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1 Introduction

The illumination model is one of the most important factors to obtain a realis-
tic appearance of synthetic computer images. Almost all current image synthesis
environments are based on a sequence of stages to represent an image (pipeline
rendering); one of these stages is a global illumination algorithm. It is based on
mathematical models about the interaction of rays of light with surfaces and their
propagation through the environment. The radiosity method is one of the most
popular global illumination models. It is the most realistic approach because it is
based on the real behavior of light in a closed environment in a view-independent
way.

The radiosity equation derives from the rendering equation [9] under the as-
sumption that all surfaces and light sources exhibit Lambertian diffuse reflection
and emission, respectively. The radiosity B(x) emitted from a surface of a domain
S has the form:

B(z) = E(z) + p(w)/SB(a:')G(x,:c')dA' (1)

where E(z) is the emission energy, p(z) is the diffuse reflectivity, G(z,z') is a
function of geometry relationship between two surface points x and z’, and A’ is
the area of the surface that contains z'. G(z,z') is given by

!
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This term consists of the cosines made by the vector connecting z and z' with their
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respective surface normals, the distance between these two points, and the visibility
function V', whose value is 1 if z and 2’ are mutually visible, or 0 otherwise.

In order to solve a global illumination problem, the radiosity method com-
putes an approximation to (1) by discretizing the domain. Thus, the surfaces of
the domain are broken down into a collection of N disjoint polygons or patches
(Pi)i=1,..,n- In order to further simplify the problem, an assumption is made: ra-
diosity takes a uniform value across the surface of each patch. Consequently, each
patch P; is assumed to have a uniform radiosity B;, a uniform emission of light
E;, and a constant reflectivity p;. The discrete version of the radiosity equation is
derived from (1):

N
B;=FE; + p; ZBjFij (3)
Jj=1
where ) 0. cost
cost;cost ;
F, = — Iy (P; P;)dA;dA;. 4

F;; is called the form factor between patches P; and P;. It is the proportion of the
radiosity leaving patch P; that is received by patch P; (d is the distance between
these two patches). There is one radiosity equation (3) for each patch. The resultant
equation system can be expanded into matrix form:

1—pi1Fin .. —piFin By E,
—P2F21 ce —p2F2N B, E,
: - : : = : . ()
—-pN1Fn_11 ... —pn_1iFNnanN By, En_
_pNFNl ]-_pNFNN BN EN

As the radiosity equation system is liable to be very large and relatively dense,
iterative methods (like Gauss-Seidel, Jacobi, Southwell ...) are more appropriate
than direct methods to solve it. Still, they have a high computational and memory
cost and, thus, alternative strategies have been developed to reduce the size and
complexity of the radiosity problem, as follows.

Cohen et al. [3] describe an algorithm called progressive refinement or progres-
sive radiosity. The physical interpretation is that, during one iteration, the patch
with the greatest unshot radiosity is chosen and its radiosity is shot through the do-
main. One shooting step takes O(N) operations and can be viewed as multiplying
the scalar B; by a column of the form factor matrix (5). Cohen et al. show that in
many cases only a small fraction of N shooting steps is required to approximate a
solution closely. Wauvelet radiosity [6], [12] employs multilevel meshes to represent
the radiosity function, and allows inter—patch interactions to take place between
arbitrary levels of the mesh hierarchy.

Hierarchical algorithms [7] are based on an adaptive subdivision of the scene.
Starting from the input polygons (patches), a hierarchy of elements with differ-
ent refinement levels depending on the required precision is built. Therefore, the
interactions between patches can involve elements of different levels in the hierar-
chy. This approach condenses entire blocks of the form factor matrix, resulting
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in a O(k* + N) complexity (k is the number of top-level elements, which are fi-
nally meshed into N elements). The hierarchical method is more accurate than the
progressive approach and faster than wavelet radiosity. Although the hierarchical
method drastically reduces the O(N?) complexity of the classical radiosity algo-
rithm of (3), it still has a significant computational cost, which justifies the use of
parallel computing techniques. In this work, we propose a parallel implementation
of a hierarchical radiosity method on multicomputers, where the load is dynamically
balanced to avoid idle processors.

The paper is organized as follows: next section reviews related work about pa-
rallel radiosity algorithms, while Section 3 describes our parallel approach. Experi-
mental results in terms of speedups and numerical errors are presented in Section 4.
Finally, conclusions and future work are discussed in Section 5.

2 Related work

In the literature, several parallel approaches have been proposed to speed up the
radiosity calculation. Parallel algorithms based on the progressive method are pro-
posed in [1] (on a distributed-memory computer, Intel Paragon XP/S), and in [11]
(on a distributed-shared memory machine, SGI Origin 2000). Although the parallel
programming paradigms of both works are different, they use the same strategy:
the domain is divided into subdomains using Virtual Interfaces and Visibility Masks
to achieve data locality and, thus, reduce data traffic both in the local memory hie-
rarchy and between the processors. In [2], a parallel wavelet radiosity algorithm is
presented for the Origin 2000.

Focusing on the hierarchical method, good results have been reported on
shared-memory multiprocessors [14], where all the processors have access to the
whole scene. However, the results on distributed-memory are not so encouraging,
mainly due to the communication overhead. In [15] a fine-grain parallelism was
applied using a master-slave paradigm, where each slave calculates ray-polygon in-
teractions on the corresponding subset of elements of the scene. In this case, the
speedup of the algorithm was restrained by the bottleneck of having a master pro-
cessor and the large number of communications required.

Other multicomputer implementations also follow a master-slave model, but
using a coarse—grain parallelism. In that case, each slave performs the whole compu-
tation of the radiosity on a group of patches of the scene, and the master takes charge
of the dynamic patch distribution, as well as the convergence analysis. Among these
implementations, one approach is to store the complete scene into the local memory
of each processor [4], in order to minimize communications, although large scenes
cannot be processed due to memory requirements. Another approach is to dis-
tribute the scene among the processors [5], which allows to work with larger scenes,
although communication overhead increases to a great extent. Our approach follows
an SPMD paradigm, that is, we do not waste one processor on load distribution
tasks. The scheduling is, therefore, distributed.

Finally, a coarse—grain hierarchical approach based on wavelets is described
in [10] (on a heterogeneous computer network). Nevertheless, unlike our algorithm,
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it is not suited for all kinds of scenes (e.g., for scenes with objects of highly detailed
geometry).

3 Parallel implementation

Our parallel version of the hierarchical method is based on the sequential algorithm
described in [7], which consists of an iterative process to compute the radiosity of all
the elements of the scene, as well as a preprocessing stage to build a BSP (Binary
Space Partition) tree and to compute the initial interactions between the patches.
The message-passing algorithm has been implemented using MPI and following a
coarse-grain approach, that is, each processor performs the whole computation of
the radiosity for a set of patches of the scene. Then, the communication between
the processors only takes place at the end of each iteration, in order to exchange
the updated radiosity values of the elements of the scene. The stages of the parallel
algorithm are described in the next subsections.

3.1 BSP construction and initial patch allocation

Each processor builds its own BSP tree with the patches of the scene. This tree will
be useful to determine the visibility between two patches in an efficient way. For each
patch inserted in the BSP tree, a list of initial interactions (or links) is computed.
Each entry of this list has as destination other patch of the scene, potentially visible
from the current patch (we consider that two patches are potentially visible if their
positive sides are face to face). The form factor between the two patches involved
is computed for each interaction. Besides, once the patches are inserted in the BSP
tree, they are sorted in decreasing order of area. The sorted patches are cyclically
assigned to the processors, in order to achieve an initial load balancing.

3.2 Radiosity computation

During the iterative process in which radiosity is computed, each processor takes
charge of its assigned patches. The radiosity obtained from all the visible interac-
tions of each patch is calculated (gathering process). If the radiosity emitted by
a certain link exceeds a given threshold, the interaction must be refined (in this
work, we have used a BF refinement [7]). To perform this task, either the source
element or the destination element of the interaction (depending on which of them
has the largest area) is subdivided into a quadtree, where the children inherit the
current radiosity of the father. Besides, in each iteration, each processor keeps a
record of the destination elements that correspond to patches assigned to a different
processor.

The irregular and unpredictable behaviour of the refinement makes a sta-
tic load distribution inappropriate, due to the appearance of workload imbalance,
which results in poor speedups; this fact is more critical as the number of processors
increases. Although we tried to overcome this problem by assigning cyclically a list
of patches in decreasing order of area, as described in the previous subsection, it is
not enough. Thus, we have implemented a dynamic load distribution as follows. In
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the first iteration of the algorithm, if a processor finishes its corresponding compu-
tations, the next step is to check the presence of non-processed (free) patches in the
ordered global list. If so, the processor takes the last free patch from the list and
computes its radiosity. This procedure is repeated until the list of non-processed
patches is empty. We have applied the scheduling only in the first iteration (al-
though the resultant load distribution is also used in the next iterations) because
we have experimentally checked that most of the execution time of the algorithm is
consumed in the first iteration, and so it is critical to achieve load balancing during
its execution.

The main drawback of this scheduling lies in the fact that two or more proces-
sors could compete for the same patch. In Subsection 3.4, we describe the protocol
developed to overcome this problem.

3.3 Communication stage and convergence test

Once the local calculation of radiosity in one iteration is completed, the proces-
sors start a global communication phase to update both radiosity values and tree
structures. In this phase, each processor sends and receives data from the other pro-
cessors, following an all-to-all communication pattern implemented by MPI total
exchange routines. First, the processors exchange the lists containing the identifiers
of the elements they need: MPI_Alltoall is used to communicate the exact number
of elements that each processor requires of the other processors, and MPT_Alltoallv
is used to exchange those element identifiers according to the information provided
by the previous routine. Next, each processor updates the hierarchical structures of
the assigned patches: if a processor receives a request about an element that corres-
ponds to a patch that had not been still refined up to the level of that element, it is
refined until the required level is achieved. Then, each processor sends the updated
radiosity values of the requested elements (see the example of Fig. 1).

After the communication stage of each iteration, the complete radiosity of the
scene is summed up and the convergence is checked in parallel by means of a reduc-
tion operation (MPI_Allreduce). Each processor contributes the partial radiosity
of its set of assigned patches to the reduction and, this way, the whole radiosity of
the scene is obtained in all the processors. Next, each processor compares this value
with the radiosity in the previous iteration. If the convergence criterion is fulfilled,
the iterative algorithm ends; otherwise, a new iteration to compute radiosity begins.
For the next iterations, each processor uses the same patches as in the first iteration
(both patches assigned statically and those ones taken from the list dynamically).

3.4 Load balancing protocol

In order to carry out a dynamic patch allocation, each processor must keep updated
information about the patches that have not been still processed. This information
is stored in the ordered list of patches and must be available in every processor.
Thus, before processing a patch, each processor communicates this state to the rest
of processors. A drawback arises when two or more processors compete for the same
patch. To avoid the assignment of the same patch to different processors, we have
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Figure 1. Processor 0 subdivides patch 9 to refine the interaction between

patches 5 and 9. Later, processor 0 asks processor 1 for the radiosity of the elements
of patch 9. Thus, processor 1 must refine patch 9 before sending the radiosity of its
elements to processor 0.

> O

implemented a protocol based on making requests about the state of the patch that
causes the conflict.

A processor, before taking a free patch, sends a request message to the owner
of that patch, that is, the processor that has the patch by means of the static cyclic
assignment (which is known by all the processors). If the owner of the patch is
not still processing it, the ownership of the patch is transferred to the requesting
processor (ACK) provided that the patch had not been still given to any other
processor. Otherwise, the patch request is refused (NACK). Note that in this case
explicit messages are not used because the processor that is taking charge of that
patch communicates this situation to the rest of processors.

Using this protocol, any kind of incoherence arising from the multiple assign-
ment of one patch to two or more processors is avoided. For example, in Fig. 2
it can be observed that, once processors 1 and 3 have finished the computations
associated with their assigned patches, they search for free patches in the ordered
list, beginning from the last patch. Both processors try to get patch 41 (initially
assigned to processor 2), but only processor 1 will finally get it; processor 3 carries
on with the search of free patches in the list.

During this scheduling stage, nonblocking communications (both send and
receive primitives) are used to overlap communication and computation. Besides,
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Figure 2. Erample of the protocol: processors 1 and 8 compete for patch
41, but only processor 1 gets the patch.

as the messages to be sent in this stage have the same format and size, as well as
the same destinations, we have used MPI persistent communications. Therefore,
the tasks involved in setting up the communication are accomplished only once.

4 Experimental Results

We have tested our parallel algorithm on the Fujitsu AP3000 [8] and Cray T3E [13]
distributed-memory computers, using a graphical workstation as front-end to dis-
play the illuminated scene. The nodes of our AP3000 are UltraSparc-IT at 300 Mhz
connected via a network called AP-Net (with a bandwidth of 200 Mbytes/s) in a
2D torus topology. The T3E we have used consists of Alpha 21164 processors at
300 Mhz with a 3D torus interconnection topology and a network bandwidth of 480
Mbytes/s. The test scene is composed of 1292 input triangles and is depicted in
Fig. 3. The resultant illuminated scene is shown in Fig. 4.

The results in terms of speedups for the AP3000 (up to 12 processors) and the
T3E (up to 30 nodes) are shown in Figures 5 and 6, respectively, both for a static
cyclic patch assignment and for the approach that includes a dynamic scheduling.
The execution time of the sequential algorithm is 2309 seconds on the AP3000 and
1293 on the T3E; and it is 222 seconds using the static parallel algorithm and 198
seconds with the dynamic scheduling on 12 processors of the AP3000 (57 and 48
seconds, respectively, for 30 processors on the T3E). It is clear that the execution
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Figure 3. Original test scene. Figure 4. llluminated test scene.
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Figure 5. Speedups on the AP3000. Figure 6. Speedups on the T3E.

times are much better on the T3E due to the faster processors and network it has.

As can be observed, the speedups are better using the dynamic scheduling,
and the difference between the static and the dynamic strategies is greater as the
number of processors increases, due to the effect of load imbalance. The speedups
are greatly improved using the dynamic scheduling that balances the load, and are
very close to the ideal curve. Nevertheless, speedups fall slightly in the T3E from
the 16-processor configuration because the local radiosity computation assigned to
each processor is less and less significant in relation to the communication overhead.

As an example, load balancing was experimentally checked by measuring in
each processor (for a 12-processor configuration on the AP3000) the execution time
of the first iteration of the algorithm, both for the dynamic and static approaches.
The results are depicted in Fig. 7. In the static case, processor 3 is a bottleneck
because the iteration does not finish until all processors finish; so, the rest of proces-
sors are idle waiting for processor 3. The dynamic scheduling, according to Fig. 7,
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Figure 7. Ezxecution time (in seconds) of the first iteration for each pro-
cessor on the AP3000.

balances the load and, thus, minimizes idle times.

In further experiments we tried to reduce the communication overhead at the
expense of a coarser load balance. That is, we varied the scheduling (see Subsec-
tion 3.2) so that each processor took a set of say k free patches of the list instead
of only one. The results showed that, for small values of k, the execution times
were very close to k = 1, which meant that the overhead of the scheduling was
adequately overlapped with the computations of the algorithm. As k increased, the
execution times were coming close to the static algorithm because load balance was
not so accurate. Therefore, kK = 1 was the best choice and we maintained it in the
algorithm.

4.1 Numerical errors

Regarding the correctness of the algorithm results (see the illuminated scene in
Fig. 4), we have used the residual error of the radiosity as error metric:

N
ri=Bl—E; —p; Y BiF; (6)
j=1

where ﬁf / §§ is the radiosity at patch i/j in iteration ! (the rest of parameters
correspond to those of (3)).

Table 1 presents several statistical parameters of the residual errors for the
sequential algorithm and for the parallel algorithm with dynamic scheduling on
the AP3000: mean, maximum relative error (maz(r;/B!)), standard deviation and
maximum deviation.

As can be observed, errors are small, which shows the accuracy of the algo-
rithm. Nevertheless, the sequential algorithm presents smaller errors because it uses
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Table 1. Statistical parameters of the residual errors for the test scene.

| | sequential | 2 Proc | 4 Proc | 6 Proc | 8 Proc |
mean 8.72E-4 9.92E-4 | 18.41E-4 | 21.69E-4 | 22.20E-4
m.r.e. 1.94E-2 2.27E-2 | 4.62E-2 3.18E-2 4.29E-2
s. d. 1.35E-3 0.96E-3 | 1.54E-3 1.82E-3 1.78E-3
max. d. | 1.73E-2 0.97E-2 | 1.74E-2 2.11E-2 1.60E-2

the Gauss-Seidel method, that is, the values calculated in the current iteration are
used to compute the rest of values of the iteration (B! is computed using the Bj.
values). That is not the case for the parallel approach, because during the current
iteration, one processor cannot have access to the values calculated by other proces-
sor in the same iteration, as the values are provided between iterations. Therefore,
a combination of Gauss-Seidel and Jacobi methods is used in the parallel algorithm
(Bf is computed using the Bj. value if patches i and j belong to the same processor;

otherwise, the B;fl value is used), which requires more iterations to converge and
results in higher residual values.

5 Conclusions

In this paper we have described a parallel implementation of the hierarchical ra-
diosity method on distributed-memory multiprocessors. The irregular and dynamic
behavior of the method causes load imbalance. In order to improve the performance,
we tried to assign the same number of radiosity computations to each processor by
means of two steps. First, the patches are ordered by decreasing area and cyclically
distributed. Second, a distributed scheduling performs a finer tuning to balance
the load dynamically, by reassigning the smallest non-processed patch to any pro-
cessor as soon as it finishes its work. As a result, load balance and good speedups
have been achieved through this approach, as we have experimentally shown on the
AP3000 and T3E multicomputers. Finally, the parallel algorithm presents a small
loss of accuracy with respect to the sequential algorithm.

As future work, we intend to reduce memory overhead by detecting sub-
environments in the scene that involve local interactions. Thus, the scene could
be completely distributed among the processors so that only the visibility zones
between sub-environments should be replicated.
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