1 p2 p3

x0 x0 x0→
x1 x1 x1→

x2→ x2 x2

x3 x3→ x3

(c) 3rd Step

p0 p1 p2 p3

x0 x0 x0 x0

x1 x1 x1 x1

x2 x2 x2 x2

x3 x3 x2 x3

(d) Final state

Figure 5.6: Bucket algorithm for Allgather (BKTAllgather)

p0 p1 p2 p3

x0

x1

x2

x3

(a) Initial state

p0 p1 p2 p3

x0→
← x1

x2→
← x3

(b) 1st Step

p0 p1 p2 p3

x0 x0⇒
x1 x1⇒

⇔ x2 x2

⇔ x3 x3

(c) 2nd Step

p0 p1 p2 p3

x0 x0 x0 x0

x1 x1 x1 x1

x2 x2 x2 x2

x3 x3 x3 x3

(d) Final state

Figure 5.7: Bidirectional exchange algorithm for Allgather (BDEAllgather). In the
2nd step, bidirectional exchanges occur between the two pairs of processes p0 and
p2, and p1 and p3

5.3. F-MPJ Collective Primitives Algorithms

Although there is a wide variety of collective algorithms, as shown in the previous

section, current MPJ libraries mainly resort to FT implementations, usually the only

one primitive implementation provided. Nevertheless, F-MPJ defines up to three

algorithms per primitive, selected at runtime. This section shows a comparative

analysis of the collective primitives algorithms used in MPJ libraries.

Table 5.1 presents a complete list of the collective algorithms used in F-MPJ,

MPJ Express and MPJ/Ibis. It can be seen that F-MPJ implements algorithms

with usually higher scalability than MPJ Express and MPJ/Ibis collective primi-

tives, taking advantage of communications overlapping. Thus, MPJ/Ibis only uses

non-blocking communications in Alltoall and Alltoallv primitives, and MPJ Express

resorts to bFT, an algorithm with poor scalability, for the Reduce. Moreover, MPJ

Express uses a four-ary tree for Broadcast (Bcast) and Barrier, although with block-

ing communication. Nevertheless, in the remaining primitives MPJ Express takes

advantage of non-blocking communications, except for Allreduce.

122 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

Table 5.1: Collective algorithms used in representative MPJ libraries (1selected al-
gorithm for short messages; 2selected algorithm for long messages; 3selectable algo-
rithm for long messages and npes power of two)

Collective F-MPJ MPJ Express MPJ/Ibis

Barrier MST nbFTGather+ bFT
bFour-aryTBcast

Bcast MST1 bFour-aryT BT
MSTScatter+BKTAllgather2

Scatter MST1 nbFT bFT
nbFT2

Scatterv MST1 nbFT bFT
nbFT2

Gather MST1 nbFT bFT
nbFT2

Gatherv MST1 nbFT bFT
nbFT2

Allgather MSTGather+MSTBcast1 nbFT BKT(double ring)
BKT2

BDE3

Allgatherv MSTGatherv+MSTBcast nbFT BKT

Alltoall nbFT nbFT nbFT

Alltoallv nbFT nbFT nbFT

Reduce MST1 bFT BT(commutative)
BKTReduce scatter+ bFT(non commu-

MSTGather2 tative operation)

Allreduce MSTReduce+MSTBcast1 BT BDE
BKTReduce scatter+

BKTAllgather2

BDE3

Reduce scatter MSTReduce+MSTScatterv1 bFTReduce+ {BTReduce or

BKT2 nbFTScatterv bFTReduce}+
BDE3 bFTScatterv

Scan nbFT nbFT bFT

5.4 F-MPJ Performance Evaluation 123

As F-MPJ implements up to three algorithms per primitive, the selection of the

most suitable algorithm per collective primitive call is required. Thus, the selection

depends on the message size, using the algorithms with the lowest latencies for

short message communication and minimizing message buffering for long message

communication. Table 5.1 indicates the selected algorithms using superscripts. The

message size threshold used in this selection is configurable (32 KB by default) and

independent for each primitive. The use of efficient communications and scalable

algorithms in F-MPJ provides scalable MPJ performance, as will be assessed in the

next section.

5.4. F-MPJ Performance Evaluation

5.4.1. Experimental Configuration

The testbed used for the performance evaluation of F-MPJ is the same as used

for the iodev evaluation over InfiniBand (see Section 4.3), the Finis Terrae supercom-

puter [34]. In addition to the benchmarking of F-MPJ inter-node communication

over InfiniBand, this system has also been used for the evaluation of F-MPJ inter-

node communication (each node has 16 cores), and the hybrid inter-node/intra-node

communications scenario. The evaluated MPJ libraries are F-MPJ with iodev and

JFS 0.3.1, MPJ Express 0.27 and MPJ/Ibis 1.4. For comparison purposes, HP-MPI

2.2.5.1 as representative native MPI library has been selected as it demonstrates

slightly better performance than MVAPICH2 1.0.2. HP-MPI uses two communi-

cation devices on the Finis Terrae: SHM, a special shared memory protocol for

intra-node transfers, and IBV (OFED InfiniBand Verbs) for inter-node communi-

cation. The remaining configuration details are the same as those presented in

Subsection 4.3.1.

The evaluation presented in this section consists of a micro-benchmarking of

point-to-point primitives (Subsection 5.4.2) and collective communications (Subsec-

tion 5.4.3); and a benchmarking of two kernels and an application from the Java

Grande Forum (JGF) Benchmark Suite [17] (Subsection 5.4.4).

124 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

5.4.2. Micro-benchmarking MPJ Point-to-point Primitives

In order to micro-benchmark F-MPJ primitives performance our own micro-

benchmark suite [87] has been used as detailed in Section 2.2. Thus, the results

shown are one half of the round trip time of a ping-pong test (point-to-point la-

tency) or its corresponding bandwidth. Figure 5.8 shows point-to-point latencies

and bandwidths for MPJ libraries communicating byte and double arrays, data

structures frequently used in parallel applications, for intra-node (shared memory)

and inter-node communication (InfiniBand). Moreover, the native MPI performance

(i.e. HP-MPI results) is also shown for comparison purposes. The latency graphs

serve to compare short message performance, whereas the bandwidth graphs are

useful to compare long message performance. For purposes of clarity, the JNI array

notation has been used in order to denote byte and double arrays in Java (B] and

D], respectively).

The difference between this micro-benchmarking and that of Section 4.3 is the

different level of the evaluation. Thus, Java low-level message-passing communica-

tion devices (niodev, mxdev and iodev) have been evaluated in the previous chapter,

whereas the current section presents performance results from several MPJ imple-

mentations (F-MPJ, MPJ/Ibis and MPJ Express). The use of a higher level API

presents an additional overhead on the underlying Java communication devices layer

(i.e. MPJ-level performance is lower than that of the Java communication devices),

which is characterized through the micro-benchmarking presented in this section.

F-MPJ, MPJ/Ibis and MPJ Express rely on different sockets implementations

(JFS/Java IO sockets, Java IO sockets and Java NIO sockets, respectively), and

thus it is not possible to compare directly the MPJ library processing overhead.

However, as the sockets implementations share the same underlying layers, a fair

comparison involves the analysis of the overhead of F-MPJ+JFS, MPJ/Ibis+Java

IO sockets and MPJ Express+Java NIO sockets. The processing overhead of the

MPJ libraries plus socket implementations can be estimated from Figure 5.8, where

F-MPJ+JFS shows significantly lower overhead than MPJ Express+Java NIO and

MPJ/Ibis+Java IO sockets, especially for short messages and double arrays (D])

communication. Regarding native performance, HP-MPI significantly outperforms

MPJ libraries due to the low performance of the JVM on Linux IA64 (see Subsec-

tion 4.3.1) and the fact that the MPJ libraries are implemented using Java sockets

instead of low-level communication protocols such as IBV or SHM.

5.4 F-MPJ Performance Evaluation 125

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

409620481024512256128643216

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Point-to-point Communication Performance (intra-node)

HP-MPI(SHM)
F-MPJ(B],D])
MPJ/Ibis(B])
MPJ/Ibis(D])
MPJ Express(B])
MPJ Express(D])

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

4MB1MB256KB64KB16KB4KB1KB

B
a

n
d

w
id

th
 [

G
b

p
s

]

Message size

 Point-to-point Communication Performance (intra-node)

HP-MPI(SHM)
F-MPJ(B],D])
MPJ/Ibis(B])
MPJ/Ibis(D])
MPJ Express(B])
MPJ Express(D])

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

409620481024512256128643216

L
a

te
n

c
y

 [
µ

s
]

Message size [bytes]

 Point-to-point Communication Performance (inter-node)

HP-MPI(IBV)
F-MPJ(B],D])
MPJ/Ibis(B])
MPJ/Ibis(D])
MPJ Express(B])
MPJ Express(D])

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4MB1MB256KB64KB16KB4KB1KB

B
a

n
d

w
id

th
 [

G
b

p
s

]

Message size

 Point-to-point Communication Performance (inter-node)

HP-MPI(IBV)
F-MPJ(B],D])
MPJ/Ibis(B])
MPJ/Ibis(D])
MPJ Express(B])
MPJ Express(D])

Figure 5.8: MPJ point-to-point primitives performance

126 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

F-MPJ handles D] transfers without serialization, obtaining the same results for

B] and D] communication. As MPJ/Ibis and MPJ Express have to serialize double

arrays, they present a significant performance penalty for D], especially for long mes-

sages. Thus, F-MPJ(D]) clearly outperforms MPJ/Ibis(D]) and MPJ Express(D]),

showing up to 10 and 20 times higher performance, respectively. The impact of

serialization overhead, the difference between D] and B] performance, is especially

significant when the MPJ library obtains high B] bandwidths (MPJ/Ibis on intra-

node and MPJ Express on inter-node). In these scenarios the serialization is the

main performance bottleneck.

The byte array (B]) results are useful for evaluating the data transfer perfor-

mance itself, without serialization overheads. In this scenario F-MPJ significantly

outperforms MPJ Express and MPJ/Ibis, especially for short messages, thanks to

its lower start-up latency. Regarding long message intra-node performance, F-MPJ

outperforms MPJ/Ibis up to 27% and MPJ Express up to 50%. However, the re-

sults vary for inter-node transfers, where F-MPJ outperforms MPJ/Ibis up to 9

times and MPJ Express up to 40%. In these results the impact of the underlying

communication middleware is significant. Thus, the high performance SDP library

is only supported by F-MPJ and MPJ Express, which obtain significantly higher

inter-node performance than MPJ/Ibis, which only supports the low performance

IP emulation on InfiniBand (IPoIB). However, MPJ/Ibis outperforms MPJ Express

when using the same underlying layer, the native TCP/IP sockets of the system, for

intra-node transfers.

The observed point-to-point communication efficiency involves a significant im-

provement of F-MPJ collective primitives performance, as will be shown next.

5.4.3. Micro-benchmarking of MPJ Collective Primitives

The performance scalability of representative MPJ collective primitives has been

evaluated on F-MPJ, MPJ/Ibis and MPJ Express. Figure 5.9 presents the aggre-

gated bandwidth for Broadcast and sum reduction operations, both for the commu-

nication of short (using 1 KB as representative message size) and long (using 1 MB

as representative message size) double arrays. The Broadcast and Reduce primitives

have been selected as representative data movement and computational primitives,

5.4 F-MPJ Performance Evaluation 127

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 8 16 32 64 128

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
b

p
s

)

Number of Cores (npes)

Broadcast Short Message Performance (1KB)

F-MPJ
MPJ/Ibis
MPJ Express

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

 2 4 8 16 32 64 128

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
b

p
s

)

Number of Cores (npes)

Broadcast Long Message Performance (1MB)

F-MPJ
MPJ/Ibis
MPJ Express

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 2 4 8 16 32 64 128

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
b

p
s

)

Number of Cores (npes)

Reduce Short Message Performance (1KB)

F-MPJ
MPJ/Ibis
MPJ Express

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2 4 8 16 32 64 128

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
b

p
s

)

Number of Cores (npes)

Reduce Long Message Performance (1MB)

F-MPJ
MPJ/Ibis
MPJ Express

Figure 5.9: MPJ collective primitives performance

128 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

respectively. The aggregated bandwidth metric has been selected as it takes into

account the global amount of data transferred, message size ∗ (npes− 1) for both

collectives. The results have been obtained with a maximum of 8 cores per node as

this configuration has shown the best performance. Thus, from now on the number

of nodes used is dnpes/8e. MPJ/Ibis could not be run in our testbed using more

than 32 cores due to an Ibis runtime initialization error.

The presented results (Figure 5.9) show that F-MPJ significantly outperforms

MPJ Express and MPJ/Ibis. Regarding Broadcast, F-MPJ provides up to 5.8 and 16

times performance increases for short and long messages, respectively. The improve-

ment of the F-MPJ Reduce is up to 60 and 50 times for short and long messages,

respectively. The maximum performance increases of F-MPJ have been obtained

from the comparison against MPJ Express results. F-MPJ shows scalable perfor-

mance for both collectives, obtaining usually the highest performance increases on

128 cores. The significant performance improvement of F-MPJ for long messages is

mainly due to the serialization avoidance. Moreover, F-MPJ takes significant advan-

tage of intra-node communication (up to 8 cores), especially for the Broadcast. The

lowest performance, especially for the Reduce, has been obtained by MPJ Express,

whereas MPJ/Ibis results are between F-MPJ and MPJ Express results, although

much closer to the latter.

In conclusion, F-MPJ significantly improves MPJ collectives performance due

to its efficient intra-node and inter-node point-to-point communication, the seri-

alization avoidance and the use of scalable algorithms (see Table 5.1) based on

non-blocking communications overlapping.

5.4.4. MPJ Kernel and Application Benchmarking

The impact of the use of F-MPJ on representative MPJ benchmarks is analyzed

in this subsection. Two kernels and one application from the JGF Benchmark

Suite have been evaluated: Crypt, an encryption and decryption kernel; LUFact,

an LU factorization kernel; and MolDyn, a molecular dynamics N-body parallel

simulation application. These MPJ codes have been selected as they show very

poor scalability with MPJ/Ibis and MPJ Express. In fact, Section 2.5 presented a

performance evaluation of JGF kernels, obtaining speedups with 32 processes below

5.4 F-MPJ Performance Evaluation 129

4 for LUFact (see Figure 2.5) and below 8 for Crypt (results not shown in Section 2.5

for conciseness purposes) using up to 32 processors. Hence, these are target codes

for the evaluation of F-MPJ performance and scalability improvement.

Figure 5.10 presents Crypt and LUFact speedups. Regarding Crypt, F-MPJ

clearly outperforms MPJ/Ibis and MPJ Express, up to 330%, in a scenario where

the data transfers (byte arrays) do not involve serialization. Thus, both MPJ/Ibis

and MPJ Express take advantage of the use of up to 32 cores. LUFact broadcasts

double and integer arrays for each iteration of the factorization method. Therefore,

the serialization overhead is important for this code. Thus, the use of F-MPJ has a

higher impact on performance improvement than for Crypt. Figure 5.10 (bottom)

shows that F-MPJ significantly outperforms MPJ/Ibis and MPJ Express for LUFact,

up to eight times. This performance increase is due to the use of scalable algorithms

and the serialization avoidance. Furthermore, F-MPJ presents its best results on

128 cores, whereas MPJ/Ibis and MPJ Express obtain their best performance on 16

and 8 cores, respectively.

The MolDyn application consists of six Allreduce sum operations for each it-

eration of the simulation. The transferred data are integer and doubles arrays, so

F-MPJ can avoid serialization overhead. For its evaluation an enlarged size C ver-

sion has been used (it processes a multidimensional double array of 18x18x18x4

values). Figure 5.11 presents MPJ speedups, where F-MPJ outperforms MPJ/Ibis

and MPJ Express up to 3.5 times. This application presents higher speedups than

the kernels of Figure 5.10 as it is a less communication-intensive code, and the three

libraries use scalable Allreduce algorithms (see Table 5.1). However, the serialization

overhead negatively affects MPJ/Ibis and MPJ Express MolDyn performance.

The use of F-MPJ increases significantly MPJ kernels and applications perfor-

mance, especially for communication-intensive codes. Moreover, the scalable F-MPJ

performance allows MPJ codes to take advantage of the use of a large number of

cores (up to 128 in our experiments), a significantly higher value than for MPJ/Ibis

and MPJ Express.

130 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores (npes)

 JGF Crypt Kernel - Size C

F-MPJ
MPJ/Ibis
MPJ Express

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores (npes)

 JGF LUFact Kernel - Size C

F-MPJ
MPJ/Ibis
MPJ Express

Figure 5.10: Speedups of Crypt and LUFact JGF kernels

5.5 Chapter 5 Conclusions 131

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores (npes)

 JGF MolDyn Application - Size C

F-MPJ
MPJ/Ibis
MPJ Express

Figure 5.11: Speedups of JGF MolDyn application

5.5. Chapter 5 Conclusions

This chapter has presented F-MPJ, a scalable and efficient Java message-passing

library. The increasing interest in Java parallel solutions on multi-core clusters de-

mands efficient communication middleware. F-MPJ pursues to satisfy this need

obtaining scalable Java performance in parallel systems. Among its main contribu-

tions, F-MPJ:

Takes advantage of the efficient integration of iodev (see Section 4.2) and JFS

(see Section 3.1) into the implementation of the MPJ primitives, obtaining

efficient non-blocking communication and high-speed multi-core clusters sup-

port.

Increases MPJ communications performance (obtains lower start-up latencies

and higher aggregated bandwidths) through an extensive use of communica-

tions overlapping.

132 Chapter 5. Fast MPJ: Efficient Java Message-Passing Library

Implements several algorithms per collective primitive, allowing their selection

at runtime.

F-MPJ has been evaluated on an InfiniBand multi-core cluster, outperforming

significantly two representative MPJ libraries: MPJ Express and MPJ/Ibis. Thus,

the micro-benchmarking results showed a performance increase up to 60 times for

F-MPJ. Moreover, the subsequent kernels and application benchmarking obtained

speedup increases of up to seven times for F-MPJ on 128 cores, depending on the

communication intensiveness of the analyzed MPJ benchmarks. F-MPJ improves

significantly MPJ performance and scalability, allowing Java message-passing codes

that previously increased their speedups only up to 8-16 cores to take advantage of

the use of 128 cores.

Chapter 6

Implementation and Performance

Evaluation of Efficient MPJ

Benchmarks

This chapter presents the development of efficient Message-Passing in Java (MPJ)

parallel benchmarks and the analysis of their performance on two representative clus-

ters. These tasks have also been useful for gathering good programming practices

for performance in Java for HPC, whose impact on the overall results can be sig-

nificant. The codes selected for being developed and evaluated have been the NAS

Parallel Benchmarks (NPB) [71], the standard suite for parallel benchmarking, due

to their representativeness and usefulness. The availability of different Java parallel

programming libraries, such as MPJ libraries and RMI-based middleware, such as

ProActive [5, 77], eases Java’s adoption for HPC. In this scenario, a comparative

evaluation of Java for parallel computing against native solutions is required in or-

der to assess its benefits and disadvantages. Thus, an implementation of the NPB

is provided for Message-Passing in Java, named the NPB-MPJ suite. The design,

implementation and performance optimization of this suite are covered in detail in

this chapter.

The structure of this chapter is as follows: Section 6.1 introduces the related

work in Java NPB implementations. Section 6.2 describes the design, implementa-

tion and optimization of NPB-MPJ, our NPB implementation for MPJ. Moreover,

133

134 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

the study of the impact on performance of the optimization techniques used in

NPB-MPJ, from which Java HPC applications can potentially benefit, is also dis-

cussed. Comprehensive benchmark results from an NPB-MPJ evaluation on two

representative multi-core clusters, with InfiniBand and Gigabit Ethernet intercon-

nection networks, are shown in Section 6.3. As JVM technology and MPJ libraries

are actively evolving it is important to present an up-to-date evaluation of their per-

formance. Moreover, additional NPB results from different Java and native parallel

libraries (Java threads, ProActive, MPI and OpenMP) are also shown for compar-

ison purposes. The main conclusion obtained from this comparative performance

evaluation is that MPJ codes can outperform MPI, OpenMP and Java threads scal-

ability. Therefore, MPJ libraries, especially F-MPJ, are an alternative to native

languages (C/Fortran) for parallel programming on multi-core systems as it is pos-

sible to obtain scalable performance while taking advantage of the Java features.

This conclusion together with a summary of the main contributions of this Chapter

is presented in Section 6.4.

6.1. NAS Parallel Benchmarks in Java

The NAS Parallel Benchmarks (NPB) [6, 71] consist of a set of kernels and

pseudo-applications taken primarily from Computational Fluid Dynamics (CFD)

applications. These benchmarks reflect different kinds of computation and commu-

nication patterns that are important across a wide range of applications. Therefore,

they are the de facto standard in parallel performance benchmarking.

The NPB suite consists of the CG, EP, FT, IS, MG and DT kernels. Among

the pseudo-applications, SP has been selected as representative benchmark (due

to its higher scalability than the other pseudo-applications) for its implementation

and evaluation in this Chapter. The CG kernel is a sparse iterative solver that tests

communications performance in sparse matrix-vector multiplications. The EP kernel

is an embarrassingly parallel code without significant communications that assesses

the floating point performance of the system. The FT kernel performs a series of

3-D FFTs on a 3-D mesh, and tests aggregated communication performance. The IS

kernel is a large integer sort that evaluates both integer computation performance

and the aggregated communication throughput. MG is a simplified multigrid kernel

6.1 NAS Parallel Benchmarks in Java 135

that communicates both with contiguous and remote processes (e.g., in a multi-

core cluster MG performs both intra- and inter-node communications). The DT

(Data Traffic) kernel operates with graphs and evaluates communication throughput.

The SP (Scalar Pentadiagonal) pseudo-application is a simulated CFD application.

This wide range of implemented benchmarks assures a broad performance analysis.

Table 6.1 summarizes the main characteristics of these benchmarks, together with

the number of Source Lines Of Code (SLOC) of their implementation with Message-

Passing in Java (our NPB-MPJ suite).

There are implementations of the NPB for the main parallel programming lan-

guages and libraries, such as MPI (from now on NPB-MPI), OpenMP (from now

on NPB-OMP), High Performance Fortran (HPF), Unified Parallel C (UPC), and

Co-Array Fortran. Regarding Java, currently there are three NPB implementa-

tions, apart from our NPB-MPJ suite, namely the multithreaded [71] (from now

on NPB-JAV), the ProActive [3, 4] (from now on NPB-PA), and the Titanium [27]

implementations. However, these three developments present several drawbacks in

order to evaluate the capabilities of Java for parallel computing. NPB-JAV is the

Java multi-threaded implementation of the NPB using a master-slave paradigm. It

is limited to shared memory systems and thus its scalability is lower than the one

provided by distributed memory architectures. With respect to NPB-PA, although

it relies on a distributed memory programming model, the use of an inefficient com-

munication middleware such as RMI limits its performance scalability. Titanium is

an explicitly parallel dialect of Java, so its portability is quite limited. Moreover, as

the reference implementation of the NPB is written in MPI, NPB-MPJ allows the

comparison of Java and native languages within the target programming model of

the NPB, the message-passing paradigm.

Therefore, MPJ is a highly interesting option to implement the NPB suite in

Java. The use of MPJ allows the comparative analysis of the existing MPJ libraries

and the comparison between Java and native message-passing performance, using

NPB-MPJ and NPB-MPI, respectively. Moreover, it also serves to compare with

the performance of different Java parallel libraries that have implemented the NPB,

such as Java multithreading (NPB-JAV) and ProActive (NPB-PA).

Previous efforts on the implementation of NPB for MPJ have been associated

with the development of MPJ libraries. Thus, JavaMPI [37] included EP and IS

136 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

kernels, the ones with the lowest number of Source Lines Of Code (SLOC). Then,

the CG kernel was implemented for MPJava [78]. Finally, P2P-MPI [36] also imple-

mented the EP and IS kernels.

Another motivation for the implementation of the NPB-MPJ suite is the current

lack of parallel benchmarks in Java. The most noticeable related project is the

Java Grande Forum (JGF) benchmark suite [17] that consists of: (1) sequential

benchmarks, (2) multithreaded codes, (3) MPJ benchmarks, and (4) the language

comparison version, which is a subset of the sequential benchmarks translated into

C. However, the JGF benchmark suite does not provide the MPI counterparts of the

MPJ codes, allowing only the comparison among MPJ libraries and Java threads.

Moreover, its codes are less representative of HPC kernels and applications than

those of the NPB suite.

NPB-MPJ enhances these previous efforts implementing an extensive number of

benchmarks, shown in Table 6.1. An approximate idea of the implementation ef-

fort carried out in NPB-MPJ can be estimated using the SLOC metric. NPB-MPJ

has, as a whole, approximately 11,000 SLOC. Moreover, NPB-MPJ uses the most ex-

tended Java message-passing API, the mpiJava API (used by mpiJava, MPJ Express

and F-MPJ, see Table 1.2). Finally, it provides support for automating the bench-

marks execution and the graphs and performance reports generation. NPB-MPJ

has significantly increased the availability of standard Java parallel benchmarks.

Table 6.1: NPB-MPJ Benchmarks Description

Name Operation
Communication

SLOC
Kern

el
Appl

ic.
intensiveness

CG Conjugate Gradient Medium 1000 X
EP Embarrassingly Parallel Low 350 X
FT Fourier Transformation High 1700 X
IS Integer Sort High 700 X

MG Multi-Grid High 2000 X
DT Data Traffic High 1000 X
SP Scalar Pentadiagonal Medium 4300 X

6.2 NPB-MPJ: NAS Parallel Benchmarks for MPJ 137

6.2. NPB-MPJ: NAS Parallel Benchmarks for MPJ

NPB-MPJ is the implementation of the standard NPB suite for MPJ performance

evaluation. This suite facilitates: (1) the comparison among MPJ implementations;

(2) the evaluation of MPJ against other Java parallel libraries (e.g., RMI-based or

Java threads); (3) the assessment of the performance gap between MPJ and MPI;

and finally, (4) the development of efficient Java code as it provides a compilation

of some good programming practices for high performance in Java. This section

presents the design of NPB-MPJ, the implementation of an initial version and the

subsequent performance optimization.

6.2.1. NPB-MPJ Design

The NPB-MPJ design is based on the NPB-MPI, which are all MPI Fortran

codes except IS and DT, which are MPI C kernels. The use of the message-passing

programming model determines that NPB-MPJ and NPB-MPI share several char-

acteristics, and thus NPB-MPJ design has followed the SPMD (Single Program

Multiple Data) paradigm, the workload distribution among the processes and the

communication primitives used in NPB-MPI. Moreover, the NPB-JAV implementa-

tion (with Java threads) has also served as basis for the NPB-MPJ design. Although

the master-slave paradigm, used in NPB-JAV, has not been selected for NPB-MPJ,

its Java-specific solutions, such as the complex numbers support or the timing meth-

ods, have been useful for NPB-MPJ.

An important issue tackled in NPB-MPJ has been the choice between a “pure”

object-oriented design or an imperative approach through the use of “plain objects”.

In order to maximize NPB-MPJ performance, the “plain objects” design has been

chosen as it reduces the overhead of the “pure” object-oriented design (up to 95%).

Thus, each benchmark uses only one object instead of defining an object per each

element of the problem domain (e.g., a data structure with specific operations and

complex numbers). The overhead derived from an intensive use of object orientation

in numerical codes has been recognized as significant in the related literature [66].

An example of this design decision is the complex numbers support in NPB-MPJ.

As Java does not have a complex number primitive datatype and the NPB use

138 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

them thoroughly, NPB-MPJ has implemented its own support, similar to the one

implemented in NPB-JAV. Thus, a complex number is implemented as a two-element

array (real and imaginary parts). This approach presents less overhead than the

implementation of complex number objects, which trades off a clear design and

the encapsulation features for higher access overhead, especially when dealing with

arrays of complex number objects.

6.2.2. NPB-MPJ Implementation

The NPB-MPJ suite consists of the CG, EP, FT, IS, MG and DT kernels and the

SP pseudo-application. A brief description of these benchmarks has been presented

in Table 6.1. The implementation of the benchmarks has presented some common

issues, shared among all the codes, such as the handling of the Java arrays.

The NPB handle arrays of up to five dimensions. In native languages it is pos-

sible to define multidimensional arrays whose memory space is contiguous, unlike

Java, where an n-dimensional array is defined as an array of n− 1 dimensional ar-

rays. The main drawback for NPB-MPJ is the lack of support for the direct send of

logically contiguous elements in multidimensional arrays (e.g., two consecutive rows

from a C two-dimensional array). In MPI it is possible to communicate contigu-

ous memory regions. In MPJ this has to be done through multiple communication

calls or buffering the data in a one-dimensional array in order to perform a single

communication. The latter is the option initially implemented in NPB-MPJ, try-

ing to minimize the communication overhead. However, this technique reveals an

important buffering overhead.

6.2.3. NPB-MPJ Optimization

Once a fully functional NPB-MPJ implementation has been developed, several

optimizations have been applied to the benchmark codes, such as array flattening

and some JVM JIT compiler-based optimizations.

6.2 NPB-MPJ: NAS Parallel Benchmarks for MPJ 139

Array Flattening. The use of multidimensional arrays in Java presents an

important overhead which can be reduced through array flattening optimization,

which consists of the mapping of a multidimensional array in a one-dimensional

array. This optimization has been implemented in NPB-MPJ, and thus only one-

dimensional arrays are used. In order to reference a concrete element a posi-

tioning method that maps an n-dimensional location into its corresponding one-

dimensional position is required. NPB-MPJ has implemented this mapping func-

tion so that adjacent elements in the C/Fortran versions are contiguous in Java,

in order to provide an efficient access to the data. A particular use of the ar-

ray flattening in NPB-MPJ has been applied to the complex number arrays, re-

placing the two-dimensional array (complexNum arr[2][N]) for a one-dimensional

array (complexNum arr[2 ∗ N]). In this case, in order to exploit the data lo-

cality, the positioning method maps a complex number to contiguous positions

(complexNum arr[x] and complexNum arr[x + 1]). Therefore, the complex num-

bers support is direct in MPJ communications. The array flattening has yielded

significant performance increase, not only in avoiding data buffering and reducing

the number of communications calls, but also in accessing the array elements.

JVM JIT Compiler-based Optimization. The JVM JIT compiler-based

optimizations exploit the operation of the JVM. The Java bytecode can be either

interpreted or compiled for its execution by the JVM, depending on the number

of times the method to which the bytecode belongs is invoked. As the bytecode

compilation is an expensive operation that significantly increases the runtime, it is

reserved for heavily-used methods. However, at JVM start-up it is not always pos-

sible to find out these most frequently used methods. Therefore, the JVM gathers,

at runtime, information about methods invocation and their computational cost,

in order to guide the compiler optimization of the JVM JIT compiler. The JIT

compiler compiles Java bytecode to native code or recompiles native code applying

further optimizations in order to minimize the overall runtime of a Java application.

Its operation is guided by the profiling information of the executed methods and the

JVM policy.

Thus, regarding JIT compiler operation, two paradoxes generally occur in Java

applications, and in particular in NPB-MPJ: (1) an optimized code yields worse

performance than an unoptimized code, and (2) a code with many invocations to

140 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

simple methods runs faster than a code with all the methods inlined. In the first

case, the JIT compiler optimizes more aggressively the methods that fall beyond a

certain load threshold. In NPB-MPJ the manual code optimization of some methods

resulted in initially lower execution time than the first invocation of the unoptimized

methods. Therefore, the JIT compiler does not optimize aggressively their code and

eventually the overall execution time is higher than the previous version. In the

second case, a Java application with multiple simple methods that are constantly

invoked run faster than a Java code with less methods and whose method invocations

are inlined. The simple methods are more easily optimized, in terms of compilation

time and in quality of the generated code. Moreover, the JVM gathers more runtime

information of methods constantly invoked, allowing a more effective optimization

of the target bytecode.

NPB-MPJ takes advantage of the JIT compiler operation. Thus, in general, the

code has not been manually optimized, relying on the JIT compiler for this task.

However, there are few exceptions such as the use in the innermost loops of bit

shifting operations instead of integer multiplication or divisions by powers of two,

and the optimization of complex numbers operations in the FT kernel. Another

exception is the use of the relative positioning. Instead of accessing to contiguous

elements every time through global positioning method calls, the location of the first

element as base position (loop invariant) is used and then contiguous elements are

accessed with their corresponding offsets to the base position. This optimization is

only applied in the innermost loops.

Moreover, the benchmark codes have been refactored towards simpler and in-

dependent methods. More concretely, simple methods for the multiplication and

division of complex numbers, and for mapping elements from multidimensional to

one-dimensional arrays have been implemented, rather than inlining these operations

in the code in order to avoid the method invocation overhead. The performance im-

provement for NPB-MPJ of the use of simpler and independent methods has been

quite significant, especially for the SP pseudo-application, for which up to 2800%

performance increase has been achieved. Furthermore, the presented performance

optimization techniques are easily applicable to other codes, whose performance is

expected to be greatly improved.

6.3 NPB-MPJ Performance Evaluation 141

6.3. NPB-MPJ Performance Evaluation

6.3.1. Experimental Configuration

An evaluation of Java for parallel programming using NPB-MPJ has been carried

out on two InfiniBand multi-core clusters. The use of the same high-speed network,

InfiniBand, as representative interconnect on both systems allows the comparison of

the performance results that two quite different platforms can achieve, independently

of the interconnection technology. The first testbed is the same as that used in the

iodev evaluation (see Section 4.3), the x86-64 (eight dual-processor nodes Pentium

IV Xeon 5060 dual-core) cluster. The only changes are the addition of InfiniBand

dual 4X NICs (16 Gbps) with OFED 1.4, the OS, CentOS 5.1, the C compiler, Intel

C/Fortran compiler 11.0.074 with the flag -fast, and the Intel MPI implementation

(version 3.2.0.011) with InfiniBand support. Moreover, MPICH2 1.0.7 with the

default communication channel (TCP/IP sockets) has also been used on Gigabit

Ethernet for comparative purposes. The performance results on this system have

been obtained using one core per node, except for 16 and 32 processes, for which

two and four cores per node, respectively, have been used.

The second system is the Finis Terrae supercomputer, used in the F-MPJ eval-

uation (see Section 5.4.1). The only changes are the use of more recent versions

of OFED (1.3) and C/Fortran compilers (Intel C/Fortran compilers 11.0.074). Re-

garding the JVM, Sun has released on March 2009 its JVM 1.6 update 13 for Linux

IA64, but preliminary tests have shown its poorer NPB-MPJ performance than the

JRockit 5.0, so the Sun JVM has not been included in the current evaluation. The

performance results from this system have been obtained using up to 8 cores per

node. Thus, the number of nodes used is dcores/8e.

Moreover, for comparative purposes, a shared memory system, an HP Integrity

Superdome with 128 Itanium2 Montvale cores at 1.6 GHz and 1 TB RAM, has been

used. This system is integrated in the Finis Terrae and its architecture is similar

to the aggregation of 8 HP Integrity rx7640 nodes (see Section 5.4.1), but using 6

crossbars for interconnecting the 16 cells (thus 8 cores per cell) instead of InfiniBand.

The evaluated MPJ libraries are an internal release of F-MPJ with JFS 0.3.1,

MPJ Express 0.27 and mpiJava 1.2.5x. It has been used the NPB-MPI/NPB-OMP

142 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

version 3.3 and the NPB-JAV version 3.0. The ProActive version used is the 4.0.2,

which includes its own implementation of the NPB (NPB-PA). The performance

results considered in this work have been derived from the sample of several iterations

of the main solver method of the benchmark, ignoring the initialization times and the

previous warm-up iterations. The metric that has been considered is the speedup.

Moreover, Classes A and B have been used as NPB problem sizes, both on the x86-

64 cluster and on the Finis Terrae, as their performance is highly influenced by the

efficiency in communications, both the network interconnect and the communication

library. Therefore, the differences among parallel libraries can be appreciated more

easily. Additionally, Class C results have been obtained on the Finis Terrae in

order to evaluate a heavier workload on a significant number of cores (256). Finally,

NPB performance has been measured up to the number of available cores on the

x86-64 cluster (32), on shared memory up to the number of available cores on the

Superdome (128), and finally, up to 128 cores on the rx7640 nodes of the Finis

Terrae, except for Class C NPB workload, that has been run on up to 256 cores.

6.3.2. Analysis of the NPB Results

The use of the speedup as measure of the performance obtained by different

libraries for parallel programming presents the advantage of showing clearly the

scalability of the evaluated libraries, but can hide the actual performance of the

benchmarks. Figures 6.1 and 6.2 show a comparison of the performance of several

implementations of the NPB on the x86-64 cluster and the Finis Terrae, respectively.

The results are shown in terms of speedup relative to the MPI library (using a partic-

ular compiler), Runtime(NPB-MPI benchmark)/Runtime(NPB benchmark). Thus,

a value higher than 1 means than the evaluated benchmark achieves higher perfor-

mance (shorter runtime) than the NPB-MPI benchmark, whereas a value lower than

1 means than the evaluated kernel shows poorer performance (longer runtime) than

the NPB-MPI benchmark. The NPB implementations selected for evaluation are

the MPI one (NPB-MPI), NPB-MPJ (evaluated with three different MPJ libraries:

mpiJava, MPJ Express and F-MPJ), ProActive (NPB-PA), Java threads (NPB-

JAV) and the OpenMP implementation (NPB-OMP). The benchmarks selected for

evaluation in this section are CG, EP, FT, IS, MG and SP (see Table 6.1). The DT

kernel has not been selected as it is a recent benchmark (introduced in NPB v. 3.2)

6.3 NPB-MPJ Performance Evaluation 143

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

CG EP FT IS MG SP

S
p

e
e
d

u
p

 R
e
la

ti
v
e
 t

o
 M

P
I
(G

N
U

 C
o

m
p

.)

NPB Class B Performance on 1 core (x86-64 cluster)

MPI (GNU Comp.)
MPI (Intel Comp.)
MPJ (F-MPJ)
ProActive
Java Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CG EP FT IS MG SP

S
p

e
e
d

u
p

 R
e
la

ti
v
e
 t

o
 M

P
I
(I

n
te

l
C

o
m

p
.)

NPB Class B Performance on 32 cores (InfiniBand x86-64 cluster)

MPI (Intel Comp.)
MPJ (mpiJava)
MPJ (MPJ Express)
MPJ (F-MPJ)

Figure 6.1: NPB relative performance on the x86-64 cluster

144 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

CG EP FT IS MG SP

S
p

e
e
d

u
p

 R
e
la

ti
v
e
 t

o
 M

P
I
(G

N
U

 C
o

m
p

.)

NPB Class C Performance on 1 core (Finis Terrae)

MPI (GNU Comp.)
MPI (Intel Comp.)
OpenMP (Intel Comp.)
MPJ (F-MPJ)
Java Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CG EP FT IS MG SP

S
p

e
e
d

u
p

 R
e
la

ti
v
e
 t

o
 M

P
I
(I

n
te

l
C

o
m

p
.)

NPB Class C Performance on 256 cores (InfiniBand Finis Terrae)

MPI (Intel Comp.)
MPJ (mpiJava)
MPJ (MPJ Express)
MPJ (F-MPJ)

Figure 6.2: NPB relative performance on the Finis Terrae

6.3 NPB-MPJ Performance Evaluation 145

implemented only in NPB-MPJ and NPB-MPI. Moreover, it has special resource

requirements (e.g., a high number of processes) that prevent an exhaustive analysis

of its scalability. The comparative analysis of their performance in terms of speedup

can assist the discussion on the NPB scalability presented next in Subsections 6.3.3-

6.3.5.

With respect to the figures, the graphs at the top present the NPB results using

one core, whereas the bottom graphs present the NPB performance using 32 and 256

cores on the x86-64 system and the Finis Terrae, respectively. The workloads used

are representative of the computational power of the testbeds: Class B for the x86-64

cluster (NPB Class C workload on one core exceeds the available memory of a single

node of this cluster), and Class C workload, commonly used in supercomputers per-

formance evaluation, on the Finis Terrae. The results on one core mainly show the

performance of a particular NPB implementation and the compiler/JVM used. The

performance on 32/256 cores serves to evaluate the impact of MPJ communication

overhead on the overall performance. In this case, it must be taken into account

that all MPJ libraries obtain quite similar results on one core (in this scenario the

influence of message-passing overhead on performance is minimal and only F-MPJ

results are shown for clarity purposes). Java Threads EP and ProActive SP results

are missing from Figure 6.1 as these kernels are not implemented in their respective

NPB suites (NPB-JAV and NPB-PA). Moreover, MPJ Express MG and mpiJava

SP results are also missing from Figure 6.2 (bottom) due to runtime issues with an

Allreduce call that prevent these benchmarks from being run.

The NPB-MPI results have been obtained using the Intel MPI and HP MPI

libraries for the x86-64 cluster and the Finis Terrae, respectively, with two differ-

ent compilers: GNU compiler (version 4.2.3 for the x86-64 cluster and 4.1.2 for the

Finis Terrae), and the Intel compiler version 11.0.074. The GNU results are shown

for one core in order to support the hypothesis that Java performance heavily de-

pends on the compiler used to build the JVM. As the GNU compiler was used for

building both JVMs (the publicly available Sun and JRockit JVMs for Linux) used

in this evaluation, Java performance is limited by the poorer performance of the

GNU compiler compared to Intel compiler results, especially on the Finis Terrae.

The availability of JVMs built with the Intel compiler would significantly improve

this scenario. From now on only the results of the NPB-MPI built with the Intel

146 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

compiler are presented as they usually show better performance (especially on the

Finis Terrae) than the NPB-MPI built with the GNU compiler.

The most remarkable conclusions that can be obtained from the analysis of

Figures 6.1 and 6.2 are: (1) Java results (MPJ, ProActive and Java threads) on one

core are usually slightly lower than those of GNU-built benchmarks, although it is

possible that Java benchmarks outperform native code (EP on the x86-64 cluster),

or, on the contrary, obtain around half of the native performance (see FT and SP

results on the x86-64 cluster and EP on the Finis Terrae); and (2) MPJ libraries

usually achieve higher relative performance, compared to MPI (Intel Comp.), on

32/256 cores than on one core, especially when Java relative performance on one

core is low. MPJ implementations can obtain up to [0.7 − 1.1] of the performance

of NPB-MPI benchmarks (except for IS) built with the Intel compiler on the x86-64

cluster with 32 cores, whereas on the Finis Terrae, using 256 cores, MPJ benchmarks

increase significantly their relative performance, compared to the results on one core.

Thus, MPJ libraries help bridge the gap between Java and native code performance.

6.3.3. NPB-MPJ Scalability on Gigabit Ethernet

Figures 6.3 and 6.4 show NPB-MPI, NPB-MPJ and NPB-PA speedups on the

x86-64 cluster using the Gigabit Ethernet network. The NPB-MPJ results have

been obtained using three MPJ libraries: mpiJava, MPJ Express and F-MPJ, in

order to compare them.

Regarding NPB Class A results (shown in Figure 6.3), CG shows poor speedups,

especially for Java, both for MPJ and ProActive (speedups below 3). However, EP

presents almost linear speedups, as it is an “Embarrassingly Parallel” kernel, with

few communications that have low impact on the overall benchmark performance.

In this scenario NPB-MPJ libraries achieve almost the same speedups of NPB-MPI,

whereas the NPB-PA implementation has lower speedups as its communications are

based on RMI, which presents high overhead. The impact on ProActive of the lack

of performance of RMI can be also observed in other kernels (e.g., CG).

6.3 NPB-MPJ Performance Evaluation 147

 32 16 8 4 2 1
 0

 2

 4

 6

S
p

e
e
d

u
p

Number of Cores

 CG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

S
p

e
e
d

u
p

Number of Cores

 EP (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

S
p

e
e

d
u

p

Number of Cores

 FT (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

S
p

e
e

d
u

p

Number of Cores

 IS (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e
d

u
p

Number of Cores

 MG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

2516941
 0

 2

 4

 6

 8

 10

 12

 14

S
p

e
e
d

u
p

Number of Cores

 SP (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

Figure 6.3: NPB Class A results on Gigabit Ethernet

148 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

S
p

e
e
d

u
p

Number of Cores

 CG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

S
p

e
e
d

u
p

Number of Cores

 EP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

S
p

e
e

d
u

p

Number of Cores

 FT (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

S
p

e
e

d
u

p

Number of Cores

 IS (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e
d

u
p

Number of Cores

 MG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA

2516941
 0

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e
d

u
p

Number of Cores

 SP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

Figure 6.4: NPB Class B results on Gigabit Ethernet

6.3 NPB-MPJ Performance Evaluation 149

Within FT kernel results, all Java libraries, except MPJ Express, overcome the

scalability of MPI. The reason is the poor performance of Java on one core (see

top graph in Figure 6.1), especially using ProActive, whose runtime is 2-3 times

higher than that of MPI on one core. This allows Java FT implementations to

benefit from the parallelization of a longer-running code, as the relative overhead of

the communications is smaller than in the NPB-MPI FT. Regarding MPJ libraries,

mpiJava usually shows the best NPB performance, followed by F-MPJ, and finally

MPJ Express presents the lowest speedups among these libraries. However, F-MPJ

achieves the highest performance for FT.

As IS is a quite communication-intensive code, its speedups are extremely low. In

fact, only MPI, which shows the best performance, exceeds slightly a speedup of 2.

The MG kernel shows quite poor NPB-PA speedups, and poor F-MPJ performance

on 16-32 cores. For this kernel mpiJava shows the best performance, followed by

MPI.

The NPB-MPJ implementation of the SP pseudo-application (there is no NPB-

PA implementation for this benchmark) obtains significant speedups, higher than

those of MPI, but this is explained by the poor Java performance for this code on

one core (see top graph in Figure 6.1). In this case, MPJ libraries show similar

performance among them. A particular feature of SP is that it requires a square

number of processes (1, 4, 9, 16, 25...). On the x86-64 cluster one core per node up

to 9 processes, two cores per node for 16 processes and three cores per node for 25

processes are used.

The analysis of NPB Class B results (see Figure 6.4) can be done comparatively

in terms of Class A performance. Thus, CG results are significantly better, obtaining

with MPI the best performance. The only relevant change in EP is that its ProActive

implementation presents a higher speedup on 32 cores (a speedup of 28), compared

to its Class A speedup on 32 cores (20). The increase of NPB-PA performance is

also significant for FT, where ProActive achieves the highest speedup on 32 cores.

The mpiJava library achieves again the highest performance for IS, whereas MG

results are almost similar to those obtained with Class A. The heavier workload in

SP Class B allows this benchmark to take advantage of the use of 25 cores for all

libraries except MPJ Express; with Class A the best performance was obtained on

16 cores, showing lower speedups on 25 cores.

150 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

The analysis of these results can also be presented in terms of the three main

evaluations that can be carried out with NPB-MPJ (mentioned in the first para-

graph of Section 6.2). The first one is the comparison among MPJ implementations.

The three evaluated libraries behave similarly only for EP, due to the computation-

intensive nature of this kernel, whereas they present important variations for the

remaining benchmarks. These performance differences between mpiJava, MPJ Ex-

press and F-MPJ are mainly explained by their communication efficiency, which is

usually higher for mpiJava as it relies on a native MPI library (MPICH2 in our

testbed) rather than on “pure” Java communications. CG, IS and MG results

clearly confirm this point, where mpiJava outperforms both MPJ Express and F-

MPJ. However, F-MPJ also obtains the best MPJ performance for FT Class A and

for SP Class B. The use of the efficient communication protocols developed in this

Thesis (JFS and iodev) and F-MPJ communication primitives allows to obtain sig-

nificant performance benefits without the drawbacks of mpiJava, such as its reduced

portability and its runtime issues due to the instability of the JVM, compromised

with the access to the native MPI code through JNI. Finally, MPJ Express achieves

good results on SP, thanks to the efficient non-blocking support provided by Java

NIO.

The second evaluation that can be performed is the comparison of MPJ against

other Java parallel libraries, in this case ProActive. ProActive is an RMI-based

middleware, and for this reason its performance is usually lower than that of MPJ

libraries, whose communications are based on MPI or on Java sockets. In fact,

the results show that the scalability of NPB-PA is worse than that of NPB-MPJ.

However, ProActive presents important features such as: development and runtime

environments, profiling tools, fault tolerance and wide interoperability, being a more

complete and stable middleware than the MPJ libraries evaluated.

The third analysis that has been done is the comparison of MPJ against native

MPI in terms of speedup. The results presented show that MPJ scalability is higher

than the MPI one, except for CG. The reason for these higher speedups is the

reduced Java performance on one core, which allows MPJ or ProActive to achieve

good speedups as the load of the benchmarks is heavier. Thus, MPJ and ProActive

middleware help bridge the gap between Java and native codes.

6.3 NPB-MPJ Performance Evaluation 151

6.3.4. NPB-MPJ Scalability on InfiniBand (x86-64 Cluster)

Figures 6.5 and 6.6 show NPB-MPI and NPB-MPJ speedups on the x86-64 clus-

ter using the high-speed InfiniBand network. The NPB-PA have not been evaluated,

as ProActive has not direct support on InfiniBand and the efforts carried out to use

IPoIB (IP emulation over InfiniBand) as transport layer in this testbed were unsuc-

cessful. The main motivation of this subsection is the assessment of the impact on

MPI and MPJ libraries of the use of a high-speed interconnect.

Regarding NPB Class A results (see Figure 6.5), NPB-MPI shows better scala-

bility than using Gigabit Ethernet, especially for CG and IS, whereas MPJ perfor-

mance increases significantly FT and IS results. With respect to the performance

graphs, it can be observed that the three MPJ libraries present different behavior.

Thus, MPJ Express uses IPoIB, obtaining small performance increases compared

to MPJ Express on Gigabit Ethernet. F-MPJ relies on the InfiniBand support of

JFS, implemented on Sockets Direct Protocol (SDP), and thus achieves much higher

speedups. Finally, mpiJava relies on the MPI support on InfiniBand, in this case

implemented on IBV (InfiniBand Verbs).

The NPB Class B results on InfiniBand (see Figure 6.6) increase significantly

Gigabit Ethernet speedups, obtaining almost twice their performance for CG, FT

and IS. Regarding the message-passing library that obtains the highest performance

per benchmark, MPI obtains the best results for CG, EP and IS, F-MPJ maximizes

FT and SP performance, and finally, mpiJava gets the highest speedups for MG.

The message-passing library that experiences the lowest performance increase is

MPJ Express, which obtains the poorest performance as it relies on IPoIB support.

The reason for obtaining, in general, relatively low speedups (usually <18 on 32

cores, except for EP and SP Class B) is that the workloads considered (Classes A

and B) are relatively small, although this allows a more thorough analysis of the

scalability differences among message-passing libraries on a reduced number of cores

(32). In this scenario (small workloads) the impact on performance of the high start-

up latencies of Gigabit Ethernet or IPoIB is important. Thus, although a message-

passing library can take advantage of shared memory transfers, a Gigabit Ethernet

network or an IPoIB device represents the main performance bottleneck, especially

when several processes are used per cluster node (higher network contention).

152 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

S
p

e
e
d

u
p

Number of Cores

 CG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

S
p

e
e
d

u
p

Number of Cores

 EP (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e

d
u

p

Number of Cores

 FT (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

S
p

e
e

d
u

p

Number of Cores

 IS (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
p

e
e
d

u
p

Number of Cores

 MG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

2516941
 0

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e
d

u
p

Number of Cores

 SP (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

Figure 6.5: NPB Class A results on InfiniBand (x86-64 cluster)

6.3 NPB-MPJ Performance Evaluation 153

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
p

e
e
d

u
p

Number of Cores

 CG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

S
p

e
e
d

u
p

Number of Cores

 EP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
p

e
e

d
u

p

Number of Cores

 FT (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

S
p

e
e

d
u

p

Number of Cores

 IS (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

 32 16 8 4 2 1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

S
p

e
e
d

u
p

Number of Cores

 MG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

2516941
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

S
p

e
e
d

u
p

Number of Cores

 SP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)

Figure 6.6: NPB Class B results on InfiniBand (x86-64 cluster)

154 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

6.3.5. NPB-MPJ Scalability on InfiniBand and Shared

Memory (Finis Terrae)

Figures 6.7–6.9 show NPB-MPI, NPB-MPJ, NPB-OMP, and NPB-JAV perfor-

mance on the Finis Terrae. NPB-PA results could not be obtained as it was not

possible to have InfiniBand support for ProActive on this system. The distributed

memory programming models (NPB-MPI and NPB-MPJ) have been evaluated on

the rx7640 nodes of the Finis Terrae, using up to 8 cores per node, whereas the

shared memory results (NPB-OMP and NPB-JAV) have been obtained on the HP

Integrity Superdome using up to 128 cores. Although these results are obtained on

two different configurations, all their characteristics, except the memory architecture

(distributed on the rx7640 nodes and shared on the Superdome), are quite similar,

as discussed in Subsection 6.3.1.

Regarding NPB results on the Finis Terrae (see Figures 6.7–6.9), the two MPJ

libraries with high performance InfiniBand support, mpiJava and F-MPJ, achieve

generally the highest speedups. Among them, mpiJava usually outperforms F-MPJ

as its InfiniBand support is provided by HP MPI through its IBV driver, whereas

F-MPJ is based on the JFS implementation on SDP, which shows slightly poorer

performance. However, the other MPJ library, MPJ Express, usually shows the

lowest performance. The high scalability of mpiJava and F-MPJ, significantly higher

than that of MPI, is due to the lower performance of the MPJ benchmarks on

one core (see top graph in Figure 6.2). Thus, a heavier workload can take more

advantage of the message-passing paradigm. With respect to the shared memory

libraries, OpenMP and Java threads, they usually show quite good performance on

a reduced number of cores, usually up to 16-32-64 cores, whereas they generally

obtain poorer speedups when all cores of the Superdome (128) are used. In fact, for

some benchmarks (e.g., FT) the best performance is obtained with OpenMP up to

16-32-64 cores (OpenMP or Java threads obtain their highest scalability using up

to 64 cores), whereas on 128 cores the message-passing libraries achieve the highest

speedups. This behavior can be explained by the fact that only 8 cores per node,

out of 16 cores, are used in the message-passing benchmarking as this combination

maximizes the performance (the results using 8 nodes and 16 cores per node are

lower). Moreover, for message-passing a cluster configuration of 16 nodes and 8

cores per node is more representative than a constellation scenario made up of 8

6.3 NPB-MPJ Performance Evaluation 155

nodes and 16 cores per node. Thus, the InfiniBand network presents less congestion

and only one core per processor is used on average. However, when using 128

cores on the Superdome the two cores of each processor are being used, and the

impact on memory access throughput can be significantly higher. The analysis of

the performance of shared memory solutions shows that OpenMP usually presents

higher speedups than Java threads, except for SP Classes B and C, where NPB-JAV

results overcome NPB-OMP. It is important to note that NPB-JAV does not include

an implementation of the EP kernel.

The NPB Class A performance has been measured using up to 128 cores (see

Figure 6.7). The CG results, quite dependent on the problem workload, show rela-

tively small speedups (below 25), except for mpiJava. The shared memory libraries

present good scalability, but only up to 8 and 16 cores for Java threads and OpenMP,

respectively. The EP kernel, due to its small number of communications, shows a

high parallel efficiency on this system, especially for mpiJava and MPI.

Regarding FT performance, on the one hand, the shared memory implementa-

tions (NPB-JAV and NPB-OMP), obtain the best speedups up to 32 and 64 cores,

respectively. With respect to the performance on 128 cores, F-MPJ and mpiJava

get the best results, increasing slightly OpenMP speedup. MPJ Express, on the

other hand, presents the lowest speedups.

The next kernel, IS, is a communication-intensive kernel whose implementations

obtain poor speedups, especially Java threads and MPJ Express due to its lack

of efficient InfiniBand support. For IS mpiJava achieves the highest speedups on

64 and 128 cores. Regarding MG, mpiJava obtains again the highest scalability.

For this benchmark the shared memory libraries present low speedups, especially

the NPB-JAV implementation, whose results are as low as those of MPJ Express.

Moreover, some of the results of this MPJ library are missing due to a runtime issue

with the Allreduce collective, which was also observed for MG Classes B and C.

With respect to the remaining benchmark, SP, mpiJava results could not be ob-

tained due to a runtime Java-to-MPI wrapping error in an Allreduce call. The SP

pseudo-application requires the use of a square number of cores so its performance

has been evaluated on up to 121 cores for Classes A and B workloads. For this

benchmark the message-passing libraries achieve good speedups, especially the na-

156 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

S
p

e
e
d

u
p

Number of Cores

 CG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 20

 40

 60

 80

 100

 120

S
p

e
e
d

u
p

Number of Cores

 EP (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

S
p

e
e

d
u

p

Number of Cores

 FT (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

S
p

e
e

d
u

p

Number of Cores

 IS (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

S
p

e
e
d

u
p

Number of Cores

 MG (Class A)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

121100816449362516941
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

S
p

e
e
d

u
p

Number of Cores

 SP (Class A)

NPB−MPI
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

Figure 6.7: NPB Class A results on the Finis Terrae

6.3 NPB-MPJ Performance Evaluation 157

tive MPI. However, the super-linear speedups obtained only by MPI (e.g., a speedup

of 33 on 16 cores) suggest that the MPI SP performance on one core is sub-optimal.

Among the MPJ libraries F-MPJ achieves the best results. Regarding the shared

memory implementations, both NPB-OMP and NPB-JAV present low scalability

for Class A when using more than 36 and 64 cores, respectively, as their imple-

mentations have a finer parallel granularity (at loop level) than the message-passing

ones (at subtask level). Thus, the use of an important number of threads with small

workloads can cause significant performance degradation.

The NPB Class B results on the Finis Terrae have been obtained using up to

128 cores (see Figure 6.8). The speedups obtained are usually higher than the ones

of Class A. Nevertheless, most of the Class B results for all implementations of MG

and NPB-JAV FT and IS are below the Class A ones due to the good performance

obtained by these benchmarks on one core.

Regarding the libraries evaluated, mpiJava achieves the best scalability on CG,

EP and MG. However, mpiJava shows runtime problems, apart from the issues

experienced with SP, for IS executions on 16 and 32 cores, so their results are

missing. These problems are not present with the use of F-MPJ, which achieves

good scalability for all benchmarks, especially for FT, IS and SP. With respect to

shared memory libraries, the use of a heavier workload allows OpenMP and Java

threads to take advantage of a higher number of threads. Thus, OpenMP obtained

its highest speedups on 64 cores for CG, and on 128 cores for IS, whereas its best

speedups for Class A were obtained with 16 and 64 cores for CG and IS, respectively.

NPB-JAV also takes advantage of heavier workloads, although their scalability is

usually significantly lower than that of NPB-OMP, except for SP.

The NPB Class C performance has been measured using up to 256 cores (see

Figure 6.9). Regarding mpiJava runtime issues, the heavier the workload, the higher

the number of results missing. Thus, there are missing Class C results for SP, IS

on 16–128 cores, and for MG on 16 and 64 cores. The instability shown by the

mpiJava installation in this system allows F-MPJ to obtain the highest speedups.

Thus, F-MPJ achieves the highest scalability for Class C workload on 256 cores for

CG, FT, MG and SP. With respect to shared memory implementations, NPB-OMP

and NPB-JAV, they show the lowest performance on MG and SP due to the finer

granularity of their codes compared to the message-passing implementations. An

158 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

 128 64 32 16 8 4 2 1
 0

 20

 40

 60

 80

 100

S
p

e
e
d

u
p

Number of Cores

 CG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 20

 40

 60

 80

 100

 120

S
p

e
e
d

u
p

Number of Cores

 EP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

S
p

e
e

d
u

p

Number of Cores

 FT (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
p

e
e

d
u

p

Number of Cores

 IS (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

S
p

e
e
d

u
p

Number of Cores

 MG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

121100816449362516941
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

S
p

e
e
d

u
p

Number of Cores

 SP (Class B)

NPB−MPI
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

Figure 6.8: NPB Class B results on the Finis Terrae

6.3 NPB-MPJ Performance Evaluation 159

 256 128 64 32 16 8 4 2 1
 0

 20

 40

 60

 80

 100

 120

 140

S
p

e
e
d

u
p

Number of Cores

 CG (Class C)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 256 128 64 32 16 8 4 2 1
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

S
p

e
e
d

u
p

Number of Cores

 EP (Class C)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP

 256 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

S
p

e
e

d
u

p

Number of Cores

 FT (Class C)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 256 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

S
p

e
e

d
u

p

Number of Cores

 IS (Class C)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

 256 128 64 32 16 8 4 2 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

S
p

e
e
d

u
p

Number of Cores

 MG (Class C)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

256225196169144121100816449362516941
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

S
p

e
e
d

u
p

Number of Cores

 SP (Class C)

NPB−MPI
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

Figure 6.9: NPB Class C results on the Finis Terrae

160 Chapter 6. Implementation and Evaluation of Efficient MPJ Benchmarks

analysis of the MPI scalability for Class C shows that it is similar to the results

achieved for Class B. However, MPJ Class C speedups are significantly higher than

those of Class B for EP, FT, MG and SP, especially for F-MPJ, but also for MPJ

Express. In fact, MPJ Express only obtains the lowest Class C speedups for FT and

IS (MG is not considered as its results could not be obtained).

The SP results, presented for all square numbers up to 256, show the positive

impact of Java parallel libraries, especially F-MPJ, in bridging the performance gap

between Java and native languages. Thus, NPB-JAV clearly outperforms NPB-OMP

scalability, whereas MPJ Express, running on the emulation layer over InfiniBand

(IPoIB) achieves similar speedups to MPI; and F-MPJ, using the InfiniBand support

of JFS, outperforms MPI speedups by at least 50% when using more than 121 cores.

6.4. Chapter 6 Conclusions

This chapter has analyzed the process of developing efficient parallel Java appli-

cations through the design, implementation and performance optimization of NPB-

MPJ, which is the first extensive implementation of the standard benchmark suite

NPB for Message-Passing in Java (MPJ). These parallel benchmarks have been se-

lected as representative codes for this task as they are widely known and extended

in HPC evaluations. NPB-MPJ, allows, as main contributions:

The evaluation of a significant number of existing MPJ libraries.

The analysis of MPJ performance against other Java parallel approaches.

The assessment of MPJ versus native MPI scalability.

The study of the impact on performance of the optimization techniques used

in NPB-MPJ, from which Java HPC applications can potentially benefit.

The evaluation of F-MPJ using the NPB-MPJ on two multi-core systems using

InfiniBand and Gigabit Ethernet as interconnects has shown that F-MPJ:

Can achieve similar, or even higher, speedups than mpiJava without suffering

from the runtime and portability issues of an MPJ wrapper library.

6.4 Chapter 6 Conclusions 161

Is generally more scalable than Java threads and RMI-based middleware.

Can outperform MPI scalability, especially on InfiniBand, with heavy work-

loads (NPB Class C), and using an important number of cores (256), thus

bridging the gap between message-passing Java and native code.

The analysis of the results of this evaluation has shown that MPJ libraries,

especially F-MPJ, are an alternative to native languages (C/Fortran) for parallel

programming on multi-core systems, as it is possible to take advantage of the features

of Java while achieving higher speedups than MPI libraries. Finally, NPB-MPJ

can help MPJ library developers in order to detect performance penalties in their

implementations and bridge the gap with native solutions.

Conclusions

This PhD Thesis, “Design of Efficient Java Communications for High Perfor-

mance Computing”, has argued that it is possible to develop scalable Java applica-

tions for HPC as long as efficient communication middleware is made available. The

analysis of the state of the art has revealed that Java lacks efficient communication

support, which has prevented its adoption in HPC. Further research with new tools

and models developed in this Thesis has identified the main performance penalties

in Java communications:

Poor high-speed networks support.

The data copies between the Java heap and native code through JNI.

Costly data serialization.

Lack of efficient non-blocking communications support on Java IO sockets.

The use of communication protocols unsuitable for HPC.

Once the main causes of inefficiency in Java communications have been deter-

mined, the design of their solutions has been accomplished. The first step was the

development of a high performance Java sockets implementation, named Java Fast

Sockets (JFS), a communication middleware that provides efficient communication

in Java. Among its main contributions, JFS:

Enables efficient communication on high performance clusters interconnected

via high-speed networks (SCI, Myrinet and InfiniBand) through a general and

portable solution.

163

164 Conclusions

Avoids the need of primitive data type array serialization.

Reduces buffering and unnecessary copies.

Optimizes shared memory (intra-node) communication.

Does not need source code modification, being user and application transpar-

ent.

In order to overcome the blocking nature of Java IO sockets communication it

has been implemented its non-blocking support in the iodev low-level communication

device, which has been used as base for the development of a Java message-passing

library. Among its main characteristics, iodev:

Provides efficient non-blocking point-to-point communication primitives on

Java IO sockets.

Takes advantage of high-speed networks through the use of JFS.

Avoids the use of buffers for the message data to be transferred.

Reduces the serialization overhead, especially for arrays of primitive data

types.

Implements a communication protocol that minimizes the start-up latency and

maximizes the bandwidth.

Then, an efficient Java RMI protocol for its use on high-speed clusters has been

implemented. The solution proposed is transparent to the user (it does not need

source code modification) and improves performance significantly. The RMI opti-

mizations have been focused on:

Increasing the transport protocol performance through the use of the high per-

formance Java sockets library JFS and reducing the information to be trans-

ferred.

Providing a new method which deals with array communication, avoiding type

checks and taking advantage of the reduction of the serialization overhead using

JFS.

Conclusions 165

Reducing the versioning and data block information as well as class annota-

tions.

Furthermore, a Java message-passing library, named Fast MPJ (F-MPJ), has

been implemented. F-MPJ integrates the collection of middleware/library develop-

ments of this Thesis, thus outperforming the scalability of previous Java message-

passing implementations. Among its main contributions, this library:

Takes advantage of the efficient integration of iodev (see Section 4.2) and JFS

(see Section 3.1) into the implementation of the MPJ primitives, obtaining

efficient non-blocking communication and high-speed multi-core clusters sup-

port.

Increases MPJ communications performance (obtains lower start-up latencies

and higher aggregated bandwidths) and scalability through an extensive use

of communications overlapping.

Implements several communication algorithms per message-passing collective,

allowing its selection at runtime.

Finally, the process of developing efficient parallel Java applications has been

analyzed. This has been done through the implementation of the NAS Parallel

Benchmarks for message-passing in Java, NPB-MPJ. The evaluation of F-MPJ using

the NPB-MPJ (see Section 6.3) has shown that F-MPJ:

Can achieve similar, or even higher, speedups than mpiJava without suffering

from the runtime and portability issues of an MPJ wrapper library.

Is generally more scalable than Java threads and RMI-based middleware.

Can outperform MPI scalability, especially on InfiniBand, with heavy work-

loads (NPB Class C), and using an important number of cores (256), thus

bridging the gap between message-passing Java and native code.

The analysis of the impact of the solutions developed in the overall performance

of Java parallel applications has confirmed the initial hypothesis, that it is possible to

166 Conclusions

develop scalable Java applications for HPC. However, the development of Java par-

allel applications also has to take into account the optimization of Java code, which

has shown significant impact on performance, as was seen in the micro-benchmarks

and kernel/application benchmarks used in the performance evaluations conducted

in this Thesis.

Although it has been shown that the use of Java in HPC is feasible, it is necessary

to continue improving and expanding the projects started in this work. Thus, the

development of new high performance Java sockets implementations such as SCTP

sockets (Stream Control Transmission Protocol) [85] would be of great interest. In

fact, this protocol is message-oriented, which makes it especially suitable for being

the base for Java message-passing implementations. Regarding this point, the com-

pletion of the implementation of the API mpiJava 1.2 in F-MPJ (see Section 5.1)

would be interesting. It is pending the implementation of group, communicator

and process topology management, as well as additional development and runtime

tools (debugging and bootstrapping). Additionally, the integration of the optimized

RMI protocol and JFS in other implementations of Java communication middleware,

such as ProActive, has to be considered. Thus, it would be possible to significantly

broaden the scope of the performance improvements obtained with the communica-

tion middleware and libraries developed in this Thesis.

Moreover, it should be noted that the rise of multi-core systems demands a fur-

ther development of shared memory solutions. Thus, the development of an efficient

shared memory message-passing device and an implementation of OpenMP in Java

are highly interesting. This would allow the combination of the optimizations devel-

oped for distributed memory communication libraries (JFS, Opt RMI, iodev, and

F-MPJ) with shared memory protocols in order to take advantage of multi-core

clusters. Thus, intra-node communications would be shared memory operations,

whereas inter-node transfers would be performed by efficient communication mid-

dleware.

This Thesis has led to several publications in the area of design and development

of Java communication libraries for high-speed clusters. Thus, the state of the art

in Java message-passing libraries and an evaluation of their performance on a Fast

Ethernet cluster was presented in [95]. Then, a comparative performance analysis of

message-passing primitives (both Java and native) on three different interconnection

Conclusions 167

networks (SCI, Myrinet, Fast Ethernet) was shown in [88]. These works have been

updated with the proposal of a more accurate performance model and its application

for a comprehensive analytical modeling of Java and native message-passing libraries

on high-speed clusters in [94]. This latter work includes an up-to-date evaluation

of the available Java message-passing projects, a performance optimization process

based on analytical communication performance models, and an analysis of the

impact of message-passing overhead on systems with multiple processors (multi-core

or with hyper-threading).

The design of efficient communications focused on solving the drawbacks of the

available Java communication projects was first discussed in [89]. This paper served

to introduce the work methodology of this Thesis, a bottom-up approach which

started with the optimization of the low-level Java sockets API [90, 91, 92]. Thus,

the design and development of JFS improved the JVM sockets performance through

an efficient high-speed networks support, and extended the sockets API to avoid

serialization. The lack of efficient non-blocking communications support on Java IO

sockets was the next target to be tackled. In this case the preliminary design and

development of iodev was presented in [96]. The optimization of the RMI protocol

was covered in [86]. Furthermore, the design and implementation of F-MPJ, the

Java message-passing library that takes advantage of the previous developments, was

presented in [93]. Finally, the development of several benchmark codes (NAS Parallel

Benchmarks and micro-benchmark suites for MPJ) has allowed the evaluation of

the current performance of Java for HPC, especially the communication overhead

of F-MPJ comparatively with other MPJ libraries (mpiJava and MPJ Express), as

discussed in [61].

Further information, additional documentation and downloads of the projects

presented in this Thesis are available from the webpage http://jfs.des.udc.es.

Bibliography

[1] A. Alexandrov, M. F. Ionescu, K. E. Schuser and C. Scheiman. LogGP: In-

corporating Long Messages into the LogP Model – one Step Closer Towards a

Realistic Model for Parallel Computation. Journal of Parallel and Distributed

Computing, 44(1):71–79, 1997. pages 22, 24

[2] A. A. G. Alves, A. Pina, J. L. P. Exposto, and J. Rufino. Scalable Multi-

threading in a Low Latency Myrinet Cluster. In Proc. 5th Intl. Conf. on High

Performance Computing in Computational Sciences (VECPAR’02), Lecture

Notes in Computer Science vol. 2565, pages 579–592, Porto, Portugal, 2002.

pages 48

[3] B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbé, F. Huet, and G. L.

Taboada. Current State of Java for HPC. In INRIA Technical Re-

port RT-0353, pages 1–24, INRIA Sophia Antipolis, Nice, France, 2008,

http://hal.inria.fr/inria-00312039/en/ [Last visited: May 2009]. pages 1, 135

[4] B. Amedro, D. Caromel, F. Huet, and V. Bodnartchouk. Java ProActive vs.

Fortran MPI: Looking at the Future of Parallel Java. In Proc. 10th Intl. Work-

shop on Java and Components for Parallelism, Distribution and Concurrency

(IWJacPDC’08), Miami, FL, USA, page 134b (8 pages), 2008. pages 109, 135

[5] L. Baduel, F. Baude, and D. Caromel. Object-oriented SPMD. In Proc.

5th IEEE Intl. Symposium on Cluster Computing and the Grid (CCGrid’05),

pages 824–831, Cardiff, UK, 2005. pages 12, 109, 133

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. Schreiber, H. D.

169

170 BIBLIOGRAPHY

Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Bench-

marks - Summary and Preliminary Results. In Proc. 4th ACM/IEEE Conf.

on Supercomputing (SC’91), pages 158 – 165, Albuquerque, NM, USA, 1991.

pages 134

[7] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim. mpiJava: an Object-

Oriented Java Interface to MPI. In Proc. 1st Intl. Workshop on Java for

Parallel and Distributed Computing (IWJPDC’99), Lecture Notes in Com-

puter Science vol. 1586, pages 748–762, San Juan, Puerto Rico, 1999. pages

14, 29

[8] M. Baker, B. Carpenter, and A. Shafi. A Pluggable Architecture for High-

Performance Java Messaging. IEEE Distributed Systems Online, 6(10):1–4,

2005. pages 78

[9] M. Baker, B. Carpenter, and A. Shafi. MPJ Express: Towards Thread Safe

Java HPC. In Proc. 8th IEEE Intl. Conf. on Cluster Computing (CLUS-

TER’06), pages 1–10, Barcelona, Spain, 2006. pages 15

[10] P. Balaji, P. Shivan, P. Wyckoff, and D. K. Panda. High Performance User

Level Sockets over Gigabit Ethernet. In Proc. 4th IEEE Intl. Conf. on Cluster

Computing (CLUSTER’02), pages 179–186, Chicago, IL, USA, 2002. pages

11

[11] S. Bang and J. Ahn. Implementation and Performance Evaluation of Socket

and RMI based Java Message Passing Systems. In Proc. 5th ACIS Intl. Conf.

on Software Engineering Research, Management and Applications (SERA’07),

pages 153 – 159, Busan, Korea, 2007. pages 17

[12] A. Barak, I. Gilderman, and I. Metrik. Performance of the Communication

Layers of TCP/IP with the Myrinet Gigabit LAN. Computer Communica-

tions, 22(11):989–997, 1999. pages 10

[13] L. A. Barchet-Estefanel and G. Mounie. Fast Tuning of Intra-cluster Collective

Communications. In Proc. 11th European PVM/MPI Users’ Group Meeting

(EuroPVM/MPI’04), Lecture Notes in Computer Science vol. 3241, pages 28

– 35, Budapest, Hungary, 2004. pages 41, 118

BIBLIOGRAPHY 171

[14] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W.-K. Su. Myrinet: A Gigabit-per-Second Local Area Network.

IEEE Micro, 15(1):29–36, 1995. pages 1

[15] R. G. Börger, R. Butenuth, and H.-U. Hei. IP over SCI. In Proc. 2nd IEEE

Intl. Conf. on Cluster Computing (CLUSTER’00), pages 73–77, Chemnitz,

Germany, 2000. pages 10

[16] M. Bornemann, R. V. v. Nieuwpoort, and T. Kielmann. MPJ/Ibis: a Flex-

ible and Efficient Message Passing Platform for Java. In Proc. 12th Euro-

pean PVM/MPI Users’ Group Meeting (EuroPVM/MPI’05), Lecture Notes

in Computer Science vol. 3666, pages 217–224, Sorrento, Italy, 2005. pages

15, 29, 71

[17] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey.

A Benchmark Suite for High Performance Java. Concurrency: Practice and

Experience, 12(6):375–388, 2000. pages 71, 123, 136

[18] S. G. Caglar, G. D. Benson, Q. Huang, and C.-W. Chu. USFMPI: A Multi-

threaded Implementation of MPI for Linux Clusters. In Proc. 15th IASTED

Intl. Conf. on Parallel and Distributed Computing and Systems (PDCS’03),

pages 674 – 680, Marina del Rey, CA, USA, 2003. pages 48

[19] K. W. Cameron and R. Ge. Predicting and Evaluating Distributed Commu-

nication Performance. In Proc. 17th ACM/IEEE Conf. on Supercomputing

(SC’04), page 43 (15 pages), Pittsburgh, PA, USA, 2004. pages 22, 23

[20] K. W. Cameron and X.-H. Sun. Quantifying Locality Effect in Data Access

Delay: Memory logP. In Proc. 17th Intl. Parallel and Distributed Processing

Symposium (IPDPS’03), page 48 (8 pages), Nice, France, 2003. pages 22

[21] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpiJava 1.2: API Specifica-

tion. http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec/mpiJava-

spec.html [Last visited: May 2009]. pages 14, 116

[22] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. MPJ: MPI-

like Message Passing for Java. Concurrency: Practice and Experience,

12(11):1019–1038, 2000. pages 14, 116

172 BIBLIOGRAPHY

[23] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn. Collective

Communication: Theory, Practice, and Experience. Concurrency and Com-

putation: Practice and Experience, 19(13):1749–1783, 2007. pages 118

[24] C.-C. Chang and T. von Eicken. Javia: a Java Interface to the Virtual Interface

Architecture. Concurrency: Practice and Experience, 12(7):573–593, 2000.

pages 20

[25] G. Crawford, Y. Dandass, and A. Skjellum. The JMPI Commercial Message

Passing Environment and Specification: Requirements, Design, Motivations,

Strategies, and Target Users. In MPI Software Technology Inc. Technical

Report, Starkville, MS, USA, 1998. pages 16

[26] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.

Subramonian and T. von Eicken. LogP: Towards a Realistic Model of Parallel

Computation. In Proc. 4th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP’93), pages 1 – 12, San Diego, CA,

USA, 1993. pages 22

[27] K. Datta, D. Bonachea, and K. A. Yelick. Titanium Performance and Poten-

tial: An NPB Experimental Study. In Proc. 18th Intl. Workshop on Languages

and Compilers for Parallel Computing (LCPC’05), Lecture Notes in Computer

Science vol. 4339, pages 200–214, Hawthorne, NY, USA, 2005. pages 135

[28] K. Dincer. Ubiquitous Message Passing Interface Implementation in Java:

jmpi. In Proc. 13th Intl. Parallel Processing Symposium and 10th Symposium

on Parallel and Distributed Processing (IPPS/SPDP’99), pages 203–207, San

Juan, Puerto Rico, 1999. pages 16

[29] Dolphin Interconnect Solutions Inc. IP over SCI.

http://www.dolphinics.com/products/software.html [Last visited: May

2009]. pages 10

[30] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The Impact of Multicore

on Computational Science Software. CTWatch Quarterly, 3(1):1–10, 2007.

pages 1

BIBLIOGRAPHY 173

[31] T. v. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active

Messages: a Mechanism for Integrated Communication and Computation. In

19th Intl. Symposium on Computer Architecture (ISCA’92), pages 256–266,

Gold Coast, Australia, 1992. pages 11

[32] M. Factor, A. Schuster, and K. Shagin. JavaSplit: a Runtime for Execution of

Monolithic Java Programs on Heterogenous Collections of Commodity Work-

stations. In Proc. 5th IEEE Intl. Conf. on Cluster Computing (CLUSTER’03),

pages 110–117, Hong Kong, China, 2003. pages 20

[33] A. Ferrari. JPVM: Network Parallel Computing in Java. Concurrency: Prac-

tice and Experience, 10(11-13):985–992, 1998. pages 17

[34] Finis Terrae Supercomputer. . http://www.top500.org/system/9156 [Last

visited: May 2009]. pages 91, 123

[35] M. I. Frank, A. Agarwal, and M. K. Vernon. LoPC: Modeling Contention

in Parallel Algorithms. In Proc. 6th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP’97), pages 276 – 287, Las

Vegas, NV, USA, 1997. pages 22

[36] S. Genaud and C. Rattanapoka. P2P-MPI: A Peer-to-Peer Framework for

Robust Execution of Message Passing Parallel Programs. Journal of Grid

Computing, 5(1):27–42, 2007. pages 17, 77, 136

[37] V. Getov, Q. Lu, M. Thomas, and M. Williams. Message-passing Computing

with Java: Performance Evaluation and Comparisons. In Proc. 9th Euromicro

Workshop on Parallel and Distributed Processing (PDP’01), pages 173–177,

Mantova, Italy, 2001. pages 135

[38] K. Ghouas, K. Omang, and H. O. Bugge. VIA over SCI: Consequences of a

Zero Copy Implementation and Comparison with VIA over Myrinet. In Proc.

1st Intl. Workshop on Communication Architecture for Clusters (CAC’01),

pages 1632–1639, San Francisco, CA, USA, 2001. pages 20

[39] A. S. Gokhale and D. C. Schmidt. Measuring and Optimizing CORBA Latency

and Scalability Over High-Speed Networks. IEEE Transactions on Computers,

47(4):391–413, 1998. pages 20

174 BIBLIOGRAPHY

[40] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable

Implementation of the MPI Message Passing Interface Standard. Parallel

Computing, 22(6):789–828, 1996. pages 78

[41] H. Hellwagner and A. Reinefeld, editors. SCI - Scalable Coherent Interface:

Architecture and Software for High-Performance Compute Clusters. Lecture

Notes in Computer Science vol. 1734. Springer-Verlag, 1999. pages 1

[42] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang. Jdib: Java Applica-

tions Interface to Unshackle the Communication Capabilities of InfiniBand

Networks. In Proc. 4th IFIP Intl. Conf. Network and Parallel Computing

(NPC’07), pages 596–601, Dalian, China, 2007. pages 20

[43] IBM. Asynchronous IO for Java. http://www.alphaworks.ibm.com/tech/aio4j

[Last visited: May 2009]. pages 81

[44] IETF Draft. IP over IB. http://www.ietf.org/ids.by.wg/ipoib.html. [Last

visited: May 2009]. pages 10

[45] InfiniBand Trade Association. http://www.infinibandta.org. [Last visited:

May 2009]. pages 1

[46] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Parallel Computational

Model for Synchronization Analysis. In Proc. 8th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’01), pages 133 –

142, Snowbird, UT, USA, 2001. pages 22

[47] Intel Corporation. Offload Sockets Framework and Sockets Direct Proto-

col High Level Design, Draft 2. http://infiniband.sourceforge.net/archive/-

OSF SDP HLD.pdf [Last visited: May 2009]. pages 11

[48] Java Grande Forum. http://www.javagrande.org. [Last visited: May 2009].

pages 14

[49] G. Judd, M. Clement, and Q. Snell. DOGMA: Distributed Object Group

Metacomputing Architecture. Concurrency: Practice and Experience, 10(11-

13):977–983, 1998. pages 16

BIBLIOGRAPHY 175

[50] M. E. Kambites, J. Obdrzálek, and J. M. Bull. An OpenMP-like Interface for

Parallel Programming in Java. Concurrency and Computation: Practice and

Experience, 13(8-9):793–814, 2001. pages 9

[51] A. Kaminsky. Parallel Java: A Unified API for Shared Memory and Cluster

Parallel Programming in 100% Java. In Proc. 9th Intl. Workshop on Java and

Components for Parallelism, Distribution and Concurrency (IWJacPDC’07),

page 196a (8 pages), Long Beach, CA, USA, 2007. pages 17

[52] P. J. Keleher. Update Protocols and Cluster-based Shared Memory. Computer

Communications, 22(11):1045–1055, 1999. pages 20

[53] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and R. Hofman. Network

Performance-aware Collective Communication for Clustered Wide Area Sys-

tems. Parallel Computing, 27(11):1431–1456, 2001. pages 22

[54] J.-S. Kim, K. Kim, and S.-I. Jung. SOVIA: A User-level Sockets Layer Over

Virtual Interface Architecture. In Proc. 3rd IEEE Intl. Conf. on Cluster Com-

puting (CLUSTER’01), pages 399–408, New Port Beach, CA, USA, 2001.

pages 10, 11

[55] M. Klemm, M. Bezold, R. Veldema, and M. Philippsen. JaMP: an Implemen-

tation of OpenMP for a Java DSM. Concurrency and Computation: Practice

and Experience, 19(18):2333–2352, 2007. pages 10

[56] D. Kurzyniec, T. Wrzosek, V. Sunderam, and A. Slominski. RMIX: A Multi-

protocol RMI Framework for Java. In Proc. 5th Intl. Workshop on Java for

Parallel and Distributed Computing (IWJPDC’03), page 140 (7 pages), Nice,

France, 2003. pages 12

[57] M. Lobosco, C. L. de Amorim, and O. Loques. Java for High-Performance

Network-Based Computing: a Survey. Concurrency and Computation: Prac-

tice and Experience, 14(1):1–31, 2002. pages 1

[58] M. Lobosco, A. F. Silva, O. Loques, and C. L. de Amorim. A New Distributed

Java Virtual Machine for Cluster Computing. In Proc. 9th Intl. Euro-Par

Conf. (Euro-Par’03), Lecture Notes in Computer Science vol. 2790, pages

1207–1215, Klagenfurt, Austria, 2003. pages 20

176 BIBLIOGRAPHY

[59] R. K. K. Ma, C. L. Wang, and F. C. M. Lau. M-JavaMPI: a Java-MPI Binding

with Process Migration Support. In Proc. 2nd IEEE/ACM Intl. Symposium

on Cluster Computing and the Grid (CCGrid’02), pages 255–262, Berlin, Ger-

many, 2002. pages 16

[60] J. Maassen, R. V. v. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Ja-

cobs, and R. Hofman. Efficient Java RMI for Parallel Programming. ACM

Transactions on Programming Languages and Systems, 23(6):747–775, 2001.

pages 12

[61] D. A. Mallón, G. L. Taboada, J. Touriño, and R. Doallo. NPB-MPJ: NAS

Parallel Benchmarks Implementation for Message-Passing in Java. In Proc.

17th Euromicro Intl. Conf. on Parallel, Distributed, and Network-Based Pro-

cessing (PDP’09), pages 181–190, Weimar, Germany, 2009. pages xvi, xvi,

3, 5, 109, 167

[62] P. Martin, L. M. Silva, and J. G. Silva. A Java Interface to WMPI. In Proc.

5th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI’98), Lecture

Notes in Computer Science vol. 1497, pages 121–128, Liverpool, UK, 1998.

pages 15

[63] J. A. Mathew, H. A. James, and K. A. Hawick. Development Routes for

Message Passing Parallelism in Java. In Proc. 2th ACM Java Grande Conf.

(JAVA’00), pages 54–61, San Francisco, CA, USA, 2000. pages 16

[64] Message Passing Interface Forum. http://www.mpi-forum.org [Last visited:

May 2009]. pages 13

[65] S. Mintchev and V. Getov. Towards Portable Message Passing in Java:

Binding MPI. In Proc. 4th European PVM/MPI Users’ Group Meeting (Eu-

roPVM/MPI’97), Lecture Notes in Computer Science vol. 1332, pages 135–

142, Crakow, Poland, 1997. pages 15

[66] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, and R. D.

Lawrence. Java Programming for High-Performance Numerical Computing.

IBM Systems Journal, 39(1):21–56, 2000. pages 137

BIBLIOGRAPHY 177

[67] S. Morin, I. Koren, and C. M. Krishna. JMPI: Implementing the Message

Passing Standard in Java. In Proc. 4th Intl. Workshop on Java for Parallel

and Distributed Computing (IWJPDC’02), pages 118–123, Fort Lauderdale,

FL, USA, 2002. pages 16, 17, 37

[68] C. A. Moritz and M. Frank. LoGPC: Modeling Network Contention in

Message-Passing Programs. IEEE Transactions on Parallel and Distributed

Systems, 12(4):404–415, 2001. pages 22

[69] MPJ Express Project. http://mpj-express.org [Last visited: May 2009]. pages

15

[70] Myricom Inc. GM/MX/Myrinet. http://www.myri.com [Last visited: May

2009]. pages 10, 11

[71] NAS Parallel Benchmarks. http://www.nas.nasa.gov/NAS/NPB [Last visited:

May 2009]. pages 133, 134, 135

[72] A. Nelisse, J. Maassen, T. Kielmann, and H. E. Bal. CCJ: Object-Based

Message Passing and Collective Communication in Java. Concurrency and

Computation: Practice and Experience, 15(3-5):341–369, 2003. pages 16, 37

[73] R. V. v. Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,

T. Kielmann, and H. E. Bal. Ibis: a Flexible and Efficient Java-based Grid

Programming Environment. Concurrency and Computation: Practice and Ex-

perience, 17(7-8):1079–1107, 2005. pages 11, 12, 15, 29

[74] Open MPI Project. http://www.open-mpi.org [Last visited: May 2009]. pages

78

[75] S. Petri, L. Schneidenbach, and B. Schnor. Architecture and Implementation

of a Socket Interface on top of GAMMA. In Proc. 28th IEEE Conf. on Local

Computer Networks (LCN’03), pages 528–536, Bonn, Germany, 2003. pages

11

[76] M. Philippsen, B. Haumacher, and C. Nester. More Efficient Serialization and

RMI for Java. Concurrency: Practice and Experience, 12(7):495–518, 2000.

pages 12, 106

178 BIBLIOGRAPHY

[77] ProActive Parallel Suite Project. http://proactive.inria.fr [Last visited: May

2009]. pages 12, 109, 133

[78] B. Pugh and J. Spacco. MPJava: High-Performance Message Passing in Java

using Java.nio. In Proc. 16th Intl. Workshop on Languages and Compilers for

Parallel Computing (LCPC’03), Lecture Notes in Computer Science vol. 2958,

pages 323–339, College Station, TX, USA, 2003. pages 16, 136

[79] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-Performance Local-

Area Communication with Fast Sockets. In Proc. Winter 1997 USENIX Sym-

posium, pages 257–274, Anaheim, CA, USA, 1997. pages 11

[80] F. Seifert and H. Kohmann. SCI SOCKET - a Fast Socket Implementation

over SCI. http://www.dolphinics.com/userfiles/files/Whitepaper/sci-socket.-

pdf [Last visited: May 2009]. pages 11

[81] A. Shafi, B. Carpenter, and M. Baker. Nested Parallelism for Multi-core HPC

Systems using Java. Journal of Parallel and Distributed Computing, 2009 (In

press). pages 15, 29, 71, 77

[82] A. Shafi, B. Carpenter, M. Baker, and A. Hussain. A Comparative Study of

Java and C Performance in two Large-scale Parallel Applications. Concurrency

and Computation: Practice and Experience, In press, 2009. pages 1

[83] A. Shafi and J. Manzoor. Towards Efficient Shared Memory Communications

in MPJ Express. In Proc. 11th Intl. Workshop on Java and Components

for Parallelism, Distribution and Concurrency (IWJacPDC’09), Rome, Italy,

page 111b (8 pages), 2009. pages 79

[84] L. A. Smith, J. M. Bull, and J. Obdržálek. A Parallel Java Grande Benchmark

Suite. In Proc. 14th ACM/IEEE Conf. on Supercomputing (SC’01), page 8

(10 pages), Denver, CO, USA, 2001. pages 4, 41

[85] Stream Control Transmission Protocol (SCTP). http://www.sctp.org [Last

visited: May 2009]. pages 166

[86] G. L. Taboada, C. Teijeiro, and J. Touriño. High Performance Java Remote

Method Invocation for Parallel Computing on Clusters. In Proc. 12th IEEE

BIBLIOGRAPHY 179

Symposium on Computers and Communications (ISCC’07), pages 233–239,

Aveiro, Portugal, 2007. pages xvii, 4, 167

[87] G. L. Taboada, J. Touriño, and R. Doallo. Java Message-Passing Micro-

Benchmark Suite. http://www.des.udc.es/˜gltaboada/micro-bench/ [Last vis-

ited: May 2009]. pages xvi, 3, 21, 26, 124

[88] G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Java

Message-Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters. In

Proc. 5th IEEE Intl. Conf. on Cluster Computing (CLUSTER’03), pages 118–

126, Hong Kong, China, 2003. pages 3, 10, 15, 24, 37, 167

[89] G. L. Taboada, J. Touriño, and R. Doallo. Designing Efficient Java Commu-

nications on Clusters. In Proc. 7th Intl. Workshop on Java for Parallel and

Distributed Computing (IWJPDC’05), page 182a (8 pages), Denver, CO, USA,

2005. pages 3, 167

[90] G. L. Taboada, J. Touriño, and R. Doallo. Efficient Java Communication

Protocols on High-speed Cluster Interconnects. In Proc. 31st IEEE Conf. on

Local Computer Networks (LCN’06), pages 264–271, Tampa, FL, USA, 2006.

pages 3, 167

[91] G. L. Taboada, J. Touriño, and R. Doallo. High Performance Java Sockets

for Parallel Computing on Clusters. In Proc. 9th Intl. Workshop on Java and

Components for Parallelism, Distribution and Concurrency (IWJacPDC’07),

page 197b (8 pages), Long Beach, CA, USA, 2007. pages 74, 167

[92] G. L. Taboada, J. Touriño, and R. Doallo. Java Fast Sockets: Enabling High-

speed Java Communications on High Performance Clusters. Computer Com-

munications, 31(17):4049–4059, 2008. pages xvi, 3, 167

[93] G. L. Taboada, J. Touriño, and R. Doallo. F-MPJ: Scalable Java Message-

passing Communications on Parallel Systems. Journal of Supercomputing,

2009 (In press). pages xvi, xvii, 4, 167

[94] G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Message-

Passing Libraries on High-Speed Clusters. Intl. Journal of Computer Systems

Science & Engineering, 2009 (In press). pages xvi, xvi, xvi, 3, 167

180 BIBLIOGRAPHY

[95] G. L. Taboada, J. Touriño, and R. Doallo. Performance Modeling and Eval-

uation of Java Message-Passing Primitives on a Cluster. In Proc. 10th Eu-

ropean PVM/MPI Users’ Group Meeting (EuroPVM/MPI’03), Lecture Notes

in Computer Science vol. 2840, pages 29–36, Venice, Italy, 2003. pages 166

[96] G. L. Taboada, J. Touriño, and R. Doallo. Non-blocking Java Communications

Support on Clusters. In Proc. 13th European PVM/MPI Users’ Group Meeting

(EuroPVM/MPI’06), Lecture Notes in Computer Science vol. 4192, pages 29–

36, Bonn, Germany, 2006. pages 4, 167

[97] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective Com-

munication Operations in MPICH. Intl. Journal of High Performance Com-

puting Applications, 19(1):49–66, 2005. pages 40, 118

[98] D. Thurman. jPVM – A Native Methods Interface to PVM for the Java Plat-

form. http://web.archive.org/web/20031206085325/www.chmsr.gatech.edu/-

jPVM/, 1998. [Last visited: May 2009]. pages 17

[99] TOP500 Supercomputing Site. http://www.top500.org [Last visited: May

2009]. pages 91

[100] J. Touriño and R. Doallo. Characterization of Message-Passing Overhead on

the AP3000 Multicomputer. In Proc. 30th Intl. Conf. on Parallel Processing

(ICPP’01), pages 321–328, Valencia, Spain, 2001. pages 23, 24

[101] Y. Touyama and S. Horiguchi. Performance Evaluation of Practical Parallel

Computation Model LogPQ. In Proc. IEEE Intl. Symposium on Parallel Ar-

chitectures, Algorithms and Networks (ISPAN’99), pages 215 – 221, Fremantle,

Australia, 1999. pages 22

[102] D. Turner and X. Chen. Protocol-Dependent Message-Passing Performance on

Linux Clusters. In Proc. 4th IEEE Intl. Conf. on Cluster Computing (CLUS-

TER’02), pages 187–194, Chicago, IL, USA, 2002. pages 4, 60, 106

[103] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Towards an Accurate Model

for Collective Communications. Intl. Journal of High Performance Computing

Applications, 18(1):159–167, 2004. pages 41, 118

BIBLIOGRAPHY 181

[104] K. Verstoep, R. Bhoedjang, T. Rühl, H. Bal, and R. Hofman. Cluster Com-

munication Protocols for Parallel-programming Systems. ACM Transactions

on Computer Systems, 22(3):281–325, 2004. pages 1

[105] B. A. Vianna, A. A. Fonseca, N. T. Moura, L. T. Mendes, J. A. Silva,

C. Boeres, and V. E. F. Rebello. A Tool for the Design and Evaluation

of Hybrid Scheduling Algorithms for Computational Grids. In Proc. 2nd

ACM Workshop on Middleware for Grid Computing (MGC’04), pages 41 –

46, Toronto, Canada, 2004. pages 22

[106] M. Welsh. NBIO: Nonblocking I/O for Java. http://www.eecs.harvard.edu/

˜mdw/proj/java-nbio [Last visited: May 2009]. pages 11

[107] M. Welsh and D. E. Culler. Jaguar: Enabling Efficient Communication and

I/O in Java. Concurrency: Practice and Experience, 12(7):519–538, 2000.

pages 20

[108] N. Yalamanchilli and W. Cohen. Communication Performance of Java-Based

Parallel Virtual Machines. Concurrency: Practice and Experience, 10(11-

13):1189–1196, 1998. pages 17

[109] B.-Y. Zhang, G.-W. Yang, and W.-M. Zheng. Jcluster: an Efficient Java

Parallel Environment on a Large-scale Heterogeneous Cluster. Concurrency

and Computation: Practice and Experience, 18(12):1541–1557, 2006. pages 16

[110] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin. XenSocket: A

High-throughput Interdomain Transport for VMs. In Proc. 8th ACM/I-

FIP/USENIX Intl. Middleware Conf. (Middleware’07), Lecture Notes in Com-

puter Science vol. 4834, pages 184–203, Newport Beach, CA, USA, November

2007. pages 11

[111] W. Zhu, C.-L. Wang, and F. C. M. Lau. JESSICA2: A Distributed Java Vir-

tual Machine with Transparent Thread Migration Support. In Proc. 4th IEEE

Intl. Conf. on Cluster Computing (CLUSTER’02), pages 381–388, Chicago,

IL, USA, 2002. pages 20

