
UPCBLAS: A Numerical Library for
Unified Parallel C with

Architecture-Aware Optimizations

Jorge González Domı́nguez

Department of Electronics and Systems

University of A Coruña, Spain

Department of Electronics and Systems

University of A Coruña, Spain

PhD Thesis

UPCBLAS: A Numerical Library

for Unified Parallel C with

Architecture-Aware Optimizations

Jorge González Domı́nguez

November 2012

PhD Advisors:

Maŕıa José Mart́ın Santamaŕıa

Juan Touriño Domı́nguez

Dra. Maŕıa José Mart́ın Santamaŕıa

Profesora Titular de Universidad

Dpto. de Electrónica y Sistemas

Universidad de A Coruña

Dr. Juan Touriño Domı́nguez

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidad de A Coruña

CERTIFICAN

Que la memoria titulada “UPCBLAS: A Numerical Library for Unified Parallel C

with Architecture-Aware Optimizations” ha sido realizada por D. Jorge González

Domı́nguez bajo nuestra dirección en el Departamento de Electrónica y Sistemas de

la Universidad de A Coruña y concluye la Tesis Doctoral que presenta para optar al

grado de Doctor en Ingenieŕıa Informática con la Mención de Doctor Internacional.

En A Coruña, a 19 de Noviembre de 2012

Fdo.: Maŕıa José Mart́ın Santamaŕıa

Directora de la Tesis Doctoral

Fdo.: Juan Touriño Domı́nguez

Director de la Tesis Doctoral

Fdo.: Jorge González Domı́nguez

Doctorando

Resumen de la Tesis

Introducción

La necesidad de una potencia de cómputo creciente por parte de aplicaciones de

diversos campos de la ciencia y la ingenieŕıa, o incluso del ocio, ha sido la impul-

sora de la evolución del computador. La aproximación tradicional para esta evolu-

ción ha sido la mejora de tecnoloǵıas ya conocidas. Sin embargo, esta aproximación

está llegando a su ĺımite f́ısico. Una nueva era ha empezado, caracterizada por los

procesadores multinúcleo que habilitan la ejecución de aplicaciones multihilo. La po-

pularidad de los sistemas multinúcleo ha hecho que la programación paralela llegue

a ser una tarea de vital importancia para explotar de forma efectiva el hardware y

aumentar el rendimiento de las aplicaciones.

La programación paralela se realiza tradicionalmente mediante la utilización de

bibliotecas de paso de mensajes en memoria distribuida o de construcciones de pro-

gramación concurrente (barreras, semáforos ...) en memoria compartida. Hoy en d́ıa

Message Passing Interface (MPI) y Open MultiProcessing (OpenMP) constituyen

los estándares de facto para la programación en arquitecturas de memoria distri-

buida y compartida, respectivamente. Recientemente ha surgido un nuevo modelo

de programación, el modelo Partitioned Global Address Space (PGAS), que pro-

porciona importantes ventajas sobre los modelos tradicionales. En el modelo PGAS

todos los hilos comparten un espacio de memoria como en el modelo de memoria

compartida. Sin embargo, este espacio de memoria está lógicamente particionado

entre los diferentes hilos como en el modelo de memoria distribuida. Los lengua-

jes PGAS consiguen el equilibrio perfecto entre facilidad de uso y explotación de

la localidad de los datos. En los últimos años el modelo PGAS ha estado ganando

v

vi

popularidad, siendo ejemplos representativos de este modelo los lenguajes Unified

Parallel C (UPC), Titanium y Co-Array Fortran (CAF).

UPC es un lenguaje de programación paralela que surge como una extensión a

la especificación estándar del lenguaje C y que está ganando interés y popularidad

dentro de la comunidad de High Performance Computing (HPC). UPC fue origi-

nalmente diseñado para computadores paralelos de gran escala y entornos clúster.

Sin embargo, su modelo de programación PGAS lo convierte en una excelente op-

ción para sistemas multinúcleo, en los cuales la memoria principal es f́ısicamente

compartida. Hoy en d́ıa existen compiladores de UPC disponibles para la mayoŕıa

de los sistemas paralelos de los principales fabricantes, aśı como investigación ac-

tiva en muchas universidades y centros de investigación en supercomputación. A

través de medidas experimentales exhaustivas desarrolladas en trabajos previos, se

ha demostrado la viabilidad de UPC frente a otros paradigmas de programación pa-

ralela habituales. Además, se ha demostrado también que los códigos UPC pueden

conseguir buena escalabilidad en hasta cientos de miles de procesadores siempre que

cuenten con el adecuado soporte por parte del compilador y del sistema runtime. Sin

embargo, una barrera para una mayor aceptación de UPC por parte de los usuarios

es la carencia de bibliotecas de apoyo en este lenguaje para los desarrolladores de

algoritmos y aplicaciones.

Las rutinas del conjunto Basic Linear Algebra Subprograms (BLAS) proporcio-

nan bloques estándar para realizar operaciones básicas con vectores y matrices. Son

utilizadas por cient́ıficos e ingenieros para conseguir buenos rendimientos en arqui-

tecturas monoprocesador. Las rutinas SparseBLAS son una versión reducida de las

BLAS para matrices y vectores dispersos, los cuales introducen patrones de acceso

irregulares. Las Parallel Basic Linear Algebra Subprograms (PBLAS) y las Parallel

Sparse Basic Linear Algebra Subprograms (PSBLAS) son una implementación de

las BLAS y las SparseBLAS, respectivamente, para computación paralela, las cuales

han sido desarrolladas para facilitar a los usuarios la programación en arquitecturas

de memoria distribuida. Sin embargo, no existen versiones paralelas en UPC.

En la actualidad existe una creciente tendencia a desarrollar códigos que tengan

en cuenta el sistema en el que están siendo ejecutados para realizar optimizaciones

de forma automática. Entre las diferentes arquitecturas paralelas, la optimización de

aplicaciones en los clusters de sistemas multinúcleo presenta un importante desaf́ıo

vii

ya que poseen una arquitectura de memoria h́ıbrida (distribuida/compartida) con

latencias de comunicaciones no uniformes. Además, accesos concurrentes a la misma

caché o al mismo módulo de memoria desde distintos núcleos pueden conducir a una

pérdida de ancho de banda a memoria.

Esta Tesis Doctoral, “UPCBLAS: A Numerical Library for Unified Parallel C

with Architecture-Aware Optimizations”, nace del intento de impulsar la utilización

y expansión de los lenguajes PGAS (especialmente de UPC) aportando a los ac-

tuales y futuros programadores una biblioteca de computación numérica paralela,

UPCBLAS. La biblioteca contiene un subconjunto de rutinas BLAS (las más uti-

lizadas por sus usuarios) con una interfaz basada en las caracteŕısticas de UPC y

centrada en aumentar la programabilidad de este lenguaje, sin comprometer excesi-

vamente por ello el rendimiento. Precisamente con el fin de mejorar el rendimiento

de las rutinas numéricas, esta Tesis Doctoral también ha llevado al desarrollo de

Servet, una herramienta que detecta mediante benchmarks de forma automática un

conjunto de parámetros hardware muy útiles para optimizar el rendimiento de los

códigos paralelos. De hecho, las rutinas de UPCBLAS usarán automáticamente la

interfaz proporcionada por Servet para reducir sus tiempos de ejecución. Por últi-

mo, esta Tesis proporciona una evaluación experimental detallada de la biblioteca,

aśı como ejemplos prácticos de su uso.

Metodoloǵıa de Trabajo

La metodoloǵıa de trabajo seguida en el desarrollo de la presente Tesis Doctoral

ha consistido en:

Definir la lista de tareas a realizar durante la Tesis, teniendo en cuenta los

trabajos previos y los recursos disponibles.

Determinar su secuencia u orden de ejecución, ateniéndose a las restricciones

que pudiesen existir y al orden más favorable.

Establecer su duración y la oportunidad de su desarrollo en un momento de-

terminado.

viii

Organizar las acciones o tareas por bloques de cierta entidad que definan

etapas.

Definir, para cada etapa, las metas a alcanzar (u objetivos concretos a lograr

en tiempo definido), sabiendo que en cada etapa puede haber una o varias

metas.

Tareas

De este modo, la lista de tareas (Tn.m), agrupadas en bloques (Bn), desarrolla-

das en la presente Tesis han sido:

B1 Estudio del estado del arte relacionado con bibliotecas numéricas en UPC.

T1.1 Búsqueda de bibliotecas numéricas desarrolladas con anterioridad para

UPC. Se determina que no existen trabajos previos basados en el desa-

rrollo de bibliotecas numéricas en UPC o cualquier otro lenguaje PGAS.

T1.2 Estudio de otros trabajos previos relacionados con computación numéri-

ca paralela en UPC. Estos trabajos abarcan principalmente productos

de matrices y factorizaciones (LU, Cholesky...). Se recopilan una serie de

técnicas de programación que mejoran el rendimiento de los códigos es-

critos en este lenguaje para su posterior uso en la implementación de la

biblioteca.

T1.3 Análisis de bibliotecas numéricas paralelas que siguen otro paradigma de

programación y estudio de su posible adaptación a los lenguajes PGAS.

B2 Diseño e implementación de las rutinas densas.

T2.1 Selección de las funciones a incluir en la parte de computación densa de

la biblioteca.

T2.2 Diseño de la interfaz de las rutinas y especificación de un método lógico de

nomenclatura de las funciones para facilitar su uso a los programadores.

T2.3 Desarrollo de los tipos de datos necesarios en las rutinas, tanto los enu-

merados para reflejar distintas opciones del problema (distribución por

ix

filas/columnas, matrices triangulares inferiores/superiores, etc.) como las

estructuras para tratar con tipos de datos complejos.

T2.4 Implementación de una primera versión de las rutinas numéricas seleccio-

nadas. Durante este proceso se hace especial hincapié en incluir técnicas

de optimización cuya eficiencia en códigos UPC está demostrada en el

estado del arte.

T2.5 Confección de un mecanismo de configuración y compilación que sea sen-

cillo de utilizar por los usuarios.

T2.6 Testeo de que las rutinas numéricas incluidas en la biblioteca proporcio-

nan los resultados correctos.

B3 Evaluación del rendimiento de la biblioteca y optimización.

T3.1 Implementación de un conjunto de benchmarks que permitan conocer los

speedups y eficiencias de las diferentes rutinas, tanto para escalado fuerte

como débil.

T3.2 Ejecución de dichos benchmarks en el supercomputador Finis Terrae, del

Centro de Supercomputación de Galicia (CESGA).

T3.3 Estudio de los resultados obtenidos, prestando especial atención a la de-

tección de aquellas partes del código que puedan ser optimizables me-

diante un mejor conocimiento de la arquitectura.

T3.4 Desarrollo de Servet, un conjunto de microbenchmarks que obtienen una

serie de parámetros hardware interesantes para la optimización de pro-

gramas paralelos. Esta herramienta debe proporcionar al menos las ca-

racteŕısticas hardware que se determinaron en la tarea anterior como

necesarias para optimizar las rutinas.

T3.5 Inclusión de técnicas de optimización del rendimiento basadas en los

parámetros hardware proporcionados por Servet.

T3.6 Evaluación de nuevo del rendimiento usando los mismos benchmarks en

máquinas distintas, para comprobar que las optimizaciones implemen-

tadas en la tarea anterior son válidas para diferentes arquitecturas y

compiladores.

B4 Estudio de la utilidad de la biblioteca en un entorno real.

x

T4.1 Determinación de un conjunto de códigos numéricos que pueden imple-

mentarse usando UPCBLAS.

T4.2 Implementación de dichos códigos paralelos usando las rutinas de la bi-

blioteca.

T4.3 Análisis de la mejora de programabilidad y productividad obtenida gra-

cias a UPCBLAS.

T4.4 Detección y posterior inclusión de posibles mejoras en el diseño de la

biblioteca de cara a aumentar la programabilidad.

T4.5 Desarrollo y ejecución de benchmarks que muestren el rendimiento de los

códigos paralelos implementados con el apoyo de la biblioteca.

B5 Desarrollo de las rutinas dispersas.

T5.1 Diseño de la interfaz de las rutinas dispersas, intentando reutilizar, cuan-

do sea posible, elementos que han sido probados útiles para computación

densa.

T5.2 Selección de las rutinas a implementar y los formatos de almacenamiento

para matrices dispersas a utilizar.

T5.3 Implementación de dichas rutinas con dichos formatos. De nuevo, se in-

tentan incluir las técnicas de optimización de la parte densa (tarea T2.4)

T5.4 Comprobación de que el resultado de las rutinas dispersas es el correcto

mediante la ejecución de tests.

T5.5 Uso de benchmarks para evaluar el rendimiento de las rutinas dispersas.

B6 Determinación de las principales conclusiones y ĺıneas de trabajo futuras.

T6.1 Determinación de las principales conclusiones.

T6.2 Evaluación de las principales ĺıneas de investigación abiertas a ráız del

trabajo desarrollado.

T6.3 Redacción de la memoria final de la Tesis Doctoral.

El trabajo llevado a cabo en estas tareas ha sido recogido en la presente memoria.

Aśı, las tareas del primer bloque han sido recogidas en el Caṕıtulo 1. El segundo

xi

bloque constituye el Caṕıtulo 2. Las tareas del tercer y cuarto bloque están conte-

nidas en los Caṕıtulos 3 y 4. El quinto bloque constituye el Caṕıtulo 5. Finalmente,

el sexto bloque está incluido dentro del último caṕıtulo de conclusiones y trabajo

futuro.

Metas

Asimismo, la lista de metas (Mn.m) asociadas con cada bloque (Bn) de la Tesis

Doctoral han sido:

B1 Estudio del estado del arte relacionado con bibliotecas numéricas en UPC.

M1.1 Evaluación del estado actual de los trabajos relacionados con compu-

tación numérica paralela para lenguajes PGAS.

M1.2 Obtención de aquellas ideas de diseño e implementación que puedan ser

útiles para el desarrollo de la biblioteca numérica en UPC.

B2 Diseño e implementación de las rutinas densas.

M2.1 Conjunto de rutinas para computación densa que exploten las ventajas del

paradigma de programación PGAS en general y de UPC en particular.

Esta primera implementación debe estar focalizada en la mejora de la

programabilidad y la productividad de los potenciales usuarios.

B3 Evaluación del rendimiento de la biblioteca y optimización.

M3.1 Herramienta que permita obtener de forma automática ciertos parámetros

hardware válidos para optimizar códigos paralelos. Esta herramienta debe

proporcionar al menos aquellos parámetros necesarios para optimizar el

rendimiento de las rutinas implementadas para M2.1.

M3.2 Mismo conjunto de rutinas que en M2.1 optimizado haciendo uso del

conocimiento de las caracteŕısticas hardware proporcionadas por la he-

rramienta de M3.1.

M3.3 Conjunto de resultados experimentales para la evaluación del redimiento

de las rutinas de M3.2.

xii

B4 Estudio de la utilidad de la biblioteca en un entorno real.

M4.1 Códigos numéricos de más alto nivel que hagan uso por debajo de la

biblioteca de M3.2.

M4.2 Evaluación en términos de aumento de rendimiento, programabilidad y

productividad de la biblioteca en dichos códigos.

B5 Desarrollo de las rutinas dispersas.

M5.1 Conjunto de rutinas para computación dispersa.

M5.2 Estudio de la adecuación de distintos formatos de almacenamiento para

matrices dispersas a la computación numérica en UPC.

B6 Determinación de las principales conclusiones y ĺıneas de trabajo futuras.

M6.1 Memoria final de la Tesis Doctoral que recoge las principales conclusiones

y ĺıneas futuras de investigación.

Medios

Los medios necesarios para realizar esta Tesis Doctoral, siguiendo la metodoloǵıa

de trabajo anteriormente descrita, han sido los siguientes:

Material de trabajo y financiación económica proporcionados fundamental-

mente por el Grupo de Arquitectura de Computadores de la Universidad de

A Coruña y el Ministerio de Educación y Ciencia (beca FPU AP2008-01578).

Además, esta Tesis se ha financiado a través de los siguientes proyectos de

investigación:

• De financiación internacional a través del proyecto “Improving UPC Usa-

bility and Performance in Constellation Systems: Implementation/Exten-

sion of UPC Libraries”, suscrito con Hewlett-Packard S.L. (HP).

• De financiación estatal (Ministerio de Educación y Ciencia y Ministerio

de Ciencia e Innovación) a través de los proyectos TIN2007-67537-C03-02,

TIN2010-16735 y TIN2010-12011-E.

xiii

Acceso a material bibliográfico, a través de la biblioteca de la Universidad de

A Coruña.

Acceso a clusters con múltiples procesadores/núcleos por nodo:

• Supercomputador Finis Terrae (CESGA, 2008-actualidad). 144 nodos

con 16 núcleos de procesador Intel Itanium2 Montvale a 1.6 GHz in-

terconectados mediante InfiniBand, además de contar con un sistema

Superdome de memoria compartida con 128 núcleos Itanium2 Montvale

a 1.6 GHz y 1 TB de RAM.

• Clúster Plutón (Universidad de A Coruña, 2009-actualidad). 16 nodos con

16 núcleos de procesador Intel Xeon Nehalem a 2.26 GHz interconectados

mediante InfiniBand.

• Supercomputador Carver (NERSC, 2010-actualidad). 1120 nodos con 8

núcleos de procesador Intel Xeon Nehalem a 2.67 GHz interconectados

mediante InfiniBand.

• Supercomputador Hopper (NERSC, 2011-actualidad). 6384 nodos AMD

Magny-Cours con 24 núcleos a 2.1 GHz interconectados mediante Gemini,

una red propietaria de Cray con una estructura de Toro 3D.

• Supercomputador HECToR (EPCC, 2011-actualidad). 2816 nodos con

dos procesadores AMD Interlagos de 16 núcleos cada uno (32 núcleos por

nodo) a 2.3 GHz interconectados también a través de una red Gemini.

Una ayuda para una estancia de investigación de 13 semanas en 2011 en el

Lawrence Berkeley National Laboratory (LBNL) en Berkeley, Estados Unidos,

obtenida en concurrencia competitiva en una convocatoria del Ministerio de

Educación y Ciencia. Esta estancia permitió desarrollar el bloque de tareas

B4 aśı como establecer una relación de colaboración con el grupo de trabajo

de Berkeley UPC de la Profesora Katherine Yelick, el más importante del

mundo dedicado a la investigación en el ámbito del lenguaje UPC. Esta relación

permitirá, por un lado, la distribución de la biblioteca objeto de esta Tesis

junto con el compilador Berkeley UPC y, por otro lado, el desarrollo conjunto

de trabajos de investigación sobre computación numérica de altas prestaciones

usando UPC.

xiv

Una ayuda para una estancia de investigación de 9 semanas en 2012 en el

Edinburgh Parallel Computing Center (EPCC) en Edimburgo, Reino Unido,

obtenida mediante concurrencia competitiva en el programa HPC-Europa2.

La realización de esta estancia permitió acceder al supercomputador HECToR

y trabajar con los investigadores de dicho centro para obtener parte de los

resultados experimentales de la tarea T.3.6.

Conclusiones

Esta Tesis Doctoral, “UPCBLAS: A Numerical Library for Unified Parallel C

with Architecture-Aware Optimizations”, ha permitido el desarrollo de UPCBLAS,

una biblioteca numérica paralela para Unified Parallel C. UPC sigue el paradigma

de programación PGAS, el cual, comparado con el paradigma de paso de mensa-

jes, permite aumentar la programabilidad sin hipotecar el rendimiento gracias a la

explotación de la localidad de datos. Los lenguajes PGAS son una alternativa muy

interesante para la programación de sistemas paralelos, especialmente para aquellos

con una arquitectura de memoria h́ıbrida como los clusters de sistemas multinúcleo.

Sin embargo, la falta de bibliotecas limita la productividad de los programado-

res de lenguajes PGAS. Por ejemplo, el análisis del estado del arte reveló que no

exist́ıa absolutamente ninguna biblioteca numérica paralela para UPC. Por tanto,

los programadores que necesitaban, por ejemplo, rutinas de las interfaces BLAS y

SparseBLAS, deb́ıan utilizar bibliotecas basadas en el paradigma de paso de men-

sajes. Se identificó que el mayor problema de estas bibliotecas era su complejidad

de uso, algo que puede solventarse explotando directamente las cualidades de los

lenguajes PGAS en general y de UPC en particular. La biblioteca desarrollada en

esta Tesis proporciona funciones para computación numérica densa y dispersa que,

siguiendo el modelo de programación PGAS, facilita considerablemente su uso con

respecto a otras bibliotecas diseñadas para otros paradigmas de programación.

Pero el objetivo de la biblioteca no consiste simplemente en facilitar la progra-

mación a sus usuarios sino también en que obtengan un buen rendimiento. Para

ello las rutinas incluyen ciertas técnicas de optimización. Unas fueron identificadas

mediante el estudio del estado del arte y otras fueron desarrolladas ad hoc basándo-

xv

se en los parámetros hardware de la máquina donde se ejecutan las rutinas. Para

poder implementar estas últimas técnicas se ha creado Servet, una herramienta que,

por medio de benchmarks, permite obtener de forma automática los parámetros

hardware necesarios.

El rendimiento de la biblioteca se ha evaluado exhaustivamente y se ha com-

parado con otras bibliotecas numéricas en dos supercomputadores completamente

diferentes, no solo por su tamaño y arquitectura, sino también por el compilador de

UPC empleado. Los resultados experimentales demuestran que la facilidad de uso

no implica necesariamente un rendimiento muy inferior al de las bibliotecas basadas

en el paradigma de paso de mensajes.

Para concluir, conviene destacar que el uso de los mecanismos del lenguaje UPC

para distribuir matrices conlleva un aumento de la programabilidad pero también

limita los tipos de distribuciones que se pueden utilizar a una sola dimensión (por

filas o por columnas) y con un tamaño de distribución fijo. Aunque esta biblioteca

proporciona un buen rendimiento, probablemente seŕıa posible mejorarlo mediante

el uso de otro tipo de distribuciones con un tamaño de bloque variable o distribu-

ciones de datos 2D, 3D o 2.5D. Sin embargo, siempre habrá que tener en cuenta

que si nuevas extensiones del lenguaje UPC no incluyen estructuras que soporten

este tipo de distribuciones, serán los propios desarrolladores de bibliotecas quienes

deban implementar dichas estructuras con una sintaxis tal que no se aumente la

complejidad de uso de dichas bibliotecas.

Principales Contribuciones

Las principales aportaciones de esta Tesis son:

La biblioteca numérica paralela UPCBLAS [48, 49, 50, 51], que proporciona

un subconjunto de rutinas BLAS con una interfaz que explota las caracteŕısti-

cas del paradigma PGAS para proporcionar un buen rendimiento mejorando

ostensiblemente la programabilidad con respecto a otras bibliotecas numéricas.

Servet, una herramienta que permite obtener de forma automática mediante

benchmarks una serie de parámetros hardware muy útiles para optimizar pro-

xvi

gramas paralelos [52, 53], incluyendo una evaluación de su impacto positivo a

la hora de optimizar las rutinas numéricas de UPCBLAS [51].

Un estudio del uso de UPCBLAS para facilitar el desarrollo de algoritmos

numéricos paralelos más complejos, haciendo énfasis en el rendimiento y la

programabilidad [47].

La implementación de un conjunto de rutinas SparseBLAS en UPC, estudiando

su comportamiento de acuerdo al formato de almacenamiento de matrices

dispersas utilizado [45, 46].

La evaluación en UPC de nuevos y complejos algoritmos que combinan el

solapamiento de comunicación y computación junto con la minimización de

comunicaciones para el ámbito de la computación numérica de forma que, en

el futuro, puedan incorporarse en las rutinas de UPCBLAS [44].

Publications from the Thesis

Journal Papers (3)

J. González-Domı́nguez, O. Garćıa-López, G. L. Taboada, M. J. Mart́ın, and

J. Touriño. Performance Evaluation of Sparse Matrix Products in UPC. The

Journal of Supercomputing, 2012 (In press).

J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

D. A. Mallón, and B. Wibecan. UPCBLAS: A Library for Parallel Matrix

Computations in Unified Parallel C. Concurrency and Computation: Practice

and Experience, 24(14):1645-1667, 2012

J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela, M. J. Mart́ın, and J.

Touriño. Automatic Mapping of Parallel Applications on Multicore Architec-

tures using the Servet Benchmark Suite. Computers and Electrical Engineer-

ing, 32(2):258-269, 2012.

International Conferences (7)

E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Touriño,

and K. Yelick. Communication Avoiding and Overlapping for Numerical

Linear Algebra. In Proc. 24th ACM/IEEE Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC’12), Salt Lake City, UT,

USA, 2012.

J. González-Domı́nguez, O. A. Marques, M. J. Mart́ın, G. L. Taboada, and J.

xvii

xviii

Touriño. Design and Performance Issues of Cholesky and LU Solvers using

UPCBLAS. In Proc. 10th IEEE Intl. Symp. on Parallel and Distributed

Processing with Applications (ISPA’12), Leganés, Spain, 2012.

J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

D. A. Mallón, and B. Wibecan. A Library for Parallel Numerical Computation

in UPC. Poster in Proc. 23rd ACM/IEEE Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC’11), Seattle, WA, USA,

2011.

J. González-Domı́nguez, O. Garćıa-López, G. L. Taboada, M. J. Mart́ın, and J.

Touriño. SparseBLAS Products in UPC: An Evaluation of Storage Formats.

In Proc. 11th Intl. Conf. on Computational and Mathematical Methods in

Science and Engineering (CMMSE’11), Benidorm, Spain, 2011.

J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, and J. Touriño. Dense

Triangular Solvers on Multicore Clusters using UPC. In Proc. 11th Intl. Conf.

on Computational Science (ICCS’11), Singapore, 2011.

J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela, M. J. Mart́ın, and J.

Touriño. Servet: A Benchmark Suite for Autotuning on Multicore Clusters. In

Proc. 24th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’10),

Atlanta, GA, USA, 2010.

J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

and A. Gómez. A Parallel Numerical Library for UPC. In Proc. 15th Intl.

European Conf. on Parallel and Distributed Computing (Euro-Par’09), Delft,

The Netherlands, 2009.

National Conferences (2)

J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela, M. J. Mart́ın, and

J. Touriño. Servet: Una Suite de Benchmarks para el Soporte del Autotun-

ing en Clusters de Sistemas Multinúcleo. In Actas de las XXI Jornadas de

Paralelismo, Valencia, Spain, 2010.

xix

J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

and A. Gómez. Una Biblioteca Numérica Paralela para UPC. In Actas de las

XX Jornadas de Paralelismo, A Coruña, Spain, 2009.

Abstract

The popularity of Partitioned Global Address Space (PGAS) languages has in-

creased during the last years thanks to their high programmability and performance

through an efficient exploitation of data locality, especially on hierarchical archi-

tectures like multicore clusters. This PhD Thesis describes UPCBLAS, a parallel

library for numerical computation using the PGAS Unified Parallel C (UPC) lan-

guage. The routines are built on top of sequential BLAS and SparseBLAS functions

and exploit the particularities of the PGAS paradigm, taking into account data

locality in order to achieve a good performance. However, the growing complex-

ity in computer system hierarchies due to the increase in the number of cores per

processor, levels of cache (some of them shared) and the number of processors per

node, as well as the high-speed interconnects, demands the use of new optimiza-

tion techniques and libraries that take advantage of their features. For this reason,

this Thesis also presents Servet, a suite of benchmarks focused on detecting a set

of parameters with high influence on the overall performance of multicore systems.

UPCBLAS routines use the hardware parameters provided by Servet to implement

optimization techniques that improve their performance. The performance of the

library has been experimentally evaluated on several multicore supercomputers and

compared to message-passing-based parallel numerical libraries, demonstrating good

scalability and efficiency. UPCBLAS has also been used to develop more complex

numerical codes in order to demonstrate that it is a good alternative to MPI-based

libraries for increasing the productivity of numerical application developers.

A mis padres

A mi hermanita

A Maŕıa, mi niña

Acknowledgments

This Thesis is not the result only of my own effort; there are many people

involved in this work whose support and dedication I want to acknowledge. First

and foremost, I want to acknowledge my PhD advisors Maŕıa and Juan for the

confidence they placed in me, and the support they gave me during all these years.

I also want to thank Guillermo because he has been a support and reference for me

since the beginning of this PhD Thesis. I cannot forget my other colleagues in the

Computer Architecture Group because they made my experience in the lab easier

during all these years, especially Sabela, Jose and Raquel.

I gratefully thank my parents, who have always been there for me. I also thank

my sister Loreto, my girlfriend Maŕıa and my friends Jorge, Jaime, Lućıa, Carlos,

Vero, Bea, Kike, Pablo, Paula, Raúl and Dani, who have always believed even more

than me in what I was doing, and whose support helped me to overcome the doubts

that all PhD students have about if their effort is worthy. Besides, I thank my

hockey coaches, teammates and pupils for helping me to entertain my mind out of

the development of this Thesis and for understanding my mood swings.

I want to acknowledge Katherine Yelick and Michele Weiland for hosting me

during my visits to the LBNL (Lawrence Berkeley National Laboratory) and EPCC

(Edinburgh Parallel Computing Center), respectively. I thank Yili Zheng, Osni A.

Marques, Evangelos Georganas and Catherine Inglis for their valuable help during

those visits. I also thank Enrique Quintana-Ort́ı for all his comments to improve

this Thesis and Tomás Fernández Pena and Damián Álvarez Mallón for their help

in the development of UPCBLAS.

I gratefully thank CESGA (Galicia Supercomputing Center), NERSC (National

Energy Research Scientific Computing Center) and EPCC for providing access to

the Finis Terrae, Carver, Hopper and HECToR supercomputers.

Last, but not least, I am thankful to the following institutions for funding this

work: the Computer Architecture Group and the Department of Electronics and

xxvi

Systems for the human and material support, the University of A Coruña for giving

me the opportunity of starting a career in academia and for funding my attendance

at some conferences, Hewlett Packard S.L. for the project “Improving UPC Usabil-

ity and Performance in Constellation Systems: Implementation/Extension of UPC

Libraries”, the Pan-European Research Infrastructure for High Performance Com-

puting for a grant to make a research visit at EPCC, the Ministry of Education

and Science and the former Ministry of Science and Innovation of Spain for the

projects TIN2007-67537-C03-02, TIN2010-16735, TIN2010-12011-E and the FPU

Grant AP2008-01578.

Jorge González Domı́nguez

Que ser valiente no salga tan caro,

que ser cobarde no valga la pena

Joaqúın Sabina

Contents

Preface 1

1. Background and State of the Art 5

1.1. PGAS Programming Model and Languages 5

1.2. Overview of Unified Parallel C . 9

1.3. Parallel Numerical Computation in the Li- terature 12

2. Dense UPCBLAS 15

2.1. UPCBLAS Design . 15

2.1.1. BLAS1 Routines . 17

2.1.2. BLAS2 Routines . 18

2.1.3. BLAS3 Routines . 25

2.2. UPCBLAS Implementation . 29

3. Servet: Measuring Hardware Parameters 33

3.1. Introduction to the Detection of Hardware Parameters 34

3.2. Cache Size Estimate . 36

3.3. Determination of Shared Caches . 40

3.4. Memory Access Overhead Characterization 42

xxix

xxx CONTENTS

3.5. Determination of Communication Costs 43

3.6. Mapping of Parallel Applications on Multicore Architectures Using

Servet . 45

3.7. Use of Servet to Optimize UPCBLAS Routines 49

3.7.1. Efficient Mapping of UPC Threads 50

3.7.2. On-Demand Copies in BLAS3 Routines 51

4. Experimental Evaluation 53

4.1. Experimental Testbeds . 54

4.2. Benchmarking of Isolated Routines 55

4.2.1. BLAS1 Routines . 56

4.2.2. BLAS2 Routines . 59

4.2.3. BLAS3 Routines . 69

4.3. Benchmarking of UPCBLAS within More

Complex Routines . 78

4.3.1. Cholesky Solver . 79

4.3.2. LU Solver . 85

5. Sparse Numerical Routines in UPC 91

5.1. State of the Art . 91

5.2. Sparse Storage Formats . 92

5.3. Design of the UPC Sparse Routines 94

5.3.1. Sparse BLAS1 Routines . 95

5.3.2. Sparse BLAS2 and BLAS3 Routines 96

5.3.3. Limitations and Future Directions 97

CONTENTS xxxi

5.4. Implementation of the Sparse Matrix Products 98

5.5. Performance Evaluation of the Sparse Routines 100

6. Conclusions and Future Work 105

References 109

A. UPCBLAS Interface 125

A.1. Enumerated Values . 125

A.2. BLAS1 Routines . 126

A.2.1. upc blas Tcopy . 126

A.2.2. upc blas Tswap . 128

A.2.3. upc blas Tscal . 129

A.2.4. upc blas Taxpy . 130

A.2.5. upc blas Tsdot . 131

A.2.6. upc blas Tnrm2 . 133

A.2.7. upc blas Tasum . 134

A.3. BLAS2 Routines . 135

A.3.1. upc blas Tgemv . 135

A.3.2. upc blas Tger . 139

A.3.3. upc blas Ttrsv . 143

A.4. BLAS3 Routines . 146

A.4.1. upc blas Tgemm . 146

A.4.2. upc blas Ttrsm . 150

A.4.3. upc blas Tsyrk . 155

xxxii CONTENTS

B. Servet Library Interface 159

B.1. Information about Cache Topology 159

B.1.1. load cache info . 159

B.1.2. get cache nlevels . 160

B.1.3. get cache size . 161

B.1.4. get shared cache group size 161

B.1.5. get shared cache cores . 162

B.1.6. release cache info . 163

B.2. Information about Shared Memory Overhead 163

B.2.1. load mem over info . 163

B.2.2. get mem over nlevels . 164

B.2.3. get mem over mag . 164

B.2.4. get mem over group size . 165

B.2.5. get mem over cores . 166

B.2.6. get mem over group mag . 166

B.2.7. release mem over info . 167

B.3. Information about Communication Costs 168

B.3.1. load comm info . 168

B.3.2. get comm intra node nlevels 168

B.3.3. get comm intra node lat . 169

B.3.4. get comm inter node lat . 169

B.3.5. get comm intra node group size 170

B.3.6. get comm intra node cores . 171

B.3.7. get comm min msg size . 171

CONTENTS xxxiii

B.3.8. get comm max msg size . 172

B.3.9. get comm intra node band . 172

B.3.10. get comm inter node band . 173

B.3.11. release comm info . 174

B.4. Process Mapping . 174

B.4.1. get mapping policy . 174

List of Tables

2.1. UPCBLAS routines. All the functions follow the naming convention:

upc blas Tblasname, where “T” represents the data type (s=float;

d=double; c=single precision complex; z=double precision complex)

and blasname is the name of the routine in the sequential BLAS library 17

3.1. Evolution of the weight values for all cores in 2 nodes of the x86 64

cluster when mapping 4 processes with SERVET MEM PRIOR 48

3.2. Evolution of the weight values for all cores in 2 nodes of the x86 64

cluster when mapping 4 processes with SERVET COMM PRIOR 48

4.1. Summary of the testbeds used for benchmarking 55

4.2. Strong scaling execution times (in milliseconds) of the single precision

dot product (sdot) on Carver . 58

4.3. Strong scaling execution times (in milliseconds) of the single precision

dot product (sdot) on HECToR . 58

4.4. Strong scaling execution times (in milliseconds) of the single precision

matrix-vector product (sgemv) on Carver 61

4.5. Strong scaling execution times (in milliseconds) of the single precision

matrix-vector product (sgemv) on HECToR 61

4.6. Strong scaling execution times (in milliseconds) of the single precision

outer product (sger) on Carver . 65

xxxv

xxxvi LIST OF TABLES

4.7. Strong scaling execution times (in milliseconds) of the single precision

outer product (sger) on HECToR . 65

4.8. Strong scaling execution times (in milliseconds) of the single precision

BLAS2 triangular solver (strsv) on Carver 68

4.9. Strong scaling execution times (in milliseconds) of the single precision

BLAS2 triangular solver (strsv) on HECToR 68

4.10. Strong scaling execution times (in seconds) of the single precision

matrix-matrix product (sgemm) on Carver 73

4.11. Strong scaling execution times (in seconds) of the single precision

matrix-matrix product (sgemm) on HECToR 73

4.12. Strong scaling execution times (in seconds) of the single precision

BLAS3 triangular solver (strsm) on Carver 77

4.13. Strong scaling execution times (in seconds) of the single precision

BLAS3 triangular solver (strsm) on HECToR 77

4.14. Weak scaling execution times (in seconds) of the double precision

Cholesky solver on Carver . 83

4.15. Weak scaling execution times (in seconds) of the double precision LU

solver on Carver . 87

4.16. Weak scaling execution times (in seconds) of the double precision LU

solver with partial pivoting on Carver 89

5.1. Overview of the sparse square matrices used in the evaluation 102

List of Figures

1.1. Memory model in PGAS languages 7

1.2. Memory model in UPC . 10

2.1. Remote and local accesses in upc blas sdot according to the block

factor of the source vectors . 19

2.2. Meaning of the parameters of upc blas sdot when working with sub-

vectors . 19

2.3. Meaning of the parameters of upc blas sgemv when working with a

submatrix . 20

2.4. Matrix-vector product (Tgemv) using a row distribution for the matrix 22

2.5. Matrix-vector product (Tgemv) using a column distribution for the

matrix . 22

2.6. Outer product (Tger) using a row distribution for the matrix 24

2.7. Outer product (Tger) using a column distribution for the matrix . . . 24

2.8. Matrix distribution for the parallel BLAS2 triangular solver (Ttrsv) . 25

2.9. Matrix-matrix product (Tgemm) using a row distribution for matrix C 27

2.10. Matrix-matrix product (Tgemm) using a column distribution for ma-

trix C . 27

2.11. BLAS3 triangular solver (Ttrsm) using a column distribution 29

xxxvii

xxxviii LIST OF FIGURES

3.1. mcalibrator results . 38

3.2. Architecture of 2 nodes of the x86 64 cluster 47

3.3. Impact of the Servet mapping policy on NPB performance on the

x86 64 cluster . 50

3.4. Example of the information provided by Servet about the commu-

nication bandwidth as a function of the message size on the Carver

supercomputer . 52

4.1. Strong scaling speedups of the single precision dot product (sdot) . . 57

4.2. Strong scaling speedups of the single precision matrix-vector product

(sgemv) . 60

4.3. Weak scaling speedups of the single precision matrix-vector product

(sgemv) . 63

4.4. Strong scaling speedups of the single precision outer product (sger) . 64

4.5. Weak scaling speedups of the single precision outer product (sger) . . 66

4.6. Strong scaling speedups of the single precision BLAS2 triangular

solver (strsv) . 67

4.7. Weak scaling speedups of the single precision BLAS2 triangular solver

(strsv) . 70

4.8. Strong scaling speedups of the single precision matrix-matrix product

(sgemm) . 72

4.9. Weak scaling speedups of the single precision matrix-matrix product

(sgemm) . 75

4.10. Strong scaling speedups of the single precision BLAS3 triangular

solver (strsm) . 76

4.11. Weak scaling speedups of the single precision BLAS3 triangular solver

(strsm) . 78

LIST OF FIGURES xxxix

4.12. Example of input matrix distributed by rows in a block-cyclic way . . 80

4.13. Weak scaling speedups of the double precision Cholesky solver on

Carver . 83

4.14. Weak scaling speedups of the double precision LU solver with and

without partial pivoting on Carver 88

5.1. Accesses in the sparse dot product depending on the arrays that are

shared . 95

5.2. Distribution by rows of the sparse matrix-vector product (COO, CSR,

BSR and SKY with lower triangular matrices) 99

5.3. Distribution by columns of the sparse matrix-vector product (CSC

and SKY with upper triangular matrices) 99

5.4. Distribution by diagonals of the sparse matrix-vector product (DIA) . 99

5.5. Distribution by rows of the sparse matrix-matrix product (COO,

CSR, BSR and SKY with lower triangular matrices) 101

5.6. Distribution by columns of the sparse matrix-matrix product (CSC,

DIA and SKY with upper triangular matrices) 101

5.7. Speedups of the sparse matrix-vector and matrix-matrix products for

different storage formats . 103

List of Algorithms

2.1. Algorithm for the BLAS2 triangular solver (Ttrsv) distributed by rows 25

2.2. Algorithm for the BLAS3 triangular solver (Ttrsm) distributed by rows 28

3.1. mcalibrator algorithm . 37

3.2. Probabilistic algorithm to determine the size of physically indexed

caches (L2, L3) based on mcalibrator outputs 39

3.3. Algorithm to detect the cache levels and their sizes 40

3.4. Algorithm to determine the shared caches 41

3.5. Algorithm to characterize memory access overhead 42

3.6. Algorithm to categorize communication costs 44

3.7. Algorithm to provide the best process mapping 46

4.1. Algorithm based on parallel gemm for the Cholesky solver 81

4.2. Algorithm based on parallel syrk for the Cholesky solver 82

4.3. Algorithm for the LU solver without pivoting 85

4.4. Algorithm for the LU solver with partial pivoting by columns 86

xli

Preface

The Partitioned Global Address Space (PGAS) programming model provides sig-

nificant productivity advantages over traditional parallel programming paradigms.

In the PGAS model all threads share a global address space, just as in the shared

memory model. However, this space is logically partitioned among threads, just as

in the distributed memory model. Thus, the data locality exploitation increases per-

formance, whereas the shared memory space facilitates the development of parallel

codes. As a consequence, the PGAS model has been gaining increasing attention. A

number of PGAS languages are now ubiquitous, such as Titanium [109], Co-Array

Fortran [22] and Unified Parallel C (UPC) [112].

UPC is an extension of ANSI C for parallel computing that follows the PGAS

programming model and can potentially perform at similar levels to those of Mes-

sage Passing Interface (MPI), scaling even up to thousands of processors with proper

support from the compiler and the runtime system [37, 72]. In addition, the one-

sided communications present in languages such as UPC have demonstrated they

are able to obtain even better performance than the traditional two-sided commu-

nications [5, 7, 79, 80, 95, 96].

Currently, there are commercial and open source UPC compilers, such as Berke-

ley UPC [10], GCC UPC [43], Cray UPC or HP UPC [58], for nearly all parallel

machines. However, a barrier to a more widespread adoption of UPC is the lack of

parallel libraries for UPC developers.

The present PhD Thesis “UPCBLAS: A Numerical Library for Unified Parallel

C with Architecture-Aware Optimizations” focuses on developing a parallel numer-

ical library that exploits the advantages of the PGAS programming model and, in

particular, the UPC language. The distribution of these kinds of libraries can help

1

2 Preface

to increase the acceptance of this paradigm by programmers of parallel numerical

codes.

Currently, there is a trend towards developing codes that can automatically op-

timize their performance depending on the machine on which they are executed.

Related to this, many optimization techniques have been developed for parallel

computing, most of them being focused on improving the communication algo-

rithms [38, 39, 98, 108, 127] or using the best mapping policies when assigning

processes/threads to cores [13, 14, 19, 57, 74]. There are even approaches to op-

timize UPC programs according to the architecture of the system by using hybrid

programming models [31, 117].

Among the different parallel architectures, clusters of multicores pose significant

challenges, as they present a hybrid distributed and shared memory architecture

with non-uniform communication latencies. Furthermore, because of the sharing

of memory or even cache among cores, concurrent memory accesses using different

threads or processes can decrease the overall memory access throughput.

In order to improve the performance of the UPCBLAS routines on these kinds of

systems, this Thesis also tackles the development of Servet, a suite of benchmarks

focused on detecting a set of parameters with high influence on the overall perfor-

mance of multicore clusters. Servet is able to detect the cache hierarchy, including

cache size and which caches are shared by each core, bandwidths and bottlenecks in

memory accesses, as well as communication latencies among cores.

Besides performance, ease of use is a key factor in the adoption of the library by

numerical application developers. For this reason programmability has been present

in all the design decisions of the library.

Finally, all the lessons learned from the implementation of the dense routines

were applied to the development of sparse counterparts.

The results of this research work have been published in: [44, 45, 46, 47, 48, 49,

50, 51, 52, 53] (references in Spanish not included). The Thesis is organized into six

chapters and two appendices whose contents are summarized as follows:

Chapter 1, Background and State of the Art, is intended to give the reader a

clear background about parallel numerical libraries and PGAS languages so

Preface 3

that the development of UPCBLAS can be completely understood. The chap-

ter begins with an explanation of the characteristics that all the languages

that follow the PGAS programming model share, a presentation of some ex-

amples of these kinds of languages and an exposition of their advantages and

drawbacks. After that, it continues with a deeper explanation of the UPC

language, including the memory model overview and some concepts necessary

to understand the design, syntax and implementation of the UPCBLAS rou-

tines. The chapter finishes with a revision of the previously available parallel

numerical libraries in the state of the art.

Chapter 2, Dense UPCBLAS, presents all the stages of the development of UP-

CBLAS: design of the syntax and interface, implementation of the routines and

inclusion of optimization techniques. The advantages related to programma-

bility and productivity are also enumerated throughout the chapter.

Chapter 3, Servet: Measuring Hardware Parameters, describes Servet, a bench-

mark suite that detects some hardware parameters very useful to implement

architecture-aware optimization techniques to be included in UPCBLAS. The

chapter begins presenting some background that proves the suitability of these

kinds of techniques to optimize routines such as the UPCBLAS ones. Then,

the benchmarks that determine the cache topology, the memory access bot-

tlenecks and the communication layers among cores are described. Finally,

the chapter explains the optimization techniques included in the UPCBLAS

library that use Servet.

Chapter 4, Experimental Evaluation, provides a performance evaluation of UP-

CBLAS. After the description of the two experimental testbeds (the Carver

and HECToR supercomputers), execution times and speedups of six represen-

tative UPCBLAS routines are shown. Specifically, the dot, matrix-vector,

outer and matrix-matrix products and the BLAS2 and BLAS3 triangular

solvers. Furthermore, a comparison with MPI-based counterparts is also pro-

vided. The chapter also proves the utility of the library to implement more

complex numerical libraries by explaining the development of linear solvers of

equations through Cholesky and LU factorizations using UPCBLAS routines.

The chapter concludes with the evaluation of the performance of these codes

on one of the presented testbeds.

4 Preface

Chapter 5, Sparse Numerical Routines in UPC, presents the implementation

of the sparse dot, matrix-vector and matrix-matrix products in UPC. The goal

of the chapter is to provide a first approach to implement sparse numerical

codes using UPC, without sacrificing the productivity and programmability

achieved in dense computation. The chapter discusses which aspects of the

design and implementation of the dense routines included in UPCBLAS can

be reused for sparse computation and which ones must be discarded because

of the inherent irregular memory accesses to sparse vectors and matrices in

these codes. The chapter also evaluates the suitability of six different sparse

storage formats for UPC sparse numerical codes.

Chapter 6, Conclusions and Future Work, summarizes the main contributions

of the Thesis and outlines the main research lines that can be derived from

this work.

Appendix A, UPCBLAS Interface, shows the syntax of all the UPCBLAS

routines, including a description of the parameters and some instructions about

how to initialize the shared arrays before calling the routines.

Appendix B, Servet Library Interface, enumerates the routines included in the

Servet API, describing their syntax and functionality.

Chapter 1

Background and State of the Art

This chapter presents the background necessary to understand the development

of UPCBLAS. On the one hand, it explains the main characteristics of the PGAS

programming model and, particularly, UPC. On the other hand, the state of the

art related to parallel numerical computations is also analyzed. Although the study

of the related literature exposed that there were no parallel numerical libraries for

any PGAS language before this Thesis, some good conclusions were obtained from

previous works that developed numerical libraries for other parallel programming

models or isolated routines for UPC.

The structure of this chapter is as follows: Section 1.1 presents the main char-

acteristics, advantages and drawbacks of the PGAS programming model. The most

important features of UPC that were taken into account to develop UPCBLAS

are described in Section 1.2. Finally, Section 1.3 analyzes several numerical libraries

built for other parallel programming models, focusing on determining their strengths

and weaknesses. This last section also presents some research works that deal with

numerical routines using PGAS languages.

1.1. PGAS Programming Model and Languages

There are two traditional programming models that have been used for years

by parallel programmers. The most commonly used is the message-passing model,

5

6 Chapter 1. Background and State of the Art

whose de facto standard is the Message Passing Interface (MPI) [75]. This model

was initially designed for distributed memory machines, where each process has its

own memory not shared by other processes. Programmers must explicitly distribute

the data and perform the communications among processes, which is tedious and

error-prone and thus decreases programmability. Furthermore, other major criticism

of the message-passing model is that both sides have to agree on when messages are

being sent and received and thus, typically, all communications have to be known

ahead of time. The main strengths of MPI are its flexibility and portability, being

able to achieve very good performance in very different systems.

The second traditional parallel approach is the shared memory programming

model, where all threads can access the whole memory. The best known API is

OpenMP [104], which is much easier to use than message-passing libraries as data are

not logically distributed and can be directly accessed by threads without explicitly

indicating communications.

In an attempt to improve performance on current architectures that mix shared

and distributed memory, several works are based on hybrid MPI+OpenMP codes [64,

89]. However, these hybrid parallel codes are very difficult to program and are not

portable, as they are very architecture-dependent and they need some tuning to

obtain good performance on different machines. These problems could be overcome

with the OpenMP runtime presented in [67] that achieves good performance on

clusters, but it has not been proven on large supercomputers yet.

Nowadays, the best approach to increase the programmability in current clusters

and supercomputers without compromising performance and portability is the usage

of the PGAS paradigm [123], a parallel programming model that combines the

advantages of the two traditional ones described above. Figure 1.1 shows the memory

model of the PGAS languages where there is a global shared address space exposed

to the user which is logically divided among threads, so each thread is associated

or presents affinity to a part of the shared memory. The PGAS languages explicitly

expose the non-uniform nature of memory access times: operations on local data

(i.e. the portion of the address space that a particular processor has affinity to) will

be much faster than operations on remote data (i.e. any part of the shared address

space that a processor does not have affinity to). The knowledge of the strengths of

the PGAS languages has even led some researchers to try to include shared arrays

1.1 PGAS Programming Model and Languages 7

Figure 1.1: Memory model in PGAS languages

into MPI codes [30]. The main advantages of the PGAS programming model are:

The global shared address space facilitates the development of parallel codes,

allowing all threads to directly read and write remote data and avoiding the

error-prone data movements of the message-passing paradigm.

The accesses to shared memory also allow to develop efficient one-sided com-

munications that can outperform the traditional two-sided ones, as a thread

can directly read and write on remote memory without the explicit cooperation

of the thread on the remote core [7, 24].

Compared to the shared memory paradigm, the performance of the codes can

be increased by taking into account data affinity as typically the accesses to

remote data will be much more expensive than the accesses to local data.

The PGAS languages provide a programming model that can be used across

the whole system instead of relying on two distinct programming models that

must be melded together, as in the hybrid OpenMP+MPI solution. Thus the

PGAS languages aim to deliver the same performance as hybrid approaches

but using a uniform programming model.

There are several PGAS languages that are gaining attention apart from UPC,

which is the most commonly used and will be further explained in Section 1.2:

Co-Array Fortran (CAF) [22]: It was created as a small set of extensions that,

being based on a static collection of asynchronous process images, introduces

coarrays to Fortran 95 in order to support the PGAS programming model.

8 Chapter 1. Background and State of the Art

It is included in the Fortran 2008 standard and during the last years several

research works were focused on improving and extending it [73, 82, 92]. Its

good implementation of the one-sided communications allows Co-Array For-

tran to obtain similar or even better performance than MPI depending on the

architecture [23, 24, 25, 63].

Titanium [109]: It is essentially a superset of Java 1.4 that provides a global

memory space abstraction but maintaining all the expressiveness, usability

and safety properties of that object oriented language. Current compilers

translate Titanium programs entirely into C, where they are compiled to native

binaries by a C compiler and then linked to the Titanium runtime libraries.

Thus, no Java Virtual Machine is necessary. The main advantage of this

language is its high programmability, as it inherits the programmability of

Java [118, 119]. Besides, its performance is not far from MPI for the NAS

Parallel Benchmarks [29].

Chapel (Cascade High Productivity Language) [102]: It is a parallel program-

ming language developed by Cray as part of the Cray Cascade project, a

participant in DARPA’s High Productivity Computing Systems (HPCS) [56].

Chapel was designed from scratch rather than by extending an existing lan-

guage. It is an imperative block-structured language, designed to reduce the

gap to learn parallel programming for users of sequential C, C++, Fortran,

Java, Perl or Matlab [18]. Chapel specifies a locale type that enables users to

choose the placement of data and tasks on a target architecture in order to

optimize the code thanks to locality. Moreover, Chapel supports global-view

data sets (called aggregates) with user-defined implementations, permitting

operations on distributed data structures to be expressed in a natural man-

ner. The main strength of Chapel is that it provides a spectrum of features at

various levels so that code which is less performance-oriented can be written

more easily. However, if additional performance is required for a section of

code, programmers are able to rewrite it using low-level performance-oriented

features until they are able to obtain their target performance, not only on

clusters but also on GPUs [97].

X10 [122]: It is another parallel programming language related to the HPCS

project, in this case built by IBM as part of the Productive, Easy-to-use,

1.2 Overview of Unified Parallel C 9

Reliable Computing System (PERCS) project. Each computation is divided

among a set of places, each of which holds some data and hosts one or more

activities that operate on those data. One of its most interesting novelties is

that X10 uses the concept of parent and child relationships for activities to

prevent the lock stalemate that can occur when two or more processes wait

for each other to finish before they can complete. It also provides a rich array

sublanguage. The community of X10 users is quite active, taking advantage

of its high programmability [76] and increasing its performance with novel

optimizations [3, 91].

Fortress [87]: This is the third language that started being funded by the

HPCS project. However, Sun was dropped from the HPCS project in 2006

and Fortress was transformed into an open-source project with an open-source

community. Syntactically, it is similar to Scala or Haskell, emulating mathe-

matical notation as closely as possible.

1.2. Overview of Unified Parallel C

This section describes the most important features of the memory model in UPC

as they were taken into account to design the interface of the library, determine the

most appropriate data distributions among threads and implement the numerical

routines. An overview of the different types of pointers present in the language and

the mechanisms to access remote data are also included as their behavior is the basis

for some of the optimization techniques included in UPCBLAS.

As mentioned previously, all PGAS languages, and thus UPC, expose a global

shared address space to the user which is logically divided among threads, so each

thread is associated or presents affinity to a part of the shared memory. Moreover,

UPC also provides a private memory space per thread for local computations, as

shown in Figure 1.2. Therefore, each thread has access to both its private memory

and to the whole global space, even the parts that do not present affinity to it. This

memory specification combines the advantages of both the shared and distributed

programming models. On the one hand, the global shared memory space facilitates

the development of parallel codes, allowing all threads to directly read and write

10 Chapter 1. Background and State of the Art

Figure 1.2: Memory model in UPC

remote data without explicitly notifying the owner. On the other hand, the perfor-

mance of the codes can be increased by taking into account data affinity. Typically

the accesses to remote data will be much more expensive than the accesses to local

data (i.e. accesses to private memory and to shared memory with affinity to the

thread).

Shared arrays are employed to implicitly distribute data among all threads, as

shared arrays are spread across the threads. The syntax to declare a shared ar-

ray A is: shared [BLOCK FACTOR] type A[N], BLOCK FACTOR being the number of

consecutive elements with affinity to the same thread, type the datatype, and N

the array size. This means that the first BLOCK FACTOR elements are associated to

thread 0, the next BLOCK FACTOR to thread 1, and so on. Thus, the element i in the

array has affinity to the thread b i
BLOCK FACTOR

cmod(THREADS), THREADS

being the total number of threads in the UPC execution. There are two additional

ways to declare certain shared arrays:

shared type A[N] specifies a cyclic distribution (BLOCK FACTOR = 1).

shared [] type A[N] declares an array with indefinite BLOCK FACTOR, which

means that all the elements are stored in the shared memory with affinity to

thread 0 (BLOCK FACTOR = N).

As an extension of the C language, UPC provides functionality to access memory

through pointers. Due to the two types of memory available in the language, several

types of pointers arise:

1.2 Overview of Unified Parallel C 11

Private pointers (from private to private). They are only available for the

thread that stores them in its private memory and can reference addresses in

the same private memory or in the part of the shared memory with affinity to

the owner. Their syntax is the same of standard C pointers: type *p

Private pointers to shared memory (from private to shared). They are only

available for the thread that stores them in its private memory, but can have

access to any data in the shared space. They contain three fields in order

to know their exact position in the shared space: the thread where the data

is located, the block that contains the data and the phase (the location of

the data within the block). Thus, when performing pointer arithmetic on a

pointer-to-shared all three fields will be updated, making the operation slower

than private pointer arithmetic. As in shared arrays, the BLOCK FACTOR can

be specified: shared [BLOCK FACTOR] type *p

Shared pointers (from shared to shared). They are stored in shared memory

(and therefore accessible by all threads) and they can access any data in the

shared memory. Their complexity is similar to private pointers to shared

memory. They are defined as: shared [BLOCK FACTOR] type *shared p

Shared pointers to private memory (from shared to private). They are stored

in shared memory and point to the private space. However, their use is not

advisable and they are not available in some compiler implementations.

The most intuitive way for one thread to access remote data is using pointers to

shared memory. Nevertheless, UPC also provides functions to move blocks of data

between two parts of the memory:

upc memget: One thread copies one block of data from shared memory (with

or without affinity) to its private memory.

upc memput: One thread copies one block of data from its private memory to

shared memory (with or without affinity).

upc memcpy: One thread copies one block of data from any shared memory

position to any other shared memory position.

12 Chapter 1. Background and State of the Art

upc memset: Assigns the same value to all the elements of a block of data in

shared memory.

The usage of these routines allows UPC programmers to aggregate remote data

copies and thus obtain better performance than using several single data copies

through pointers to shared. Some compilers also provide versions of these functions

that perform asynchronous copies to overlap communication and computation [12].

The return of each of these functions only indicates that the copy has started and a

subsequent synchronization on the completion of that operation is required before

guaranteeing that all data were copied. Although these asynchronous copies are not

included in the standard reference of the language, they are included in the most

important UPC compilers (Berkeley UPC, Cray UPC, HP UPC).

1.3. Parallel Numerical Computation in the Li-

terature

Numerical libraries have been used for decades in order to help programmers to

develop their numerical codes easily and with high performance. UPCBLAS provides

a relevant subset of the Basic Linear Algebra Subprograms (BLAS) routines [6, 33]

implemented for UPC. The BLAS interface was first published in 1979 and it has

become a standard as it is widely used by scientists and engineers. The interface

was initially developed for Fortran but now there is also a C interface [11]. BLAS

routines are divided into three levels:

BLAS 1 level: Scalar-vector and vector-vector operations.

BLAS 2 level: Matrix-vector operations.

BLAS 3 level: Matrix-matrix operations.

Although BLAS initially focused on dense and banded operations, nowadays

many applications use sparse vectors and matrices. Thus, currently the BLAS li-

brary includes the SparseBLAS one [36, 99], which provides computational routines

1.3 Parallel Numerical Computation in the Li- terature 13

for unstructured sparse matrices, that is, matrices that do not present a particular

sparsity pattern. Another well-known interface for numerical computation is the

Linear Algebra Package (LAPACK) [69], that internally uses the BLAS library to

implement more complex numerical routines such as linear solvers or matrix factor-

izations. Many vendors have developed their own numerical libraries, such as Intel

MKL [62], AMD ACML [2], Cray LibSci, IBM ESSL [103] or HP MLIB [59], that

include, among others, their own implementations of the BLAS, SparseBLAS and

LAPACK routines very optimized for their architectures. Furthermore, there are

in the literature several numerical libraries with support for parallel dense matrix

computations based on the message-passing model. Among them, PBLAS [21, 83],

a subset of BLAS, and ScaLAPACK [105], a subset of LAPACK, are the most pop-

ular. Based on them, Aliaga et al. [1] made an effort to parallelize the open source

numerical library GSL [54].

The main drawback of the message-passing-based libraries is that they need an

explicit data distribution that increases the effort required to use them. Users are

forced to deal with specific structures defined in the library and to work in each

process only with the part of the matrices and vectors stored in the local memory.

Therefore, users must be aware of the appropriate local indices to use in each process,

which increases the complexity of developing parallel codes [68]. In the literature

there exist some proposals that try to ease the use of message-passing numerical

libraries, such as PyScaLAPACK [34] and Elemental [86]. Following this trend, one

of the goals of UPCBLAS is to increase programmability. The PGAS languages

in general, and UPC in particular, offer productivity advantages compared to the

message-passing model. In [16] the number of lines of code needed by the MPI and

the UPC implementations of the NAS Parallel Benchmarks and other kernels are

compared. Similar statistical studies with university students are presented in [84]

and [101]. These works have demonstrated that the effort needed to solve the same

problem is lower in UPC than in MPI. Furthermore, the global address space in UPC

allows hiding the complex local index generation for matrices and vectors as well as

data movement issues present in the message-passing approaches. The experimental

evaluation of the UPCBLAS library will show that simplicity does not significantly

impact performance.

14 Chapter 1. Background and State of the Art

Regarding other proposals of PGAS libraries, a parallel numerical library that

combines the object-oriented-like features of Fortran 95 with the parallel syntax of

Co-Array Fortran was presented in [81]. However, its object-oriented layer leads to

use object maps, additional structures to work with distributed matrices and vectors

similarly to the message-passing-based libraries, which increases the effort needed

to parallelize sequential numerical algorithms. Travinin and Kepner [111] developed

pMatlab, a parallel library built on top of MatlabMPI (a set of Matlab scripts that

implement a subset of MPI). It works with matrices and vectors distributed by sim-

ulating a pure PGAS scenario in order to take advantage of the ease of programming

and a higher level of abstraction.

Focusing on numerical computations in UPC, Bell and Nishtala present in [8] a

sparse triangular solver in UPC. In [61] Husbands and Yelick undertake the paral-

lelization of the LU factorization. However, these works do not take advantage of

the ease of use of the global shared memory in UPC as the matrices and vectors

are initially distributed in the private memory of the threads, in the same way as in

message-passing numerical libraries.

Chapter 2

Dense UPCBLAS

This chapter explains the whole development of the dense routines included

in UPCBLAS. It is divided into two parts: Section 2.1 describes in detail all the

decisions taken during the design of the different levels of UPCBLAS. It also includes

some conclusions that summarize the programmability and productivity advantages

of UPCBLAS compared to other parallel numerical routines. Section 2.2 enumerates

several optimizations included within the routines to improve their performance.

2.1. UPCBLAS Design

One of the main reasons to create a library is to facilitate the development of new

codes for the target language. Thus, the design stage must be carried out carefully

in order to provide functions with an interface easy to use by programmers.

Programmability has been an important factor in all the design decisions of the

library. Specifically, UPCBLAS uses shared arrays to represent distributed matrices

and vectors, which are implicitly partitioned among threads. Thus, the complex

steps of declaring and distributing vectors and matrices required by the MPI-based

libraries are avoided.

In general, programs that use parallel numerical libraries must carry out the

following steps: 1) create the structures to represent the distributed vectors and

matrices; 2) distribute the data of the vectors and matrices into these structures;

15

16 Chapter 2. Dense UPCBLAS

3) call the numerical functions using the structures as parameters; 4) perform other

operations with the distributed data (e.g. gathering or reducing some elements so

that they are in the local memory of one process, write some elements of all or some

processes in a file...); 5) release the structures.

The message-passing paradigm (e.g. MPI) does not provide any structure in the

language to deal with vectors and matrices distributed among the processes. Hence,

developers of message-passing numerical libraries have to create additional structures

to represent distributed vectors and matrices. Both the new structures and the 2D

distribution of the matrices are concepts that pose an important challenge for most

of the users of parallel numerical libraries (researchers and engineers from different

areas), as can be seen in the results of the survey [68]. In contrast, UPC libraries can

make use of shared arrays, making steps 1, 2, 4 and 5 almost trivial. Therefore, the

design of UPCBLAS, based on these shared arrays, significantly improves the ease

of use of the library and thus the productivity of numerical applications developers.

Furthermore, UPCBLAS also facilitates the third step by simplifying the interface

of the routines because the syntax of the UPCBLAS functions is quite similar to the

syntax of the corresponding sequential BLAS routines (see Appendix A). They only

change the type of the pointers (so they can point to shared memory) and include

additional parameters to indicate the type of data distribution.

However, the use of UPC shared arrays to distribute vectors and matrices imposes

some limitations on the types of distributions that can be performed. On the one

hand, the block factor (see Section 1.2) must be constant for all the threads. On

the other hand, multidimensional distributions are not allowed. Thus, for some

UPCBLAS routines, the distribution that theoretically obtains the best performance

(e.g. 2D distributions for the matrix-matrix product) is not available. Nevertheless,

the interface is flexible enough so that, if multidimensional distributions were allowed

in UPC shared arrays in the future, no changes would be necessary to take advantage

of the 2D distributions. Even more novel distributions like the 2.5D algorithms (with

or without overlapping of communications and numerical computations) developed

for the BLAS3 routines in [44] could be included.

Table 2.1 lists all the implemented routines, a representative subset of BLAS.

A total of 52 different functions were implemented: 13 routines and 4 datatypes

per routine. Next subsections show the interface and main characteristics of the

2.1 UPCBLAS Design 17

Table 2.1: UPCBLAS routines. All the functions follow the naming convention:
upc blas Tblasname, where “T” represents the data type (s=float; d=double;
c=single precision complex; z=double precision complex) and blasname is the name
of the routine in the sequential BLAS library

BLAS level Tblasname Action

BLAS1

Tcopy Copies a vector
Tswap Swaps the elements of two vectors
Tscal Scales a vector by a scalar
Taxpy Updates a vector using another one:

y = α ∗ x+ y
Tdot Dot product between two vectors

Tnrm2 Euclidean norm of a vector
Tasum Sums the absolute value of the elements of a vector

BLAS2
Tgemv Matrix-vector product
Tger Outer product between two vectors
Ttrsv Solves a triangular system of equations

BLAS3
Tgemm Matrix-matrix product
Ttrsm Solves a block of triangular systems of equations
Tsyrk Product of a symmetric matrix by its transpose

UPCBLAS routines. The exact syntax of all the UPCBLAS routines is detailed in

Appendix A.

All the routines return a local integer error value which refers only to each thread

execution. In order to ensure that no error has occurred in any thread, the global

error checking must be made by the programmer using the local error values. This is

a usual practice in parallel libraries to avoid unnecessary synchronization overheads.

2.1.1. BLAS1 Routines

In order to favor the adoption of UPCBLAS among PGAS programmers, the

syntax of these functions is similar to the standard collectives library [112]. For

instance, the syntax of the single precision dot product is:

18 Chapter 2. Dense UPCBLAS

int upc blas sdot(int block size, int size, shared void *x,

shared void *y, shared float *dst);

x and y being the source vectors of length size; dst the pointer to shared memory

where the dot product result will be written; and block size the block factor (see

BLOCK FACTOR in Section 1.2) of the source vectors. For performance reasons, the

block factor must be the same for both vectors. This function treats pointers x and

y as if they had type shared [block size] float[size].

An important design decision in UPCBLAS is that, looking for efficiency, only

one block size parameter to indicate the same block factor for both shared arrays

is included. Figure 2.1 shows two scenarios for the dot product. When both vectors

have the same block size, all the pairs of elements that must be multiplied are

stored in the shared memory with affinity to the same thread. Thus, each thread

only has to perform its partial dot product in a sequential way and the final result

is obtained through a reduction operation over all threads. However, in the second

case, several remote accesses that affect performance are necessary so that each

thread can obtain all the data needed in its partial dot product.

Finally, in order to be able to work with subvectors, x and y do not need to

point to the first element of a shared array. Figure 2.2 illustrates an example for a

subvector that is stored from position 2 to 13 of a shared array. The only restriction

is that the subvector must start in the first position of a block (i.e. its phase must

be 0). This restriction is not a big issue as it is also present in the standard UPC

libraries (e.g. the collectives library) and it is the natural way to declare and allocate

shared arrays.

2.1.2. BLAS2 Routines

Shared matrices in UPC can only be distributed in one dimension as the UPC

syntax does not allow multidimensional layouts. The definition of multidimensional

block factors has been proposed in [4], although currently this extension is not in-

cluded in the language specification. Therefore, all the UPCBLAS routines rely

on the 1D data distribution present in the standard. An additional parameter

2.1 UPCBLAS Design 19

Figure 2.1: Remote and local accesses in upc blas sdot according to the block
factor of the source vectors

Figure 2.2: Meaning of the parameters of upc blas sdot when working with sub-
vectors

(dimmDist) is needed in the routines to indicate the dimension used for the distri-

bution of the matrix. For instance, the UPCBLAS routine for the single precision

matrix-vector product (y = α ∗ A ∗ x+ β ∗ y) is:

int upc blas sgemv(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS TRANSPOSE transpose,

int m, int n, float alpha, shared void *A,

int lda, shared void *x, float beta,

shared void *y);

A and x being the source matrix and vector, respectively; y the result vector;

transpose an enumerated value to indicate whether matrix A is transposed; m and

n the number of rows and columns of the matrix; alpha and beta the scale factors

20 Chapter 2. Dense UPCBLAS

for A and y, respectively; and dimmDist another enumerated value to indicate if the

source matrix is distributed by rows or columns. lda is a parameter inherited from

the sequential BLAS library to work with submatrices. It expresses the memory

distance between two elements in the same column and in consecutive rows of the

submatrix.

Figure 2.3 shows an example with the row and column distributions when A is a

submatrix that discards two rows and two columns of the global array. Thanks to

using arrays stored in shared memory and pointing directly to the first element of

the submatrix, the lda parameter is enough to specify all the information to work

with submatrices, as in sequential BLAS routines. Therefore, the syntax of the

routines is simpler than in message-passing-based numerical libraries where the first

row and column of the submatrix must be explicitly specified through additional

parameters. Similarly to the UPC BLAS1 routines, the only restriction is that

the submatrix must start at the first row/column of a block in the row/column

distribution. This approach is followed in all the UPC BLAS2 and BLAS3 routines

to work with submatrices.

Figure 2.3: Meaning of the parameters of upc blas sgemv when working with a
submatrix

The meaning of the block size and sec block size parameters depends on the

dimmDist value:

If the source matrix A is distributed by rows (dimmDist=upcblas rowDist),

2.1 UPCBLAS Design 21

block size is the number of consecutive rows with affinity to the same thread

and sec block size the block factor related to the source vector x. For in-

stance, in the non-transpose case, this function treats pointers as:

• A: shared[block size*lda] float[m*lda]

• x: shared[sec block size] float[n]

• y: shared[block size] float[m]

If the source matrix is distributed by columns (dimmDist=upcblas colDist),

block size is the number of consecutive columns with affinity to the same

thread and sec block size the block factor related to the result vector y:

• A: shared[block size] float[m*lda]

• x: shared[block size] float[n]

• y: shared[sec block size] float[m]

Figure 2.4 illustrates the behavior of the matrix-vector product when A is dis-

tributed by rows (in this example block size=2). In order to exploit data locality

as much as possible each thread only accesses the rows of the matrix with affinity

to that thread. Then, by applying a sequential partial matrix-vector product with

these rows and all the elements of x, each thread calculates a partial result that

corresponds with its rows of A. Thus, if the distribution of the result vector matches

the distribution of the matrix, all the partial results can be copied to their correct

final positions working only with local memory. This is the reason why in the row

case the parameter block size indicates not only the distribution of the matrix,

but also the distribution of the result vector. Thus, users are forced to declare y

with a block factor equal to block size in order to guarantee always a good per-

formance. As all the elements of x must be used by all threads, its block factor does

not need to be linked to the distribution of the matrix, and it is indicated through

the sec block size parameter.

Figure 2.5 shows the behavior of the routine with a column distribution. In

this case the source vector x must have always the same distribution (block size)

as the matrix and the distribution of the result vector y is passed through the

sec block size parameter. In order to compute the ith element of the result, the

22 Chapter 2. Dense UPCBLAS

Figure 2.4: Matrix-vector product (Tgemv) using a row distribution for the matrix

Figure 2.5: Matrix-vector product (Tgemv) using a column distribution for the
matrix

ith values of all partial results must be added. These additions need reduction

operations involving all UPC threads, so their performance is usually poor.

The approach to parallelize the outer product (Tger) within UPCBLAS is quite

similar to the matrix-vector product. The main difference is that the parameter

dimmDist is related to the result matrix (A = α ∗ x ∗ yT +A). The syntax for single

precision is:

int upc blas sger(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, float alpha,

shared void *x, shared void *y, shared void *A,

int lda);

x and y being the source vectors; A the result matrix; m and n the number of rows

and columns of the matrix; alpha the scale factor; and dimmDist an enumerated

value to indicate if the matrix is distributed by rows or columns.

Again, the exact meaning of the block size and sec block size parameters

depends on the dimmDist value:

2.1 UPCBLAS Design 23

If matrix A is distributed by rows (dimmDist=upcblas rowDist), the data

distribution is as specified in Figure 2.6. In this case each thread only needs

to perform an outer product with the elements of x that correspond to the row

distribution of A and the whole vector y. Therefore, pointers must be:

• x: shared[block size] float[m]

• y: shared[sec block size] float[n]

• A: shared[block size*lda] float[m*lda]

If the matrix is distributed by columns, block size is also related to vector

y and sec block size is the block factor related to vector x, as all threads

need to have access to all its elements (see Figure 2.7):

• x: shared[sec block size] float[m]

• y: shared[block size] float[n]

• A: shared[block size] float[m*lda]

The routine to solve a triangular system of equations M∗x = b (Ttrsv) is a special

case among the UPC BLAS2 routines because there are a lot of data dependencies

in the internal algorithm. In the BLAS interface vector b is always overwritten by

the solution vector x, so both are represented by the same parameter. According to

this assumption, the syntax of the UPC BLAS2 triangular solver for single precision

is:

upc blas strsv(UPCBLAS DIMMDIST dimmDist, int block size,

UPCBLAS UPLO uplo, UPCBLAS TRANSPOSE transpose,

UPCBLAS DIAG diag, int n, shared void *M, int ldm,

shared void *x);

nxn being the size of the triangular matrix M and n the length of x. The enumerated

values uplo, transpose and diag are included to determine the characteristics of

M (upper/lower triangular, transpose/non-transpose, elements of the diagonal equal

to one or not). In this routine, all the distributions are specified by block size and

the vector and the matrix must be stored in shared arrays with the following syntax:

24 Chapter 2. Dense UPCBLAS

• M: shared[block size*ldm] float[n*ldm] if row distribution

• M: shared[block size] float[n*ldm] if column distribution

• x: shared[block size] float[n] in both cases

Figure 2.6: Outer product (Tger) using a row distribution for the matrix

Figure 2.7: Outer product (Tger) using a column distribution for the matrix

Figure 2.8 shows an example of the distribution by rows of a lower triangular co-

efficient matrix using two threads and two blocks per thread. The triangular matrix

is logically divided into square blocks Mij. These blocks are triangular submatrices

if i = j, square submatrices if i > j, and null submatrices if i < j. Algorithm 2.1

shows the parallel algorithm for this example. Once one thread computes its part

of the solution (output of the sequential trsv routine), it is broadcast to all threads

so that they can update their local parts of b with the sequential product (gemv).

Thanks to specifying the distribution of both M and x with the same parameter

2.1 UPCBLAS Design 25

Figure 2.8: Matrix distribution for the parallel BLAS2 triangular solver (Ttrsv)

Algorithm 2.1 Algorithm for the BLAS2 triangular solver (Ttrsv) distributed by
rows

x1 ← Solve M11 ∗x1 = b1 BLAS Ttrsv()

Broadcast x1
b2 ← b2−M21 ∗x1 BLAS Tgemv()

b3 ← b3−M31 ∗x1 BLAS Tgemv()

b4 ← b4−M41 ∗x1 BLAS Tgemv()

x2 ← Solve M22 ∗x2 = b2 BLAS Ttrsv()

Broadcast x2
b3 ← b3−M32 ∗x2 BLAS Tgemv()

...

(block size), all sequential trsv and gemv computations can be performed with-

out any communication except the broadcast. Note that all operations between two

synchronizations (broadcasts) can be performed in parallel.

The column distribution would involve a nearly sequential algorithm with poor

performance due to the characteristics of its dependencies. However, it is also avail-

able in the Ttrsv routine to allow a distribution reuse just in case the source matrix

uses that distribution in other UPCBLAS routines within the same application.

2.1.3. BLAS3 Routines

In the BLAS3 routines, as there is more than one matrix, the number of possible

combinations of distributions of the matrices grows. In the design of UPCBLAS

programmability is a must and thus, in order to simplify the understanding and use

of the UPC BLAS3 routines, the parameter dimmDist always makes reference to the

result matrix. Moreover, this choice allows reusing the output data as input matrix

26 Chapter 2. Dense UPCBLAS

in consecutive calls to UPCBLAS routines.

The interface of the UPCBLAS routine for a single precision matrix-matrix prod-

uct (C = α ∗ A ∗B + β ∗ C) is:

upc blas sgemm(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS TRANSPOSE transposeA,

UPCBLAS TRANSPOSE transposeB, int m, int n, int k,

float alpha, shared void *A, int lda,

shared void *B, int ldb, float beta, shared void *C,

int ldc);

mxk, kxn and mxn being the sizes of A, B and C, respectively. block size means

the number of consecutive rows or columns of C (depending on the dimmDist value)

with affinity to the same thread. In addition, sec block size is related to B in the

row distribution and to A in the column one. The meaning of the rest of parameters

is similar to the sgemv routine explained in the previous section. Thus, UPCBLAS

sgemm with the row distribution treats pointers as:

• A: shared[block size*lda] float[m*lda]

• B: shared[sec block size] float[k*ldb]

• C: shared[block size*ldc] float[m*ldc]

If the column distribution is used, the matrices must be stored in arrays declared

as follows:

• A: shared[sec block size] float[m*lda]

• B: shared[block size] float[k*ldb]

• C: shared[block size] float[m*ldc]

Figure 2.9 shows an example for the row distribution of the matrix-matrix prod-

uct. As block size is related to the result matrix C, in order to perform its sequen-

tial partial matrix-matrix product each thread needs to access the same rows of A

2.1 UPCBLAS Design 27

than those of C with affinity to that thread, and all the elements of B. So, as in the

equivalent distribution of the BLAS2 routine (Tgemv), block size is related to C

and A, and the distribution of B is determined by sec block size.

Figure 2.10 shows the same example when matrix C is distributed by columns.

In order to perform the partial sequential matrix-matrix product each thread needs

the whole matrix A but only the same columns of B as those of C with affinity to that

thread. Thus, block size also defines the distribution of B and sec block size is

related to A. Unlike the column distribution of the BLAS2 routine (see Figure 2.5),

no reductions are necessary in this case, avoiding the associated overhead at the end

of the routine.

Figure 2.9: Matrix-matrix product (Tgemm) using a row distribution for matrix C

Figure 2.10: Matrix-matrix product (Tgemm) using a column distribution for matrix
C

Regarding the BLAS3 triangular solver (M ∗X = α∗B, with matrix B overwrit-

ten by the result matrix X), the parameters are quite similar to those of the BLAS2

counterpart (Ttrsv), only changing the vectors by matrices and adding a new enu-

merated parameter (side) to indicate if the triangular matrix M is in the left or in

28 Chapter 2. Dense UPCBLAS

the right part of the operation. M is mxm if it is left-sided or nxn if right-sided, and

X is always mxn. The syntax for single precision is:

upc blas strsm(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS SIDE side,

UPCBLAS UPLO uplo, UPCBLAS TRANSPOSE transpose,

UPCBLAS DIAG diag, int m, int n, float alpha,

shared void *M, int ldm, shared void *X, int ldx);

Algorithm 2.2 Algorithm for the BLAS3 triangular solver (Ttrsm) distributed by
rows

X1 ← Solve M11 ∗X1 = B1 BLAS Ttrsm()

Broadcast X1

B2 ← B2−M21 ∗X1 BLAS Tgemm()

B3 ← B3−M31 ∗X1 BLAS Tgemm()

B4 ← B4−M41 ∗X1 BLAS Tgemm()

X2 ← Solve M22 ∗X2 = B2 BLAS Ttrsm()

Broadcast X2

B3 ← B3−M32 ∗X2 BLAS Tgemm()

...

As in the matrix-matrix product, the distribution specified by dimmDist and

block size is always related to the result matrix. In this case the choice between

row or column distribution leads to apply a different algorithm. If the result matrix

X is distributed by rows, the routine performs this solver using the Algorithm 2.2,

which is similar to Algorithm 2.1, but replacing the sequential BLAS2 routines

Tgemv and Ttrsv by their equivalent BLAS3 Tgemm and Ttrsm, respectively. Thus,

the triangular matrix is forced to have the same distribution as the resultant one:

• M: shared[block size*ldm] float[m*ldm]

• X: shared[block size*ldx] float[m*ldx]

However, if the result matrix X is distributed by columns, a similar approach to

the column distribution of the matrix-matrix product, with independent sequential

computations, is applied. This approach treats pointers as follows:

2.2 UPCBLAS Implementation 29

• M: shared[sec block size] float[m*ldm]

• X: shared[block size] float[m*ldx]

Figure 2.11 shows an example of this column distribution. As the source matrix

B is overwritten by the result matrix X, they are represented by the same pointer

and thus they have the same block factor. Therefore, each thread has access to

all the elements of the triangular matrix and applies a sequential Ttrsm routine to

the columns of B and X with affinity to it. This approach improves performance by

avoiding the dependencies present in the row distribution.

Figure 2.11: BLAS3 triangular solver (Ttrsm) using a column distribution

2.2. UPCBLAS Implementation

Besides improving productivity, parallel libraries are expected to offer good per-

formance so users can take advantage of them to improve their applications. Al-

though UPCBLAS has the limitation of working only with 1D distributions, a set

of optimization techniques have been applied in the implementation of the routines

to achieve the best possible performance:

Data locality optimization: As explained in Section 2.1, the data distribu-

tions required to users when calling the UPCBLAS routines are focused on

minimizing the remote accesses and, thus, decreasing the overhead due to

communication among cores.

30 Chapter 2. Dense UPCBLAS

Space privatization: As explained in Section 1.2, working with shared pointers

is slower than with private ones. Experimental measurements in [37] and [128]

have shown that the use of shared pointers increases execution times by up to

several orders of magnitude. Thus, in our routines, when dealing with shared

data with affinity to the local thread, the access is performed through standard

C pointers instead of using UPC pointers to shared memory.

Aggregation of remote shared memory accesses: Instead of the costly one-by-

one accesses to remote elements, our routines perform remote shared memory

accesses through bulk copies, using the upc memget() and upc memput() func-

tions on remote bulks of data required by a thread. For instance, the vector x

in Figure 2.4 is replicated in all threads using bulk copies of sec block size

elements.

Use of phaseless pointers: Many UPC compilers (including Berkeley UPC [20])

implement an optimization for the common case of cyclic and indefinite point-

ers to shared memory. Cyclic pointers are the ones with a block factor of one,

and indefinite pointers with a block factor of zero. Therefore, their phases

are always zero. These shared pointers are thus phaseless, and the compiler

exploits this knowledge to schedule more efficient operations for them. All in-

ternal shared arrays of the UPCBLAS routines are declared with block factor

of zero in order to take advantage of this optimization.

Efficient array-based reduction in UPC: As explained in Section 2.1.2, the

column distribution for Tgemv needs a reduction operation for each element

in the result vector (see Figure 2.5). The UPC collectives library [112] does

not include a collective function to perform reduction operations on arrays as,

for instance, MPI does. A solution could be the use of the upc all reduce

function once per element of the destination array, but this method is quite

inefficient. The approach followed in UPCBLAS to perform these array-based

reductions consists of copying all the elements to a thread, using this thread to

perform the operation and distributing the results again among the threads.

We have proven experimentally that this approach is faster. This ad hoc

array-based reduction was developed with an interface so that it can be easily

changed if in the future a better version is included in the collectives library

(e.g. a tree level reduction).

2.2 UPCBLAS Implementation 31

Efficient broadcast communication model: As in the PGAS programming

model any thread may directly read or write data located on a remote pro-

cessor, two possible communication models can be applied to the broadcast

operations:

• Pull Model: The thread that obtains the data to be broadcast writes

them in its shared memory. The other threads are expected to read them

from this position. This approach leads to remote accesses from different

threads but, depending on the network, they can be performed in parallel.

• Push Model: The thread that obtains the data to be broadcast writes

them directly in the shared space of the other threads. In this case the

network contention decreases but the writes are sequentially performed.

The pull communication model was initially proved to be more efficient than

the push one, particularly as the number of threads increases. This is therefore

the communication model used by all the broadcast operations in our parallel

routines (see, for instance, the BLAS2 triangular solver in Figure 2.8 and

Algorithm 2.1).

Efficient underlying sequential numerical libraries: The UPCBLAS parallel

functions call internally BLAS routines to perform the computations with local

data in each thread. These calls can be linked to very optimized libraries such

as Intel MKL. UPCBLAS internally includes wrappers that allow linking to

libraries such as Cray LibSci or AMD ACML that do not follow the standard C

BLAS interface [11] and are only able to work with column-ordered matrices.

Apart from these general techniques, other optimizations that take into account

some hardware parameters are implemented for some routines. These additional

optimization techniques are explained in the next chapter after presenting Servet,

the benchmark suite used to know the hardware characteristics of the target system.

Chapter 3

Servet: Measuring Hardware

Parameters

The growing complexity in computer system hierarchies due to the increase in

the number of cores per processor, levels of cache and number of processors per

node, as well as the high-speed interconnects, demands the use of new optimization

techniques and libraries that take advantage of their features.

Servet1, a suite of benchmarks focused on detecting a set of hardware parameters

with high influence on the overall performance of multicore systems, is presented

in this chapter. These parameters will be used to increase the performance of the

UPCBLAS routines on multicore clusters. This chapter begins in Section 3.1 with

an introduction and a description of the state of the art related to the automatic

detection of hardware parameters. Subsequent sections describe the benchmarks in-

cluded in Servet: Section 3.2 explains the cache size estimator; Section 3.3 presents

the process to detect shared caches; the benchmark to find possible memory ac-

cess overheads is described in Section 3.4, and Section 3.5 shows the mechanism

to detect the different communication layers. Section 3.6 illustrates the algorithms

integrated in Servet that provide mapping policies that automatically take into ac-

count the hardware parameters detected by the suite. Finally, Section 3.7 describes

1As this suite dissects the machines to discover their characteristics, it obtains its name from
Miguel Servet, a Spanish theologian, physician, cartographer and humanist who lived in the XVIth
Century and performed many dissections, being the first European to describe the function of
pulmonary circulation.

33

34 Chapter 3. Servet: Measuring Hardware Parameters

the interaction between Servet and UPCBLAS and how the benchmark suite helps

to optimize the numerical routines.

3.1. Introduction to the Detection of Hardware

Parameters

The popularity of autotuned codes, which adapt their behavior to the machine

where they are executed, has increased over the past few years thanks to the per-

formance improvement that they are able to achieve. For instance, a widespread

autotuning technique for sequential codes consists in using a wide search mechanism

to find the most suitable algorithm [42, 88, 120]. The search time could be reduced

by knowing the values of some parameters of the system [41, 124].

As regards parallel codes, there exist in the literature many optimization tech-

niques to improve their performance, most of them directed towards increasing the

communication bandwidth among the processes [98, 108, 127]. Among the different

parallel architectures, clusters of multicores are nowadays the target architecture for

autotuned codes. On the one hand, they usually present several non-uniform laten-

cies and bandwidths depending on the cores that are communicating [77]. On the

other hand, the overall memory access throughput might decrease if several cores

share memory or cache.

Two main approaches are followed to improve the performance of parallel appli-

cations on clusters of multicores. The most common one consists in implementing

and timing several codes in order to choose the best one according to the system

characteristics, for instance, adapting the communication algorithms to the target

machine. In [115] Vadhiyar et al. present a thorough evaluation of the MPI col-

lectives that proves that the optimal algorithm and the optimal buffer size for a

given message size depends on the gap values of the networks, the memory models

and the underlying communication layer. The optimal parameters for a particu-

lar system are experimentally determined. Cuenca et al. [27, 28] have developed a

mechanism to make a good automatic choice of configurable parameters for linear

algebra routines. Faraj et al. [38, 39] present an automatic generation and tuning

system for MPI collective communication routines and offer a successful evaluation

3.1 Introduction to the Detection of Hardware Parameters 35

of its impact on the NAS Parallel Benchmarks (NPB) [78]. Their approach focuses

on optimizing collectives taking into account the network topology.

The second approach consists in assigning processes or threads to specific cores to

improve performance without source code modifications. In [19] Chen et al. propose

a profile-guided approach to optimize parallel process placement in SMP clusters,

experimentally proving that it can obtain good speedups. A more complex approach

that designs mapping policies which minimize network contention on large super-

computers is presented in [57]. Mercier and Clet-Ortega [74] show another evaluation

(restricted to MPI) for several mapping policies using the NPB benchmarks. This

work also includes a study about the influence of the shared caches on the mapping

policies. In [13] Broquedis et al. propose a hierarchical approach to the execution of

OpenMP threads on multicore machines, providing multicore-aware and memory-

aware scheduling policies. It relies on the tool hwloc [14], which can only obtain the

characteristics of the machine when available from the system specifications.

In this scenario some knowledge of the memory system hierarchy, as well as some

hardware parameters, are required for every optimization effort. However, system

parameters and specifications are usually vendor-dependent and often inaccessible

to user applications. For instance, the administration tool dmidecode reports infor-

mation about the hardware as described in the BIOS, but it is restricted to sys-

tem administrators. Therefore, estimation by benchmarks is the only general and

portable way to find out the hardware characteristics, without worrying about the

vendor, the OS or the user privileges. Besides, this approach provides experimental

results about the performance of the systems, obtaining a more reliable estimate

than inferring them from the machine specifications.

The automatic extraction of system parameters to support the autotuning of

parallel applications is a topic which has been previously tackled with different ap-

proaches. The X-Ray tool [126] provides micro-benchmarks to automatically obtain

some characteristics of the CPU and the cache hierarchy for unicore processors.

In [125] Yotov et al. present a new methodology to obtain the cache parameters.

However, they reported some issues measuring the characteristics of the cache levels

lower than L1 because they are physically indexed. In their benchmarks contiguous

memory allocation is compulsory and therefore they must request virtual memory

backed by a superpage. As the way to request it depends on the OS, their approach

36 Chapter 3. Servet: Measuring Hardware Parameters

is not portable. P-Ray [35] extends X-Ray benchmarks to detect the characteristics

of multicore systems. Although it is very appropriate for SMPs, it inherits most of

the issues of X-Ray (e.g., non-portable L2/L3 cache parameters determination) and

lacks some relevant parameters for multicore clusters like communication overhead.

Although the algorithm to detect the processor mapping in P-Ray could be used

(with manual work) to show different communication latencies on multicore systems,

it is restricted to shared memory systems, so it is not applicable to clusters.

Servet improves previous works by providing a portable estimate of several pa-

rameters of the machine architecture such as the cache size (L1, L2 and, when

available, L3 caches), cache hierarchy (determining if a cache is private to a partic-

ular core or shared among several cores), shared memory access bandwidth, shared

memory hierarchy (cores that share memory and NUMA system hierarchy), and

communication overheads. Servet also provides an API with C functions so that

other applications can easily access the hardware parameters identified by this tool

(see Appendix B).

3.2. Cache Size Estimate

The knowledge of the cache size is used in many optimization techniques to tune

sequential and parallel codes, in order to minimize the number of cache misses and

therefore increase the memory access performance.

Several benchmarks that estimate the cache size have been proposed during the

last years. We have followed the approach of Saavedra and Smith [90]: measuring

the number of cycles used to traverse arrays of different sizes using 1KB strides.

This stride has been chosen because it is big enough to avoid influences of the

hardware prefetcher on the measured number of cycles, as current prefetchers work

with strides up to 256 or 512 bytes. It is also larger than any existing cache line size

and it is a divisor of any cache size.

However, this approach presents several drawbacks [125]: the results may be

disturbed by unintended optimizations of aggressive compilers and they must be

interpreted to determine the different cache sizes. Our algorithm improves this

approach using values read from an array as stride, thus avoiding aggressive compiler

3.2 Cache Size Estimate 37

optimizations and providing directly the cache sizes.

The benchmark used (mcalibrator) is shown in Algorithm 3.1. The outputs are

two arrays S and C, of length n, containing the sizes of the traversed arrays and the

average number of cycles required by each access during their traversal, respectively.

Algorithm 3.1 mcalibrator algorithm

aux = 0 // Auxiliary variable to help to avoid compiler influences

i = MIN CACHE
n = 0 // Number of cache sizes tested

while i≤MAX CACHE do
S[n] = i // Size of the traversed array

size = The number of integers stored in S[n] bytes
for j=0;j<size;j=j+1 do

A[j] = The number of integers stored in 1KB // Each position

keeps the stride

end
// The access to the array is in the loop to know the stride

for j=0;j<size;j=j+A[j] do
aux = aux + size // A variable update to avoid compiler

optimizations

end
C[n] = The number of cycles to perform the previous loop
n=n+1
if i<2MB then

i=i*2
else

i=i+1MB
end

end

Figure 3.1(a) presents the cycles obtained with this algorithm on two Intel Xeon

based architectures (Dempsey-5060 and Dunnington-E7450), whereas Figure 3.1(b)

shows the gradient of the previous results, that is C[k + 1]/C[k], 0 ≤ k < n. These

architectures will be used to explain the algorithm to detect the cache hierarchy

from the number of cycles to access memory and their corresponding gradients.

Traversing an array with all its elements in cache is faster than traversing one

which does not fit. Therefore, the sizes where the number of cycles rises indicate

that they do not fit in cache and cache misses appear. Sharp changes in the slope

38 Chapter 3. Servet: Measuring Hardware Parameters

 10

 100

 1000

4K 16K 64K 256K 1M 3M 5M 7M 9M 11M 13M

C
y
c
le

s

Array Size (bytes)

Dempsey-5060
Dunnington-E7450

(a) Cycles needed to traverse an array

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4K 16K 64K 256K 1M 3M 5M 7M 9M 11M 13M

G
ra

d
ie

n
t

Array Size (bytes)

Dempsey-5060
Dunnington-E7450

(b) Gradient of the rise of cycles

Figure 3.1: mcalibrator results

of the cycles graph correspond to peaks in the gradients one. The L1 cache size

is determined by the first peak of the gradients: 16KB for Dempsey and 32KB for

Dunnington according to Figure 3.1(b).

Unfortunately, the approach followed to estimate the L1 cache size cannot always

be applied to lower levels. L1 caches are typically virtually indexed, but lower levels

are always physically indexed. This is a problem when the cache size is larger than

one page because contiguity in virtual memory does not imply adjacency in physical

memory, which leads to the generation of misses in tests with arrays much smaller

than the cache considered. Therefore, peaks in the gradient function might not be

enough to estimate the cache size, as for Dempsey, with high gradient values in the

range [512KB,2MB]. Although some OS solve this problem applying page coloring,

others such as Linux, widely used in scientific computing, do not.

Our benchmark overcomes this problem following a probabilistic approach. Since

the OS can map a virtual page to any physical page, no assumptions can be made

on which cache sets of a physically indexed cache correspond to a given virtual page.

Now, in a K-way physically indexed cache of size CS with a page size PS every

cache way can be divided in CS/(K ∗ PS) page sets, that is, groups of cache sets

that can receive data from the same page. As a result, if the probability that a given

virtual page is mapped to a given page set is uniform, the number of pages X per

page set belongs to a binomial B(NP, (K ∗ PS)/CS), where NP is the number of

pages involved in the access [41]. Since each set can contain up to K pages without

conflicts, the probability P (X > K) is the expected miss rate during the repeated

3.2 Cache Size Estimate 39

access to the NP pages.

Thus, based on the outputs of mcalibrator (Algorithm 3.1), Algorithm 3.2 can be

used to determine L2 and L3 (if present) cache size according to the previous reason-

ing. The probabilistic algorithm starts calculating the number of pages and the miss

rate for each mcalibrator result. After that, it calculates the divergences between

the measured and the predicted miss rates according to the binomial distribution.

The estimated cache size is the one with the highest similarity (less divergence).

Algorithm 3.2 Probabilistic algorithm to determine the size of physically indexed
caches (L2, L3) based on mcalibrator outputs

hit time = MIN(C);
miss overhead = MAX(C)−MIN(C)
for i=0;i<n;i=i+1 do

MR[i] = (C[i]− hit time)/miss overhead // Miss Rate

NP [i] = S[i]/PS // Number of Pages

end
foreach tentative cache size CS and associativity K do

div[CS][K] = 0
for i=0;i<n;i=i+1 do

div[CS][K] = div[CS][K] + |MR[i] - P (X > K) |,
X ∈ B(NP [i], (K ∗ PS)/CS)

end
end
Result: The statistical mode of CS using the five elements of div with the

lowest values

The accuracy of this algorithm is higher than that of only searching peaks in

the gradients of the mcalibrator outputs. For instance, in the Dempsey case, a

1MB L2 cache would be erroneously estimated looking at the mcalibrator outputs.

The estimate of the latter algorithm analyzing the [256KB,4MB] range is 2MB, the

correct value.

Besides, this algorithm is able to provide a correct cache size estimate when

gradients are higher than 1 for a wide size range. This is the case of Dunnington

(see Figure 3.1): the use of the algorithm in the range [3MB,13MB] provides 12MB

as result, which is the actual L3 cache size.

The overall way to detect the number of cache levels and their sizes is presented

40 Chapter 3. Servet: Measuring Hardware Parameters

Algorithm 3.3 Algorithm to detect the cache levels and their sizes

Data: mcalibrator outputs from MIN CACHE to MAX CACHE

foreach peak in the gradients do
if this is the first peak then

Estimate the L1 cache size using the peak value
else

if peak is related only to a single array size then
Estimate the corresponding cache size using the peak value

else
Estimate the corresponding cache size from the probabilistic
algorithm using mcalibrator outputs where gradient is larger than
1 around the peak

end
end

end
if the largest array sizes show a gradient > 1 then

The corresponding cache size is the estimate of the probabilistic
algorithm using mcalibrator outputs with the largest sizes

end

in Algorithm 3.3. As L1 caches are virtually indexed, their size is always calculated

using the first peak of the gradients. However, there are two ways to estimate

the size of the next levels. A peak clearly located only in one array size means

that the OS has used page coloring so the behavior of the cache is analogous to

that of a virtually indexed one and the position of the peak determines the cache

size. However, a peak with high gradients for several array sizes needs the use

of the probabilistic algorithm. Therefore, this benchmark is completely portable,

being independent from the application of page coloring by the OS. Finally, the

probabilistic algorithm is used again if gradients are higher than 1 for the largest

arrays.

3.3. Determination of Shared Caches

The knowledge of which cores share a concrete cache level can be useful in order

to speed up memory accesses. On the one hand, if two processes work with the same

block of data which fits in cache, mapping them to cores that share cache would

3.3 Determination of Shared Caches 41

improve performance, as they could exchange data using the cache. On the other

hand, if they do not work with the same data, their working sets could not fit in

a shared cache, leading to more replacements and misses. In this case scheduling

techniques for autotuning would map the processes to cores that do not share cache

in order to minimize misses.

Algorithm 3.4 shows the Servet benchmark to detect shared caches. The inputs

are the number of cache levels, l, and an array of length l, CS, with the cache size

per level. For each cache level i, the first step is to call mcalibrator using an array of

size a little larger than CS[i]/2 and keep the result as reference. Then mcalibrator

is invoked simultaneously on two arrays of this size in two threads, varying the cores

where the threads are mapped. The chosen array size provokes that two arrays do

not fit simultaneously in cache so, when cores share cache, the array created by

each of them is replacing the other one and the number of cycles increases. The

output is an array of lists Psc (one list per cache level) with the pairs of cores with

a number of cycles at least twice greater than the reference value (metric ratio > 2

in Algorithm 3.4) and therefore sharing cache.

Algorithm 3.4 Algorithm to determine the shared caches

Data: l, number of cache levels; CS[0..l-1], cache size per level

for i=0;i<l;i=i+1 do
Psc[i] = Empty list
ref = Cycles obtained from mcalibrator run on one core using an array

of size (2/3) ∗ CS[i]
foreach pair of cores in the system do

c = Cycles obtained from mcalibrator run in parallel on the cores of
the pair using an array of size (2/3) ∗ CS[i] in each core

ratio = c/ref
if ratio>2 then

Add the pair to Psc[i]
end

end
end
Result: Psc[0..l-1]

42 Chapter 3. Servet: Measuring Hardware Parameters

3.4. Memory Access Overhead Characterization

When several cores share the main memory, performance bottlenecks may arise

with concurrent memory accesses. The knowledge of these bottlenecks would al-

low to implement scheduling policies in autotuned applications to avoid them and

improve memory access performance.

A benchmark that provides performance results of concurrent memory accesses

has been developed. This benchmark is similar to the previous one, as it compares

the bandwidth to memory using an isolated core (named reference value) with the

one obtained when accessing by pairs of cores. This approach to calculate the

bandwidth is based on similar tools that measure it, such as STREAM [100]. In

Servet, it is the bandwidth from the copy of all the elements stored in one array to

another (these arrays must not fit in cache).

Algorithm 3.5 Algorithm to characterize memory access overhead

n = 0 // Number of different overhead levels found

ref = Memory bandwidth when accessing with an isolated core
foreach pair of cores in the system do

b = Memory bandwidth for one core when accessing both cores
concurrently

if b<ref then
if b is similar to a given BW[i], 0≤i<n then

Add the pair to Pm[i]
else

BW[n] = b
Pm[n] = Empty list
Add the pair to Pm[n]
n=n+1

end
end

end
Result: n, BW[0..n-1], Pm[0..n-1]

The benchmark is shown in Algorithm 3.5. For each pair of cores, the bandwidth

of one core when both of them are concurrently accessing memory is calculated and

compared to the reference value i.e., the memory bandwidth when accessing with

an isolated core. A bandwidth for concurrent accesses significantly lower than the

3.5 Determination of Communication Costs 43

reference value indicates an overhead.

However, distinguishing the different magnitudes of overhead and which pairs

suffer each of them is also interesting. To do it, the algorithm works with two

arrays: BW , with the different bandwidths lower than the reference value, and

Pm, which contains the pairs of cores which cause each overhead (Pm[i] is the list

of core pairs which obtained a concurrent bandwidth similar to BW [i]). When a

bandwidth lower than the reference value is found, the algorithm searches in the

BW array if any previous pair already obtained a similar overhead. In this case,

the pair which is being studied is added to the list of Pm corresponding to that

bandwidth. Otherwise, this is the first pair with that specific overhead, so BW and

Pm are updated appending to them a new entry with the new bandwidth and a list

with the studied pair, respectively.

The groups of cores that collide accessing memory with a given overhead are eas-

ily obtained from Pm. For instance, if the list in Pm[i] has the pairs (0,1),(0,2),(3,4)

and (3,5), it allows identifying two groups for the overhead BW [i]: {0,1,2} and

{3,4,5}.

This knowledge about memory access overhead of groups of cores can be used

to analyze the scalability of the memory access performance. This parameter has

a special importance, as codes could be optimized by limiting the number of cores

accessing memory concurrently if a poorly scalable memory system is detected.

Characterizing the effective bandwidth according to the number of threads that are

being executed only requires one group per overhead. For instance, for the previous

example, the concurrent memory access bandwidth of cores 0, 1 and 2 is the same as

the one for cores 3, 4 and 5. Therefore, using the arrays BW and Pm, the effective

bandwidth to memory can be characterized without using all cores.

3.5. Determination of Communication Costs

The characterization of communication costs is divided in three parts. First,

communication layers (sets of pairs of cores whose communication costs are similar)

are established; then, these layers are used to characterize communication perfor-

mance and, finally, to evaluate the scalability of the communication system.

44 Chapter 3. Servet: Measuring Hardware Parameters

In order to group the cores according to their communication costs, the bench-

mark shown in Algorithm 3.6 has been implemented. The reference implementation

uses the MPI library. It compares the latencies when sending a message between

different pairs of cores. Several representative message sizes can be selected for this

task. In this case, the message size is equal to the L1 cache size, because it allows

finding differences in communications when sharing other cache levels.

Algorithm 3.6 Algorithm to categorize communication costs

n = 0 // Number of different layers

foreach pair of cores in the system do
l = Latency sending a message between the two cores
if l is similar to a given L[i], 0≤i<l then

Add the pair to Pl[i]
else

L[n] = l
Pl[n] = Empty list
Add the pair to Pl[n]
n=n+1

end
end
Result: n, L[0..n-1], Pl[0..n-1]

The algorithm is similar to the previous one: for each pair of cores, it obtains

the latency to send a message between them and stores the different latencies in

array L. Besides, the array Pl is created so that Pl[i] keeps the list of pairs with

latency L[i]. Finally, the cores that present the same communication performance

are grouped.

Once the layers are established, the followed approach is to store the performance

results of a point-to-point communication micro-benchmarking (also implemented

with MPI) for representative message sizes and for each representative pair of cores

(one pair per layer). The communication performance for the rest of pairs is the

same as for the representative pair of their group.

Finally, in order to characterize the scalability of all layers, the performance

of all the cores in a given layer concurrently sending one message is compared to

the latency of an isolated message. In fully scalable communication systems, times

should be similar because each core only sends one message. However, many cluster

3.6 Mapping of Parallel Applications on Multicore Architectures Using Servet 45

interconnection networks can present performance penalties when concurrent mes-

sages are sent. The cost of sending concurrently N messages of size S is usually higher

than sending one message of size N*S. Thus, it is possible to optimize communication

performance by gathering messages in poorly scalable systems.

3.6. Mapping of Parallel Applications on Multi-

core Architectures Using Servet

Nowadays, most of parallel numerical codes run on clusters of multicores. De-

pending on the number of threads or processes required by the user and the total

number of nodes and cores available in the system, there are usually many differ-

ent ways to assign threads to cores. Most previous works [19, 74] try to improve

performance by using process mappings that minimize the access to the intercon-

nection networks while increasing the use of shared memory. This is also the usual

approach followed by default by many OS, which assign UPC threads to cores trying

to minimize the number of nodes and NUMA regions. However, many architectures

present memory issues such as shared memory buses or shared caches that lead to

bottlenecks when several cores in the same NUMA region or node access memory

at the same time. For instance, these issues are very significant in UPC BLAS1 and

BLAS2 routines which are continuously accessing memory with many more local

than remote accesses.

The information about the overheads obtained by Servet can be used to map pro-

cesses or threads to certain cores in order to avoid either communication or memory

access bottlenecks. Even if not all the overheads can be avoided, process mappings

that minimize their impact can be applied. The potential performance benefits of

the use of the information provided by Servet for mapping issues have motivated

the development of Algorithm 3.7, that automatically provides the placement of pro-

cesses or threads to specific cores. The mapping is chosen based on the information

about shared caches, overheads in the access to memory and communication layers

provided by Servet. Each core in the system is assigned a weight that represents the

overhead cost of its selection. Initially, all the weights are 0, which means that any

core can be selected. From then on, the core with the lowest weight is chosen.

46 Chapter 3. Servet: Measuring Hardware Parameters

Algorithm 3.7 Algorithm to provide the best process mapping

foreach core c in the system do
Weight[c]=0

end
foreach process p to map do

Assign p to the core c with the lowest Weight[c]
// Update the weights of the cores

foreach cache in the system do
foreach core c2 that shares that cache with c do

Increase Weight[c2]
end

end
foreach memory access overhead in the system do

foreach core c2 that shares the overhead with c do
Increase Weight[c2]

end
end
foreach core c2 still not assigned do

if latency(c,c2) < MaxLatency then
Decrease Weight[c2]

end
end

end

Whenever a core is selected, the weights are updated according to the following

rules:

1 The weights of the cores that share cache with the selected one are increased.

This rule is applied for each cache level to avoid the loss of performance when

shared caches lead to an increase of the number of cache misses.

2 The weights of the cores that show additional overhead when accessing memory

concurrently with the selected core are increased.

3 The weights of the cores whose communication latencies with the selected

one are significantly lower than the maximum latency in the system (MaxLa-

tency parameter, obtained by Servet) are decreased to promote their selection.

They are decreased in a magnitude that depends on the difference between the

current latency and MaxLatency. Note that shared memory transfer optimiza-

3.6 Mapping of Parallel Applications on Multicore Architectures Using Servet 47

tions in the communication libraries can be taken into account through the

application of this rule.

The increase or decrease of weights applied to each one of the previous rules de-

pends on the characterization of the code as either memory-bound or communication-

intensive. Currently this characterization is provided by the user through the

SERVET MEM PRIOR or SERVET COMM PRIOR parameters, respectively. In a memory-

bound code the increase due to rules 1 and 2 is set as ten times larger than the

decrease applied by rule 3. In communication-intensive codes the opposite practice

is applied.

The operation of this mapping procedure is illustrated through 2 nodes of an

x86 64 multicore cluster with InfiniBand network (20Gbps). Figure 3.2 presents the

architecture of this system. Each node has 2 Intel Xeon Nehalem quadcore E5520

CPUs at 2.27 GHz and 8GB of memory. Servet has detected on this system the

correct cache sizes (L1: 32KB, L2: 256KB, L3: 8MB) and topology, where the L3

cache is the only one shared, by pairs of cores. Moreover, the concurrent access to

memory by two cores within the same processor presents an important overhead.

Finally, the latency of inter-node communications is significantly higher than the

intra-node ones.

Figure 3.2: Architecture of 2 nodes of the x86 64 cluster

Tables 3.1 and 3.2 present step by step the operation of the selection proce-

48 Chapter 3. Servet: Measuring Hardware Parameters

Table 3.1: Evolution of the weight values for all cores in 2 nodes of the x86 64 cluster
when mapping 4 processes with SERVET MEM PRIOR

Iter Core → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

Rule 1 - 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
Rule 2 - 0 10 0 10 0 10 0 0 0 0 0 0 0 0 0
Rule 3 - -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
Total - -1 19 -1 9 -1 9 -1 0 0 0 0 0 0 0 0

3

Rule 1 - - 0 10 0 0 0 0 0 0 0 0 0 0 0 0
Rule 2 - - 0 10 0 10 0 10 0 0 0 0 0 0 0 0
Rule 3 - - -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
Total - - 18 18 8 8 8 8 0 0 0 0 0 0 0 0

4

Rule 1 - - 0 0 0 0 0 0 - 0 10 0 0 0 0 0
Rule 2 - - 0 0 0 0 0 0 - 0 10 0 10 0 10 0
Rule 3 - - 0 0 0 0 0 0 - -1 -1 -1 -1 -1 -1 -1
Total - - 18 18 8 8 8 8 - -1 19 -1 9 -1 9 -1

Table 3.2: Evolution of the weight values for all cores in 2 nodes of the x86 64 cluster
when mapping 4 processes with SERVET COMM PRIOR

Iter Core → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

Rule 1 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Rule 2 - 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
Rule 3 - -10 -10 -10 -10 -10 -10 -10 0 0 0 0 0 0 0 0
Total - -10 -8 -10 -9 -10 -9 -10 0 0 0 0 0 0 0 0

3

Rule 1 - - 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Rule 2 - - 0 1 0 1 0 1 0 0 0 0 0 0 0 0
Rule 3 - - -10 -10 -10 -10 -10 -10 0 0 0 0 0 0 0 0
Total - - -18 -18 -19 -19 -19 -19 0 0 0 0 0 0 0 0

4

Rule 1 - - 0 0 - 0 1 0 0 0 0 0 0 0 0 0
Rule 2 - - 1 0 - 0 1 0 0 0 0 0 0 0 0 0
Rule 3 - - -10 -10 - -10 -10 -10 0 0 0 0 0 0 0 0
Total - - -27 -28 - -29 -27 -29 0 0 0 0 0 0 0 0

dure (following Algorithm 3.7) for mapping 4 processes to this system with the

SERVET MEM PRIOR and the SERVET COMM PRIOR policies, respectively. The core se-

lected in each iteration is in bold type in the tables. In Table 3.1, initially core 0 is

selected. After mapping the first process, the second iteration starts applying the

first rule, which increases the value of the core 2, as it shares L3 cache with core

0. L1 and L2 caches are not considered because they are not shared. Then, rule 2

increases the weights of cores 2, 4 and 6, because they present an overhead when

accessing memory concurrently with core 0. Finally, using the third rule, the weights

of the cores in the same node, whose communications are faster, are decreased. The

increase due to rules 1 and 2 is ten times higher than the decrease considered for

the third rule because SERVET MEM PRIOR was selected. Once all the rules have been

3.7 Use of Servet to Optimize UPCBLAS Routines 49

applied, core 1 is selected because it is the first core with the lowest weight value.

With this selection the messages between both cores (0 and 1) present low latency

(according to Servet, there is no significant difference in the intra-node latencies)

and all memory access overheads are avoided. As can be seen in Table 3.1, the

algorithm leads to map the processes to cores 0, 1, 8 and 9. Although there would

be some messages in the interconnection network because both nodes are used, this

assignment reduces memory access overhead.

Table 3.2 shows the evolution of the weights for the same example but with the

SERVET COMM PRIOR policy. Here the algorithm advises to place the processes in

cores within the same node to avoid communications through the network (cores 0,

1, 4 and 5). In addition, inside the node, Servet chooses cores that do not share

the L3 cache. However, it cannot avoid memory overheads caused by concurrent

memory accesses from cores in the same processor.

This mapping algorithm was proven to be very effective for most of the NAS Par-

allel Benchmarks (NPB) [78]. Figure 3.3 shows two examples of the performance

improvement obtained by applying the SERVET MEM PRIOR mapping policy to the

UPC and MPI versions of the FT and IS benchmarks using up to 32 threads/pro-

cesses on a system with 8 nodes as the ones shown in Figure 3.2. The performance

metric selected is MOPS (Million of Operations Per Second) and the performance

results that use the mapping policy are labeled as Servet. A more detailed study

can be found in [53].

3.7. Use of Servet to Optimize UPCBLAS Rou-

tines

If Servet is previously installed and executed in the system, UPCBLAS can use

the API described in Appendix B to obtain some hardware parameters and auto-

matically adapt the behavior of some routines to the characteristics of the machine

on which the library is installed. Servet saves the relevant hardware parameters into

a text file and the API provides functions to access the information from this file.

Then, when a UPCBLAS routine requires information about the hardware charac-

teristics it resorts to calling the API of Servet instead of running any benchmark.

50 Chapter 3. Servet: Measuring Hardware Parameters

 0

 5000

 10000

 15000

 20000

 25000

 1 2 4 8 16 32

M
O

P
S

Number of Cores

FT B Class (x86_64 cluster)

MPI-Servet

MPI

UPC-Servet

UPC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 8 16 32

M
O

P
S

Number of Cores

IS C Class (x86_64 cluster)

MPI-Servet

MPI

UPC-Servet

UPC

Figure 3.3: Impact of the Servet mapping policy on NPB performance on the x86 64
cluster

Thus, the performance overhead caused by Servet is almost negligible in UPCBLAS.

3.7.1. Efficient Mapping of UPC Threads

As previously explained, the correct placement of UPC threads on the cores of a

cluster is key to obtaining good performance. UPCBLAS users can take advantage

of the mappings provided by Servet and explained in Section 3.6 to improve the

efficiency of the parallel numerical routines. As a rule of thumb, if the main part of

3.7 Use of Servet to Optimize UPCBLAS Routines 51

a numerical code is performed by BLAS1 and BLAS2 routines, the mapping with the

SERVET MEM PRIOR policy is the best option. The SERVET COMM PRIOR policy should

be selected for BLAS3-based codes. A study of the performance improvement thanks

to the Servet mappings will be shown in Chapter 4.

3.7.2. On-Demand Copies in BLAS3 Routines

In many of the UPCBLAS routines all threads have to access all the elements

of a distributed matrix or vector (see, for instance, vector x in Figure 2.4 or matrix

B in Figure 2.9). Thus, all threads must copy remote data to local memory before

performing the numerical computations with their local data. Auxiliary buffers in

local memory are required to store the vector or the matrix.

In the UPC BLAS2 routines the vector is stored completely in private memory

and then all the numerical computations related to a thread are performed in one go.

However, copying the whole matrices in the BLAS3 routines could involve important

memory overheads because the buffer could need to allocate a huge amount of private

memory. Moreover, performance would be affected because all threads should wait

to copy all these data before starting the sequential computations. Besides, they

would access a large amount of remote data at the same time, which could lead to

network contention in many systems.

In order to overcome these drawbacks the UPC BLAS3 routines are implemented

using what has been called an on-demand copies technique. The matrix is copied by

blocks into the auxiliary buffer, decreasing memory requirements. Once one block

is copied, the internal numerical computation that uses that part of the matrix can

start. As well, computations and communications are overlapped by using split-

phase barriers and the asynchronous copies presented at the end of Section 1.2.

The size of the internal blocks is very important in this approach. On the one

hand, if the blocks are too large, the memory and performance problems explained

before would not be solved. On the other hand, if they are too small the performance

of the communications would decrease because more calls to upc memget() would

be needed, each of them with less aggregation of remote accesses; moreover, the

partial sequential computations would be almost negligible to be overlapped with

52 Chapter 3. Servet: Measuring Hardware Parameters

communications.

The best size can be different depending on the characteristics of the system

where the library is executed, specially on the communication network. UPCBLAS

uses the information about communication layers and their bandwidths provided

by Servet to determine the message size for which the bandwidth stops increasing.

This message size is considered as the ideal block size to use in the on-demand

copies technique. For instance, Figure 3.4 shows the bandwidths of the intra-node

and inter-node communications on Carver, an IBM supercomputer with Intel Xeon

5550X (Nehalem) processors and InfiniBand network that will be presented in Sec-

tion 4.1 for the experimental evaluation. The size selected for the auxiliary buffer in

this system is 2MB because it is the point where both bandwidths no longer show

an increase.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

8 32 128 512 2K 8K 32K 128K 512K 2M 4M

B
a
n
d
w

id
th

 (
M

B
/s

)

Array Size (bytes)

Intra-Node
Inter-Node

Figure 3.4: Example of the information provided by Servet about the communication
bandwidth as a function of the message size on the Carver supercomputer

Chapter 4

Experimental Evaluation

This chapter provides an extensive performance evaluation of UPCBLAS using

two clusters with very different hardware characteristics, underlying numerical li-

braries and UPC compilers. The UPCBLAS routines are benchmarked by calling

them with different input parameters in order to determine which options obtain the

best performance (e.g. row or column distribution, different block size...). An eval-

uation of the impact of the optimization techniques using Servet (see Section 3.7)

is also included. Furthermore, this chapter also explains the implementations of

Cholesky and LU solvers which take advantage of UPCBLAS routines to perform

part of the computation. These implementations prove that the usage of the library

to develop numerical codes is very easy and intuitive. The performance of both the

isolated UPCBLAS routines and the presented factorizations is compared to similar

MPI counterparts.

The structure of this chapter is as follows: Section 4.1 introduces the two ex-

perimental testbeds where the benchmarks were executed. The benchmarking of

the UPCBLAS routines, including the study of the impact of the optimization tech-

niques, the evaluation of different algorithms and the comparison with MPI routines,

is addressed in Section 4.2. Finally, Section 4.3 describes how UPCBLAS can be

used to facilitate the development of Cholesky and LU factorizations, as examples

of more complex numerical codes. A performance evaluation and comparison with

MPI counterparts is also included.

53

54 Chapter 4. Experimental Evaluation

4.1. Experimental Testbeds

Two machines from different vendors with different architectures, interconnection

networks, UPC compilers and underlying libraries with BLAS routines were used in

order to evaluate the performance of UPCBLAS in various scenarios:

Carver IBM iDataPlex [17]. It is installed at the National Energy Research

Supercomputing Center (NERSC). This system consists of 320 nodes, each of

them with 2 quad-core Intel Xeon 5550X (Nehalem) processors (8 cores at

2.67 Ghz per node) and 24GB of memory. L1 and L2 caches are 16KB and

256KB independent caches, respectively, while L3 is an 8MB cache shared by

the four cores in each processor. The compute nodes are interconnected by

a 4X QDR InfiniBand network (32GBps of theoretical effective bandwidth).

As for software, the code was compiled using Berkeley UPC 2.14.2 [10] with

icc 12.1.3 as underlying C compiler. The inter-node communications are per-

formed through GASNet over InfiniBand and UPCBLAS is linked to the Intel

Math Kernel Library (MKL) version 10.2.2 [62], a library with highly tuned

BLAS routines for Intel processors, to perform the numerical computations

with the local data within each thread. The implementation of the PBLAS

routines included in this MKL library was also used for comparison purposes.

HECToR Cray XE6 [55]. This is a supercomputer with 90,112 cores and

90TB of memory ranked 32nd in the June 2012 TOP500 list [110]. The system

consists of 2,816 nodes, each of them with two AMD Interlagos processors

with 16 cores (grouped in two NUMA regions, with 8 cores each) at 2.3 GHz

and 16GB of memory. The cache topology is quite complex: each core has an

independent 16KB L1 cache, while the L2 (2MB) and L3 (8MB) caches are

shared by groups of four and eight cores, respectively. Inter-node communi-

cations are performed through the custom Cray Gemini Network, which is a

high-bandwidth and low-latency 3D torus interconnect with RDMA hardware

support that facilitates communication overlapping. In this system UPCBLAS

was compiled with the Cray UPC compiler available in the Cray CC compiler

8.0.4, and Cray LibSci version 10.0.06 was used as underlying numerical li-

brary. UPCBLAS routines were also compared to the PBLAS ones included

in LibSci.

4.2 Benchmarking of Isolated Routines 55

Table 4.1 summarizes the most important features of both systems. The ac-

cess to these large supercomputers was possible thanks to two research visits to

LBNL (USA) and EPCC (UK). As the number of available CPU hours was limited,

representative numbers of cores (and not the maximum) were used to study the

performance of the routines. Although some experiments do not use all cores per

node and all nodes available in the system, the performance evaluation was carried

out in a real environment with almost 100 of the remaining cores running jobs of

other users. Additional experimental results on the Finis Terrae supercomputer [40],

an HP cluster based on Intel Itanium2 processors (described in Section 5.5) can be

found in [51].

Table 4.1: Summary of the testbeds used for benchmarking

System → Carver HECToR

Number of nodes 320 2,810
Cores per node 8 32

Processor Intel Xeon AMD Interlagos
Interconnection network InfiniBand Cray Gemini

UPC Compiler Berkeley UPC Cray UPC
Underlying numerical library MKL LibSci

4.2. Benchmarking of Isolated Routines

In this section performance evaluations of representative UPCBLAS routines are

shown, specifically: the dot (Tdot), matrix-vector (Tgemv), matrix-matrix (Tgemm)

and outer (Tger) products, as well as the BLAS2 and BLAS3 triangular solvers

(Ttrsv and Ttrsm). The performance of the six routines was measured for single

precision using different distributions. A comparison with the MPI implementation

of the PBLAS routines [21, 83] is also provided. The PBLAS routines were tested

using different data distributions (by rows, by columns and 2D distributions, using

different block sizes), but the results presented in this section are those of the distri-

bution that achieves the best execution time for each PBLAS routine and number

of processes.

56 Chapter 4. Experimental Evaluation

The sizes of the vectors and matrices used in the experiments are the largest ones

that can be allocated in the memory available for one core (in order to calculate

speedups). All the speedups (both for UPCBLAS and PBLAS routines) were ob-

tained using as reference the execution times of the routines of the sequential library.

The experiments with BLAS1 and BLAS2 routines were repeated 20 times both for

UPCBLAS and PBLAS. As the evaluation was performed in a non-dedicated envi-

ronment, the results shown in the following graphs are always the best ones for each

library and scenario, thus discarding most sources of variability. As the execution

times for the BLAS3 routines are much larger, the influence of the variability on the

calculation of speedups is less significant. Therefore, in this case the experiments

were performed only 3 times.

Most of the conclusions were taken using the common strong scaling speedups.

In this case all the experiments were performed using matrices of the same size

and the speedups reflect how much the parallel routine is faster than the sequential

counterpart completing exactly the same operation. They are calculated as T1/Tn,

T1 being the sequential execution time and Tn the parallel execution time when

using n cores.

Furthermore, a weak scaling study, where the size of the input vector and matri-

ces increases with the number of cores, is also included. As parallel algorithms with

many cores are generally used to solve problems that cannot be performed with less

resources (e.g. not enough memory), weak scaling allows evaluating the behavior

of the algorithms in a more realistic scenario than strong scaling. In this study the

average computational workload (number of floating point operations) per thread

was fixed for all experiments. The weak scaling speedup is calculated as (T1/Tn) ∗n
and thus programs with perfect scalability would obtain the same execution times

for any number of cores.

4.2.1. BLAS1 Routines

Figure 4.1 and Tables 4.2 and 4.3 show the speedups and execution times for the

BLAS1 dot product. Experimental results have been obtained with strong scaling

and using the cyclic (i.e. block size = 1) and block-cyclic distributions (with

different block size values) in order to analyze the behavior of the routine in several

4.2 Benchmarking of Isolated Routines 57

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

sdot on Carver with vector size 1024x10
6

Block-Servet
Cyclic-Servet
PBLAS
Block-OS
Cyclic-OS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sdot on HECToR with vector size 1024x10
6

PBLAS
Block
Cyclic

Figure 4.1: Strong scaling speedups of the single precision dot product (sdot)

scenarios. For illustrative purposes only the “extreme” distributions are presented

throughout this section (i.e. cyclic and block). The scalability is reasonable for both

distributions taking into account that the execution times are very short. An analysis

of the results obtained with different values for block size has demonstrated that

it has no influence on the performance of this routine. Therefore, UPCBLAS users

can achieve the best performance independently of the block size used in the

application. In general this also applies to the BLAS2 and BLAS3 products.

Furthermore, two different results for each UPCBLAS distribution on Carver are

58 Chapter 4. Experimental Evaluation

Table 4.2: Strong scaling execution times (in milliseconds) of the single precision
dot product (sdot) on Carver

sdot with size 1024×106 (ms)
Cyclic Block PBLAS

Cores ↓ OS Map Servet Map OS Map Servet Map
Seq 641.66
2 367.93 367.93 367.66 367.66 326.55
4 296.93 281.48 297.07 281.60 163.65
8 264.96 138.87 265.18 138.83 81.67
16 178.23 71.12 178.03 70.80 41.08
32 77.01 35.39 77.05 35.40 21.78
64 44.60 18.20 44.70 17.98 10.62
128 22.42 9.27 22.39 9.19 10.46

Table 4.3: Strong scaling execution times (in milliseconds) of the single precision
dot product (sdot) on HECToR

sdot with size 1024×106 (ms)
Cores ↓ Cyclic Block PBLAS

Seq 1136.04
2 579.32 579.02 614.05
4 287.31 287.46 284.65
8 144.20 142.25 144.34
16 73.17 71.07 71.02
32 36.61 35.56 34.90
64 18.19 17.94 17.05
128 9.57 9.53 9.21
256 5.30 5.34 4.47
512 3.93 3.91 2.36
1024 4.26 4.22 1.59

shown: one letting the OS automatically map UPC threads to cores (labeled as OS)

and another with the SERVET MEM PRIOR mapping policy presented in Section 3.6

(labeled as Servet). Servet detected that there is a memory overhead when two or

more cores in the same quad-core processor try to access memory at the same time.

Thus, its scheduling policy tries to minimize the number of threads per processor

for the BLAS1 and BLAS2 routines (with intensive memory access), significantly

outperforming the OS mapping, that always tries to place threads as close as pos-

4.2 Benchmarking of Isolated Routines 59

sible to one another. For instance, the Servet mapping obtains over 3 times better

performance using 128 cores. It must be remarked that on Carver the optimized

mapping policy provided by Servet is used in all PBLAS executions for this routine

and the BLAS2 ones. On HECToR Servet does not detect any memory overhead

and thus only results using the OS mapping policy are shown for each UPCBLAS

distribution.

Looking at Figure 4.1, results look much better on HECToR than on Carver, as

speedups are higher. However, these better speedups do not lead to shorter execu-

tion times for the same number of cores, as can be seen in Tables 4.2 and 4.3. The

reason is that the sequential dot product in MKL is much faster than in LibSci (an

issue that will occur with BLAS2 routines as well). Thus, the unavoidable overhead

introduced by the final reduction operation has less influence on the speedup calcu-

lation on HECToR. In general, the performance of the PBLAS routine is better than

UPCBLAS for most scenarios, especially on HECToR. On this system the final MPI

reduction operation is better optimized for a large number of threads than the Cray

UPC reduction. Nevertheless, the differences in terms of execution times between

the PBLAS and the best UPCBLAS dot product are not considered significant (less

than 3 milliseconds for the worst case). On Carver the PBLAS routine stops scaling

at 128 cores. Thus, the UPC implementation can be assumed to outperform the

MPI one for larger experiments on this machine (as happens for 128 cores).

4.2.2. BLAS2 Routines

Experimental results for the strong scaling of the matrix-vector product (gemv)

are collected in Figure 4.2 and Tables 4.4 and 4.5. Results for two representative ma-

trix distributions, row cyclic and column cyclic, are shown. Further experiments with

block and block-cyclic distributions were also performed (by varying the block size

parameter), but they were not included in the tables and graphs as the variation of

performance was not significant. The sec block size parameter in UPCBLAS calls

that offered the best performance was selected in order to provide a fair comparison

with PBLAS, where only results with the best distribution are shown. As memory

accesses are the main bottleneck in BLAS2 routines, experimental results with the

OS and the SERVET MEM PRIOR policies are shown for Carver.

60 Chapter 4. Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

sgemv on Carver with matrix size 32768x32768

PBLAS-2D
Row-Servet
PBLAS-1D
Row-OS
Column-Servet
Column-OS

 0

 50

 100

 150

 200

 250

 300

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sgemv on HECToR with matrix size 32768x32768

PBLAS-2D
Row
PBLAS-1D
Column

Figure 4.2: Strong scaling speedups of the single precision matrix-vector product
(sgemv)

Comparing the two distributions used, the reduction operation at the end of

the routine when using the column distribution (see Section 2.1.2 and Figure 2.5)

decreases performance and even leads the function to stop scaling at 32 cores inde-

pendently of the machine. In contrast, the scalability of the row distribution is high

on both systems considering the short sequential times. For instance it scales up to

512 cores on HECToR even though the sequential time is only around one second.

Two experimental results were obtained for each PBLAS routine. The line la-

4.2 Benchmarking of Isolated Routines 61

Table 4.4: Strong scaling execution times (in milliseconds) of the single precision
matrix-vector product (sgemv) on Carver

sgemv with matrix size 32768x32768 (ms)
Row Dist Column Dist PBLAS

Cores ↓ OS Map Servet Map OS Map Servet Map 1D 2D
Seq 460.052
2 276.65 231.76 275.15 232.50 236.77 236.77
4 153.96 111.35 177.71 122.68 134.74 134.74
8 150.16 65.53 150.92 66.83 59.712 57.72
16 76.58 33.37 73.81 39.70 28.85 28.85
32 38.16 20.60 39.89 24.28 19.29 19.29
64 34.00 10.73 38.23 24.52 15.69 11.52
128 16.54 9.49 40.23 36.32 10.99 6.47

Table 4.5: Strong scaling execution times (in milliseconds) of the single precision
matrix-vector product (sgemv) on HECToR

sgemv with matrix size 32768x32768 (ms)
Cores ↓ Row Dist Column Dist PBLAS-1D PBLAS-2D

Seq 678.071
2 364.36 341.60 339.36 339.36
4 176.71 172.27 169.68 169.68
8 89.57 99.31 87.86 87.86
16 42.85 58.27 42.33 42.33
32 21.40 45.92 21.46 21.46
64 11.42 59.49 11.41 11.41
128 7.20 95.92 7.36 7.36
256 4.96 185.06 5.09 5.09
512 3.23 375.66 3.46 3.46
1024 3.83 656.56 2.70 2.70

beled as PBLAS-2D shows the best results for the MPI routine, which are usually

obtained with 2D data distributions. However, as the UPC algorithms can only

use 1D data distributions, the MPI results using the best 1D distribution, labeled

as PBLAS-1D, are also shown for comparison purposes. It must be remarked that

the 1D distribution is a particular case within the 2D distribution. Thus, scenarios

where the PBLAS-1D and PBLAS-2D execution times are the same means that the

best PBLAS performance is obtained with the 1D distribution. This is especially

62 Chapter 4. Experimental Evaluation

common for experiments using few cores.

The comparison with the MPI approaches proves that the UPC algorithm by

rows is well implemented and the optimization techniques are effective: for exam-

ple, it obtains similar of better speedups than PBLAS-1D up to 64 cores on Carver.

Besides, it is competitive compared to the more complex PBLAS-2D approach. The

better PBLAS-2D performance for 128 cores is due to the fact that, as explained in

Section 2.1, this library sacrifices ease of use and productivity for performance by

using complex data structures to be able to work with 2D distributions. Surpris-

ingly, on HECToR the LibSci library has a version of PBLAS sgemv that is based

on a 1D algorithm by rows. Thus, it does not obtain any advantage over using

2D distributions and all PBLAS-1D and PBLAS-2D execution times are the same in

Table 4.5. UPCBLAS performance is, in general, similar or better than the PBLAS

counterpart on HECToR. The only exception is the execution with 1024 cores where

the UPCBLAS routine stops scaling due to the time needed to replicate the whole

vector x to all threads (see Figure 2.4). The PBLAS library can perform this repli-

cation with the specific MPI Allgather collective that allows PBLAS to continue

scaling at 1024 cores. However, as there is no similar collective for UPC, each thread

needs to perform several remote copies within the UPCBLAS product, making it

less efficient than the MPI collective.

Figure 4.3 shows summarized results for weak scaling. In these graphs only the

best approaches for PBLAS and UPCBLAS are represented. The main difference

with strong scaling is that speedups are significantly higher (for both PBLAS and

UPCBLAS libraries), demonstrating that these routines are specially suitable for

large problems, where the potential of the system is better exploited. An additional

remarkable feature is that the UPCBLAS routine scales up to 1024 cores on HEC-

ToR. Finally, despite UPCBLAS is always very competitive, the comparison is less

beneficial than for the strong scaling experiments because the replication of vector

x for a large number of threads is more expensive, as the length of the vector grows

with the number of threads. Therefore, the positive impact of the MPI Allgather

collective is more significant and PBLAS always outperforms UPCBLAS. The dif-

ference between both libraries will narrow as soon as this collective will be included

in the UPC collectives library.

Figure 4.4 and Tables 4.6 and 4.7 illustrate the performance of the outer prod-

4.2 Benchmarking of Isolated Routines 63

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

sgemv on Carver with 512 MFLOP per core

PBLAS
UPCBLAS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sgemv on HECToR with 32 MFLOP per core

PBLAS
UPCBLAS

Figure 4.3: Weak scaling speedups of the single precision matrix-vector product
(sgemv)

uct (sger) for strong scaling. The main difference with the matrix-vector product

(sgemv) is that the distribution by columns does not need a final reduction. As

can be seen in Figures 2.6 and 2.7 both distributions use a similar algorithm, where

each thread needs to copy one of the input vectors but it has the corresponding

rows or columns of the matrix in local memory. Therefore, the execution times of

both versions should be similar. However, on Carver the distribution by columns

obtains higher scalability than by rows. The reason is the inclusion of cache ac-

cess optimizations in the MKL library. In MKL the computation time within each

64 Chapter 4. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

sger on Carver with matrix size 32768x32768

Column-Servet
PBLAS-2D
Row-Servet
PBLAS-1D
Column-OS
Row-OS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sger on HECToR with matrix size 32768x32768

PBLAS-2D
PBLAS-1D
Column
Row

Figure 4.4: Strong scaling speedups of the single precision outer product (sger)

UPC thread is minimized thanks to cache reuse of its corresponding submatrix of

A when this submatrix has fewer columns than rows (distributions by columns of

Figure 2.7). Consequently, the outer product with the column distribution obtains

the best performance.

Two other issues must be noted regarding the Carver experiments. On the one

hand, the mapping policy provided by Servet improves performance between two

and three times with respect to the scheduling used by the OS. On the other hand,

UPCBLAS is very competitive compared to PBLAS even for the largest number of

4.2 Benchmarking of Isolated Routines 65

Table 4.6: Strong scaling execution times (in milliseconds) of the single precision
outer product (sger) on Carver

sger with matrix size 32768x32768 (ms)
Row Dist Column Dist PBLAS

Cores ↓ OS Map Servet Map OS Map Servet Map 1D 2D
Seq 656.22
2 323.81 323.81 329.93 327.98 334.80 334.80
4 301.51 162.65 292.23 258.13 166.06 166.06
8 265.20 132.65 235.79 131.11 88.64 88.64
16 121.35 66.12 94.30 49.45 60.56 60.56
32 59.20 33.29 36.71 17.46 34.51 33.50
64 36.69 18.11 19.42 10.23 17.87 17.21
128 24.92 9.90 16.45 6.11 11.75 9.31

Table 4.7: Strong scaling execution times (in milliseconds) of the single precision
outer product (sger) on HECToR

sger with matrix size 32768x32768 (ms)
Cores ↓ Row Dist Column Dist PBLAS 1D PBLAS 2D

Seq 907.49
2 459.44 459.59 453.74 453.74
4 234.20 234.12 235.11 235.11
8 117.31 117.69 116.34 116.34
16 56.85 56.59 56.70 56.70
32 28.21 28.87 28.60 28.60
64 14.23 14.55 14.15 14.15
128 7.89 7.43 7.60 7.60
256 5.46 5.81 4.85 3.86
512 4.07 3.88 2.58 2.20
1024 7.73 7.96 2.04 2.02

cores. In this case, the UPC version with both distributions obtains better perfor-

mance than the PBLAS-1D outer product, and the UPC column distribution even

outperforms PBLAS-2D.

As the outer product of LibSci is not as optimized as the MKL one, UPCBLAS

performance is similar to PBLAS up to 128 cores on HECToR, being less efficient for

a larger number of cores. According to the weak scaling results shown in Figure 4.5,

66 Chapter 4. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

sger on Carver with 256 MFLOP per core

PBLAS
UPCBLAS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sger on HECToR with 16 MFLOP per core

PBLAS
UPCBLAS

Figure 4.5: Weak scaling speedups of the single precision outer product (sger)

it can be assumed that for experiments with larger workload UPCBLAS sger would

also be competitive for a large number of cores.

The strong scaling experimental results for the last BLAS2 routine, the trian-

gular solver, are shown in Figure 4.6 and Tables 4.8 and 4.9. In this case, besides

the choice between row and column distribution, the block size has a great impact

on the performance of the parallel solver, as can be inferred from Algorithm 2.1

in Chapter 2. The more blocks the matrix is divided into, the more computations

can be simultaneously performed, but the more synchronizations are needed as well.

4.2 Benchmarking of Isolated Routines 67

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

strsv on Carver with matrix size 32768x32768

PBLAS-2D
PBLAS-1D
Row-Servet
Row-OS
Column-Servet
Column-OS

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

strsv on HECToR with matrix size 32768x32768

PBLAS-2D
PBLAS-1D
Row
Column

Figure 4.6: Strong scaling speedups of the single precision BLAS2 triangular solver
(strsv)

Thus, it is necessary to find a good trade-off between parallelism and synchroniza-

tion overhead. Only the best execution times and speedups are shown for both

UPCBLAS and PBLAS by selecting the most appropriate block size.

Two issues previously observed in the matrix-vector and outer products are re-

peated for the triangular solver. On the one hand, the application of the mapping

automatically determined by Servet optimizes the performance and scalability of the

UPCBLAS routine on Carver, regardless of the chosen distribution. On the other

68 Chapter 4. Experimental Evaluation

Table 4.8: Strong scaling execution times (in milliseconds) of the single precision
BLAS2 triangular solver (strsv) on Carver

strsv with matrix size 32768x32768 (ms)
Row Dist Column Dist PBLAS

Cores ↓ OS Map Servet Map OS Map Servet Map 1D 2D
Seq 235.58
2 119.09 119.09 220.26 220.26 140.14 140.14
4 91.46 77.84 247.79 209.54 59.14 59.14
8 86.81 47.38 252.17 224.47 42.97 42.97
16 47.40 24.12 267.28 191.21 30.22 30.22
32 52.12 22.34 312.75 241.16 22.18 21.77
64 88.75 26.02 569.43 319.95 19.17 17.91
128 135.80 52.82 613.63 407.12 28.54 26.38

Table 4.9: Strong scaling execution times (in milliseconds) of the single precision
BLAS2 triangular solver (strsv) on HECToR

strsv with matrix size 32768x32768 (ms)
Cores ↓ Row Dist Column Dist PBLAS-1D PBLAS-2D

Seq 397.49
2 202.60 268.03 198.11 198.11
4 106.82 212.22 99.36 99.36
8 59.12 187.23 51.22 51.22
16 32.76 209.43 29.02 29.02
32 21.20 194.56 23.16 19.15
64 16.39 204.26 19.20 14.28
128 15.91 215.21 14.97 12.41
256 22.91 269.65 20.46 12.55
512 55.11 421.52 30.03 12.60
1024 196.58 948.80 40.72 16.47

hand, both UPCBLAS and PBLAS obtain higher speedups on HECToR than on

Carver, but because the sequential reference time is also higher.

As explained in Section 2.1.2, the only acceptable 1D approach (in terms of

performance) for the BLAS2 triangular solver is the distribution by rows. The

column distribution was included in UPCBLAS just in case it is adequate for other

numerical routines using the same matrix or the matrix was obtained from other

4.2 Benchmarking of Isolated Routines 69

applications with this distribution. However, it must not be expected to perform

better than the sequential algorithm and thus the row distribution is obviously the

best approach to use in UPCBLAS.

The behavior of this routine is very different to the products as it includes in-

ternal broadcasts and synchronizations among all threads. Therefore, this is not a

scalable routine for strong scaling: the necessary communications and synchroniza-

tions involve so much overhead for short execution times that it is not worth it to

parallelize it using many cores. This hypothesis is demonstrated by the experimen-

tal results, as the speedups are very low not only for UPCBLAS but also for the

PBLAS-2D algorithm; the PBLAS routine even stops scaling at 64 cores on Carver

and at 128 cores on HECToR.

As can be seen in Figure 4.7, better results are obtained for weak scaling as

the large workload per core compensates for the additional overhead due to broad-

casts and synchronizations. Additional results not shown in the graphs illustrated

that, in this scenario, the performance of the UPCBLAS routine with the distribu-

tion by rows is very similar to the PBLAS routine with the same 1D distribution.

Both approaches (UPCBLAS and PBLAS-1D) scale up to 256 cores on HECToR

although their weak scaling speedup is, in general, quite lower than using the best

2D distribution with PBLAS.

4.2.3. BLAS3 Routines

BLAS3 routines are the most interesting ones in terms of parallelization. These

routines usually need a large amount of memory (they only work with matrices

instead of vectors) and their sequential times are usually high so it is worth it

to parallelize them. In fact, most commercial numerical libraries, such as MKL

or LibSci, provide multithreaded versions of BLAS3 routines using OpenMP. UPC

programmers can take advantage of this underlying parallelization without changing

their codes or the calls to UPCBLAS routines, just linking to the adequate version

of the library. In this case, instead of creating one UPC thread per core, each UPC

thread can be related to several cores that share memory. Thus, the internal numer-

ical computation within each UPC thread is performed in parallel using OpenMP

on that group of cores. Three are the main advantages of this two-level parallelism:

70 Chapter 4. Experimental Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 2 4 8 16 32 64 128

S
p
e
e
d
u
p
s

Number of Cores

strsv on Carver with 256 MFLOP per core

PBLAS
UPCBLAS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

strsv on HECToR with 16 MFLOP per core

PBLAS
UPCBLAS

Figure 4.7: Weak scaling speedups of the single precision BLAS2 triangular solver
(strsv)

The number of UPC copies is minimized. As there are fewer UPC threads then

on-demand copies (see Section 3.7.2) are cheaper, especially on machines such

as HECToR where the impact of network contention is very important and

concurrent copies or messages involving several cores decrease performance

compared to isolated copies.

An internal 2D distribution can be used and thus 2D algorithms (more efficient

than 1D ones for many numerical routines) can be applied. For instance, if

4.2 Benchmarking of Isolated Routines 71

there are four cores per UPC thread, probably the OpenMP implementation

will use a 2x2 grid. Therefore, N being the total number of UPC threads, a

2D approach with a 2Nx2 grid can be employed.

The internal parallel OpenMP implementation is usually very optimized as

the vendor exploits some low-level features of the hardware.

For the multithreaded version, the usage of the highest number of cores that

share memory does not always obtain the best performance [26]. In this section re-

sults for the UPC BLAS3 routine linked to sequential and multithreaded underlying

libraries are shown. After studying the best option with preliminary experiments,

the multithreaded versions were executed with 8 OpenMP threads. This means,

using all the cores of each node on Carver and of each NUMA region on HEC-

ToR. On Carver, experiments linking to sequential MKL were executed using the

SERVET COMM PRIOR policy. Thus, in this case, there is no difference with the auto-

matic mapping provided by the OS.

Figure 4.8 and Tables 4.10 and 4.11 show the speedups and execution times

of the single precision matrix-matrix product (sgemm) using strong scaling. UP-

CBLAS results linking to the sequential version of the underlying numerical library

are labeled as MKL-Seq or LibSci-Seq depending on the machine (Carver or HEC-

ToR, respectively). Results with two-level parallelism are labeled as MKL-MTh and

LibSci-MTh. The PBLAS results illustrated were obtained always linking to the

sequential library as the use of only MPI processes obtains better performance than

applying two-level parallelism. The first conclusion that can be made is that the

selection of the data distribution (by rows or columns) has no significant influence

on the performance of the routine. This is an expected behavior as the algorithms

are similar (see Figures 2.9 and 2.10): they perform the on-demand copy of one

whole matrix (in the experiments the size of all matrices is the same) and call the

sgemm routine of the underlying BLAS library. Thus, users can work with the most

suitable distribution according to the needs of the other sections of the code.

Additional conclusions depend on the testbed and, especially, on the underlying

numerical library. The scalability of all the UPCBLAS versions on Carver is high:

all of them scale up to the scenario with the largest number of cores (256). Although

the performance of the pure UPC version (i.e. linked to the sequential MKL) is lower

72 Chapter 4. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

sgemm on Carver with matrix size 16384x16384

Column-MKL-MTh
Row-MKL-MTh
PBLAS-2D
PBLAS-1D
Row-MKL-Seq
Column-MKL-Seq

 0

 100

 200

 300

 400

 500

 600

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sgemm on HECToR with matrix size 16384x16384

PBLAS-2D
PBLAS-1D
Row-LibSci-MTh
Column-LibSci-MTh
Row-LibSci-Seq
Column-LibSci-Seq

Figure 4.8: Strong scaling speedups of the single precision matrix-matrix product
(sgemm)

than PBLAS for 128 and 256 cores, UPCBLAS has the opportunity to significantly

outperform the PBLAS product when linking to the multithreaded MKL. It must be

remarked that the efficiency of this matrix-matrix product is very high with the ease

of programming provided by the UPC shared arrays with 1D distributions. Thus,

for systems like Carver, the advantage of using the UPCBLAS product is twofold:

it is easier to employ and it obtains better performance than PBLAS.

4.2 Benchmarking of Isolated Routines 73

Table 4.10: Strong scaling execution times (in seconds) of the single precision matrix-
matrix product (sgemm) on Carver

sgemm with matrix size 16384x16384 (s)
Row Dist Column Dist PBLAS

Cores ↓ MKL-Seq MKL-MTh MKL-Seq MKL-MTh 1D 2D
Seq 439.16
2 226.16 222.21 225.74 222.21 222.47 222.47
4 114.13 110.58 110.11 110.58 111.06 111.06
8 58.48 55.39 55.02 55.39 71.96 71.96
16 27.55 27.93 28.85 28.01 30.31 30.31
32 14.89 14.20 16.74 14.06 15.92 15.92
64 8.71 7.49 11.66 7.43 8.74 8.62
128 7.49 3.94 10.25 3.89 5.54 5.16
256 6.52 2.52 8.14 2.45 3.53 2.98

Table 4.11: Strong scaling execution times (in seconds) of the single precision matrix-
matrix product (sgemm) on HECToR

sgemm with matrix size 16384x16384 (s)
Row Dist Column Dist PBLAS

Cores ↓ LibSci-Seq LibSci-MTh LibSci-Seq LibSci-MTh 1D 2D
Seq 413.53
2 211.55 325.64 205.38 325.38 208.75 208.75
4 104.84 163.14 103.08 163.14 114.17 114.17
8 52.60 87.77 51.74 87.77 57.32 56.99
16 26.58 44.12 26.09 46.66 29.07 28.59
32 13.61 22.28 12.42 23.50 14.55 14.40
64 7.13 11.22 6.35 11.98 7.32 7.30
128 3.93 5.69 3.42 6.20 4.26 3.83
256 4.17 3.05 4.14 3.19 2.34 1.69
512 5.27 2.30 5.15 2.47 1.96 1.08
1024 7.42 1.93 7.33 1.94 1.88 0.81

On the Cray testbed (HECToR) the comparison is not as beneficial for UP-

CBLAS. In this case the PBLAS-2D version obtains the best performance. The main

reason is that the multithreaded LibSci sgemm is not as efficient as MKL (for in-

stance, only 4.93 of speedup for 8 cores). This leads the version linked to the

sequential LibSci to obtain better performance than the one linked to the multi-

74 Chapter 4. Experimental Evaluation

threaded LibSci for experiments up to 128 cores. However, it stops scaling for 256

cores because the communication overhead introduced by the on-demand copies (see

Section 3.7.2) does not allow the matrix-matrix product to perform in less than 3

seconds. For scenarios with a larger number of cores the usage of the multithreaded

LibSci decreases the number of UPC threads and thus minimizes the time needed to

perform the on-demand copies. Consequently, UPCBLAS continues scaling at least

up to 1024 cores, almost reaching the speedups of PBLAS-1D. Besides, looking at the

trend of the lines, the UPCBLAS matrix-matrix product linked to the multithreaded

LibSci can be assumed to outperform the PBLAS-1D routine for a larger number of

cores. It must be remarked that the sequential LibSci sgemm is very efficient (the

sequential time is even lower than MKL on Carver), in contrast to than BLAS1 and

BLAS2 routines where MKL outperforms LibSci.

Weak scaling speedups selecting the best distributions for all routines on both

systems are shown in Figure 4.9. The conclusions are similar to those of strong

scaling results but, as previously seen for BLAS2 routines, speedups are much higher,

demonstrating that parallelism is more valuable for large problems. For instance,

UPCBLAS sgemm achieves an almost ideal speedup on Carver.

The experimental results for the BLAS3 triangular solver strsm are shown in

Figure 4.10 and Tables 4.12 and 4.13. The conclusions are basically similar on both

testbeds. The best performance of the UPCBLAS routine for a large number of

cores is achieved when it is linked to multithreaded libraries, either for the row

or the column distribution. Comparing both, the efficiency of the algorithm with

the column distribution (see Figure 2.11) is much higher than the row distribution

explained in Algorithm 2.2. After an analysis of the results, the overhead of the

broadcasts in Algorithm 2.2 was determined as the reason of this difference. It must

be remarked that the value of the block size parameter has not a significant influ-

ence on performance for the column distribution. However, in the row distribution

it has a great impact on the speedups of the parallel solver, similar to the BLAS2

counterpart. The more blocks the matrix is divided into, the more computations

can be simultaneously performed, but the more synchronizations are needed.

Comparing with the PBLAS routines, it can be asserted that the best UPCBLAS

strsm presents high scalability: it obtains similar scalability than PBLAS-2D on

Carver. Furthermore, the column distribution is competitive in all cases compared to

4.2 Benchmarking of Isolated Routines 75

 0

 50

 100

 150

 200

 250

 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

sgemm on Carver with 1024 GFLOP per core

UPCBLAS
PBLAS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

sgemm on HECToR with 16 GFLOP per core

PBLAS
UPCBLAS

Figure 4.9: Weak scaling speedups of the single precision matrix-matrix product
(sgemm)

PBLAS-1D and even obtains better performance for 1024 cores on HECToR. The dif-

ference with the 2D version is more significant on this machine as the multithreaded

LibSci routine is not very efficient: it only obtains a speedup of 4.04 for each NUMA

region (8 cores). On this machine the best UPCBLAS performance is more similar

to the PBLAS-1D than to PBLAS-2D. However, the PBLAS-1D solver stops scaling at

512 cores while the UPCBLAS routine continues increasing its speedups, thus the

difference should increase for a larger number of cores. Finally, these conclusions

are similar for weak scaling results, as can be seen in Figure 4.11.

76 Chapter 4. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

strsm on Carver with matrix size 16384x16384

PBLAS-2D
Column-MKL-MTh
PBLAS-1D
Column-MKL-Seq
Row-MKL-MTh
Row-MKL-Seq

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

strsm on HECToR with matrix size 16384x16384

PBLAS-2D
Column-LibSci-MTh
PBLAS-1D
Column-LibSci-Seq
Row-LibSci-MTh
Row-LibSci-Seq

Figure 4.10: Strong scaling speedups of the single precision BLAS3 triangular solver
(strsm)

4.2 Benchmarking of Isolated Routines 77

Table 4.12: Strong scaling execution times (in seconds) of the single precision BLAS3
triangular solver (strsm) on Carver

strsm with matrix size 16384x16384 (s)
Row Dist Column Dist PBLAS

Cores ↓ MKL-Seq MKL-MTh MKL-Seq MKL-MTh 1D 2D
Seq 259.64
2 128.55 128.40 130.19 128.40 129.29 129.29
4 67.43 65.32 65.17 65.32 81.75 65.81
8 32.16 36.87 37.45 36.87 40.12 37.16
16 17.73 15.68 17.94 21.86 22.71 19.09
32 11.86 8.63 9.41 10.39 12.69 9.58
64 17.48 5.41 7.67 6.41 7.87 5.68
128 37.10 5.71 5.60 4.42 5.51 3.40
256 79.26 7.97 7.28 2.44 4.54 2.17

Table 4.13: Strong scaling execution times (in seconds) of the single precision BLAS3
triangular solver (strsm) on HECToR

strsm with matrix size 16384x16384 (s)
Row Dist Column Dist PBLAS

Cores ↓ LibSci-Seq LibSci-MTh LibSci-Seq LibSci-MTh 1D 2D
Seq 194.17
2 103.21 170.16 104.20 170.16 113.29 113.29
4 56.94 86.32 51.96 86.32 56.38 56.38
8 32.90 48.06 26.20 48.06 29.11 26.78
16 18.10 23.55 13.38 23.88 15.23 13.31
32 11.80 12.86 6.59 12.09 8.61 6.64
64 9.96 7.32 3.83 6.34 3.94 3.34
128 10.75 4.69 3.76 3.50 2.51 1.63
256 13.59 4.69 4.29 2.54 2.24 0.98
512 17.55 5.80 6.63 2.29 2.09 0.65
1024 35.78 8.52 8.63 1.72 2.13 0.53

78 Chapter 4. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

strsm on Carver with 512 GFLOP per core

PBLAS
UPCBLAS

 0

 50

 100

 150

 200

 250

 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p
s

Number of Cores

strsm on HECToR with 8 GFLOP per core

PBLAS
UPCBLAS

Figure 4.11: Weak scaling speedups of the single precision BLAS3 triangular solver
(strsm)

4.3. Benchmarking of UPCBLAS within More

Complex Routines

The main goal of a numerical library is to simplify the development of more

complex codes. This issue is even more important for parallel computing, as pro-

gramming is more difficult and the increase of productivity can be more significant.

For instance, LAPACK [69] uses BLAS routines [6, 33], and PBLAS [21, 83] is part

4.3 Benchmarking of UPCBLAS within More
Complex Routines 79

of the ScaLAPACK library [105]. Thus, the UPC versions of some ScaLAPACK

routines have been implemented using the UPCBLAS routines to study the con-

venience of its design and the performance achieved. Specifically, the UPCBLAS

library has been used to solve linear systems of equations through Cholesky and LU

factorizations. The developed codes have been experimentally evaluated on Carver

using up to 256 cores and compared to MPI counterparts using ScaLAPACK. Similar

experiments could not be performed on HECToR due to restrictions in the available

execution time on this machine.

Parallel solvers are present in many parallel numerical applications and they have

been traditionally developed using MPI. This section shows that UPCBLAS can be

considered a good alternative to MPI-based libraries for increasing the productivity

of numerical application developers.

4.3.1. Cholesky Solver

The Cholesky factorization is mainly used for the numerical solution of linear

systems A ∗ X = B when A is symmetric and positive definite. The system can

be solved by first computing the Cholesky factorization A = LLT (L being a lower

triangular matrix with strictly positive diagonal entries), then solving L ∗ Y = B

for Y , and finally solving LT ∗ X = Y for X. A similar approach is applied if the

system has the form X ∗ A = B.

Two different algorithms by blocks have been studied to implement the Cholesky

solver. Both algorithms are very adequate for parallel numerical codes as they are

based on BLAS3 routines, which obtain good scalability. As UPCBLAS is limited

to the distributions available for shared arrays in UPC which, up to now, are 1D,

users can choose between the block-cyclic distribution by rows or by columns. For

the sake of simplicity, all the algorithms in this section will only be explained for a

block-cyclic distribution by rows, such as the one shown in Figure 4.12, where Aij

are submatrices. The column distribution version can be easily inferred.

As UPCBLAS is focused on increasing programmability, the syntax of all its rou-

tines is very similar to the sequential BLAS counterparts. Furthermore, UPCBLAS

routines work with arrays as in the sequential numerical libraries instead of using

80 Chapter 4. Experimental Evaluation

Figure 4.12: Example of input matrix distributed by rows in a block-cyclic way

ad hoc distributed data structures as in the MPI-based ones. Therefore, the first

approach for the Cholesky factorization using UPCBLAS is derived from the sequen-

tial algorithm available in the LAPACK library. Algorithm 4.1 shows this approach,

which is based on the matrix-matrix product of general matrices (gemm routine).

The input matrix A is distributed in NB blocks of rows. The input/output matrix

B (X overwrites B) does not have to follow the same distribution. Taking into

account the experimental results obtained for the matrix-matrix product (shown in

Section 4.2.3), B is distributed by columns if the system is A ∗X = B, and by rows

if it is X ∗ A = B, in order to obtain the best performance.

The loop of Algorithm 4.1 computes the Cholesky factorization of matrix A and

it is parallelized using UPCBLAS to perform the matrix-matrix product (gemm)

and the triangular solver (trsm). In addition, there is one thread in each iteration

that must perform some additional computations only accessing data stored in its

local memory: the syrk routine (product of a symmetric matrix by its transpose)

and the sequential Cholesky factorization. The syrk routine is performed by calling

a sequential BLAS routine. However, no routine could be used to perform the

sequential Cholesky factorization of a block. Although LAPACK has a routine to

perform this factorization, it only works if matrices have their elements ordered

in a column-wise way, the common format in Fortran. As UPCBLAS follows the

UPC and ANSI C format (row ordering of elements), transposing the matrix in

each block is the only way to use the LAPACK interface, which was obviously

discarded due to its high overhead. An own row-wise C routine for the sequential

4.3 Benchmarking of UPCBLAS within More
Complex Routines 81

Cholesky factorization was therefore implemented. If fact, the employed routine

is a multithreaded version that uses OpenMP directives: note that although these

operations can be multithreaded they are considered as sequential from the UPC

point of view, as they are performed only by one UPC thread.

Algorithm 4.1 Algorithm based on parallel gemm for the Cholesky solver

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Ai,i = Ai,i − Ai,0..i−1 ∗ AT
i,0..i−1 → syrk

Sequential Cholesky Factorization of block Ai,i

end
Ai+1..N,i = Ai+1..N,i − Ai+1..N,0..i−1 ∗ AT

i,0..i−1 → gemm
Solve Z ∗ AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z

end
Solve Y ∗ AT = B → trsm
Solve X ∗ A = Y → trsm

After the loop, the lower triangular part of A stores the entries of L, which can

be directly used as input of the UPCBLAS triangular solvers to solve the system of

equations.

Two data dependencies arise in this algorithm:

No thread can start the parallel trsm in iteration i before the thread with

affinity to block Ai,i has finished the Cholesky factorization of this block.

No thread can start the parallel gemm in iteration i before the thread with

affinity to block Ai−1,i−1 has finished its part of the parallel trsm of the previous

iteration.

There are no dependencies between the parallel gemm and the sequential com-

putations in each iteration. Thus, synchronizations have been accordingly used in

order to parallelize all these computations.

The second approach developed for implementing the Cholesky solver using UP-

CBLAS is an adaptation of the algorithm used by ScaLAPACK and it is described

in Algorithm 4.2. The UPCBLAS syrk and trsm routines are used in this case for

82 Chapter 4. Experimental Evaluation

the parallelization. The main advantage of this algorithm is that there are fewer

sequential computations than in the previous one (the sequential syrk per iteration

is avoided). These computations have not disappeared but they are included in the

parallel syrk.

Algorithm 4.2 Algorithm based on parallel syrk for the Cholesky solver

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Sequential Cholesky Factorization of block Ai,i

end
Solve Z ∗ AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z
Ai+1..N,i+1..N = Ai+1..N,i+1..N − Ai+1..N,i ∗ AT

i+1..N,i → syrk
end
Solve Y ∗ AT = B → trsm
Solve X ∗ A = Y → trsm

Two dependencies arise in this algorithm too:

No thread can start the parallel trsm in iteration i before the thread with

affinity to block Ai,i has finished the sequential Cholesky factorization of this

block.

No thread can start the parallel syrk in iteration i before all threads have

finished the parallel triangular solver in that iteration.

The main drawback of this algorithm is that dependencies are stronger and closer

than in Algorithm 4.1. Thus, the overhead due to synchronizations increases.

Figure 4.13 and Table 4.14 show a comparison of the speedups and execution

times of both UPC Cholesky algorithms as well as the ScaLAPACK routine of the

Cholesky solver. This routine, parallelized using MPI, is provided by the MKL

library described in Section 4.1. Note that in these weak scaling experiments the

execution times in an ideal scenario (perfect scalability) would remain constant

regardless of the number of cores. All the speedups are calculated relative to the

execution times obtained from the ScaLAPACK library running with only one MPI

process (labeled as Seq in the table). The UPC results were obtained linking to

4.3 Benchmarking of UPCBLAS within More
Complex Routines 83

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

Cholesky solver on Carver with 1194 GFLOP per core

ScaLAPACK-2D
Row-gemm
Column-gemm
Column-syrk
Row-syrk
ScaLAPACK-1D

Figure 4.13: Weak scaling speedups of the double precision Cholesky solver on
Carver

Table 4.14: Weak scaling execution times (in seconds) of the double precision
Cholesky solver on Carver

Cholesky Solver with 1194 GFLOP per core (s)
Based on gemm Based on syrk ScaLAPACK

Cores ↓ Row Column Row Column 1D 2D
Seq 143.43
16 144.97 197.49 207.31 205.27 245.45 187.18
32 154.17 220.13 286.50 228.46 274.47 187.28
64 169.64 351.98 478.60 391.98 404.97 200.38
128 244.98 472.56 833.37 572.56 738.21 214.43
256 365.90 869.68 1391.89 1069.68 1398.99 218.38

the multithreaded MKL library (using 8 OpenMP threads), which offered the best

performance in the experimental results of Section 4.2.3. Consequently, only results

from 16 cores (where there are at least two nodes and thus two UPC threads) are

shown. Results with row and column distributions for matrix A are shown for both

UPC algorithms, where the selection of NB is key to obtain good performance. The

more blocks the matrix is divided into, the more computations can be simultaneously

performed, but the more synchronizations are needed too. In order to provide a fair

comparison, all the experimental results shown were obtained with the best NB for

each routine, either for the UPC or the ScaLAPACK routines.

84 Chapter 4. Experimental Evaluation

These results indicate that the UPC approach that parallelizes the LAPACK

algorithm, based on the parallel gemm routine, is better than the adaptation of the

ScaLAPACK one, based on the parallel syrk routine, due to several reasons:

The dependencies of the algorithm based on syrk are very strong and thus

more synchronizations are needed.

The implementation based on gemm has been optimized to minimize the over-

head of the sequential computations by overlapping them with other parallel

computations. This optimization cannot be included in the syrk algorithm

because of the dependencies.

The pattern of the remote accesses within the parallel UPCBLAS gemm rou-

tine obtains better performance than the pattern within the UPCBLAS syrk.

Regarding the best algorithm (the one based on gemm) the distribution by rows is

better than the distribution by columns. The reason is that the core of the algorithm

is performed using the UPCBLAS gemm and trsm routines. In the distribution by

rows these routines follow the behavior described in Figure 2.9 for the matrix product

C = A ∗ B, with all matrices distributed by rows. As all the elements in the same

row have affinity to the same thread, the accesses to one row of B only need one call

to the standard UPC function upc memget() per thread. In contrast, in the column

distribution case matrix A in Figure 2.10 has the same distribution by columns

as matrix B so the elements of each row of A are stored in parts of the shared

memory with affinity to different threads. Therefore, several calls to upc memget()

per thread with fewer elements per call are necessary to access each row of A. In

UPC accessing data using large blocks is much more efficient than splitting them

into several smaller accesses.

The ScaLAPACK Cholesky solver outperforms the best UPC version for a large

number of cores. The reason is that the 2D distribution is the best choice for this

algorithm. Although the best UPC algorithm (the one based on gemm by rows) is

competitive up to 64 cores, its performance decreases with larger core counts because

the blocks become very irregular (few rows and many columns per block). However,

this UPC algorithm (including its internal UPCBLAS routines) was demonstrated

4.3 Benchmarking of UPCBLAS within More
Complex Routines 85

to be well implemented as it outperforms the ScaLAPACK-1D approach and, the most

important, UPCBLAS routines are much easier to use.

4.3.2. LU Solver

If the input matrix A does not fulfill the requirements of the Cholesky factoriza-

tion, the LU decomposition can be used instead. In this case matrix A is decomposed

into two matrices L and U , lower and upper triangular, respectively. Thus, A can

be exchanged by L∗U and the system of equations can be solved in two steps. First,

L ∗ Y = B is solved and then U ∗X = Y .

Algorithm 4.3 shows the basic block algorithm based on BLAS3 routines to per-

form the parallel LU solver. It is derived from the algorithms included in LAPACK

and ScaLAPACK. In this case the loop computes the LU factorization, so L and U

are stored in the lower and upper triangular parts of A, respectively. Then, the first

final trsm routine performs the triangular solver with the lower part of the matrix

and the second trsm uses the upper one.

Algorithm 4.3 Algorithm for the LU solver without pivoting

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Sequential LU Factorization of block Ai,i..N

end
Solve Z ∗ AT

i,i = Ai+1..N,i → trsm
Ai+1..N,i = Z
Ai+1..N,i+1..N = Ai+1..N,i+1..N − Ai+1..N,i ∗ Ai,i+1..N → gemm

end
Solve A ∗ Y = B → trsm
Solve A ∗X = Y → trsm

This algorithm is mainly based on the UPCBLAS implementations of trsm and

gemm. In addition, similarly to the Cholesky case, a C version (multithreaded using

to OpenMP) of the LU factorization had to be developed, as the available libraries

could not work with row-wise matrices.

The only dependency among the computations performed by different threads is

that no thread can start the parallel trsm in iteration i before the thread with affinity

86 Chapter 4. Experimental Evaluation

to block Ai,i has finished the LU factorization of this block. The structure of this

algorithm is quite similar to Algorithm 4.2 for the Cholesky solver. However, the LU

algorithm should obtain better scalability as no thread needs any remote data of the

output of the parallel trsm and thus the second dependency present in Algorithm 4.2

(the one between the parallel trsm and syrk routines in each iteration) is avoided.

Moreover, the LU algorithm has been optimized by moving forward the sequential

computations of the next iteration, overlapping them with the gemm routine.

Depending on the characteristics of the input matrix A, Algorithm 4.3 could lead

to incorrect results because of dividing by zero within the sequential LU factoriza-

tions. Partial pivoting must be performed in order to avoid this issue, and thus the

system has the form P ∗ L ∗ U ∗X = P ∗B, where P is a permutation matrix with

exactly one entry equal to one in each row and column.

Algorithm 4.4 Algorithm for the LU solver with partial pivoting by columns

for i=0;i<NB;i=i+1 do
if MYTHREAD has affinity to block i then

Pi = Partial P ivoting of Ai,i..N

Swap Ai,i..N according to Pi

Sequential LU Factorization of Ai,i..N

end
Swap A0..N,i..N according to Pi

Solve Z ∗ AT
i,i = Ai+1..N,i → trsm

Ai+1..N,i = Z
Ai+1..N,i+1..N = Ai+1..N,i+1..N − Ai+1..N,i ∗ Ai,i+1..N → gemm

end
Swap B according to P
Solve A ∗ Y = B → trsm
Solve A ∗X = Y → trsm

The algorithm for solving this system is shown in Algorithm 4.4. If the matrix

is distributed by rows, as in the example of Figure 4.12, the pivoting is performed

by columns so that all the column swaps can be parallelized. P is implemented as

a vector of size N distributed among threads according to NB. It is used to store

the information about the columns that must be swapped in each iteration. This

information is computed before the LU factorization of the block and it is available

to all threads as P is stored in shared memory. Next, all threads have to swap the

elements of the rows with affinity to them according to Pi before computing trsm

4.3 Benchmarking of UPCBLAS within More
Complex Routines 87

Table 4.15: Weak scaling execution times (in seconds) of the double precision LU
solver on Carver

LU Solver with 1365 GFLOP per core (s)
Cores ↓ Row Column ScaLAPACK-1D ScaLAPACK-2D

Seq 148.10
16 153.06 170.81 175.08 153.45
32 161.39 206.70 215.14 153.59
64 181.93 301.94 260.52 165.01
128 211.39 397.41 415.57 165.47
256 268.22 628.04 688.22 174.03

in each iteration. A UPC parallel column swap was developed to efficiently perform

these computations. Furthermore, in this algorithm the sequential computations of

the next iterations cannot be moved forward because the thread involved in these

computations needs to finish its part of all the previous parallel trsm and gemm

computations to be sure that the pivoting information is well determined. After the

factorization, vector P contains all the pivoting information and columns of matrix

B are swapped accordingly in parallel before the final triangular solvers.

Table 4.15 and the top graph of Figure 4.14 show the experimental results for

the LU solver without pivoting on Carver. The conclusions are similar to those

of the Cholesky algorithm based on gemm (see Algorithm 4.1). On the one hand,

distributing matrix A by rows obtains better performance than doing it by columns

because of the behavior of the UPCBLAS routines; on the other hand, the UPC

implementation is much more efficient than ScaLAPACK-1D but less efficient than

the 2D counterpart.

Finally, weak scaling speedups and execution times of the LU solver with partial

pivoting are presented in the bottom graph of Figure 4.14 and in Table 4.16, respec-

tively. In order to show an extreme scenario, matrix A has been selected so that all

the columns must be swapped. Regarding the UPC version, only the performance

of the distribution by rows is presented as, from the results of the LU solver without

pivoting, it can be inferred to be better than the distribution by columns. Compar-

ing to the UPC algorithm without pivoting, it can be seen that pivoting decreases

scalability. The reason is not the time needed to perform the swap (only about two

seconds per experiment) but the fact that the sequential computations cannot be

88 Chapter 4. Experimental Evaluation

 0

 50

 100

 150

 200

 250

 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

LU solver on Carver with 1365 GFLOP per core

ScaLAPACK-2D
Row
Column
ScaLAPACK-1D

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 16 32 64 128 256

S
p
e
e
d
u
p
s

Number of Cores

LU solver on Carver with partial pivoting and 1365 GFLOP per core

ScaLAPACK-2D
Row
ScaLAPACK-1D

Figure 4.14: Weak scaling speedups of the double precision LU solver with and
without partial pivoting on Carver

overlapped with the parallel gemm routine of the previous iteration, as explained

previously.

The implementations of solvers of equations using the Cholesky and LU factor-

izations (with and without pivoting) based on UPCBLAS routines have confirmed

the ease of use of this library. Thanks to the design features of UPCBLAS (syntax

similar to sequential BLAS and use of shared arrays), the usage of its routines has

been straightforward, very similar to BLAS routines in LAPACK and much eas-

4.3 Benchmarking of UPCBLAS within More
Complex Routines 89

ier than PBLAS routines in ScaLAPACK. Therefore, these solvers illustrate that

UPCBLAS routines increase the programmability of parallel numerical codes, pro-

ducing less error-prone programs and improving the productivity of their users while

providing an acceptable performance.

Table 4.16: Weak scaling execution times (in seconds) of the double precision LU
solver with partial pivoting on Carver

LU Solver with partial pivoting and 1365 GFLOP per core (s)
Cores ↓ Row ScaLAPACK-1D ScaLAPACK-2D

Seq 150.42
16 170.65 238.30 157.37
32 185.14 281.26 160.34
64 220.26 416.70 173.34
128 256.89 560.36 176.88
256 351.93 891.54 189.52

Chapter 5

Sparse Numerical Routines in

UPC

This chapter analyzes the UPC implementation of SparseBLAS routines and

studies the suitability of different sparse storage formats. It begins with a brief

summary of the state of the art in Section 5.1. Section 5.2 explains the different

sparse formats that will be tested in this chapter. Section 5.3 presents the different

possibilities to adapt the design of the UPC dense routines to sparse computations.

Section 5.4 shows the algorithms used to implement the sparse matrix-vector and

matrix-matrix products, depending on the chosen storage format. Finally, an eval-

uation of the products using different storage formats is presented in Section 5.5.

5.1. State of the Art

Sparse vectors and matrices are pervasive in many areas, and the efficiency in

their processing is critical for the performance of many applications. For instance,

sparse matrix-vector and matrix-matrix products represent the main core of many

iterative solvers or matrix factorizations that arise in a wide variety of scientific and

engineering problems. Due to their importance, several optimization techniques

have been proposed for the parallel implementation of sparse products. Williams et

al. [121] provide an efficient implementation of the matrix-vector product for multi-

91

92 Chapter 5. Sparse Numerical Routines in UPC

core systems using the Compressed Sparse Row format by applying thread blocking

together with sequential optimizations such as cache blocking, loop optimizations or

software memory prefetching. Liu et al. [70] provide another implementation for the

Block Sparse Row format using OpenMP. This work also evaluates three different

types of load balancing, determining that the non-zero scheduling presented in [66]

usually obtains the best performance. A new load balancing method for the sparse

matrix-vector product on heterogeneous systems was presented in [65]. Finally, even

approaches with autotuning have been developed for this routine [116].

Regarding the sparse matrix-matrix product, Buluç and Gilbert [15] compare dif-

ferent algorithms and data distributions for the multiplication of two sparse matrices.

However, this routine is not the same as the one in the SparseBLAS library [99],

which multiplies a sparse matrix by a dense one. Nevertheless, none of these works

take advantage of the use of PGAS languages. Bell and Nishtala [8] deal with sparse

matrices in UPC but restricted to a sparse triangular solver and the Compressed

Sparse Row format.

5.2. Sparse Storage Formats

Sparse vectors are usually stored using one array to represent the non-zero el-

ements and another one to indicate their positions. For instance, vector {0.0, 4.3,

0.0, 2.1, 1.9, 0.0} is represented by the val array {4.3, 2.1, 1.9} and the indices

array {1, 3, 4}. All functions that work with sparse vectors use this storage format.

However, several formats have been used in the literature to store sparse matri-

ces. Each of them is adequate for some kind of sparse matrices. The selection of

the most suitable storage format is one of the main decisions in order to perform

efficient sparse matrix-vector and matrix-matrix products, and this decision can be

influenced by the size of the problem, the sparsity pattern of the matrix, the pro-

gramming language or the architecture of the system. In [71] Luján et al. presented

a performance evaluation of different storage formats for the sparse matrix-vector

product in Java. This study was complemented in [114] with a similar evaluation

using Fortran. Regarding parallel computing, Shahnaz et al. provide in [93] and [94]

a comparison of the performance of the sparse matrix-vector product with seven dif-

5.2 Sparse Storage Formats 93

ferent formats in a small cluster using MPI. Similar studies for GPUs are presented

in [9] and [60].

In this chapter the six formats described by Dongarra in [32] are studied, each

of them tailored to specific sparsity patterns:

Coordinate (COO) format: The Coordinate format is the most intuitive, sim-

ple and flexible scheme to represent sparse matrices. It consists of three arrays,

values, rows and columns, which store the values, row indices and column

indices of the non-zero entries, respectively. In most occasions (and always in

this work) the non-zero elements of the same row are assumed to be stored

contiguously.

Compressed Sparse Row (CSR) format: The CSR format is probably the most

popular sparse matrix representation. It explicitly stores subsequent non-zero

values of the rows of the matrix in array values. Array columns keeps the

column indices. A third array rowPtr stores, for each row, the index of the

entry in the array columns which is the first non-zero element of the given

row. It has an additional entry with the total number of non-zero elements

in the matrix. Therefore, CSR presents a compressed view of Coordinate as

the length of rowPtr is the total number of rows plus one instead of the total

number of non-zero values.

Block Sparse Row (BSR) format: A variant of CSR is the BSR format, very

useful for sparse matrices where the non-zero elements are grouped in blocks.

It consists of dividing the matrix in a grid of blocks and keeping, for each

block with non-zero entries, its values (including zeros) and the information of

the position of the block within the grid according to the CSR scheme. The

values are stored consecutively by blocks and, inside them, by rows.

Compressed Sparse Column (CSC) format: It is similar to CSR, but storing

consecutively in array values the non-zero elements by columns, using rows

for the row indices and columnPtr for keeping for each column the index of

the entry in the array rows which is the first non-zero element of the given

column.

94 Chapter 5. Sparse Numerical Routines in UPC

Diagonal (DIA) format: Many sparse matrices in scientific computing present

their non-zero entries restricted to a small number of diagonals. In order to

take advantage of this particular sparsity pattern the Diagonal scheme has

been defined. In this case values stores consecutively all the elements of the

diagonals with any non-zero element. Another array, distance, represents, for

each stored diagonal, its offset from the main diagonal. Diagonals above and

below the main one have positive and negative distance, respectively.

Skyline (SKY) format: This format has been specifically designed for sparse

triangular matrices, frequently used in equations solvers. The concrete storage

of the elements depends on whether the matrix is lower or upper triangular.

The values of all the entries from the first non-zero element to the diagonal in

each row are consecutively stored in array values in the lower case. The format

is similar for columns in upper triangular matrices. Besides, an additional

array ptr is necessary. In lower triangular matrices, it keeps for each row the

index of the entry of values with the first element of this row. In the upper

case its meaning is the same but for each column. In both cases an additional

entry with the total number of non-zero elements is needed.

5.3. Design of the UPC Sparse Routines

One of the first decisions to take when developing a library is the interface of

the routines. In order to support multiple formats for sparse matrices, two options

were considered for the UPC sparse routines:

To provide a different interface for each storage format. Each interface would

have the required number of parameters with the most suitable type and name

according to the storage format. For instance, the CSR interface would have

one array called val and two integer arrays called col ind and row ptr.

To provide a unified interface for all storage formats. An enumerated parame-

ter is mandatory to determine which format is used. Parameters used to pass

the sparse matrix would have general names and, according to the enumer-

ated value, each of them would have a different meaning. In addition, enough

5.3 Design of the UPC Sparse Routines 95

parameters must be available in order to be able to represent all the storage

formats, although some of them might be useless for some particular formats.

Looking for ease of use, the first approach has been selected. To distinguish the

storage format supported by each routine, their names are suffixed by the abbrevi-

ations coo, csr, bsr, csc, dia or sky, according to the formats presented in

Section 5.2.

5.3.1. Sparse BLAS1 Routines

The sparse structures present a problem with the affinity that is difficult to solve

in UPC. In a sparse vector, non-zero values are usually irregularly distributed, so

the affinity with a particular thread is difficult to achieve. Figure 5.1(a) depicts an

example that describes the problem for the sparse dot product, which multiplies a

dense vector by a sparse one. In this scenario, the shared arrays for both dense and

sparse vectors have the same block factor (2 in the example). However, because of

the sparsity of the second vector (expressed by the indices array), all accesses are

remote, which represents significant performance penalties.

In order to avoid remote accesses, the arrays of the sparse structure should be

distributed with a non-regular pattern as shown in Figure 5.1(b). In UPC the

block factor of a shared array can not be variable, so the data layout depicted in

Figure 5.1(b) is not possible using shared arrays.

(a) All arrays are shared (b) Only the dense vector is shared

Figure 5.1: Accesses in the sparse dot product depending on the arrays that are
shared

96 Chapter 5. Sparse Numerical Routines in UPC

In conclusion, the storage of both dense and sparse vectors in shared arrays is not

recommended. Again, similarly to dense routines, programmability is a must. Thus,

the approach developed only uses UPC standard structures and provides routines

easy to understand and work with. Following these assumptions, the implemented

sparse dot product routine has an interface that handles the sparse vector in pri-

vate memory and internally distributes its data in the best way according to the

block size specified by the user, which represents the dense vector distribution.

For instance, the syntax of the susdot routine (dot product between a sparse and a

dense vector of floats) is:

int upc blas susdot(int block size, int nz, int thread src, float x,

int *indx, shared float *y, shared float *dst);

x and indx being the source arrays of length nz that represent the sparse vector

(note that they are stored in private memory); y the dense vector; dst the pointer

to shared memory where the dot product result will be written; block size is the

block factor of the dense source vector y; and thread src the rank of the thread

(0,1. . . THREADS-1, THREADS being the total number of threads in the UPC execution)

where the private input is stored. If thread src=THREADS, the input is replicated in

all threads. This function treats pointer y as if it had type shared [block size]

double[indx[nz-1]].

5.3.2. Sparse BLAS2 and BLAS3 Routines

As sparse matrices present the same problem as sparse vectors, they are also

handled in private memory and internally distributed according to the block size

of the dense structures. For instance, the syntax of the function to multiply a sparse

matrix in CSR format by a dense vector is:

int upc blas susmv csr(UPCBLAS TRANSPOSE transpose, int m, int n,

float alpha, int thread src, float *val,

int *col ind, int *row ptr, int block size,

5.3 Design of the UPC Sparse Routines 97

shared float *x, int sec block size,

shared float *y);

val, col ind and row ptr being the arrays that represent the sparse matrix; x and

y the dense source and result vectors, respectively; m and n the number of rows and

columns of the matrix; alpha the scale factor that multiplies the matrix; transpose

an enumerated value that indicates whether the sparse matrix is transposed; and

thread src the rank of the thread where the private input is stored. The block

factor of vector x is block size whereas sec block size is the block factor of

vector y. This function treats pointer x as shared[block size] double[n] and y

as shared[sec block size] double[m].

5.3.3. Limitations and Future Directions

The described design has an important drawback: each call to each sparse rou-

tine involves an initial distribution of the input sparse vector or matrix from the

source thread to the other threads according to block size. Many calls to the

same or different routines with the same distribution are often used when develop-

ing more complex algorithms, as could be seen in Sections 4.3.1 and 4.3.2 for the

dense counterparts. Thus, in these common scenarios the sparse structure would be

continuously redistributed, generating a huge performance overhead.

As it is not possible to have sparse vectors and matrices distributed using shared

arrays with a fixed block factor, two options arise to have them distributed before

calling the routines, and therefore to avoid the overhead. The first one would be to

include shared arrays with non-fixed block factors in the UPC standard. However,

this proposal is not one of the priorities of the UPC community. The second option

is the design of data structures that represent distributed sparse vectors and matri-

ces, similar to the PETSc ones [85]. The development of these structures must be

considered as future work, also providing additional routines for their creation, ini-

tialization and deletion that could help users to work with them and thus maintain

the high programmability of the UPCBLAS library. As in this case the distribution

would be hidden from the user by the data structures and by these additional rou-

tines, the storage format could be automatically chosen by the library. Subsequent

98 Chapter 5. Sparse Numerical Routines in UPC

sections provide an evaluation of different algorithms with different storage formats

to perform the sparse matrix-vector and matrix-matrix products that will help to

this future automatic choice of the storage format. This is the previous step to the

design of those auxiliary structures that could be included in UPCBLAS.

5.4. Implementation of the Sparse Matrix Prod-

ucts

This section analyzes the implementation of the sparse matrix-vector and matrix-

matrix products in UPC. The syntax of these products is the same as in the Sparse-

BLAS library [99]: y = α ∗A ∗ x+ y and C = α ∗A ∗B+C, respectively (α being a

scalar value, A a sparse matrix, x and y dense vectors, and B and C dense matrices).

The goal is to compare the different storage formats to study which is potentially

the best one to implement sparse routines in UPC. As explained in the previous

section, the direct application of the interface for dense routines to the sparse ones

would involve a significant performance overhead. The purpose of this preliminary

study is therefore to determine the best algorithm for each storage format, without

being limited by any feature of the interface. Thus, not only the sparse but also the

dense vectors and matrices are distributed using private memory in order to be able

to play with more variable distributions (i.e. with variable block factor).

Figure 5.2 illustrates the approach of the matrix-vector product that distributes

the sparse matrix by rows. Each thread calculates a partial result by applying a

sequential sparse matrix-vector product with the rows that correspond to it and all

the elements of x. Thus, the distribution of y must match the distribution of the

matrix so that the partial sums can be performed without remote accesses. In order

to perform this distribution the non-zero elements must be consecutively stored by

rows in the values array so that it can be used in the COO, CSR, BSR and SKY

(with lower triangular matrices) formats.

For the CSC and SKY (with upper triangular matrices) formats, where the data

in the values array are consecutively stored by columns, the use of this row distri-

bution would lead to several data movements, which would represent an important

performance overhead. The natural distribution for these formats is by blocks of

5.4 Implementation of the Sparse Matrix Products 99

Figure 5.2: Distribution by rows of the sparse matrix-vector product (COO, CSR,
BSR and SKY with lower triangular matrices)

Figure 5.3: Distribution by columns of the sparse matrix-vector product (CSC and
SKY with upper triangular matrices)

Figure 5.4: Distribution by diagonals of the sparse matrix-vector product (DIA)

columns and with the source vector x distributed according to the size of the blocks

in the matrix, as represented in Figure 5.3. Each thread performs a sequential par-

tial sparse matrix-vector product with its local data. Then, in order to compute

the ith element of the result, the ith values of all partial results should be added.

As in the dense matrix-vector product with column distribution (see Figure 2.5),

these sums need reduction operations involving all UPC threads, so performance

is usually poor. The approach followed by the DIA format, which can be seen in

Figure 5.4, is very similar to the previous one but the sparse matrix is distributed

100 Chapter 5. Sparse Numerical Routines in UPC

by diagonals and vector x is accessed by all threads.

Previous works have pointed out that a key aspect in the performance of the

sparse matrix-vector product is the computational load balance [121]. In order to

achieve a good load balance the approaches of Figures 5.2 and 5.3 try to evenly

distribute the number of non-zero elements per thread, using rows/columns of dif-

ferent size (in the examples, six non-zero elements per thread). Regarding the DIA

format, as the number of non-zero elements per diagonal is unknown, the computa-

tional load might be unbalanced (in Figure 5.4, seven non-zero elements for threads

0 and 1 and five non-zero elements for threads 2 and 3). Nevertheless, the impact of

this drawback is alleviated by using a cyclic distribution which achieves a balanced

load distribution in most sparse matrices.

Figure 5.5 shows the algorithm for the matrix-matrix product using an own dis-

tribution, which is an adaptation of the matrix-vector algorithm by rows. Each

thread needs the whole matrix B and the same rows of C as in A. Neverthe-

less, the adaptation of the distribution by columns and diagonals employed in the

matrix-vector multiplication would eventually involve a significant number of final

reductions, leading to a very poor performance. Therefore, the approach illustrated

in Figure 5.6 was developed for CSC, DIA and SKY with upper triangular matri-

ces. It is similar to the algorithm for the dense matrix-matrix product with column

distribution presented in Section 2.1.3 and illustrated in Figure 2.10. Each thread

needs to access the whole sparse matrix but only the same columns of B and C, and

the results are calculated always in local memory.

5.5. Performance Evaluation of the Sparse Rou-

tines

The evaluation of the UPC sparse products has been conducted on the Finis

Terrae supercomputer [40] at the Galicia Supercomputing Center (CESGA). This

system consists of 142 HP RX7640 nodes, each of them with 16 IA64 Itanium2

Montvale cores at 1.6Ghz, 128GB of memory and a dual 4X InfiniBand port. As

for software, the code was compiled using Berkeley UPC 2.12.1. The intra-node and

inter-node communications are performed through shared memory and GASNet over

5.5 Performance Evaluation of the Sparse Routines 101

Figure 5.5: Distribution by rows of the sparse matrix-matrix product (COO, CSR,
BSR and SKY with lower triangular matrices)

Figure 5.6: Distribution by columns of the sparse matrix-matrix product (CSC, DIA
and SKY with upper triangular matrices)

InfiniBand, respectively.

In this evaluation seven representative square matrices, with different sparsity

patterns, have been selected from the University of Florida Matrix Collection [107].

Their characteristics are shown in Table 5.1. Larger versions (labeled with large)

have been obtained by replicating the original matrices, which preserves the spar-

sity and the pattern of the original ones. The larger versions have been used for the

matrix-vector product whereas the original matrices have been used for the matrix-

matrix product. The DIA and SKY formats are not appropriate for storing some

matrices due to the significant number of zeros that the format would require to

store them, and thus these combinations have not been considered. Specifically,

nd3k, gupta3 and pattern1 are not stored using the DIA format while SKY is not

appropriate for nd3k, pattern1, exdata 1 and TSOPF. All the results have been

obtained by discarding the overhead of the initial data distribution (for many ap-

102 Chapter 5. Sparse Numerical Routines in UPC

Table 5.1: Overview of the sparse square matrices used in the evaluation

Plot Name Rows Sparsity

nemeth26 9506 0.842%
nemeth26 large 85554 0.842%

ramage02 16830 0.509%
ramage02 large 67320 0.509%

nd3k 9000 2.03%
nd3k large 81000 2.03%

gupta3 16783 1.658%
gupta3 large 67132 1.658%

pattern1 19242 1.26%
pattern1 large 57726 1.26%

exdata 1 6001 3.159%
exdata 1 large 84014 3.159%

TSOPF 18696 1.258%
TSOPF large 56088 1.258%

plications several consecutive products are performed with the same input data

distributions).

The top graphs of Figure 5.7 show the speedups of the double precision sparse

matrix-vector product using 32 and 64 threads. As expected, the row-based storage

formats always significantly outperform column- and diagonal-based ones due to the

avoidance of the final reduction operations.

The bottom graphs of Figure 5.7 show the results of the sparse matrix-matrix

product. When working with matrices with a quite similar number of non-zero

elements per row (for instance nemeth26, ramage02 or nd3k) the row distribution

obtains better performance than the column one due to the efficiency of the final

copies of data to the output array. As can be seen in Figures 5.5 and 5.6, the

approach by rows gathers the output data with only one bulk copy per thread,

which in UPC is more efficient than using one bulk copy per row and thread, as in

the approach by columns. However, if the matrix presents a very irregular sparsity

pattern such as pattern1, exdata 1 or TSOPF, the distribution by rows tries to

balance the number of non-zero elements per thread and this leads to a different

number of rows per thread. Therefore, the computational workload of the final sums

and data copies is very unbalanced, obtaining less efficiency than distributing the

5.5 Performance Evaluation of the Sparse Routines 103

 0

 5

 10

 15

 20

 25

 30

 35

 40

nemeth26 ramage02 nd3k gupta3 pattern1 exdata_1 TSOPF

S
p

e
e

d
u

p
s

Matrix

matrix-vector product with 32 threads

coordinate
csr

bsr
csc

diagonal
sky-upper

sky-lower

 0

 10

 20

 30

 40

 50

 60

 70

 80

nemeth26 ramage02 nd3k gupta3 pattern1 exdata_1 TSOPF

S
p

e
e

d
u

p
s

Matrix

matrix-vector product with 64 threads

coordinate
csr

bsr
csc

diagonal
sky-upper

sky-lower

 0

 5

 10

 15

 20

 25

 30

 35

 40

nemeth26 ramage02 nd3k gupta3 pattern1 exdata_1 TSOPF

S
p

e
e

d
u

p
s

Matrix

matrix-matrix product with 32 threads

coordinate
csr

bsr
csc

diagonal
sky-upper

sky-lower

 0

 10

 20

 30

 40

 50

 60

 70

 80

nemeth26 ramage02 nd3k gupta3 pattern1 exdata_1 TSOPF

S
p

e
e

d
u

p
s

Matrix

matrix-matrix product with 64 threads

coordinate
csr

bsr
csc

diagonal
sky-upper

sky-lower

Figure 5.7: Speedups of the sparse matrix-vector and matrix-matrix products for
different storage formats

104 Chapter 5. Sparse Numerical Routines in UPC

dense matrices by columns. Finally, the poor speedups of the DIA format for this

routine is due to the fact that the sequential times are lower than using other formats

thanks to the efficient exploitation of the memory hierarchy provided by this format

on the evaluated matrices. However, when data in DIA format are distributed

among several threads this cache efficiency decreases, showing significantly poorer

scalability.

Chapter 6

Conclusions and Future Work

PGAS languages provide programmability and data locality exploitation on

shared, distributed and hybrid shared/distributed memory architectures. In fact,

PGAS languages such as UPC represent an interesting alternative for programming

multicore clusters, where threads running on the same node can access their data

efficiently through shared memory, whereas the use of distributed memory improves

the scalability of the applications. However, the analysis of the state of the art

revealed the lack of available libraries. The development of these libraries could

motivate the adoption of this paradigm among the community of parallel program-

mers. Following this thought, this PhD Thesis, “UPCBLAS: A Numerical Library

for Unified Parallel C with Architecture-Aware Optimizations”, has developed UP-

CBLAS, the first parallel numerical library for UPC. It provides parallel versions of

the most used BLAS routines that exploit the advantages of the PGAS paradigm.

Up to now, in order to use BLAS routines, parallel programmers needed to resort

to message-passing-based libraries. With UPCBLAS, UPC programmers can ben-

efit from a portable and efficient PGAS-based library that can also be used as a

building block for higher level numerical computations (e.g. factorizations, iterative

methods...).

One of the main reasons to use a library is the increase of productivity thanks to

avoiding the reimplementation of frequently used codes or kernels, and thus minimiz-

ing the time to implement more complex numerical codes. Consequently, providing

an easy-to-use interface is key for the adoption of a library. During all the devel-

105

106 Chapter 6. Conclusions and Future Work

opment of UPCBLAS the ease of use has been therefore an important factor in

all the design decisions in order to preserve the programmability feature of PGAS

languages and reduce the library learning curve. The library works with data dis-

tributions provided by the user through the block factor specified in shared arrays.

Thus, UPCBLAS is easier and more intuitive to use than message-passing-based

numerical libraries (e.g. PBLAS) thanks to directly using vectors and matrices as

source and result parameters of the routines (as in sequential BLAS), instead of

using complex data structures to handle distributed vectors and matrices. Also, the

ease of programming is twofold: on the one hand, the BLAS-like interface facilitates

the use of the library to programmers used to sequential BLAS and, on the other

hand, the syntax of UPCBLAS is very familiar to UPC programmers as it is similar

to that of the UPC collectives library.

Nevertheless, another key aspect for the adoption of a parallel numerical library

is the performance of its routines. Several optimization techniques have been applied

to improve performance in UPCBLAS. Some examples are privatization of shared

pointers, bulk data movements or redesign of some collective operations. Besides,

sequential BLAS routines are embedded in the body of the corresponding UPC

routines. Using efficient underlying libraries not only improves performance, but it

also allows incorporating a two-level parallelism approach by linking multithreaded

versions without any change in the UPC code.

Additionally, two optimization techniques that take into account the hardware

features of the underlying system were developed: efficient mapping policies and

on-demand copies. In order to be portable, these techniques need an automatic

mechanism to obtain some hardware parameters. Servet, a benchmark suite that

automatically obtains these parameters, is also part of this Thesis. These bench-

marks determine the number of cache levels and their sizes, the topology of shared

caches, memory access bottlenecks, and communication scalability and overheads.

The experimental results proved that the suite provides highly accurate estimates

according to the system architecture specifications. Furthermore, the application of

Servet is not limited to linear algebra routines or to the UPC language.

The proposed library has been experimentally tested on two multicore clusters

with different architectures, underlying numerical libraries and compilers to show

the suitability and efficiency of the library for hybrid architectures. The conclusion

107

is that the ease of use of UPCBLAS does not lead to a much worse performance than

that of well-established and mature message-passing-based numerical libraries. The

productivity of UPCBLAS has also been proven through the development of more

complex numerical codes that use its routines. It is clear that UPCBLAS is intuitive

enough to save significant time to UPC programmers and it is efficient enough to

justify its use.

This Thesis has led to several publications in the area of high performance com-

puting. A preliminary version of the UPCBLAS library was presented in [49]. It

provided two options for the interface of the numerical routines and one of them

was the basis for the final UPCBLAS design presented in this Thesis. A work ad-

dressing UPC triangular solvers was presented in [48], where several algorithms and

data distributions were studied and whose results were key to decide the algorithms

used for these BLAS2 and BLAS3 routines in UPCBLAS.

The aforementioned Servet tool was presented in [52] as a fully portable suite

of benchmarks to obtain the most relevant hardware parameters to support the

automatic optimization of applications on multicore clusters. This paper explains

in detail all the benchmarks and proves that this tool can extract the features

of two representative systems with very different architectures. One of the most

interesting optimization techniques that can benefit from Servet is the application of

appropriate process mappings. The current version of Servet includes mechanisms

to automatically provide, thanks to the extracted hardware parameters, the best

process mappings according to the architecture of the system, the number of cores

used and the type of code (memory- or communication-intensive). The algorithms

to implement these mappings were explained in [53]. This paper also provides an

analysis of the impact of the process mapping for the NPB benchmarks on three

parallel programming paradigms (MPI, OpenMP and UPC) and using three different

platforms.

The core of this Thesis, the UPCBLAS library, was presented in [51]. With

a deep basis in the previous papers, this work provides the final interface of the

routines, simplifying the one proposed in [49], but at the same time making it

more powerful due to including support to work with subvectors and submatrices.

This work also introduces the integration of UPCBLAS and Servet to automatically

improve the performance of the numerical routines. The poster presented at the

108 Chapter 6. Conclusions and Future Work

SC’11 conference [50] helped to announce UPCBLAS to the UPC community, and

the development of Cholesky and LU solvers were presented in [47] as application

examples of the library.

This Thesis was also useful to study other topics related to numerical computa-

tion in UPC that could be applied in the near future to new versions of UPCBLAS.

On the one hand, an evaluation of different storage formats for sparse products in

UPC was presented in [45] and extended in [46]. It will be useful for any future

sparse counterpart of UPCBLAS. On the other hand, the impact of avoiding and

overlapping communications in the UPC BLAS3 routines (and also in the Cholesky

factorization) was analyzed in [44], which could help to optimize future versions of

the routines.

This Thesis has demonstrated that the PGAS paradigm is very useful for lin-

ear algebra and, although this library is a huge step forward for the increase of

productivity of the UPC community, there are still many more numerical routines

that programmers could take advantage of. Future work should continue this line to

extend the current interface and functionality of UPCBLAS by providing additional

functions (e.g. linear solvers, eigenvalue problems or sparse computations).

Finally, future work on Servet will be focused on checking the suite on new

available architectures and fixing the inaccuracies of the tool when extracting their

hardware parameters. As well, benchmarks to detect network contention will be

included in Servet and the process mappings will be adapted to automatically take

into account this new parameter.

Bibliography

[1] J. I. Aliaga, F. Almeida, J. M. Bad́ıa, S. Barrachina, V. Blanco, M. Castillo,

R. Mayo, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, A. Remón, C. Rodŕıguez,

F. Sande, and A. Santos. Towards the Parallelization of GSL. Journal of

Supercomputing, 48(1):88–114, 2009. pages 13

[2] AMD Core Math Library (ACML). http://developer.amd.com/libraries/acml/

pages/default.aspx [Last visited: November 2012]. pages 13

[3] R. Barik, J. Zhao, D. Grove, I. Peshansky, Z. Budimlic, and V. Sarkar. Com-

munication Optimizations for Distributed-Memory X10 Programs. In Proc.

25th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’11), An-

chorage, AK, USA, 2011. pages 9

[4] C. Barton, C. Casçaval, G. Almási, R. Garg, J. N. Amaral, and M. Far-

reras. Multidimensional Blocking in UPC. In Proc. 20th Intl. Workshop on

Languages and Compilers for Parallel Computing (LCPC’07), volume 5234

of Lecture Notes in Computer Science, pages 47–62, Urbana, IL, USA, 2007.

pages 18

[5] C. Barton, C. Casçaval, G. Almási, Y. Zheng, M. Farreras, S. Chatterjee,

and J. N. Amaral. Shared Memory Programming for Large Scale Machines.

In Proc. 10th ACM SIGPLAN Conf. on Programming Language Design and

Implementation (PLDI’06), pages 108–117, Ottawa, Canada, 2006. pages 1

[6] Basic Linear Algebra Subprograms (BLAS) Library.

http://www.netlib.org/blas/ [Last visited: November 2012]. pages 12,

78

109

110 BIBLIOGRAPHY

[7] C. Bell, D. Bonachaea, R. Nishtala, and K. Yelick. Optimizing Bandwidth

Limited Problems using One-sided Communication and Overlap. In Proc. 20th

IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’06), Rhodes

Island, Greece, 2006. pages 1, 7

[8] C. Bell and R. Nishtala. UPC Implementation of the Sparse Triangular Solve

and NAS FT. Technical report, University of California, Berkeley, USA, 2004.

pages 14, 92

[9] N. Bell and M. Garland. Implementing Sparse Matrix-Vector Multiplication

on Throughput-Oriented Processors. In Proc. 21st ACM/IEEE Intl. Conf.

for High Performance Computing, Networking, Storage and Analysis (SC’09),

Portland, OR, USA, 2009. pages 93

[10] Berkeley UPC Project. http://upc.lbl.gov [Last visited: November 2012].

pages 1, 54

[11] BLAS Technical Forum. http://www.netlib.org/blas/blast-forum/ [Last vis-

ited: November 2012]. pages 12, 31

[12] D. Bonachea. Proposal for Extending the UPC Memory Copy Library Func-

tions and Supporting Extensions to GASNet, v2.0. Technical report, Lawrence

Berkeley National Laboratory, USA, 2007. pages 12

[13] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P. Wacrenier, and

R. Namyst. Structuring the Execution of OpenMP Applications for Multicore

Architectures. In Proc. 24th IEEE Intl. Parallel and Distributed Processing

Symp. (IPDPS’10), Atlanta, GA, USA, 2010. pages 2, 35

[14] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,

S. Thibault, and R. Namyst. hwloc: A Generic Framework for Managing

Hardware Affinities in HPC Applications. In Proc. 18th Euromicro Intl. Conf.

on Parallel, Distributed and Network-Based Processing (PDP’10), pages 180–

186, Pisa, Italy, 2010. pages 2, 35

[15] A. Buluç and J. R. Gilbert. Challenges and Advances in Parallel Sparse

Matrix-Matrix Multiplication. In Proc. 37th Intl. Conf. on Parallel Processing

(ICPP’08), pages 503–510, Portland, OR, USA, 2008. pages 92

BIBLIOGRAPHY 111

[16] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Productivity Analysis

of the UPC Language. In Proc. 18th IEEE Intl. Parallel and Distributed

Processing Symp. (IPDPS’04), Santa Fe, NM, USA, 2004. pages 13

[17] Carver IBM iDataPlex. http://www.nersc.gov/systems/carver-ibm-

idataplex/ [Last visited: November 2012]. pages 54

[18] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programmability

and the Chapel Language. International Journal of High Performance Com-

puting Applications, 21(3):291–312, 2007. pages 8

[19] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn. MPIPP: An Automatic

Profile-guided Parallel Process Placement Toolset for SMP Clusters and Mul-

ticlusters. In Proc. 20th ACM Intl. Conf. on Supercomputing (ICS’06), pages

353–360, Cairns, Australia, 2006. pages 2, 35, 45

[20] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A

Performance Analysis of the Berkeley UPC Compiler. In Proc. 17th ACM Intl.

Conf. on Supercomputing (ICS’03), pages 63–73, San Francisco, CA, USA,

2003. pages 30

[21] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C.

Whaley. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms.

In Proc. 2nd Intl. Workshop on Applied Parallel Computing, Computations

in Physics, Chemistry and Engineering Science (PARA’95), volume 1041 of

Lecture Notes in Computer Science, pages 107–114, Lyngby, Denmark, 1995.

pages 13, 55, 78

[22] Co-Array Fortran. http://www.co-array.org/ [Last visited: November 2012].

pages 1, 7

[23] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-Array

Fortran Performance and Potential: An NPB Experimental Study. In Proc.

16th Intl. Workshop on Languages and Compilers for Parallel Computing

(LCPC’03), volume 2958 of Lecture Notes in Computer Science, pages 177–

193, Austin, TX, USA, 2003. pages 8

112 BIBLIOGRAPHY

[24] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi,

A. Mohanti, Y. Yao, and D. Chavarŕıa-Miranda. An Evaluation of Global

Address Space Languages: Co-Array Fortran and Unified Parallel C. In Proc.

10th ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-

ming (PPoPP’05), pages 36–47, Chicago, IL, USA, 2005. pages 7, 8

[25] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, and D. Chavarŕıa-Miranda. Ex-

periences with Co-array Fortran on Hardware Shared Memory Platforms. In

Proc. 17th Intl. Workshop on Languages and Compilers for Parallel Comput-

ing (LCPC’04), volume 3605 of Lecture Notes in Computer Science, pages

332–347, West Lafayette, IN, USA, 2004. pages 8

[26] J. Cuenca, L. P. Garćıa, and D. Giménez. Improving Linear Algebra Com-

putation on NUMA Platforms through Auto-tuned Nested Parallelism. In

Proc. 20th Euromicro Intl. Conf. on Parallel, Distributed and Network-Based

Processing (PDP’12), pages 66–73, Munich, Germany, 2012. pages 71

[27] J. Cuenca, D. Giménez, and J. González. Towards the Design of an Automat-

ically Tuned Linear Algebra Library. In Proc. 10th Euromicro Intl. Conf. on

Parallel, Distributed and Network-Based Processing (PDP’02), pages 201–208,

Canary Islands, Spain, 2002. pages 34

[28] J. Cuenca, D. Giménez, J. González, and K. Roche. Automatic Optimisation of

Parallel Linear Algebra Routines in Systems with Variable Load. In Proc. 11th

Euromicro Intl. Conf. on Parallel, Distributed and Network-Based Processing

(PDP’03), pages 409–416, Genova, Italy, 2003. pages 34

[29] K. Datta, D. Bonachea, and K. Yelick. Titanium Performance and Potential:

An NPB Experimental Study. In Proc. 18th Intl. Workshop on Languages and

Compilers for Parallel Computing (LCPC’05), volume 4339 of Lecture Notes

in Computer Science, pages 200–214, New Orleans, LA, USA, 2005. pages 8

[30] J. Dinan, P. Balaji, J. Hammond, S. Krishnamoorthy, and V. Tipparaju.

Supporting the Global Arrays PGAS Model using MPI One-sided Communi-

cation. In Proc. 26th IEEE Intl. Parallel and Distributed Processing Symp.

(IPDPS’12), Boston, MA, USA, 2012. pages 7

BIBLIOGRAPHY 113

[31] J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur. Hybrid Parallel

Programming with MPI and Unified Parallel C. In Proc. 7th ACM Intl. Conf.

on Computing Frontiers (CF’10), pages 177–186, Cagliari, Italy, 2010. pages

2

[32] J. J. Dongarra. Templates for the Solution of Algebraic Eigenvalue Problems:

A Practical Guide, chapter 10. SIAM, 2000. pages 93

[33] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson. An Extended

Set of FORTRAN Basic Linear Algebra Subprograms. ACM Transactions on

Mathematical Software, 14(1):1–17, 1988. pages 12, 78

[34] L. A. Drummond, V. G. Ibarra, V. Migallón, and J. Penadés. Interfaces for

Parallel Numerical Linear Algebra Libraries in High Level Languages. Ad-

vances in Engineering Software, 40(8):652–658, 2009. pages 13

[35] A. X. Duchateau, A. Sidelnik, M. J. Garzarán, and D. A. Padua. P-Ray: A

Software Suite for Multi-core Architecture Characterization. In Proc. 21st Intl.

Workshop on Languages and Compilers for Parallel Computing (LCPC’08),

volume 5335 of Lecture Notes in Computer Science, pages 187–201, Edmonton,

Canada, 2008. pages 36

[36] I. S. Duff, M. A. Heroux, and R. Pozo. An Overview of the Sparse Basic Linear

Algebra Subprograms: The New Standard from the BLAS Technical Forum.

ACM Transactions on Mathematical Software, 28(2):107–114, 2002. pages 12

[37] T. El-Ghazawi and F. Cantonnet. UPC Performance and Potential: A NPB

Experimental Study. In Proc. 14th ACM/IEEE Intl. Conf. for High Per-

formance Computing, Networking, Storage and Analysis (SC’02), Baltimore,

MD, USA, 2002. pages 1, 30

[38] A. Faraj, S. Kumar, B. Smith, A. R. Mamidala, J. A. Gunnels, and P. Heidel-

berger. MPI Collective Communications on the Blue Gene/P Supercomputer:

Algorithms and Optimizations. In Proc. 23rd ACM Intl. Conf. on Supercom-

puting (ICS’09), pages 489–490, Yorktown Heights, NY, USA, 2009. pages 2,

34

114 BIBLIOGRAPHY

[39] A. Faraj and X. Yuan. Automatic Generation and Tuning of MPI Collective

Communication Routines. In Proc. 19th ACM Intl. Conf. on Supercomputing

(ICS’05), pages 393–402, Cambridge, MA, USA, 2005. pages 2, 34

[40] Finis Terrae Supercomputer. https://www.cesga.es/en/infraestructuras/comp-

utacion/finisterrae [Last visited: November 2012]. pages 55, 100

[41] B. B. Fraguela, Y. Voronenko, and M. Püschel. Automatic Tuning of Discrete

Fourier Transforms Driven by Analytical Modeling. In Proc. 18th Intl. Conf.

on Parallel Architectures and Compilation Techniques (PACT’09), pages 271–

280, Raleigh, NC, USA, 2009. pages 34, 38

[42] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.

Proc. of the IEEE, 93(2):216–231, 2005. pages 34

[43] GCC Unified Parallel C. http://www.gccupc.org/ [Last visited: November

2012]. pages 1

[44] E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Touriño,

and K. Yelick. Communication Avoiding and Overlapping for Numerical Lin-

ear Algebra. In Proc. 24th ACM/IEEE Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC’12), Salt Lake City, UT,

USA, 2012. pages xvi, 2, 16, 108

[45] J. González-Domı́nguez, O. Garćıa-López, G. L. Taboada, M. J. Mart́ın, and

J. Touriño. SparseBLAS Products in UPC: An Evaluation of Storage For-

mats. In Proc. 11th Intl. Conf. on Computational and Mathematical Methods

in Science and Engineering (CMMSE’11), pages 605–617, Benidorm, Spain,

2011. pages xvi, 2, 108

[46] J. González-Domı́nguez, O. Garćıa-López, G. L. Taboada, M. J. Mart́ın, and

J. Touriño. Performance Evaluation of Sparse Matrix Products in UPC. The

Journal of Supercomputing, 2012, In Press. pages xvi, 2, 108

[47] J. González-Domı́nguez, O. A. Marques, M. J. Mart́ın, G. L. Taboada, and

J. Touriño. Design and Performance Issues of Cholesky and LU Solvers us-

ing UPCBLAS. In Proc. 10th IEEE Intl. Symp. on Parallel and Distributed

BIBLIOGRAPHY 115

Processing with Applications (ISPA’12), pages 40–47, Leganés, Spain, 2012.

pages xvi, 2, 108

[48] J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, and J. Touriño. Dense

Triangular Solvers on Multicore Clusters using UPC. In Proc. 11th Intl. Conf.

on Computational Science (ICCS’11), Singapore, 2011. pages xv, 2, 107

[49] J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

and A. Gómez. A Parallel Numerical Library for UPC. In Proc. 15th Intl.

European Conf. on Parallel and Distributed Computing (Euro-Par’09), vol-

ume 5704 of Lecture Notes in Computer Science, pages 630–641, Delft, The

Netherlands, 2009. pages xv, 2, 107

[50] J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

D. A. Mallón, and B. Wibecan. A Library for Parallel Numerical Computation

in UPC (Poster). In Proc. 23rd ACM/IEEE Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC’11), Seattle, WA, USA,

2011. pages xv, 2, 108

[51] J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada, J. Touriño, R. Doallo,

D. A. Mallón, and B. Wibecan. UPCBLAS: A Library for Parallel Matrix

Computations in Unified Parallel C. Concurrency and Computation: Practice

and Experience, 24(14):1645–1667, 2012. pages xv, xvi, 2, 55, 107

[52] J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela, M. J. Mart́ın, and

J. Touriño. Servet: A Benchmark Suite for Autotuning on Multicore Clus-

ters. In Proc. 24th IEEE Intl. Parallel and Distributed Processing Symp.

(IPDPS’10), Atlanta, GA, USA, 2010. pages xvi, 2, 107

[53] J. González-Domı́nguez, G. L. Taboada, B. B. Fraguela, M. J. Mart́ın, and

J. Touriño. Automatic Mapping of Parallel Applications on Multicore Archi-

tectures using the Servet Benchmark Suite. Computers and Electrical Engi-

neering, 32(2):258–269, 2012. pages xvi, 2, 49, 107

[54] GSL - GNU Scientific Library. http://www.gnu.org/software/gsl/ [Last vis-

ited: November 2012]. pages 13

116 BIBLIOGRAPHY

[55] HECToR: UK National Supercomputing Service. https://www.hector.ac.uk/

[Last visited: November 2012]. pages 54

[56] High Productivity Computing Systems (HPCS).

http://www.highproductivity.org/ [Last visited: November 2012]. pages

8

[57] T. Hoefler and M. Snir. Generic Topology Mapping Strategies for Large-Scale

Parallel Architectures. In Proc. 25th ACM Intl. Conf. on Supercomputing

(ICS’11), pages 75–84, Tucson, AZ, USA, 2011. pages 2, 35

[58] HP Unified Parallel C. http://www.hp.com/go/upc/ [Last visited: November

2012]. pages 1

[59] HP’s Mathematical Software Library (MLIB). http://www.hp.com/go/mlib

[Last visited: November 2012]. pages 13

[60] M. R. Hugues and S. G. Petiton. Sparse Matrix Formats Evaluation and

Optimization on a GPU. In Proc. 12th IEEE Intl. Conf. on High Perfor-

mance Computing and Communications (HPCC’10), pages 122–129, Mel-

bourne, Australia, 2010. pages 93

[61] P. Husbands and K. Yelick. Multi-threading and One-sided Communication

in Parallel LU Factorization. In Proc. 19th ACM/IEEE Intl. Conf. for High

Performance Computing, Networking, Storage and Analysis (SC’07), Reno,

NV, USA, 2007. pages 14

[62] Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-

mkl/ [Last visited: November 2012]. pages 13, 54

[63] G. Jin, L. Adhianto, J. Mellor-Crummey, W. N. Scherer, and C. Yang. Im-

plementation and Performance Evaluation of the HPC Challenge Benchmarks

in Coarray Fortran 2.0. In Proc. 25th IEEE Intl. Parallel and Distributed

Processing Symp. (IPDPS’11), Anchorage, AK, USA, 2011. pages 8

[64] H. Jin, D. C. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. M. Chap-

man. High Performance Computing using MPI and OpenMP on Multi-Core

Parallel Systems. Parallel Computing, 37(9):562–575, 2011. pages 6

BIBLIOGRAPHY 117

[65] C. D. Jiogo, P. Manneback, and P. Kuonen. Well Balanced Sparse Matrix-

Vector Multiplication on a Parallel Heterogeneous System. In Proc. 8th IEEE

Intl. Conf. on Cluster Computing (CLUSTER’06), Barcelona, Spain, 2006.

pages 92

[66] K. Kourtis, G. I. Goumas, and N. Koziris. Improving the Performance of Mul-

tithreaded Sparse Matrix-Vector Multiplication using Index and Value Com-

pression. In Proc. 37th Intl. Conf. on Parallel Processing (ICPP’08), pages

511–519, Portland, OR, USA, 2008. pages 92

[67] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff. A Hybrid Approach of

OpenMP for Clusters. In Proc. 17th ACM SIGPLAN Symp. on Principles and

Practice of Parallel Programming (PPoPP’12), pages 75–84, New Orleans, LA,

USA, 2012. pages 6

[68] LAPACK and ScaLAPACK Survey. http://icl.cs.utk.edu/lapack-

forum/survey/ [Last visited: November 2012]. pages 13, 16

[69] Linear Algebra PACKage (LAPACK). http://www.netlib.org/lapack/ [Last

visited: November 2012]. pages 13, 78

[70] S. Liu, Y. Zhang, X. Sun, and R. Qiu. Performance Evaluation of Mul-

tithreaded Sparse Matrix-Vector Multiplication using OpenMP. In Proc.

11th IEEE Intl. Conf. on High Performance Computing and Communications

(HPCC’09), pages 659–665, Seoul, Korea, 2009. pages 92

[71] M. Luján, A. Usman, P. Hardie, L. Freeman, and J. R. Gurd. Storage Formats

for Sparse Matrices in Java. In Proc. 5th Intl. Conf. on Computational Science

(ICCS’05), pages 364–371, Atlanta, GA, USA, 2005. pages 92

[72] D. A. Mallón, G. L. Taboada, C. Teijeiro, J. Touriño, B. B. Fraguela,

A. Gómez, R. Doallo, and J. C. Mouriño. Performance Evaluation of MPI,

UPC and OpenMP on Multicore Architectures. In Proc. 16th European

PVM/MPI Users’ Group Meeting (EuroPVM/MPI’09), volume 5759 of Lec-

ture Notes in Computer Science, pages 174–184, Espoo, Finland, 2009. pages

1

118 BIBLIOGRAPHY

[73] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, and G. Jin. A New Vision

for Coarray Fortran. In Proc. 3rd Conf. on Partitioned Global Address Space

Programming Models (PGAS’09), Ashburn, VA, USA, 2009. pages 8

[74] G. Mercier and J. Clet-Ortega. Towards an Efficient Process Placement Pol-

icy for MPI Applications in Multicore Environments. In Proc. 16th European

PVM/MPI Users’ Group Meeting (EuroPVM/MPI’09), volume 5759 of Lec-

ture Notes in Computer Science, pages 104–115, Espoo, Finland, 2009. pages

2, 35, 45

[75] Message Passing Interface Forum. http://www.mpi-forum.org/ [Last visited:

November 2012]. pages 6

[76] J. Milthorpe, V. Ganesh, A. P. Rendell, and D. Grove. X10 as a Parallel

Language for Scientific Computation: Practice and Experience. In Proc. 25th

IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’11), Anchorage,

AK, USA, 2011. pages 9

[77] E. Musoll. Variable-Size Mosaics: A Process-Variation Aware Technique to

Increase the Performance of Tile-Based, Massive Multi-Core Processors. Com-

puters and Electrical Engineering, 37(3):1193–1211, 2011. pages 34

[78] NASA Advanced Computing Division. NAS Parallel Benchmarks.

http://www.nas.nasa.gov/Software/NPB/ [Last visited: November 2012].

pages 35, 49

[79] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick. Scaling Communication-

Intensive Applications on BlueGene/P using One-Sided Communication and

Overlap. In Proc. 23rd IEEE Intl. Parallel and Distributed Processing Symp.

(IPDPS’09), Rome, Italy, 2009. pages 1

[80] R. Nishtala, Y. Zheng, P. Hargrove, and K. Yelick. Tuning Collective Commu-

nication for Partitioned Global Address Space Programming Models. Parallel

Computing, 37(9):576–591, 2011. pages 1

[81] R. W. Numrich. A Parallel Numerical Library for Co-array Fortran. In Proc.

Workshop on Language-Based Parallel Programming Models (WLPP’05), vol-

BIBLIOGRAPHY 119

ume 3911 of Lecture Notes in Computer Science, pages 960–969, Poznan,

Poland, 2005. pages 14

[82] R. W. Numrich. A Team Object for Coarray Fortran. In Proc. 8th Intl.

Conf. on Parallel Processing and Applied Mathematics (PPAM’09), volume

6068 of Lecture Notes in Computer Science, pages 68–73, Wroclaw, Poland,

2009. pages 8

[83] Parallel Basic Linear Algebra Subprograms (PBLAS) Library.

http://www.netlib.org/scalapack/pblas qref.html [Last visited: Novem-

ber 2012]. pages 13, 55, 78

[84] F. Patel and J. R. Gilbert. An Empirical Study of the Performance and Pro-

ductivity of Two Parallel Programming Models. In Proc. 22nd IEEE Intl. Par-

allel and Distributed Processing Symp. (IPDPS’08), Miami, FL, USA, 2008.

pages 13

[85] Portable, Extensible Toolkit for Scientific Computation.

http://www.mcs.anl.gov/petsc/ [Last visited: November 2012]. pages

97

[86] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero.

Elemental: A New Framework for Distributed Memory Dense Matrix Com-

putations. ACM Transactions on Mathematical Software, 2012 (to appear).

pages 13

[87] Project Fortress. http://projectfortress.java.net/ [Last visited: November

2012]. pages 9

[88] M. Püschel, J. M. F. Moura, J. Johnson, D. A. Padua, M. M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,

and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms. Proc. of the

IEEE, 93(2):232–275, 2005. pages 34

[89] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Parallel Pro-

gramming on Clusters of Multi-Core SMP Nodes. In Proc. 17th Euromicro

Intl. Conf. on Parallel, Distributed and Network-Based Processing (PDP’09),

pages 427–436, Weimar, Germany, 2009. pages 6

120 BIBLIOGRAPHY

[90] R. H. Saavedra and A. J. Smith. Measuring Cache and TLB Performance

and their Effect on Benchmark Runtimes. IEEE Transactions on Computers,

44(10):1223–1235, 1995. pages 36

[91] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoorthy.

Lifeline-based Global Load Balancing. In Proc. 16th ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming (PPoPP’11), pages 201–

212, San Antonio, TX, USA, 2011. pages 9

[92] W. N. Scherer, L. Adhianto, G. Jin, J. Mellor-Crummey, and C. Yang. Hiding

Latency in Coarray Fortran 2.0. In Proc. 4th Conf. on Partitioned Global

Address Space Programming Models (PGAS’10), New York, NY, USA, 2010.

pages 8

[93] R. Shahnaz and A. Usman. Blocked-Based Sparse Matrix-Vector Multipli-

cation on Distributed Memory Parallel Computers. The International Arab

Journal of Information Technology, 8(2):130–136, 2011. pages 92

[94] R. Shahnaz, A. Usman, and I. R. Chughtai. Implementation and Evaluation of

Parallel Sparse Matrix-Vector Products on Distributed Memory Parallel Com-

puters. In Proc. 8th IEEE Intl. Conf. on Cluster Computing (CLUSTER’06),

Barcelona, Spain, 2006. pages 92

[95] H. Shan, F. Blagojevic, S.-J. Min, P. Hargrove, H. Jin, K. Fuerlinger,

A. Koniges, and N. J. Wright. A Programming Model Performance Study

using the NAS Parallel Benchmarks. Scientific Programming, 18(3-4):153–

167, 2010. pages 1

[96] H. Shan, N. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann. A

Preliminary Evaluation of the Hardware Acceleration of the Cray Gemini In-

terconnect for PGAS Languages and Comparison with MPI. In Proc. 2nd

Intl. Workshop on Performance Modeling, Benchmarking and Simulation of

High Performance Computing Systems (PMBS’11), pages 13–14, Seattle, WA,

USA, 2011. pages 1

[97] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzarán, and D. A. Padua.

Performance Portability with the Chapel Language. In Proc. 26th IEEE

BIBLIOGRAPHY 121

Intl. Parallel and Distributed Processing Symp. (IPDPS’12), Shanghai, China,

2012. pages 8

[98] S. Sistare, R. Vandevaart, and E. Loh. Optimization of MPI Collectives on

Clusters of Large-Scale SMPs. In Proc. 11th ACM/IEEE Intl. Conf. for High

Performance Computing, Networking, Storage and Analysis (SC’99), Port-

land, OR, USA, 1999. pages 2, 34

[99] Sparse Basic Linear Algebra Subprograms (SparseBLAS) Library.

http://math.nist.gov/spblas [Last visited: November 2012]. pages 12,

92, 98

[100] STREAM: Sustainable Memory Bandwidth in High Performance Computers.

http://www.cs.virginia.edu/stream/ [Last visited: November 2012]. pages 42

[101] C. Teijeiro, G. L. Taboada, J. Touriño, B. B. Fraguela, R. Doallo, D. A.

Mallón, A. Gómez, J. C. Mouriño, and B. Wibecan. Evaluation of UPC

Programmability using Classroom Studies. In Proc. 3rd Conf. on Partitioned

Global Address Space Programming Models (PGAS’09), Ashburn, VA, USA,

2009. pages 13

[102] The Chapel Parallel Programming Language. http://chapel.cray.com/ [Last

visited: November 2012]. pages 8

[103] The IBM Engineering Scientific Subroutine Library (ESSL) and Parallel

ESSL. http://www-03.ibm.com/systems/p/software/essl/index.html [Last

visited: November 2012]. pages 13

[104] The OpenMP API Specification for Parallel Programming.

http://openmp.org/wp/ [Last visited: November 2012]. pages 6

[105] The ScaLAPACK Project. http://netlib2.cs.utk.edu/scalapack/index.html

[Last visited: November 2012]. pages 13, 79

[106] The Servet Benchmark Suite Homepage. http://servet.des.udc.es/ [Last vis-

ited: November 2012]. pages 159

[107] The University of Florida Sparse Matrix Collection.

http://www.cise.ufl.edu/research/sparse/matrices/ [Last visited: November

2012]. pages 101

122 BIBLIOGRAPHY

[108] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast Collective Operations

using Shared and Remote Memory Access Protocols on Clusters. In Proc.

17th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’03), Nice,

France, 2003. pages 2, 34

[109] Titanium Project. http://titanium.cs.berkeley.edu/ [Last visited: November

2012]. pages 1, 8

[110] TOP500 List - June 2012. http://www.top500.org/list/2012/06/100 [Last vis-

ited: November 2012]. pages 54

[111] N. Travinin and J. Kepner. pMatlab Parallel Matlab Library. Intl. Journal of

High Performance Computing Applications, 21(3):336–359, 2007. pages 14

[112] UPC Consortium. UPC Language Specifications, v1.2.

http://upc.lbl.gov/docs/user/upc spec 1.2.pdf [Last visited: November

2012]. pages 1, 17, 30

[113] UPCBLAS: A Numerical Library for Unified Parallel C.

http://upcblas.des.udc.es/ [Last visited: November 2012]. pages 125

[114] A. Usman, M. Luján, L. Freeman, and J. R. Gurd. Performance Evaluation of

Storage Formats for Sparse Matrices in Fortran. In Proc. 8th IEEE Intl. Conf.

on High Performance Computing and Communications (HPCC’06), pages

160–169, Munich, Germany, 2006. pages 92

[115] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Automatically Tuned Col-

lective Communications. In Proc. 12th ACM/IEEE Intl. Conf. for High Per-

formance Computing, Networking, Storage and Analysis (SC’00), Dallas, TX,

USA, 2000. pages 34

[116] F. Vázquez, J. J. Fernández, and E. M. Garzón. Automatic Tuning of the

Sparse Matrix Vector Product on GPUs Based on the ELLR-T Approach.

Parallel Computing, 38(8):408–420, 2012. pages 92

[117] L. Wang, S. Merchant, and T. El-Ghazawi. Exploiting Hierarchical Parallelism

using UPC. In Proc. 25th IEEE Intl. Parallel and Distributed Processing Symp.

(IPDPS’11), Anchorage, AK, USA, 2011. pages 2

BIBLIOGRAPHY 123

[118] T. Wen and P. Colella. Adaptive Mesh Refinement in Titanium. In Proc. 19th

IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS’05), Denver,

CO, USA, 2005. pages 8

[119] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen. An Adaptive Mesh Re-

finement Benchmark for Modern Parallel Programming Languages. In Proc.

19th ACM/IEEE Intl. Conf. for High Performance Computing, Networking,

Storage and Analysis (SC’07), Reno, NV, USA, 2007. pages 8

[120] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical Optimiza-

tions of Software and the ATLAS Project. Parallel Computing, 27(1-2):3–35,

2001. pages 34

[121] S. Williams, L. Oliker, R. W. Vuduc, J. Shalf, K. Yelick, and J. Demmel.

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore

Platforms. In Proc. 19th ACM/IEEE Intl. Conf. for High Performance Com-

puting, Networking, Storage and Analysis (SC’07), Reno, NV, USA, 2007.

pages 91, 100

[122] X10: Performance and Productivity at Scale. http://x10-lang.org/ [Last vis-

ited: November 2012]. pages 8

[123] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.

Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil, R. Nish-

tala, J. Su, M. Welcome, and T. Wen. Productivity and Performance using

Partitioned Global Address Space Languages. In Proc. 5th Intl. Workshop on

Parallel Symbolic Computation (PASCO’07), pages 24–32, London, Canada,

2007. pages 6

[124] K. Yotov, X. Li, G. Ren, M. J. Garzarán, D. A. Padua, K. Pingali, and

P. Stodghill. Is Search Really Necessary to Generate High Performance BLAS?

Proc. of the IEEE, 93(2):358–386, 2005. pages 34

[125] K. Yotov, K. Pingali, and P. Stodghill. Automatic Measurement of Memory

Hierarchy Parameters. In Proc. ACM Intl. Conf. on Measurement and Model-

ing of Computer Systems (SIGMETRICS’05), pages 181–192, Banff, Canada,

2005. pages 35, 36

124 Appendix A. UPCBLAS Interface

[126] K. Yotov, K. Pingali, and P. Stodghill. X-Ray: A Tool for Automatic Measure-

ment of Hardware Parameters. In Proc. 2nd Intl. Conf. on the Quantitative

Evaluation of Systems (QEST’05), pages 168–177, Torino, Italy, 2005. pages

35

[127] J. Zhang, J. Zhai, W. Chen, and W. Zheng. Process Mapping for Collective

Communications. In Proc. 15th Intl. European Conf. on Parallel and Dis-

tributed Computing (Euro-Par’09), volume 5704 of Lecture Notes in Computer

Science, pages 81–92, Delft, The Netherlands, 2009. pages 2, 34

[128] Y. Zheng. Optimizing UPC Programs for Multi-Core Systems. Scientific

Programming, 18(3-4):183–191, 2011. pages 30

Appendix A

UPCBLAS Interface

This appendix shows the interface of all the routines included in UPCBLAS.

It begins with a description of the enumerated values specific of the library and it

continues providing the syntax of the routines, an explanation of the meaning of

their parameters and some hints to obtain correct results and good performance.

This appendix is part of the UPCBLAS Reference Manual that is available in [113],

together with the last version of the library.

A.1. Enumerated Values

The UPCBLAS routines use enumerated values to specify some characteristics

of the input matrices. Their declaration is available in the file include/types.h.

UPC PBLAS DIMMDIST: It indicates if the matrix is distributed by rows or columns.

• upc pblas rowDist

• upc pblas colDist

UPC PBLAS TRANSPOSE: It indicates if the matrix is transposed.

• upc pblas noTrans

• upc pblas trans

125

126 Appendix A. UPCBLAS Interface

• upc pblas conjTrans

UPC PBLAS UPLO: It indicates if the matrix is upper or lower triangular.

• upc pblas upper

• upc pblas lower

UPC PBLAS DIAG: It indicates if all the elements in the main diagonal of the

triangular matrix are equal to 1 or not.

• upc pblas nonUnit

• upc pblas unit

UPC PBLAS SIDE: In the BLAS3 triangular solver it indicates if the triangular

matrix is on the left or on the right side of the equation.

• upc pblas left

• upc pblas right

A.2. BLAS1 Routines

These routines perform vector-vector operations. Their headers are available in

the file include/pblas1.h.

A.2.1. upc blas Tcopy

Function to copy vector x to vector y.

SYNTAX:

int upc blas scopy(int block size, int size, shared void *x,

shared void *y)

int upc blas dcopy(int block size, int size, shared void *x,

shared void *y)

A.2 BLAS1 Routines 127

int upc blas ccopy(int block size, int size, shared void *x,

shared void *y)

int upc blas zcopy(int block size, int size, shared void *x,

shared void *y)

PARAMETERS:

IN block size: Storage block size for vectors x and y.

IN size: Vectors length.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

OUT y: Pointer to the position of the shared array where the destination vector

y is stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

RESTRICTIONS:

This function treats pointers x and y as if they had type shared [block size]

type[size].

The address of the first element of x and y must have phase 0.

The first element of x and y must be in parts of the shared memory with

affinity to the same thread.

If x or y overlap, the behavior is undefined.

128 Appendix A. UPCBLAS Interface

A.2.2. upc blas Tswap

Function to swap the elements of two vectors.

SYNTAX:

int upc blas sswap(int block size, int size, shared void *x,

shared void *y)

int upc blas dswap(int block size, int size, shared void *x,

shared void *y)

int upc blas cswap(int block size, int size, shared void *x,

shared void *y)

int upc blas zswap(int block size, int size, shared void *x,

shared void *y)

PARAMETERS:

IN block size: Storage block size for the vectors to swap (x and y).

IN size: Vectors length.

IN/OUT x,y: Pointers to the positions of the shared arrays where vectors x

and y are stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

RESTRICTIONS:

This function treats pointers x and y as if they had type shared [block size]

type[size].

A.2 BLAS1 Routines 129

The address of the first element of x and y must have phase 0.

The first element of x and y must be in parts of the shared memory with

affinity to the same thread.

If x or y overlap, the behavior is undefined.

A.2.3. upc blas Tscal

Function to scale a vector by a scalar.

SYNTAX:

int upc blas sscal(int block size, int size, float alpha,

shared void *x)

int upc blas dscal(int block size, int size, double alpha,

shared void *x)

int upc blas cscal(int block size, int size, void *alpha,

shared void *x)

int upc blas zscal(int block size, int size, void *alpha,

shared void *x)

int upc blas csscal(int block size, int size, float alpha,

shared void *x)

int upc blas zdscal(int block size, int size, double alpha,

shared void *x)

PARAMETERS:

IN block size: Storage block size for the vector.

IN size: Vector length.

130 Appendix A. UPCBLAS Interface

IN alpha: Scale factor.

IN/OUT x: Pointer to the position of the shared array where vector x is stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

RESTRICTIONS:

This function treats pointer x as if it had type shared [block size]

type[size].

The address of the first element of x must have phase 0.

A.2.4. upc blas Taxpy

Function to update a vector by adding to it another vector scaled by a factor.

These vectors are stored in shared arrays. The equivalent function is: y = α ∗x+ y.

SYNTAX:

int upc blas saxpy(int block size, int size, float alpha, shared

void *x, shared void *y)

int upc blas daxpy(int block size, int size, double alpha, shared

void *x, shared void *y)

int upc blas caxpy(int block size, int size, void * alpha, shared

void *x, shared void *y)

int upc blas zaxpy(int block size, int size, void * alpha, shared

void *x, shared void *y)

A.2 BLAS1 Routines 131

PARAMETERS:

IN block size: Storage block size for the vectors.

IN size: Vectors length.

IN alpha: Scale factor.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

IN/OUT y: Pointer to the position of the shared array where vector y is stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

This function treats pointers x and y as if they had type shared [block size]

type[size].

The address of the first element of x and y must have phase 0.

The first element of x and y must be in parts of the shared memory with

affinity to the same thread.

If x or y overlap, the behavior is undefined.

A.2.5. upc blas Tsdot

Function to perform the dot product between two vectors stored in shared arrays.

SYNTAX:

132 Appendix A. UPCBLAS Interface

int upc blas sdot(int block size, int size, shared void *x,

shared void *y, shared float *dst)

int upc blas ddot(int block size, int size, shared void *x,

shared void *y, shared double *dst)

int upc blas cdotc(int block size, int size, shared void *x,

shared void *y, shared void * dst)

int upc blas zdotc(int block size, int size, shared void *x,

shared void *y, shared void * dst)

int upc blas cdotu(int block size, int size, shared void *x,

shared void *y, shared void * dst)

int upc blas zdotu(int block size, int size, shared void *x,

shared void *y, shared void * dst)

PARAMETERS:

IN block size: Storage block size for the vectors.

IN size: Vectors length.

IN x,y: Pointers to the positions of the shared arrays where the source vectors

x and y are stored.

OUT dst/ dst: Pointer to the position of shared memory where the dot prod-

uct result is stored. This pointer must have memory allocated for one element.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

A.2 BLAS1 Routines 133

This function treats pointers x and y as if they had type shared [block size]

type[size].

The address of the first element of x and y must have phase 0.

The first element of x and y must be in parts of the shared memory with

affinity to the same thread.

If x or y overlap, the behavior is undefined.

A.2.6. upc blas Tnrm2

Function to perform the euclidean norm of a vector stored in a shared array.

SYNTAX:

int upc blas snrm2(int block size, int size, shared void *x,

shared float *dst)

int upc blas dnrm2(int block size, int size, shared void *x,

shared double *dst)

int upc blas scnrm2(int block size, int size, shared void * x,

shared float *dst)

int upc blas dznrm2(int block size, int size, shared void * x,

shared double *dst)

PARAMETERS:

IN block size: Storage block size for vector x.

IN size: Vector length.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

134 Appendix A. UPCBLAS Interface

OUT dst: Pointer to the position of shared memory where the norm result is

stored. This pointer must have memory allocated for one element.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

RESTRICTIONS:

This function treats pointer x as if it had type shared [block size]

type[size].

The address of the first element of x must have phase 0.

A.2.7. upc blas Tasum

Function to perform the sum of the absolute values of all the elements of a vector.

SYNTAX:

int upc blas sasum(int block size, int size, shared void * x,

shared float * dst)

int upc blas dasum(int block size, int size, shared void * x,

shared double * dst)

int upc blas scasum(int block size, int size, shared void * x,

shared float * dst)

int upc blas dzasum(int block size, int size, shared void * x,

shared double * dst)

PARAMETERS:

A.3 BLAS2 Routines 135

IN block size: Storage block size for vector x.

IN size: Vector length.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

OUT dst: Pointer to the position of shared memory where the sum result is

stored. This pointer must have memory allocated for one element.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

RESTRICTIONS:

This function treats pointer x as if it had type shared [block size]

type[size].

The address of the first element of x must have phase 0.

A.3. BLAS2 Routines

These routines perform matrix-vector operations. Their headers are available in

the file include/pblas2.h.

A.3.1. upc blas Tgemv

Function to perform the matrix-vector product: y = α ∗ A ∗ x + β ∗ y (with

transpose variants of matrix A).

SYNTAX:

136 Appendix A. UPCBLAS Interface

int upc blas sgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

float alpha, shared void *A, int lda, shared void *x, float

beta, shared void *y)

int upc blas dgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

double alpha, shared void *A, int lda, shared void *x, double

beta, shared void *y)

int upc blas cgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

void *alpha, shared void *A, int lda, shared void *x, void

beta, shared void *y)

int upc blas zgemv(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transpose, int m, int n,

void *alpha, shared void *A, int lda, shared void *x, void

beta, shared void *y)

PARAMETERS:

IN dimmDist: Enumerated value representing the matrix dimension that will

be distributed among threads. Each thread must have one or more complete

rows or columns depending on this parameter. If upc pblas rowDist is se-

lected, each thread has complete rows. Columns are distributed entirely in the

upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of the

matrix that are consecutively distributed among all threads. For example,

in the upc pblas rowDist case, the first block size rows will correspond to

thread 0, the second block size ones to thread 1, etc. Remember that blocks

are built using whole rows/columns and not individual elements.

IN sec block size: Depending on the selected dimmDist, the block size of

one of the source vectors is automatically determined (see RESTRICTIONS

A.3 BLAS2 Routines 137

below) but the distribution of the other vector can vary. This parameter is

used to indicate the block size of the vector not automatically defined.

IN transpose: Enumerated value to indicate if the matrix is transposed.

IN m: Number of rows of matrix A.

IN n: Number of columns of matrix A.

IN alpha: Scale factor for matrix A.

IN A: Pointer to the position of the shared array where the source matrix A is

stored.

IN lda: It specifies the first dimension of A as declared in the calling program

(used to work with submatrices). It must be at least n.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

IN beta: Scale factor for vector y.

IN/OUT y: Pointer to the position of the shared array where vector y is stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1 upc pblas rowDist: All the elements in a row must have affinity to the same

thread but the number of consecutive rows in each thread can change. In this

case, this function treats array pointers as if they had type:

138 Appendix A. UPCBLAS Interface

A:shared [block size*lda] type [m*lda]

x:shared [sec block size] type [n]

y:shared [block size] type [m]

In transpose case:

A:shared [block size] type [m*lda]

x:shared [sec block size] type [m]

y:shared [block size] type [n]

In addition, there are some limitations about the block size and sec block size

parameters:

The address of the first element of y must have phase 0.

The address of the first element of x must have phase 0.

The first element of A and y must be in parts of the shared memory with

affinity to the same thread.

If A non-transpose:

• The first element of A must be in the first row of a block in the shared

memory space.

If A transpose:

• The address of the first element of A must have phase 0.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size∗
THREADS) == 0.

2 upc pblas colDist: All the elements in a column must have affinity to the

same thread but the number of consecutive columns in each thread can change.

In this case, this function treats array pointers as if they had type:

A:shared [block size] type [m*lda]

x:shared [block size] type [n]

y:shared [sec block size] type [m]

A.3 BLAS2 Routines 139

In transpose case:

A:shared [block size*lda] type [m*lda]

x:shared [block size] type [m]

y:shared [sec block size] type [n]

In addition, there are some limitations about the block size and

sec block size parameters:

The address of the first element of y must have phase 0.

The address of the first element of x must have phase 0.

The first element of A and x must be in parts of the shared memory with

affinity to the same thread.

If A non-transpose:

• The address of the first element of A must have phase 0.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size∗
THREADS) == 0.

If A transpose:

• The first element of A must be in the first row of a block in the shared

memory space.

If any array overlaps, the behavior is undefined.

ADVICE:

The upc pblas rowDist case is much more efficient than the upc pblas colDist

case.

A.3.2. upc blas Tger

Function to perform the outer product of two vectors: A = α ∗ x ∗ y′ + A.

140 Appendix A. UPCBLAS Interface

SYNTAX:

int upc blas sger(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, float alpha, shared void *x,

shared void *y, shared void *A, int lda)

int upc blas dger(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, double alpha, shared void *x,

shared void *y, shared void *A, int lda)

int upc blas cgerc(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

int upc blas zgerc(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

int upc blas cgeru(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

int upc blas zgeru(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, int m, int n, void *alpha, shared void *x,

shared void *y, shared void *A, int lda)

PARAMETERS:

IN dimmDist: Enumerated value representing the matrix dimension that will

be distributed among threads. Each thread must have one or more complete

rows or columns depending on this parameter. If upc pblas rowDist is se-

lected, each thread has complete rows. Columns are distributed entirely in the

upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of the

matrix that are consecutively distributed among all threads. For example,

in the upc pblas rowDist case, the first block size rows will correspond to

A.3 BLAS2 Routines 141

thread 0, the second block size ones to thread 1, etc. Remember that blocks

are built using whole rows/columns and not individual elements.

IN sec block size: Depending on the selected dimmDist, the block size of

one of the source vectors is automatically determined (see RESTRICTIONS

below) but the distribution of the other vector can vary. This parameter is

used to indicate the block size of the vector not automatically defined.

IN m: Number of rows of matrix A.

IN n: Number of columns of matrix A.

IN alpha: Scale factor.

IN x: Pointer to the position of the shared array where the source vector x is

stored.

IN y: Pointer to the position of the shared array where the source vector y is

stored.

IN/OUT A: Pointer to the position of the shared array where matrix A is stored.

IN lda: It specifies the first dimension of A as declared in the calling program

(used to work with submatrices). It must be at least n.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1 upc pblas rowDist: All the elements in a row must have affinity to the same

thread but the number of consecutive rows in each thread can change. In this

case, this function treats array pointers as if they had type:

142 Appendix A. UPCBLAS Interface

A:shared [block size*lda] type [m*lda]

x:shared [sec block size] type [m]

y:shared [block size] type [n]

In addition, there are some limitations about the block size and sec block size

parameters:

The address of the first element of y must have phase 0.

The address of the first element of x must have phase 0.

The first element of A and x must be in parts of the shared memory with

affinity to the same thread.

The first element of A must be in the first row of a block in the shared

memory space.

2 upc pblas colDist: All the elements in a column must have affinity to the

same thread but the number of consecutive columns in each thread can change.

In this case, this function treats array pointers as if they had type:

A:shared [block size] type [m*lda]

x:shared [block size] type [m]

y:shared [sec block size] type [n]

In addition, there are some limitations about the block size and sec block size

parameters:

The address of the first element of y must have phase 0.

The address of the first element of x must have phase 0.

The first element of A and y must be in parts of the shared memory with

affinity to the same thread.

The address of the first element of A must have phase 0.

The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size ∗
THREADS) == 0.

If any array overlaps, the behavior is undefined.

A.3 BLAS2 Routines 143

A.3.3. upc blas Ttrsv

Function to solve the triangular system of equations x = T−1 ∗x (with transpose

variants of matrix T).

SYNTAX:

int upc blas strsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

int upc blas dtrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

int upc blas ctrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

int upc blas ztrsv(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG

diag, int n, shared void *T, int ldt, shared void *x)

PARAMETERS:

IN dimmDist: Enumerated value representing the matrix dimension that will

be distributed among threads. Each thread must have one or more complete

rows or columns depending on this parameter. If upc pblas rowDist is se-

lected, each thread has complete rows. Columns are distributed entirely in the

upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of the

matrix that are consecutively distributed among all threads. For example,

in the upc pblas rowDist case, the first block size rows will correspond to

thread 0, the second block size ones to thread 1, etc. Remember that blocks

are built using whole rows/columns and not individual elements.

144 Appendix A. UPCBLAS Interface

IN uplo: Enumerated value to indicate if matrix T is upper or lower triangular.

IN transpose: Enumerated value to indicate if matrix T is transposed.

IN diag: Enumerated value to indicate if all the diagonal values of T are equal

to 1 or not.

IN n: Number of rows and columns of matrix T.

IN T: Pointer to the position of the shared array where the source triangular

matrix T is stored.

IN ldt: It specifies the first dimension of T as declared in the calling program

(used to work with submatrices). It must be at least n.

IN/OUT x: Pointer to the position of the shared array where vector x is stored.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1 upc pblas rowDist: All the elements in a row must have affinity to the same

thread but the number of consecutive rows in each thread can change. In this

case, this function treats array pointers as if they had type:

T:shared [block size*ldt] type [n*ldt]

T:shared [block size] type [n*ldt] in transpose case

x:shared [block size] type [n]

In addition, there are some limitations about the block size parameter:

A.3 BLAS2 Routines 145

The address of the first element of x must have phase 0.

The first element of T and x must be in parts of the shared memory with

affinity to the same thread.

If T non-transpose:

• The first element of T must be in the first row of a block in the shared

memory space.

If T transpose:

• The address of the first element of T must have phase 0.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: ldt%(block size∗
THREADS) == 0.

2 upc pblas colDist: All the elements in a column must have affinity to the

same thread but the number of consecutive columns in each thread can change.

In this case, this function treats array pointers as if they had type:

T:shared [block size] type [n*ldt]

T:shared [block size*ldt] type [n*ldt] in transpose case

x:shared [block size] type [n]

In addition, there are some limitations about the block size and sec block size

parameters:

The address of the first element of x must have phase 0.

The first element of T and x must be in parts of the shared memory with

affinity to the same thread.

If T non-transpose:

• The address of the first element of T must have phase 0.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: ldt%(block size∗
THREADS) == 0.

If T transpose:

146 Appendix A. UPCBLAS Interface

• The first element of T must be in the first row of a block in the shared

memory space.

If any array overlaps, the behavior is undefined.

ADVICE:

No check for singularity or near singularity of matrix T is included in this func-

tion. It must be implemented before the function call if necessary.

A.4. BLAS3 Routines

These routines perform matrix-matrix operations. Their headers are available in

the file include/pblas3.h.

A.4.1. upc blas Tgemm

Function to perform the matrix-matrix product: C = α ∗ A ∗ B + β ∗ C (with

transpose variants of matrices A and B).

SYNTAX:

int upc blas sgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, float

alpha, shared void *A, int lda, shared void *B, int ldb, float

beta, shared void *C, int ldc)

int upc blas dgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, double

alpha, shared void *A, int lda, shared void *B, int ldb, double

beta, shared void *C, int ldc)

A.4 BLAS3 Routines 147

int upc blas cgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, void

alpha, shared void *A, int lda, shared void *B, int ldb, void

beta, shared void *C, int ldc)

int upc blas zgemm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS TRANSPOSE transposeA,

UPC PBLAS TRANSPOSE transposeB, int m, int n, int k, void

alpha, shared void *A, int lda, shared void *B, int ldb, void

beta, shared void *C, int ldc)

PARAMETERS:

IN dimmDist: Enumerated value representing the dimension of matrix C that

will be distributed among threads. Each thread must have one or more com-

plete rows or columns depending on this parameter. If upc pblas rowDist is

selected, each thread has complete rows. Columns are distributed entirely in

upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of ma-

trix C that are consecutively distributed among all threads. For example, in

the upc pblas rowDist case, the first block size rows will correspond to

thread 0, the second block size ones to thread 1, etc. Remember that blocks

are built using whole rows/columns and not individual elements.

IN sec block size: Depending on the selected dimmDist, the block size of

one of the source matrices (A or B) is automatically determined (see RESTRIC-

TIONS below) but the distribution of the other matrix can vary. This param-

eter is used to indicate the block size of the matrix not automatically defined.

IN transposeA: Enumerated value to indicate if matrix A is transposed.

IN transposeB: Enumerated value to indicate if matrix B is transposed.

IN m: Number of rows of matrices A and C.

IN n: Number of columns of matrices B and C.

148 Appendix A. UPCBLAS Interface

IN k: Number of columns of matrix A and rows of matrix B.

IN alpha: Scale factor for matrix A.

IN A: Pointer to the position of the shared array where the source matrix A is

stored.

IN lda: It specifies the first dimension of A as declared in the calling program

(used to work with submatrices). It must be at least k in the non-transpose

case and m in the transpose case.

IN B: Pointer to the position of the shared array where the source matrix B is

stored.

IN ldb: It specifies the first dimension of B as declared in the calling program

(used to work with submatrices). It must be at least n in the non-transpose

case and k in the transpose case.

IN beta: Scale factor for matrix C.

IN/OUT C: Pointer to the position of the shared array where matrix C is stored.

IN ldc: It specifies the first dimension of C as declared in the calling program

(used to work with submatrices). It must be at least n.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1 upc pblas rowDist: All the elements in a row of matrix C must have affinity

to the same thread but the number of consecutive rows in each thread can

change. In this case, this function treats array pointers as if they had type:

A.4 BLAS3 Routines 149

A:shared [block size*lda] type [m*lda]

A:shared [block size] type [k*lda] in transpose case

B:shared [sec block size] type [k*ldb]

B:shared [sec block size] type [n*ldb] in transpose case

C:shared [block size*ldc] type [m*ldc]

In addition, there are some limitations about the block size and sec block size

parameters:

ldb and sec block size must be multiples of each other.

The first element of B must be in the first row of a block in the shared

memory space.

The first element of C must be in the first row of a block in the shared

memory space.

The first element of A and C must be in parts of the shared memory with

affinity to the same thread.

If A non-transpose:

• The first element of A must be in the first row of a block in the shared

memory space.

If A transpose:

• The first element of A must be in the first column of a block in the

shared memory space.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size∗
THREADS) == 0.

2 upc pblas colDist: All the elements in a column of matrix C must have

affinity to the same thread but the number of consecutive columns in each

thread can change. In this case, this function treats array pointers as if they

had type:

A:shared [sec block size] type [m*lda]

A:shared [sec block size] type [k*lda] in transpose case

150 Appendix A. UPCBLAS Interface

B:shared [block size] type [k*ldb]

B:shared [block size*ldb] type [n*ldb] in transpose case

C:shared [block size] type [m*ldc]

In addition, there are some limitations about the block size and sec block size

parameters:

lda and sec block size must be multiples of each other.

The first element of A must be in the first row of a block in the shared

memory space.

The first element of C must be in the first column of a block in the shared

memory space.

The first element of B and C must be in parts of the shared memory with

affinity to the same thread.

If B non-transpose:

• The first element of B must be in the first column of a block in the

shared memory space.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: ldb%(block size∗
THREADS) == 0.

If B transpose:

• The first element of B must be in the first row of a block in the shared

memory space.

If any array overlaps, the behavior is undefined.

A.4.2. upc blas Ttrsm

Function to solve the triangular systems of equations X = T−1 ∗ α ∗ X or

X = α ∗X ∗ T−1 (with transpose variants of matrix T).

SYNTAX:

A.4 BLAS3 Routines 151

int upc blas strsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

float alpha, shared void *T, int ldt, shared void *X, int ldx);

int upc blas dtrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

double alpha, shared void *T, int ldt, shared void *X, int ldx);

int upc blas ctrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

void *alpha, shared void *T, int ldt, shared void *X, int ldx);

int upc blas ztrsm(UPC PBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPC PBLAS SIDE side, UPC PBLAS UPLO uplo,

UPC PBLAS TRANSPOSE transpose, UPC PBLAS DIAG diag, int m, int n,

void *alpha, shared void *T, int ldt, shared void *X, int ldx);

PARAMETERS:

IN dimmDist: Enumerated value representing the dimension of matrix X that

will be distributed among threads. Each thread must have one or more com-

plete rows or columns depending on this parameter. If upc pblas rowDist is

selected, each thread has complete rows. Columns are distributed entirely in

the upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of ma-

trix X that are consecutively distributed among all threads. For example, in

the upc pblas rowDist case, the first block size rows will correspond to

thread 0, the second block size ones to thread 1, etc. Remember that blocks

are built using whole rows/columns and not individual elements.

IN sec block size: Number of elements consecutively distributed among all

threads in matrix T in the options: upc pblas colDist & upc pblas left or

upc pblas rowDist & upc pblas right.

152 Appendix A. UPCBLAS Interface

IN side: Enumerated value to indicate if matrix T is on the left or right side

of the equation.

IN uplo: Enumerated value to indicate if matrix T is upper or lower triangular.

IN transpose: Enumerated value to indicate if matrix T is transposed.

IN diag: Enumerated value to indicate if all the diagonal values of T are equal

to 1 or not.

IN m: Number of rows of matrix X. Dimension of matrix T if upc pblas left.

IN n: Number of columns of matrix X. Dimension of matrix T if

upc pblas right.

IN alpha: Scale factor for matrix T.

IN T: Pointer to the position of the shared array where the source triangular

matrix T is stored.

IN ldt: It specifies the first dimension of T as declared in the calling program

(used to work with submatrices). It must be at least m in the upc pblas left

case and n in the upc pblas right case.

IN/OUT X: Pointer to the position of the shared array where matrix X is stored.

IN ldx: It specifies the first dimension of X as declared in the calling program

(used to work with submatrices). It must be at least n.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist and side

selection:

A.4 BLAS3 Routines 153

1 upc pblas rowDist & upc pblas left: All the elements in a row of matrix

X must have affinity to the same thread but the number of consecutive rows

in each thread can change. In this case, this function treats array pointers as

if they had type:

T:shared [block size*ldt] type [m*ldt]

T:shared [block size] type [m*ldt] in transpose case

X:shared [block size*ldx] type [m*ldx]

In addition, there are some limitations about the block size parameter:

The first element of X must be in the first row of a block in the shared

memory space.

The first element of T and X must be in parts of the shared memory with

affinity to the same thread.

If T non-transpose:

• The first element of T must be in the first row of a block in the shared

memory space.

If T transpose:

• The first element of T must be in the first column of a block in the

shared memory space.

2 upc pblas colDist & upc pblas left: All the elements in a column of ma-

trix X must have affinity to the same thread but the number of consecutive

columns in each thread can change. In this case, this function treats array

pointers as if they had type:

T:shared [sec block size] type [m*ldt]

X:shared [block size] type [m*ldx]

In addition, there are some limitations about the block size and sec block size

parameters:

ldt and sec block size must be multiples of each other.

154 Appendix A. UPCBLAS Interface

The first element of T must be in the first row of a block in the shared

memory space.

The first element of X must be in the first column of a block in the shared

memory space.

3 upc pblas rowDist & upc pblas right: All the elements in a row of matrix

X must have affinity to the same thread but the number of consecutive rows

in each thread can change. In this case, this function treats array pointers as

if they had type:

T:shared [sec block size] type [n*ldt]

X:shared [block size*ldx] type [m*ldx]

In addition, there are some limitations about the block size and sec block size

parameters:

ldt and sec block size must be multiples of each other.

The first element of T must be in the first row of a block in the shared

memory space.

The first element of X must be in the first row of a block in the shared

memory space.

4 upc pblas colDist & upc pblas right: All the elements in a column of ma-

trix X must have affinity to the same thread but the number of consecutive

columns in each thread can change. In this case, this function treats array

pointers as if they had type:

T:shared [block size] type [n*ldt]

T:shared [block size*ldt] type [n*ldt] in transpose case

X:shared [block size] type [m*ldx]

In addition, there are some limitations about the block size parameter:

The first element of X must be in the first column of a block in the shared

memory space.

A.4 BLAS3 Routines 155

The first element of T and X must be in parts of the shared memory with

affinity to the same thread.

If T non-transpose:

• The first element of T must be in the first column of a block in the

shared memory space.

If T transpose:

• The first element of T must be in the first row of a block in the shared

memory space.

If any array overlaps, the behavior is undefined.

No check for singularity or near singularity of matrix T is included in this func-

tion. It must be implemented before the function call if necessary.

A.4.3. upc blas Tsyrk

Function to perform the product of a symmetric matrix by its transpose: C =

α ∗ A ∗ A′ + β ∗ C (with transpose variants of matrix A).

SYNTAX:

int upc blas ssyrk(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, int n, int k,

float alpha, shared void *A, int lda, float beta, shared

void *C, int ldc);

int upc blas dsyrk(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, int n, int k,

double alpha, shared void *A, int lda, double beta, shared

void *C, int ldc);

int upc blas csyrk(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, int n, int k,

156 Appendix A. UPCBLAS Interface

void *alpha, shared void *A, int lda, void *beta, shared

void *C, int ldc);

int upc blas zsyrk(UPC PBLAS DIMMDIST dimmDist, int block size,

UPC PBLAS UPLO uplo, UPC PBLAS TRANSPOSE transpose, int n, int k,

void *alpha, shared void *A, int lda, void *beta, shared

void *C, int ldc);

PARAMETERS:

IN dimmDist: Enumerated value representing the dimension of matrix C that

will be distributed among threads. Each thread must have one or more com-

plete rows or columns depending on this parameter. If upc pblas rowDist is

selected, each thread has complete rows. Columns are distributed entirely in

upc pblas colDist case.

IN block size: Number of rows or columns (depending on dimmDist) of ma-

trices A and C that are consecutively distributed among all threads. For exam-

ple, in the upc pblas rowDist case, the first block size rows will correspond

to thread 0, the second block size ones to thread 1, etc. Remember that

blocks are built using whole rows/columns and not individual elements.

IN uplo: Enumerated value to indicate if the elements of A are stored in the

upper or lower half of the matrix.

IN transpose: Enumerated value to indicate if matrix A is transposed.

IN n: Number of rows of matrix C and rows and columns of matrix A.

IN k: Number of columns of matrix C.

IN alpha: Scale factor for matrix A.

IN A: Pointer to the position of the shared array where the symmetric matrix

A is stored.

IN lda: It specifies the first dimension of A as declared in the calling program

(used to work with submatrices). It must be at least n.

A.4 BLAS3 Routines 157

IN beta: Scale factor for matrix C.

IN/OUT C: Pointer to the position of the shared array where matrix C is stored.

IN ldc: It specifies the first dimension of C as declared in the calling program

(used to work with submatrices). It must be at least k.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

• +1 if an internal memory error occurs.

RESTRICTIONS:

The block size specifications are different depending on the dimmDist selection:

1 upc pblas rowDist: All the elements in a row of matrix C must have affinity

to the same thread but the number of consecutive rows in each thread can

change. In this case, this function treats array pointers as if they had type:

A:shared [block size*lda] type [n*lda]

A:shared [block size] type [n*lda] in transpose case

C:shared [block size*ldc] type [n*ldc]

In addition, there are some limitations about the block size parameter:

The first element of C must be in the first row of a block in the shared

memory space.

The first element of A and C must be in parts of the shared memory with

affinity to the same thread.

If A non-transpose:

• The first element of A must be in the first row of a block in the shared

memory space.

158 Appendix A. UPCBLAS Interface

If A transpose:

• The first element of A must be in the first column of a block in the

shared memory space.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size∗
THREADS) == 0.

2 upc pblas colDist: All the elements in a column of matrix C must have

affinity to the same thread but the number of consecutive columns in each

thread can change. In this case, this function treats array pointers as if they

had type:

A:shared [block size] type [n*lda]

A:shared [block size*lda] type [n*lda] in transpose case

C:shared [block size] type [n*ldc]

In addition, there are some limitations about the block size parameter:

The first element of C must be in the first column of a block in the shared

memory space.

The first element of A and C must be in parts of the shared memory with

affinity to the same thread.

If A non-transpose:

• The first element of A must be in the first column of a block in the

shared memory space.

• The first element of all rows must have affinity to thread 0 with phase

0. To achieve this, the following condition must hold: lda%(block size∗
THREADS) == 0.

If A transpose:

• The first element of A must be in the first row of a block in the shared

memory space.

If any array overlaps, the behavior is undefined.

Appendix B

Servet Library Interface

This appendix shows the syntax of the API of Servet, which is available in [106].

The Servet benchmarks write the hardware parameters in the file config/config system.txt

so that the users can easily access this information using the functions of this API.

All programs that can work with C are able to deal with this interface.

The functions work with some datatypes, called descriptors, that store the in-

formation from the file. These descriptors were created as structures with different

fields for the hardware parameters. Users do not need to know the name and mean-

ing of each field as they do not need to access the fields directly: there are functions

to provide hardware information from the descriptors.

B.1. Information about Cache Topology

All these functions are included in the file cache.h and use the descriptor

cache desc that keeps information about the cache topology.

B.1.1. load cache info

Function to load the information about the cache topology in the descriptor.

159

160 Appendix B. Servet Library Interface

SYNTAX:

int load cache info(cache desc *cache info)

PARAMETERS:

OUT cache info: Pointer to the descriptor where the information about the

cache topology will be stored. It should not have been loaded before.

returns:

• 0 if everything is ok.

• < 0 if an error occurs. The exact value is -j if an error is found in the jth

field of cache desc.

B.1.2. get cache nlevels

Function that provides the number of cache levels in the system.

SYNTAX:

int get cache nlevels(cache desc *cache info)

PARAMETERS:

IN cache info: Pointer to the descriptor where the information about the

cache topology is stored. It must have been loaded before.

returns: Number of cache levels.

B.1 Information about Cache Topology 161

B.1.3. get cache size

Function that provides the size (in bytes) of a certain cache level.

SYNTAX:

int get cache size(cache desc *cache info, int level)

PARAMETERS:

IN cache info: Pointer to the descriptor where the information about the

cache topology is stored. It must have been loaded before.

IN level: The selected cache level.

returns:

• The cache size (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.1.4. get shared cache group size

Function that provides the number of cores that share a certain cache level.

SYNTAX:

int get shared cache group size(cache desc *cache info, int level)

PARAMETERS:

IN cache info: Pointer to the descriptor where the information about the

cache topology is stored. It must have been loaded before.

162 Appendix B. Servet Library Interface

IN level: The selected cache level.

returns:

• The number of cores (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.1.5. get shared cache cores

Function to obtain the set of cores that share a certain cache level with another

core specified as parameter.

SYNTAX:

int get shared cache cores(cache desc *cache info, int level,

int core, int *shared cores)

PARAMETERS:

IN cache info: Pointer to the descriptor where the information about the

cache topology is stored. It must have been loaded before.

IN level: The selected cache level.

IN core: The core that must be in the set of cores that share the cache level.

OUT shared cores: Output array where the set of cores that share the cache

level with core are stored. It must have been allocated with enough space to

store this data before calling the function.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.2 Information about Shared Memory Overhead 163

B.1.6. release cache info

Function to release all the information stored in the descriptor.

SYNTAX:

void release cache info(cache desc *cache info)

PARAMETERS:

IN/OUT cache info: Pointer to the descriptor where the information about

the cache topology is stored. It must have been loaded before.

B.2. Information about Shared Memory Overhead

All these functions are included in the file mem over.h and use the descriptor

mem over desc that keeps information about the shared memory access overhead.

B.2.1. load mem over info

Function to load the information about the shared memory overhead in the de-

scriptor.

SYNTAX:

int load mem over info(mem over desc *mem over info)

PARAMETERS:

OUT mem over info: Pointer to the descriptor where the information about

the shared memory overhead will be stored. It should not have been loaded

before.

164 Appendix B. Servet Library Interface

returns:

• 0 if everything is ok.

• < 0 if an error occurs. The exact value is -j if an error is found in the jth

field of mem over desc.

B.2.2. get mem over nlevels

Function that provides the number of different shared memory overhead levels

in the system.

SYNTAX:

int get mem over nlevels(mem over desc *mem over info)

PARAMETERS:

IN mem over info: Pointer to the descriptor where the information about the

shared memory overhead is stored. It must have been loaded before.

returns: Number of shared memory overhead levels.

B.2.3. get mem over mag

Function that provides the magnitude of a certain shared memory overhead level.

The magnitude is measured as the percentage of the total memory bandwidth ob-

tained when a pair of cores is accessing memory concurrently.

SYNTAX:

double get mem over mag(mem over desc *mem over info, int level)

PARAMETERS:

B.2 Information about Shared Memory Overhead 165

IN mem over info: Pointer to the descriptor where the information about the

shared memory overhead is stored. It must have been loaded before.

IN level: The selected shared memory overhead level.

returns:

• The magnitude (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.2.4. get mem over group size

Function that provides the number of cores that share a certain shared memory

overhead level.

SYNTAX:

int get mem over group size(mem over desc *mem over info, int level)

PARAMETERS:

IN mem over info: Pointer to the descriptor where the information about the

shared memory overhead is stored. It must have been loaded before.

IN level: The selected shared memory overhead level.

returns:

• The number of cores (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

166 Appendix B. Servet Library Interface

B.2.5. get mem over cores

Function to obtain the set of cores that share a certain shared memory overhead

level with another core specified as parameter.

SYNTAX:

int get mem over cores(mem over desc *mem over info, int level,

int core, int *shared cores)

PARAMETERS:

IN mem over info: Pointer to the descriptor where the information about the

shared memory overhead is stored. It must have been loaded before.

IN level: The selected shared memory overhead level.

IN core: The core that must be in the set of cores that share the memory

overhead level.

OUT shared cores: Output array where the set of cores that share the mem-

ory overhead level with core are stored. It must have been allocated with

enough space to store this data before calling the function.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.2.6. get mem over group mag

Function that provides the magnitude of a certain shared memory overhead level

when a certain number of cores that share that level are accessing memory concur-

rently. The magnitude is measured as the percentage of the total memory bandwidth

B.2 Information about Shared Memory Overhead 167

obtained.

SYNTAX:

double get mem over group mag(mem over desc *mem over info,

int level, int ncores)

PARAMETERS:

IN mem over info: Pointer to the descriptor where the information about the

shared memory overhead is stored. It must have been loaded before.

IN level: The selected shared memory overhead level.

IN ncores: Number of cores of the shared memory level that access memory

concurrently.

returns:

• The magnitude (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.2.7. release mem over info

Function to release all the information stored in the descriptor.

SYNTAX:

void release mem over info(mem over desc *mem over info)

PARAMETERS:

IN/OUT mem over info: Pointer to the descriptor where the information about

the shared memory overhead is stored. It must have been loaded before.

168 Appendix B. Servet Library Interface

B.3. Information about Communication Costs

All these functions are included in the file comm.h and use the descriptor

comm desc that keeps information about the communication costs.

B.3.1. load comm info

Function to load the information about communications in the descriptor.

SYNTAX:

int load comm info(comm desc *comm info)

PARAMETERS:

OUT comm info: Pointer to the descriptor where the information about com-

munications will be stored. It should not have been loaded before.

returns:

• 0 if everything is ok.

• < 0 if an error occurs. The exact value is -j if an error is found in the jth

field of comm desc.

B.3.2. get comm intra node nlevels

Function that provides the number of different communication layers within one

node of the system.

SYNTAX:

int get comm intra node nlevels(comm desc *comm info)

B.3 Information about Communication Costs 169

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

returns: Number of intra-node communication layers.

B.3.3. get comm intra node lat

Function that provides the latency (in milliseconds) of a certain intra-node com-

munication layer when sending a message with size equal to the L1 cache size.

SYNTAX:

double get comm intra node lat(comm desc *comm info, int level)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

IN level: The selected intra-node communication layer.

returns:

• The latency (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.3.4. get comm inter node lat

Function that provides the latency (in milliseconds) of inter-node communica-

tions when sending a message with size equal to the L1 cache size.

SYNTAX:

170 Appendix B. Servet Library Interface

double get comm inter node lat(comm desc *comm info)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

returns:

• The latency (> 0) if everything is ok.

• -100 if there is only one node in the system and thus there are no inter-

node communications.

• Another < 0 value if a parameter error occurs. The exact value is -j if

the wrong parameter is the jth one.

B.3.5. get comm intra node group size

Function that provides the number of cores that share a certain intra-node com-

munication layer.

SYNTAX:

int get comm intra node group size(comm desc *comm info, int level)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

IN level: The selected intra-node communication layer.

returns:

• The number of cores (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.3 Information about Communication Costs 171

B.3.6. get comm intra node cores

Function to obtain the set of cores that share a certain intra-node communica-

tion layer with another core specified as parameter.

SYNTAX:

int get comm intra node cores(comm desc *comm info, int level,

int core, int *shared cores)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

IN level: The selected intra-node communication layer.

IN core: The core that must be in the set of cores that share the intra-node

communication layer.

OUT shared cores: Output array where the set of cores that share the intra-

node communication layer with core are stored. It must have been allocated

with enough space to store this data before calling the function.

returns:

• 0 if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.3.7. get comm min msg size

Function that provides the minimum message size (in bytes) used to study the

communication bandwidths in all layers.

SYNTAX:

172 Appendix B. Servet Library Interface

int get comm min msg size(comm desc *comm info)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

returns: The minimum message size.

B.3.8. get comm max msg size

Function that provides the maximum message size (in bytes) used to study the

communication bandwidths in all layers.

SYNTAX:

int get comm max msg size(comm desc *comm info)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

returns: The maximum message size.

B.3.9. get comm intra node band

Function that provides the bandwidth (in MB/s) in a certain intra-node com-

munication layer when sending a message with a certain size.

SYNTAX:

double get comm intra node band(comm desc *comm info, int level,

int msg size)

B.3 Information about Communication Costs 173

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

IN level: The selected intra-node communication layer.

IN msg size: The selected message size.

returns:

• The bandwidth (> 0) if everything is ok.

• < 0 if a parameter error occurs. The exact value is -j if the wrong

parameter is the jth one.

B.3.10. get comm inter node band

Function that provides the bandwidth (in MB/s) when sending an inter-node

message with a certain size.

SYNTAX:

double get comm inter node band(comm desc *comm info, int msg size)

PARAMETERS:

IN comm info: Pointer to the descriptor where the information about com-

munications is stored. It must have been loaded before.

IN msg size: The selected message size.

returns:

• The bandwidth (> 0) if everything is ok.

• -100 if there is only one node in the system and thus there are no inter-

node communications.

• Another < 0 value if a parameter error occurs. The exact value is -j if

the wrong parameter is the jth one.

174 Appendix B. Servet Library Interface

B.3.11. release comm info

Function to release all the information stored in the descriptor.

SYNTAX:

void release comm info(comm desc *comm info)

PARAMETERS:

IN/OUT comm info: Pointer to the descriptor where the information about the

communications is stored. It must have been loaded before.

B.4. Process Mapping

The only function included in the file automapping.h obtains the appropriate

process mapping. Two possible mapping policies are available:

SERVET MEM PRIOR: It is focused on minimizing the overhead of sharing caches

and memory. Secondarily, if possible, it also tries to improve latencies and

bandwidths of communications.

SERVET COMM PRIOR: It is focused on minimizing communication costs. Sec-

ondarily, if possible, it also tries to reduce the impact of concurrent shared

memory accesses.

B.4.1. get mapping policy

Function that obtains the appropriate process mapping according to the hard-

ware parameters detected by the benchmarks.

SYNTAX:

B.4 Process Mapping 175

void get mapping policy(int np, int ncores, SERVET PRIOR prior,

int *policy)

PARAMETERS:

IN np: Number of processes that need to be mapped in the system.

IN ncores: Total number of available cores. In a multicore cluster with n

nodes and c cores per node where all cores are available for execution, the

value of ncores must be n ∗ c.

IN prior: Identifier of the type of mapping policy that must be applied

(SERVET MEM PRIOR or SERVET COMM PRIOR).

OUT policy: Output array where the process mapping is stored. Entry i

indicates the number of core where process i should be mapped. It must have

been allocated with np elements before calling the function.

