
Journal of Grid Computing manuscript No.

(will be inserted by the editor)

Big Data-oriented PaaS architecture with

disk-as-a-resource capability and container-based

virtualization

Jonatan Enes · Javier López Cacheiro ·
Roberto R. Expósito · Juan Touriño

Received: date / Accepted: date

Abstract With the increasing adoption of Big Data technologies as basic tools
for the ongoing Digital Transformation, there is a high demand for data-intensive
applications. In order to e�ciently execute such applications, it is vital that cloud
providers change the way hardware infrastructure resources are managed to im-
prove their performance. However, the increasing use of virtualization technologies
to achieve an e�cient usage of infrastructure resources continuously widens the
gap between applications and the underlying hardware, thus decreasing resource
e�ciency for the end user. Moreover, this scenario is especially troublesome for
Big Data applications, as storage resources are one of the most heavily virtualized,
thus imposing a significant overhead for large-scale data processing. This paper
proposes a novel PaaS architecture specifically oriented for Big Data where the
scheduler o↵ers disks as resources alongside the more common CPU and mem-
ory resources, looking forward to provide a better storage solution for the user.
Furthermore, virtualization overheads are reduced to the bare minimum by replac-
ing heavy hypervisor-based technologies with operating-system-level virtualization
based on light software containers. This architecture has been deployed on a Big
Data infrastructure at the CESGA supercomputing center, used as a testbed to
compare its performance with OpenStack, a popular private cloud platform. Re-
sults have shown significant performance improvements, reducing the execution
time of representative Big Data workloads by up to 4.5x.

Keywords Big Data · Platform as a Service (PaaS) · cloud computing ·
disk-as-a-resource scheduling · operating-system-level virtualization

Jonatan Enes · Roberto R. Expósito · Juan Touriño
Computer Architecture Group, Universidade da Coruña, Campus de A Coruña, 15701
A Coruña, Spain
Tel.: +34 881 011 212
Fax: +34 981 167 160
E-mail: {jonatan.enes,rreye,juan}@udc.es

Javier López Cacheiro
Fundación Centro de Supercomputación de Galicia (CESGA), Santiago de Compostela, Spain
E-mail: jlopez@cesga.es

Manuscript Click here to download Manuscript cesga-paas.tex

Click here to view linked References

2 Jonatan Enes et al.

1 Introduction

Big Data applications are being increasingly demanded by a wide range of users,
from the scientific community to large corporations when the need for data anal-
ysis arises and other previous techniques like Data Mining or Data Warehousing
are unfit for the task due to the huge size of the datasets. With the appearance5

of distributed processing frameworks like Apache Hadoop MapReduce [13] and
Apache Spark [47], there has been a deluge of Big Data applications and asso-
ciated technologies, which in turn have forced the existing infrastructure models
to change in order to meet the new requirements like data volume, velocity and
complexity [21].10

Since their inception, Big Data clusters were built upon key concepts such
as scalability and redundancy, in order to create systems that were able to di-
rectly grow as needed and to process the required volume of data. Because of
this, these systems typically demand as underlying infrastructure a high number
of interconnected nodes, very large and easily accessible storage space with high15

Input/Output (I/O) bandwidth and a network capable to handle the movement
of very large datasets [3]. Unfortunately, current large-scale computing systems
are mainly designed and oriented with either very specific goals in mind, like High
Performance Computing (HPC) clusters, or with a broad set of users and require-
ments to cater to, like cloud computing infrastructures [8]. On the one hand, HPC20

systems focus on optimizing CPU and memory management for high demanding
applications and thus they may lack the data storage requirements that Big Data
needs. Furthermore, they usually expose the resources using batch-queueing job
schedulers (e.g., SLURM [45]), an interface which has proved to be very di�cult
to bridge for Big Data applications [22]. On the other hand, cloud computing,25

or other similar service-oriented infrastructures, can provide the user with access
to virtually infinite storage space and a high level of flexibility in regards to re-
source management or infrastructure size as a whole. However, to achieve this
degree of flexibility, the very core of cloud computing is based on virtualization,
which allows to separate a single physical machine into multiple virtual machines.30

Unfortunately, most current cloud services make heavy use of hypervisor-based vir-
tualization, severely hindering the performance of network and disk I/O access [15,
20,34].

This paper proposes a Platform as a Service (PaaS) architecture specifically
oriented to Big Data that enhances I/O-intensive applications, where users can35

deploy clusters in the same easy way as a cloud platform but benefiting from better
performance. With this proposed architecture as a testing ground we bring forward
a novel approach for resource management and scheduling, adding customizable
resources to be handled alongside traditional CPU and memory resources. In this
work we will focus on providing the disk-as-a-resource capability. In addition, we40

also use the preferable lightweight container-based virtualization technologies. The
combination of these two enhancements aims to bridge the gap between available
platforms like HPC infrastructures or the cloud and the requirements that current
and future Big Data applications may have as part of the Digital Transformation.

An implementation of this architecture has been successfully deployed on a45

real Big Data infrastructure installed at the Galicia Supercomputing Center (CES-
GA) [10]. Using this testbed, the performance of our PaaS architecture has been
compared with a private cloud platform deployed using the popular OpenStack

Big Data-oriented PaaS architecture with disk-as-a-resource capability 3

framework [33], which does not o↵er disks as resources and by default makes use
of hypervisor-based virtualization. This comparison shows a significant improve-50

ment of the execution times of real-world Big Data applications as the result of
combining an e�cient storage access and light virtualization.

The remainder of this paper is organized as follows: Section 2 describes the
previous technologies, terms and concepts that are later used. The state of the art
of the current platforms along with their limitations are described in Section 3.55

Section 4 presents the design of the proposed architecture and the main guide-
lines for its implementation, a high-level comparison between our solution and a
private cloud platform, and a real case scenario deployed at CESGA. Following in
Section 5, a more in-depth comparison is given with real measurements acting as
the performance evaluation. Finally, Section 6 summarizes our concluding results.60

2 Technical foundations and problem statement

To understand the key technical reasons that make interesting our approach, it
is important to analyze the currently most common implementations of Big Data
technologies and their architectures, as well as their limitations and the di↵erent
ways of overcoming them. The focus will be on the high overhead they impose65

on storage access, which is considered critical for Big Data applications, and the
overall high use they make of virtualization.

2.1 HPC architectures and virtualization technologies

From the HPC environment the management of two basic resources first appeared:
CPU and memory. These two components are still today key resources and part of70

any scheduler or resource management system. Additionally, thanks to the evolu-
tion of hardware-assisted virtualization extensions from major CPU vendors (e.g.,
Intel VT-x, AMD VT-V), both resources can be easily abstracted, shared and used
in an isolated way without incurring any significant performance penalty. Tak-
ing advantage of this, hypervisor-based virtualization technologies (e.g., Xen [4],75

KVM [23]) allow using and running many isolated instances commonly known as
virtual machines. Virtual machines have been proven very useful throughout the
years in many IT environments or even in HPC scenarios, where the performance
penalty is a↵ordable taking into account the flexibility provided [46]. Neverthe-
less, device virtualization overheads are still to be taken into account as they can80

degrade the performance of I/O-intensive applications significantly [15,16,34].
However, this traditional and e�cient virtualization based on CPU, mem-

ory and virtual machines has been taken one step further with the adoption of
operating-system-level virtualization, which basically eliminates a layer. With this
technology, the role of the hypervisor disappears and the previous virtual machines85

are now translated into multiple isolated user-space instances that run together
sharing the same underlying kernel. Such instances are often called software con-
tainers, virtual private servers, jails or zones. This kind of “light” virtualization
makes the instances less demanding in CPU, memory and I/O requirements. More-
over, because the instances usually contain only the minimum processes required90

4 Jonatan Enes et al.

for the service, resource requirements are even further reduced compared to vir-
tual machines. Finally, thanks to the fact that these containers run next to the
kernel, thus having direct access to the resources, they are able to achieve near
bare-metal performance. Operating-system-level virtualization as a whole is still
evolving but it is now an emerging alternative to be considered when performance95

is a priority [39].
One particular container-based virtualization technology that is currently being

actively developed is Docker [26]. Docker allows users to launch lightweight con-
tainers by using the resource isolation features of the Linux kernel such as cgroups
and kernel namespaces to isolate and provide resource limiting (i.e., CPU, mem-100

ory, disk and network). This is important for security and service level agreement
functionalities, so that even when sharing a single kernel and pool of resources,
no container is able to overuse either the host’s or other container’s resources or
have access to non-authorized resources. In [29], the authors provide an in-depth
description of the operating-system-level virtualization and its requirements to be105

used in a real scenario. It is interesting to mention the special remark regarding the
storage volumes used with container technologies. These technologies use layered
file systems (e.g., OverlayFS) to provide more flexible management of containers,
particularly for the root file system, and thus they are not intended to have high
I/O performance [27]. So, the storage solution used to persist or handle data is left110

to the user’s choice thanks to the possibility of binding volumes from the host to
the container, the volume’s storage back end being abstracted from the container.
A good choice of back end is most important if write-intensive workloads are to
be executed. Nevertheless, [27] does not consider host’s disks as possible container
volumes.115

In our PaaS architecture, Docker has been chosen to provide the lighter and
more resource e�cient containers that can be later used to create instances that
host an application or comprise a cluster. Moreover, Docker instances can be cre-
ated with attached storage volumes as disks imitating traditional virtual machines.
This feature will allow exposing dedicated underlying host disks to applications120

running inside containers.

2.2 Cloud-based architectures and services

Moving away from the low-level HPC model that seeks performance of the key
resources above all (i.e., CPU and memory), there are the currently booming cloud-
based architectures and services [25], where the focus is put on the service that is125

o↵ered instead of its back end implementation or even its e�ciency. Cloud services
are very popular nowadays, being used from single users to large corporations,
which now have the opportunity to outsource from software to even hardware in
order to lower costs and consolidate services and infrastructure. There are many
underlying technologies involved in cloud architectures that are beyond the scope130

of this paper, virtualization being one of them, but it is worth considering the
level of a↵ordability and flexibility that these platforms o↵er. Unfortunately, to
achieve these features a high penalty is present, especially when taking into account
the storage performance, which can become something not tolerable for Big Data
applications that require to process huge amounts of data e�ciently or within135

time limits. Several studies exist [7,36] that describe how the penalty imposed by

Big Data-oriented PaaS architecture with disk-as-a-resource capability 5

remote or virtualized storage access (typically the case when the cloud is used)
severely a↵ects data-intensive applications. In [36], the authors provide an in-depth
study of the challenges of data-intensive computing in the cloud. Of particular
interest for our scenario are the challenges that arise from resource sharing and140

the e�ciency of storage systems, with proposed solutions such as Mesos [18] for
resource management and alternative scheduling algorithms that take into account
disks as resources to be also evenly shared between instances.

Nevertheless, cloud architectures are still relevant because they are flexible
and easy to use. From this usability point of view, it is interesting to be able to145

easily manage instances (e.g., start, stop, connect to), and regarding flexibility,
it is interesting the capability to define their individual resources (e.g., number
of CPUs, amount of memory, number of disks). All of these features have been
taken into consideration when implementing our solution and thus the proposed
PaaS provides the user with a cloud-like interface where applications can be prop-150

erly managed, while on the back end such applications avoid performance issues
typically present on cloud architectures.

2.3 Big Data architectures

The low-level resource management of HPC environments and the flexibility of
cloud architectures are combined in the Big Data model. The Apache Hadoop155

framework and its vast software ecosystem are the de-facto environment that most
of current Big Data architectures rely upon. From its second release, Hadoop uses
Yet Another Resource Negotiator (YARN) [42] as resource manager, which in turn
uses software containers and aggregates the resources using nodes, virtual cores
and memory, creating a cluster that exposes a pool of resources to the applica-160

tions. The other core component of any Hadoop cluster is the Hadoop Distributed
File System (HDFS) [38], which takes care of managing all the data by mainly
distributing and replicating the files using its own file system. Together, YARN
and HDFS create an architecture that provides the applications with an environ-
ment that o↵ers scalability, flexibility and redundancy, while at the same time tries165

to achieve high performance. Nevertheless, not all Big Data applications need a
framework like Hadoop and may be deployed in a standalone or semi-standalone
way (e.g., an application that uses HDFS but runs independently). Some examples
are easily found in applications such as NoSQL databases like Apache Cassandra
or MongoDB, which run fully independently, or Apache HBase which uses HDFS.170

These applications can also benefit from the flexibility that the new platforms
o↵er but may require a lower level approach with the resources, especially when
it comes to storage e�ciency [19].

However, when considering storage performance, it is especially interesting to
mention a particular design pattern followed by all of the aforementioned applica-175

tions, and by many other Big Data solutions. NoSQL databases or Hadoop HDFS
do not directly use the local file system to store data, instead they rely on a cus-
tom or private file system that is created by joining a pool of directories and their
underlying file systems in order to work. With this design feature, it is possible
to scale the size and bandwidth of the underlying storage means by adding more180

volumes, ideally individually mapped to physical disks. This design guideline is
based on the original view of a Big Data cluster as a commodity infrastructure

6 Jonatan Enes et al.

created from pooling together bare-metal nodes and hardware. Unfortunately, the
benefits of this feature can not always be guaranteed when cloud environments
are used, because of the storage and CPU virtualization penalties that may apply185

depending on the vendor’s architecture design. Moreover, because the technical
details of the architecture are usually hidden from the users as part of intellectual
property, or merely because they may vary over time or across the infrastructure,
it is not always possible to know beforehand if the penalties may or may not apply
and to what extent. Nevertheless, our solution o↵ers to I/O-intensive applications190

storage volumes that are directly mapped to dedicated disks, so that when a cus-
tom file system is created by joining the volumes, they can benefit from full disk
bandwidth and thus improved performance over storage virtualization.

3 State of the art and related work

There are currently many companies that o↵er Big Data services and platforms in195

their catalog. However, their solutions usually share the infrastructure with other
cloud-like services or products, which implies a heavy use of hypervisor-based vir-
tualization in order to o↵er flexibility for the user and reduce costs in maintenance
for the provider. This kind of virtualization certainly adds a significant overhead
for storage resources and their underlying I/O performance, which are vital for200

Big Data frameworks and applications. This section analyzes some representative
solutions, from infrastructure providers to Big Data frameworks, to identify the
main problems they have. Finally, related work that tries to overcome such issues
with di↵erent approaches is presented.

3.1 Platforms and architectures205

When it comes to platforms and architectures, there are many available public
cloud providers that o↵er the user the ability to deploy clusters or applications in
just a few minutes, using a pay-per-use pricing model and providing a high degree
of flexibility by allowing operations such as to create, destroy, resize or backup in-
stances. Examples of such platforms are Amazon Web Services (AWS) [1], Google210

Compute Engine (GCE) [17] or Rackspace [30]. These services are commonly
known as Infrastructure as a Service (IaaS) and have proven to be a flourishing
model and business. While AWS and GCE use proprietary solutions for their back
end infrastructure and the technologies they use are generally unknown, Rackspace
on the other hand partially uses an open-source solution co-created with NASA,215

called OpenStack [33]. Nevertheless, for any major provider or platform it is cer-
tain that some degree of virtualization is used, which is particularly important for
the management of storage volumes. A volume is an abstraction of a resource that
represents a disk easily attached and detached from instances, backed up with
snapshots and even moved around from one datacenter to another.220

For specific and technical details on how the storage and the management of
volumes are commonly implemented on these architectures, we can look at how
OpenStack does it. OpenStack uses a component or software microservice, called
Cinder, that handles volumes as block devices mapped on a pool of disks that are
then hosted on the so-called block storage nodes, using underlying file systems such225

Big Data-oriented PaaS architecture with disk-as-a-resource capability 7

as GlusterFS, Ceph or other proprietary solutions. The problem of this approach
is that on top of the block storage access, which may be e�cient, other software
layers are placed to manage and achieve the previously described flexibility, which
may add significant performance penalties [48]. Any additional layer means that
the performance is reduced to some degree.230

This limitation can be overcome, although at the cost of lower flexibility, if the
disks are directly exposed to the instances running. The main goal of our platform
is to o↵er the storage access as untreated as possible. So, the only additional
treatment will be the one needed to assure that a disk o↵ered as a resource is never
shared between di↵erent running instances at the same time, both for security and235

performance issues. Finally, this idea of improving the e�ciency of the instances is
also further reinforced with the use of lightweight virtualization through software
containers, as opposed to the use of hypervisor-based virtualization most likely
used by providers like AWS and GCE.

3.2 Big Data frameworks240

We can also look at the framework level with examples that host Big Data applica-
tions such as Apache Hadoop or Apache Mesos. In these two examples, schedulers
and resource managers just expect the disks to be ready to use, with HDFS to
create a custom, higher-level file system and with Mesos to create scratch or raw
shared space. Both frameworks use disks to create a unified storage space that is245

then o↵ered, while abstracting and never o↵ering the disk itself as a resource. This
forces giving away the control of the storage resources to the frameworks, which
just use them to create and share the storage space with all the running applica-
tions, and thus the applications can only hope that the underlying disks provide
e�cient performance and that the disk access is evenly shared [35]. This scenario250

may not be important when such frameworks are deployed on a controlled and
private cloud infrastructure, but when the framework (e.g., a Hadoop cluster) is
deployed on an IaaS provider (e.g., AWS), the two limitations (i.e., virtualization
of storage access and loss of disk control) may apply.

Fortunately, in order to improve flexibility in regards to resource management,255

especially in heterogeneous environments (i.e., where di↵erent kinds or versions of
resources coexist), current schedulers like Mesos o↵er the feature to extend the
type of resources and their amount exposed to applications. In our platform, to
overcome the aforementioned loss of disk control, this extension would allow a
scheduler to o↵er the disks as individual and accountable resources, implementing260

the disk-as-a-resource feature and making the scheduler “disk-aware”. Moreover,
this approach is suitable for other resources not commonly managed by schedulers
such as Graphics Processing Units (GPUs) or to even di↵erentiate resource types
like faster hard drives (solid state, SSD) from slower ones (magnetic, HDD). In this
paper, we present a Mesos extension to properly o↵er specific disks as resources265

that can be used only by one instance at the same time, thus adding them to
the pool of resources, alongside CPU and memory, that can be customized for an
instance.

8 Jonatan Enes et al.

3.3 Related work

Previous works on cloud storage systems, architectures and commercial platforms270

have proved that they are certainly attractive to end users and big companies alike
with many benefits such as the cost e↵ectiveness and its assured redundancy, with
figures such as 99.99% availability [44]. However, there are even more studies that
have also exposed the varying but significant performance penalty that any form
of cloud-based storage imposes, the increasing di↵erences between cloud providers275

or even between di↵erent services within the same provider [11,24].

The need to improve the performance of applications that run on cloud plat-
forms has led to the appearance of some specific solutions and systems that target
the very core of cloud architectures and their usually shared-hardware approach.
Some works that aim to increase the e�ciency of such architectures try to im-280

prove fairness when it comes to resource isolation [37], while others exploit this
tenant approach with the ethically dubious so-called Resource-Freeing Attacks
(RFAs) [41]. However, these solutions do not try to change the current model of
cloud architectures or improve it, but rather propose a solution on top of it.

On the other hand, regarding lightweight virtualization with containers, there285

are studies and solutions that prove that the use of technologies such as Docker
presents a significant improvement on resource usage, deployed by PaaS and Cloud
vendors [5,14]. In [40], the authors have shown that a combination of Docker con-
tainers with a container management system like Amazon EC2 Container Service
(ECS) can serve as the foundation to build a resource-e�cient and at the same290

time flexible PaaS. However, disk management is delegated to volume services
like Amazon Elastic Block Storage (EBS), which is a limitation for Big Data ap-
plications that need e�cient storage. Moreover, even though Docker containers
are used and managed using Amazon ECS, the underlying infrastructure still uses
EC2, which is Xen-based and thus, in the end, container virtualization is placed on295

top of hypervisor-based virtualization. A recent related study has been conducted
in [31], where parallel applications deployed on containers and using di↵erent man-
agers including Mesos are compared to a cloud deployment with OpenStack and
a bare-metal scenario. The results show that indeed Docker containers are closer
to bare-metal when it comes to storage e�ciency and have significantly lower300

overheads than the KVM hypervisor. Nevertheless, this work only focuses on com-
putational overheads for deployment and execution of workloads, leaving aside
the storage e�ciency of the di↵erent scenarios, particularly if I/O-intensive ap-
plications are executed. Finally, in [9] the authors look forward to bring closer
heterogeneous cloud environments by using an intermediate layer in the form of305

a PaaS. This layer is able to abstract the user from several underlying infrastruc-
tures and provide a more flexible user interface than an IaaS. Unfortunately, this
work also leaves aside the disks as resources that can be managed and assigned
to applications, probably considering that the orchestration APIs and back ends
considered for the IaaS platform (e.g., OpenStack) do not directly allow for this310

feature.

Big Data-oriented PaaS architecture with disk-as-a-resource capability 9

4 Proposed PaaS architecture

In order to avoid the limitations previously exposed, mainly the overuse of vir-
tualization and its special penalty on storage performance, this paper proposes
a novel PaaS architecture with the disk-as-a-resource capability and the usage of315

lightweight software containers for the instances. Our solution is specifically de-
signed for Big Data applications and aims to enhance the current cloud or PaaS
models based on schedulers and resource managers by adding disks as another eli-
gible resource. Its overall design and implementation follows a microservice-based
architecture which is described in Section 4.1. The proposed solution is then com-320

pared with a private cloud architecture in Section 4.2 so as to highlight the main
di↵erences that stem from adding the disk-as-a-resource capability. Finally, a func-
tional implementation of this architecture has been deployed on a real Big Data
scenario at CESGA (Section 4.3).

4.1 Design and implementation325

To deploy our platform, a basic underlying hardware infrastructure with some spe-
cific Big Data features and a software microservice-based architecture are needed.
The main guidelines to create both are described next.

4.1.1 Underlying hardware infrastructure

The proposed architecture requires a commodity cluster of interconnected ma-330

chines with no particular technologies or special requirements like low-latency
networks generally used in HPC environments. In general, the infrastructure used
for Big Data applications can be considered di↵erent to that used in HPC or cloud
scenarios. Instead of focusing on a very high amount of CPU and large memory
size, storage disks also become a key hardware resource.335

If a general guideline has to be followed, it is preferable to use a high number
of redundant nodes with a large amount of memory over the number of available
CPUs, and more importantly, a high number of local disks. This is crucial taking
into account that in our solution disks are o↵ered as resources alongside CPUs and
memory, instead of being shared. It is also worth noting that Big Data applications340

focus on data storage and speed (more disks) and data processing (more memory),
which allows introducing two metrics when assessing a Big Data infrastructure:
the disks-to-cores (i.e., disks/cores) and disks-to-memory (disks/memory) ratios.
Examples of these metrics are presented later with a representative Big Data
infrastructure.345

4.1.2 Microservice-based architecture

Regarding the software, one of the main goals of our solution is to avoid any heavy
virtualization or management overhead, especially with storage resources. Thus,
it is key to look for resource managers and schedulers that are able to gather
and understand the nodes as a pool of resources, are able to extend its function-350

ality with usually unsupported resources such as disks, and are as well capable
of deploying light software containers. For all of these purposes, Apache Mesos

10 Jonatan Enes et al.

Fig. 1 High-level overview of the proposed PaaS architecture (each box in the PaaS layer
represents a microservice)

has been chosen as the scheduler and resource manager, and Docker as the con-
tainer manager. Additionally, other services were developed as part of our overall
microservice-based architecture, as shown in Figure 1. Using this architecture for355

our PaaS, a functioning platform is created using components with defined func-
tions, which in turn may be changed or further developed without a↵ecting the
whole system thanks to the use of interfaces. Complying with the microservice ar-
chitecture model, smaller services are generally preferable. Therefore, technologies
like Flask [32], a Python microframework with RESTful support, are used as the360

base for all the custom-made microservices that are described next.
Mesos is a key component of this architecture (see the Scheduler microservice

in Figure 1). Using its extension features, which allow the administrator to define
custom resources, the local disks on each node can be exposed as manageable re-
sources that the frameworks and applications may ask for. This is the key feature365

that allows us to provide the disk-as-a-resource capability, although additional mi-
croservices had to be developed, as explained later. It is also worth mentioning
that although Mesos supports the deployment of containers including Docker, this
support is not enough to replicate the behaviour of other cloud computing services
or platforms (e.g., attach or detach floating or host-independent IP addresses to370

the containers, or manage and mount the volumes onto host disks appropriately).
This forces us to use a more flexible approach by using Mesos customizable execu-
tors, which are pluggable programs that handle job lifecycles. So, our own custom
executor has been implemented (see Docker-executor), which in turn will handle
Docker containers appropriately.375

Other important microservices that have been implemented are: 1) Networks,
which manages interfaces, networks and IP addresses later used in the instances to
implement the host-independent networking that the containers use; 2) Disks, used
to configure how the disk resources are exposed to the Scheduler and to account

Big Data-oriented PaaS architecture with disk-as-a-resource capability 11

Table 1 PaaS REST API product endpoints

PaaS Endpoints
Endpoint Description
GET
’/products’

Get the catalog of applications

POST
’/products/<product>/<version>’

Launch an application

GET
’/clusters/<username>/<product>/
<version>/<id>’

Get information of an application

DELETE
’/clusters/<username>/<product>/
<version>/<id>’

Stop and destroy a given application

which disks are used by what instances; and 3) Orchestrator, which handles the380

lifecycle of the individual cluster instances as well as of the final application that
is later started on such cluster.

Finally, taking inspiration in many other cloud services, both a REST API and
a graphical Web User Interface are added to make the platform usable for either
end users or other services. Some of the endpoints exposed by the REST API are385

described in Table 1. These endpoints implement the main actions that the end
user would need in order to use this PaaS, in a similar way to IaaS providers,
such as: (1) visualize a catalog of possible Big Data applications; (2) launch one of
the o↵ered applications from the catalog; (3) get application information; and (4)
destroy user applications. For the web user interface, AngularJS [12], a JavaScript390

framework for single-page applications, has been used.

4.2 Overall comparison with OpenStack

In order to highlight the novel approach of this architecture, this section compares
our solution with OpenStack, a popular open-source platform for cloud computing,
mostly deployed as IaaS. OpenStack is widely used to create private clouds and395

follows a similar approach to that of the big public cloud providers like AWS
or GCE. Because of this, OpenStack also su↵ers from the performance penalties
already discussed in Section 3.1.

To use OpenStack, the user mainly has to choose an OS image and a size of the
instance or “flavor” (i.e., a combination of resources like virtual cores, memory and400

scratch storage as defined by the administrator). Once requested, this instance is
scheduled and placed on an available compute node. In a similar way, all the disks
used by the instance are created as volumes and likewise scheduled and placed on
storage nodes (see Figure 2). It is important to note this split between compute and
storage nodes. The di↵erentiation of compute and storage nodes grants flexibility405

but it also means that volumes may not always be stored in the same node than
the user instance, depending on the distribution of services and nodes chosen by
the administrator.

This latter possible disassociation would be the first penalty imposed by Open-
Stack (see label 1 in Figure 2), as data have to be requested and retrieved from410

remote underlying hosts, which adds network overheads. Moreover, storage nodes

12 Jonatan Enes et al.

Fig. 2 Resources exposed and performance penalties with OpenStack

use technologies like Logical Volume Management (LVM) to host an unlimited
number of volumes using a limited set of disks. Therefore, at some point two
or more volumes will have to simultaneously use the same disk, sharing its I/O
bandwidth, which is the second and most severe penalty when it comes to storage415

performance. The third penalty would be the use of intermediate layers like LVM
for the storage virtualization, adding a constant overhead to any I/O operation.
Finally, the fourth penalty would be the use of hypervisor-based virtualization,
which imposes an overhead that although minor for CPU and memory, it is al-
ways present. As a whole, in the OpenStack architecture the user can only pick420

and configure the CPU and memory requirements for the deployed applications.
Regarding storage volumes, only their size and number can be chosen, leaving
their performance optimization and management to the administrator.

On the other hand, our PaaS architecture adds disks alongside CPU and mem-
ory to the pool of resources that the user can select from (see Figure 3). By using425

this disk-as-a-resource approach, the instances have dedicated access to the disks
and can benefit from their full I/O performance. It has to be noted though that
flexibility is reduced with our solution, as by design the data stored in the disks
can only be accessed later by asking for the same node and disk. This loss of con-
trol over data placement is the most important trade o↵ that the user has to make430

when using our platform. However, to mitigate this downside, it is encouraged to
deploy applications when they are expected to be used for long periods of time
before being destroyed. As a consequence, any data intended to be saved should
be moved outside before the application is destroyed, in order to properly persist

Big Data-oriented PaaS architecture with disk-as-a-resource capability 13

Fig. 3 Resources exposed with the proposed PaaS

Table 2 Main di↵erences between our solution and OpenStack

Big Data-oriented
PaaS

OpenStack

Virtualization technology container-based hypervisor-based

Instance disks
directly mounted from
local disks

virtual volume hosted
locally or remotely

Instance configurable resources
CPU, memory and
disks

CPU, memory and
volumes

it in any on-premises storage solution close to the PaaS. To summarize, all the435

important di↵erences discussed in this section are described in Table 2.

4.3 A real use case: CESGA’s Big Data infrastructure

The deployment of our platform on a Big Data infrastructure is of great interest in
order to assess and compare its performance with other cloud platforms. Recently,
CESGA acquired a new hardware infrastructure specifically oriented to Big Data440

applications, being the ideal scenario to deploy and test our platform (as will be
shown in Section 5).

This particular infrastructure is composed of two racks containing a total of
38 nodes, 4 of which have slightly di↵erent hardware (faster SSD disks) to play a
role of master nodes if necessary. The main hardware and software specifications445

of both master and slave nodes are described in Table 3. In this real scenario,
it is possible to measure the previously introduced ratio disks-to-cores (see Sec-
tion 4.1.1), which would be 1:1 (12 disks:12 cores), and the ratio disks-to-memory
which would roughly be 1:5400 MB (12 disks:64 GB).

14 Jonatan Enes et al.

Table 3 Big Data infrastructure at CESGA: hardware and software configuration

Hardware configuration
#Nodes 38
CPU model 2x Intel Xeon E5-2620 v3 Haswell-EP
CPU speed 2.4 GHz (3.2 GHz in Turbo mode)
#Cores 12 (2x6)
Memory 64 GB DDR4
Network 1x10 Gbps + 2x1 Gbps

Disks
8x 480 GB SSD SATA 2.5” (master)
12x 2 TB NL SATA 3.5” (slave)

Software configuration
Operating System CentOS Linux release 7.2.1511
Java version OpenJDK build 1.8.0 171-7.b10
Disk file system XFS
Mount disks options rw,noatime,nodiratimeattr2,inode64,noquota

5 Performance evaluation450

One of the main goals of this paper is to prove that our container-based and disk-
aware architecture may as a whole improve the overall performance of real-world
Big Data applications compared to current private cloud-based platforms. This
section presents the results of the performance evaluation of our architecture com-
pared with OpenStack. First, Section 5.1 describes the experimental configuration455

and the benchmarks used in the evaluation. Next, performance results are analyzed
in Sections 5.2 (low-level benchmarking) and 5.3 (application-level benchmarking).

5.1 Experimental configuration and methodology

For the performance evaluation, two di↵erent testbeds have been deployed on
the CESGA Big Data infrastructure (see Table 3). The first one is our PaaS460

implementation and the second one is a private cloud deployed using OpenStack.
The latest release of OpenStack (Queens) has been configured following the o�cial
guidelines of the OpenStack Foundation [28], representing the typical and default
configurations for a standard deployment.

For each testbed, the experiments have been conducted at two di↵erent lev-465

els. On the one hand, the first series of experiments, carried out in Section 5.2,
consist of assessing the raw I/O performance of a single instance using the Flexi-
ble I/O (FIO) tester tool [2]. These tests represent a low-level disk benchmarking
that evaluates both sequential and random access using 8 independently mounted
volumes working in parallel with representative configurations in terms of block470

size and Queue Depth (QD) (see Table 4). On the other hand, Section 5.3 an-
alyzes the overall performance of Big Data applications on a 4-instance cluster
with 8 volumes per instance (i.e., 32 volumes in total). It is worth noting that the
cluster size of both testbeds was limited by the allowed use of the infrastructure
and not by any scalability boundary. For the application-level experiments, two475

popular data processing frameworks, Hadoop (version 2.7.3) and Spark (version
1.6.3), were deployed and executed using the Big Data Evaluator tool (BDEv) [6,
43]. Two representative Big Data workloads (see Table 5) have been selected: (1)

Big Data-oriented PaaS architecture with disk-as-a-resource capability 15

Table 4 Configuration of FIO benchmarks

Block size File size Queue Depth (QD)
Sequential Write/Read 4 KB, 1 MB 1 GB 1
Random Write/Read 4 KB 256 MB 1, 64

Table 5 Configuration of Hadoop/Spark benchmarks

Benchmark Description Input size
TeraSort Sorting of an input dataset generated by TeraGen 120 GB

PageRank
Ranks websites by counting the number and quality of
the links to each one

12 M of pages
with 5 iterations

TeraSort, which is an I/O-bound benchmark which orders an input dataset; and
(2) PageRank, an iterative CPU-intensive application which ranks websites. For480

both series of experiments the results provided take into account a minimum of
10 measurements, and variability is shown by including error bars in the graphs
to indicate the minimum and maximum sample values.

It is very important when testing the performance of both a single instance
or the 4-instance cluster, whether their volumes share the underlying disk access485

or not. In the case of our PaaS, instances are always given dedicated and local
access to the disks and thus volumes directly map to disks. However, it is never
sure in OpenStack if a volume will be placed in the same storage node where
the instance is running (see label 1 in Figure 2). In all the scenarios presented
for OpenStack, the remote volume access penalty has been manually removed by490

migrating and placing the volumes locally to the instance. Additionally, on a real
scenario it can not be assured if the volume will be placed on the same storage
node and disk as other instances’ volumes, thus sharing the underlying disk access
(see label 2). This latter penalty is of special interest and from now on it will be
referred to as volume coupling or just coupling, defined by dividing the number of495

active instance volumes by the number of underlying disks used. Although there
is support in OpenStack to balance the distribution of volumes across the storage
nodes so that coupling is reduced using a combination of filters and weights to
choose and order storage nodes and their disks, it is unavoidable that, in the end,
multiple instance volumes share the same hardware resources.500

Both the low-level and application-level benchmarks are evaluated using dif-
ferent levels of coupling. These di↵erent scenarios are compared against our PaaS,
where neither coupling nor remote volume access penalties apply. Figure 4 shows
the volume mapping layout for OpenStack. As can be seen, four di↵erent configu-
rations have been evaluated, with varying coupling values from 1 (8 volumes share505

8 disks) to 4 (8 volumes share 2 disks). Nevertheless, these OpenStack configu-
rations have been artificially created to provide a comparison with our PaaS by
using more favourable scenarios than in a real-world case, where the layout of the
instance volumes can greatly vary over time as instances and volumes are created
and destroyed, and the number of volumes backed by a disk can be greater than510

that of the worst case presented (see configuration 4 in Figure 4).

16 Jonatan Enes et al.

Fig. 4 Volume mapping configurations in OpenStack

5.2 Low-level disk benchmarking

Figure 5(a) shows the sequential write and read bandwidths for our PaaS and
for each OpenStack configuration detailed in Figure 4. The metric shown in the
bars is the mean bandwidth of the 8 volumes, while error bars indicate the lowest515

and highest measures. These experiments basically write and read a single file per
volume using a certain block size (i.e., the transfer size of each underlying I/O
operation at the file system level).

In the sequential write scenario (left graph), the mean bandwidth for Open-
Stack is reduced as the coupling rises, especially when using a large block size520

(i.e., 1 MB). More specifically, it can be observed that the bandwidth is roughly
halved from configuration 1 to 3 and 3 to 4 for 1 MB block size. In this case,
PaaS performance is similar to OpenStack configuration 1, where coupling has
been manually avoided. However, when considering a small block size (4 KB), the
OpenStack performance is significantly lower than PaaS even in the best-case sce-525

nario (configuration 1). It is worth noting that, with this block size, coupling does
not significantly a↵ect the bandwidth, which can be explained by the fact that
with a small block size more I/O transfers are needed and thus the virtualization
overhead becomes the main bottleneck.

In the sequential read benchmark (right graph), the same bandwidth reduction530

trend is also observed according to the coupling. Our PaaS architecture again
achieves a very similar bandwidth to OpenStack configuration 1 with a large block
size, while it clearly outperforms OpenStack if a small block size is used. Note the
high variability of OpenStack configuration 2 for both sequential tests when a 1
MB block size is used, the values being almost equal to configuration 1 and 3 for535

the highest and lowest measures, respectively. This is explained by the volume to
disk mapping shown in Figure 4. In configuration 2, there are volumes that have
dedicated disks, like configuration 1 has, while others have to share a disk with
another volume, like configuration 3 does, thereby having simultaneously “fast”
and “slow” volumes. This di↵erence is not observed in any other cases as the540

volume mapping is balanced, and thus their variability is significantly lower.

Big Data-oriented PaaS architecture with disk-as-a-resource capability 17

 0

 50

 100

 150

 200

Conf 1

Conf 2

Conf 3

Conf 4

B
a

n
d

w
id

th
 (

M
B

/s
)

OpenStack PaaS

Sequential Write

 1 MB block size
 4 KB block size

 0

 50

 100

 150

 200

Conf 1

Conf 2

Conf 3

Conf 4

B
a

n
d

w
id

th
 (

M
B

/s
)

OpenStack PaaS

Sequential Read

 1 MB block size
 4 KB block size

(a) Sequential write and read results (in MB/s)

 0

 200

 400

 600

 800

 1000

Conf 1

Conf 2

Conf 3

Conf 4

IO
P

S

OpenStack PaaS

Random Write

 1 QD - 4 KB block size
 64 QD - 4 KB block size

 0

 200

 400

 600

 800

 1000

Conf 1

Conf 2

Conf 3

Conf 4

IO
P

S

OpenStack PaaS

Random Read

 1 QD - 4 KB block size
 64 QD - 4 KB block size

(b) Random write and read results (in IOPS)

Fig. 5 Performance results for the low-level disk benchmarking

Figure 5(b) presents the random write and read results in terms of I/O op-
erations Per Second (IOPS) using a 4 KB block size, which is a representative
testbed for replicating real-world scenarios (e.g., databases, Web servers). Both
benchmarks show that a higher QD a↵ects performance, this e↵ect being more545

important in configurations with less contended volumes like 1 and 2, where cou-
pling is low. This is explained by the fact that configurations with volumes mapped
on dedicated disks can issue more I/O operations and expect them to be completed
faster, thanks to the dedicated access, while the remaining configurations do not
take advantage of the queue to o↵set the random operations, as the queue will fill550

soon. The high variability of configuration 2 is due to the same reason explained
in the sequential scenario. Finally, our PaaS is able to improve OpenStack per-
formance in all scenarios, showing higher bandwidths and IOPS than the most
e�cient OpenStack configuration.

5.3 Application-level benchmarking555

Figure 6 presents the execution times of TeraSort and PageRank using Hadoop
(left graph) and Spark (right graph) with the di↵erent OpenStack configurations
and the PaaS, showing the median and the lowest and highest values. These exper-
iments were conducted on a dedicated Hadoop cluster, without any interference

18 Jonatan Enes et al.

 0

 10

 20

 30

 40

 50

 60

 70

TeraSort

PageRank

T
im

e
 (

m
in

)

Hadoop

PaaS
OpenStack-conf1
OpenStack-conf2
OpenStack-conf3
OpenStack-conf4

 0

 10

 20

 30

 40

 50

 60

 70

TeraSort

PageRank

T
im

e
 (

m
in

)

Spark

PaaS
OpenStack-conf1
OpenStack-conf2
OpenStack-conf3
OpenStack-conf4

Fig. 6 Application-level performance results on an dedicated environment (in minutes)

 0

 20

 40

 60

 80

 100

 120

TeraSort

PageRank

T
im

e
 (

m
in

)

Hadoop (TeraSort + PageRank)

PaaS
OpenStack-conf1
OpenStack-conf2
OpenStack-conf3
OpenStack-conf4

 0

 20

 40

 60

 80

 100

 120

TeraSort

T
im

e
 (

m
in

)

Hadoop (3x TeraSort)

PaaS
OpenStack-conf1
OpenStack-conf2
OpenStack-conf3
OpenStack-conf4

Fig. 7 Application-level performance results on a shared environment (in minutes)

between the execution of the workloads. Regarding TeraSort, it can be clearly ob-560

served that our PaaS deployment significantly outperforms OpenStack, specially
with coupling, obtaining gains in Hadoop ranging from 32% (for the first config-
uration) to 239% (for the fourth configuration), and gains in Spark from 12% to
152%. The I/O-bound nature of this workload enables our PaaS to fully exploit
the underlying disk bandwidth as shown in Figure 5(a), allowing to provide a565

speedup of up to 3.4x. This reinforces one of the main conclusions of this work,
the fact that the storage e�ciency of current platforms is vital for Big Data ap-
plications. Regarding PageRank, this iterative workload is mostly CPU-bound,
with light disk I/O, and consequently presents moderate gain, exposing mainly
the benefits of replacing the hypervisor-based virtualization with containers. The570

performance gain ranges from 8.1% (for the decoupled scenario) to 14.1% (for the
fourth configuration) in Hadoop, and from 4.8% to 8.5% in Spark.

Figure 7 presents the results of running the TeraSort and PageRank workloads
on a simulated shared environment, where di↵erent users launch their applications
at di↵erent times but always forcing their execution to overlap at some moment.575

Only Hadoop results are presented, as the Spark ones are very similar. The left
graph shows the overlapped execution of both TeraSort and PageRank by two
di↵erent users. The right graph shows the results of executing three overlapped
instances of TeraSort. For these experiments, the underlying available bandwidth
is fully exploited, as with several di↵erent tasks submitting I/O requests the un-580

derlying disk accesses will be more randomly spread. In the first scenario, both
benchmarks benefit from the PaaS with gains ranging from 29.5% (configuration
1) to 250% (configuration 4) for TeraSort, and from 20.5% to 85% for PageRank.

Big Data-oriented PaaS architecture with disk-as-a-resource capability 19

 0

 20

 40

 60

 80

 100

00 02 04 06 08 10

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00 02 04 06 08 10

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (min)

Util

(a) PaaS

 0

 20

 40

 60

 80

 100

00 03 06 09 12 15

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00 03 06 09 12 15

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (min)

Util

(b) OpenStack with configuration 1 (volumes decoupled)

 0

 20

 40

 60

 80

 100

00 07 14 21 28 35

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00 07 14 21 28 35

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (min)

Util

(c) OpenStack with configuration 4 (volumes coupled 8 to 2)

Fig. 8 CPU and disk utilization during the TeraSort execution on the dedicated environment

In the second scenario, the overlapped TeraSort executions further show the ef-
fects of volume coupling, as the gains go from 40.9% in configuration 1 up to 358%585

when configuration 4 is used. To summarize, in the shared environment the max-
imum gains achieved have a factor of about 3.5x and 4.5x for the first and second
scenarios, respectively.

To provide more insights on the performance di↵erences between the PaaS and
OpenStack, Figure 8 shows the CPU (left plot) and disk utilization (right plot)590

20 Jonatan Enes et al.

 0

 20

 40

 60

 80

 100

00 06 12 18 24 30

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00 06 12 18 24 30

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (min)

Util

(a) PaaS

 0

 20

 40

 60

 80

 100

00 09 18 27 36 45

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00 09 18 27 36 45

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (min)

Util

(b) OpenStack with configuration 1 (volumes decoupled)

 0

 20

 40

 60

 80

 100

00:00 00:24 00:48 01:12 01:36 02:00

C
P

U
 u

til
iz

a
tio

n
 (

%
)

Time (h:min)

Wait I/O System User

 0

 20

 40

 60

 80

 100

00:00 00:24 00:48 01:12 01:36 02:00

D
is

k
u

til
iz

a
tio

n
 (

%
)

Time (h:min)

Util

(c) OpenStack with configuration 4 (volumes coupled 8 to 2)

Fig. 9 CPU and disk utilization during the TeraSort execution on the shared environment

during the execution of a single TeraSort using Hadoop on the dedicated envi-
ronment. Figure 9 presents the same graphs when simultaneously executing three
TeraSort workloads using Hadoop on the shared environment. For the disk plots, a
single disk is represented from the pool of all disks available to the instances, after
having checked nonetheless that the usage is spread more or less evenly across all595

disks. From top to bottom, the first row shows the PaaS results and the second
and third rows the OpenStack results with configurations 1 (volumes decoupled)

Big Data-oriented PaaS architecture with disk-as-a-resource capability 21

and 4, respectively. It can be appreciated in the CPU utilization that a significant
percentage of execution is spent waiting for I/O operations, as expected by the
heavy I/O nature of TeraSort. However, this percentage is clearly higher for Open-600

Stack, further increasing with the volume coupling. In OpenStack’s configuration 4
particularly, the amount of time spent in I/O wait is even larger than the amount
of time spent in user execution, a situation that shows the heavy penalty that
coupling imposes. Regarding disk utilization, it can be seen how TeraSort was not
actually a↵ected by any disk bottleneck on the dedicated environment, unlike the605

several TeraSort instances simultaneously executed on the shared environment. In
this latter scenario, disk utilization percentages increase and while the PaaS does
not cause any bottleneck, OpenStack begins to show high utilizations with clear
bottlenecks in configuration 4.

6 Conclusions610

Current Big Data applications still lack proper support in the most commonly
used platforms, architectures and cloud providers. Aside from HPC systems, most
of the available solutions were not designed with performance in mind but with
flexibility and good usability. However, this search for a high level of flexibility has
led to an increasing use of virtualization technologies, which allow providers to615

abstract the resources and the underlying infrastructure from the applications that
use them. In particular, storage is a resource that is currently heavily abstracted,
generally considering its e�ciency of lesser importance than computing power
provided by CPU and memory. Typically, the most common penalties that a↵ect
storage resources are the underlying resource sharing without proper policies to620

avoid it, the use of remotely accessible storage, and the virtualization overheads
imposed by volume managers or intermediate layers. Unfortunately, most Big Data
frameworks and applications rely on storage and its underlying I/O performance
to execute e�ciently. Thus, it is critical that newer platforms, especially those
with Big Data uses in mind, pay special attention to storage resources and the625

way they are handled and scheduled.
In this paper, we have proposed a novel PaaS solution specifically targeted

for Big Data applications, which uses a microservice-based architecture that al-
lows the scheduling of disks as resources so that applications can use them in a
fully dedicated manner and exploit their underlying I/O bandwidth. Moreover,630

Docker containers were used, considering the current movement that aims to re-
place traditional hypervisor-based virtualization with a lighter approach based on
operating-system-level virtualization in the form of containers. This combination
of improvements over traditional architectures is interesting to be considered when
storage performance is critical, as proven by the comparison with OpenStack, us-635

ing representative Big Data workloads. The results obtained on a real Big Data
infrastructure deployed at CESGA have shown that when virtualization overheads
are removed or mitigated and, most importantly, applications and frameworks are
given bare-metal disk bandwidth, performance can be significantly improved in
real-world scenarios with multiple workloads running simultaneously. This PaaS640

architecture is available for CESGA users at https://bigdata.cesga.es.
The architecture proposed in this work could be improved in terms of flexibility

and usability. Future work includes reusing the data stored on the disks, as data is

22 Jonatan Enes et al.

neither moved nor deleted, by allowing the user to do an exact instance mapping
in the same nodes and disks if the cluster or application has been stopped or645

destroyed. Fortunately, the scheduler and the underlying layers (e.g., Mesos) allow
this remapping in a straightforward way by looking and asking for specific disks.
Additional planned features could also leverage Mesos to allow dynamic resizing
of clusters both vertically (i.e., resources of the instances) and horizontally (i.e.,
number of instances), and to give the user the option to choose from di↵erent types650

of resources (e.g., HDD or SSD disks) that are available throughout the PaaS.

Acknowledgements This work was supported by the Ministry of Economy, Industry and
Competitiveness of Spain (Project TIN2016-75845-P, AEI/FEDER, EU), and by the FPU
Program of the Ministry of Education (grant FPU15/03381).

References655

1. Amazon Web Services (AWS): https://aws.amazon.com/. Last visited: June 2018
2. Axboe, J.: FIO tool github site. https://github.com/axboe/fio. Last visited: June 2018
3. Bakshi, K.: Considerations for Big Data: architecture and approach. In: IEEE Aerospace

Conference, AeroConf’12, pp. 1–7. Big Sky, MT, USA (2012)
4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,660

I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating
Systems Principles, SOSP’03, pp. 164–177. Bolton Landing, NY, USA (2003)

5. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud
Computing 1(3), 81–84 (2014)

6. Big Data Evaluator (BDEv): http://bdev.des.udc.es/. Last visited: June 2018665

7. Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-aware algorithms for scheduling
of workflow ensembles in clouds. Journal of Grid Computing 14(2), 359–378 (2016)

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerg-
ing IT platforms: vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems 25(6), 599–616 (2009)670

9. Caballer, M., Zala, S., Garćıa, Á.L., Moltó, G., Fernández, P.O., Velten, M.: Orchestrating
complex application architectures in heterogeneous clouds. Journal of Grid Computing
16(1), 3–18 (2018)

10. CESGA Supercomputing Center website: http://www.cesga.es/. Last visited: June 2018
11. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud675

serving systems with YCSB. In: 1st ACM Symposium on Cloud Computing, SoCC’10,
pp. 143–154. Indianapolis, IN, USA (2010)

12. Darwin, P.B., Kozlowski, P.: AngularJS web application development. Packt Publishing
(2013)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-680

munications of the ACM 51(1), 107–113 (2008)
14. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs containerization to support PaaS. In:

IEEE International Conference on Cloud Engineering, IC2E’14, pp. 610–614. Boston, MA,
USA (2014)

15. Expósito, R.R., Taboada, G.L., Ramos, S., González-Domı́nguez, J., Touriño, J., Doallo,685

R.: Analysis of I/O performance on an Amazon EC2 cluster compute and high I/O plat-
form. Journal of Grid Computing 11(4), 613–631 (2013)

16. Ghoshal, D., Canon, R.S., Ramakrishnan, L.: I/O performance of virtualized cloud envi-
ronments. In: 2nd International Workshop on Data Intensive Computing in the Clouds,
DataCloud-SC’11, pp. 71–80. Seattle, WA, USA (2011)690

17. Google Compute Engine (GCE): https://cloud.google.com/compute/. Last visited: June
2018

18. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H., Shenker,
S., Stoica, I.: Mesos: a platform for fine-grained resource sharing in the data center. In:
8th USENIX Symposium on Networked Systems Design and Implementation, NSDI’11,695

pp. 295–308. Boston, MA, USA (2011)

Big Data-oriented PaaS architecture with disk-as-a-resource capability 23

19. Jacobs, A.: The pathologies of Big Data. Communications of the ACM 52(8), 36–44 (2009)
20. Ji, C., Li, Y., Qiu, W., Awada, U., Li, K.: Big Data processing in cloud computing en-

vironments. In: 12th International Symposium on Pervasive Systems, Algorithms and
Networks, I-SPAN’12, pp. 17–23. San Marcos, TX, USA (2012)700

21. Kaisler, S., Armour, F., Espinosa, J.A., Money, W.: Big Data: issues and challenges moving
forward. In: 46th Hawaii International Conference on System Sciences, HICSS’13, pp. 995–
1004. Wailea, HI, USA (2013)

22. Katal, A., Wazid, M., Goudar, R.H.: Big Data: issues, challenges, tools and good prac-
tices. In: 6th International Conference on Contemporary Computing, IC3’13, pp. 404–409.705

Noida, India (2013)
23. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual machine

monitor. In: Ottawa Linux Symposium, OLS’07, pp. 225–230. Ottawa, Canada (2007)
24. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud providers.

In: 10th ACM Internet Measurement Conference, IMC’10, pp. 1–14. Melbourne, Australia710

(2010)
25. Mell, P., Grance, T.: The NIST definition of cloud computing. Communications of the

ACM 53(6), 46–51 (2010)
26. Merkel, D.: Docker: lightweight Linux containers for consistent development and deploy-

ment. Linux Journal (239), 76–91 (2014)715

27. Mizusawa, N., Nakazima, K., Yamaguchi, S.: Performance evaluation of file operations
on OverlayFS. In: 5th International Symposium on Computing and Networking, CAN-
DAR’17, pp. 597–599. Aomori, Japan (2017)

28. OpenStack Installation Tutorial for Red Hat Enterprise Linux and CentOS: http://docs.
openstack.org/newton/install-guide-rdo/. Last visited: June 2018720

29. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud - survey
results and own solution. Journal of Grid Computing 14(2), 265–282 (2016)

30. Rackspace website: https://www.rackspace.com. Last visited: June 2018
31. Ramon-Cortes, C., Serven, A., Ejarque, J., Lezzi, D., Badia, R.M.: Transparent orchestra-

tion of task-based parallel applications in containers platforms. Journal of Grid Computing725

16(1), 137–160 (2018)
32. Ronacher, A.: Flask, a Python microframework. http://flask.pocoo.org/. Last visited:

June 2018
33. Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution for

cloud computing. International Journal of Computer Applications 55(3), 38–42 (2012)730

34. Shafer, J.: I/O virtualization bottlenecks in cloud computing today. In: 2nd Workshop on
I/O Virtualization, WIOV’10, pp. 5:1–5:7. Pittsburgh, PA, USA (2010)

35. Shafer, J., Rixner, S., Cox, A.L.: The Hadoop distributed filesystem: balancing portability
and performance. In: IEEE International Symposium on Performance Analysis of Systems
& Software, ISPASS’10, pp. 122–133. White Plains, NY, USA (2010)735

36. Shamsi, J., Khojaye, M.A., Qasmi, M.A.: Data-intensive cloud computing: requirements,
expectations, challenges, and solutions. Journal of Grid Computing 11(2), 281–310 (2013)

37. Shue, D., Freedman, M.J., Shaikh, A.: Performance isolation and fairness for multi-tenant
cloud storage. In: 10th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI’12, pp. 349–362. Hollywood, CA, USA (2012)740

38. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System.
In: IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST’10, pp. 1–10.
Incline Village, NV, USA (2010)

39. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based oper-
ating system virtualization: a scalable, high-performance alternative to hypervisors. In:745

2nd ACM European Conference on Computer Systems, EuroSys’07, pp. 275–287. Lisbon,
Portugal (2007)

40. Tihfon, G.M., Park, S., Kim, J., Kim, Y.M.: An e�cient multi-task PaaS cloud infras-
tructure based on Docker and AWS ECS for application deployment. Cluster Computing
19(3), 1585–1597 (2016)750

41. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-freeing
attacks: improve your cloud performance (at your neighbor’s expense). In: 19th ACM
Conference on Computer and Communications Security, CCS’12, pp. 281–292. Raleigh,
NC, USA (2012)

42. Vavilapalli, V. K. et al.: Apache Hadoop YARN: Yet Another Resource Negotiator. In:755

4th Annual Symposium on Cloud Computing, SOCC’13, pp. 5:1–5:16. Santa Clara, CA,
USA (2013)

24 Jonatan Enes et al.

43. Veiga, J., Enes, J., Expsito, R.R., Tourio, J.: BDEv 3.0: Energy e�ciency and microarchi-
tectural characterization of big data processing frameworks. Future Generation Computer
Systems 86, 565–581 (2018)760

44. Wu, J., Ping, L., Ge, X., Wang, Y., Fu, J.: Cloud storage as the infrastructure of cloud
computing. In: International Conference on Intelligent Computing and Cognitive Infor-
matics, ICICCI’10, pp. 380–383. Kuala Lumpur, Malaysia (2010)

45. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux Utility for Resource Man-
agement. In: 9thWorkshop on Job Scheduling Strategies for Parallel Processing, JSSPP’03,765

pp. 44–60. Seattle, WA, USA (2003)
46. Younge, A.J., Henschel, R., Brown, J.T., Von Laszewski, G., Qiu, J., Fox, G.C.: Analysis of

virtualization technologies for high performance computing environments. In: 4th IEEE
International Conference on Cloud Computing, CLOUD’11, pp. 9–16. Washington DC,
USA (2011)770

47. Zaharia, M. et al.: Apache Spark: a unified engine for Big Data processing. Communica-
tions of the ACM 59(11), 56–65 (2016)

48. Zeng, W., Zhao, Y., Ou, K., Song, W.: Research on cloud storage architecture and key
technologies. In: 2nd International Conference on Interaction Sciences: Information Tech-
nology, Culture and Human, ICIS’09, pp. 1044–1048. Seoul, South Korea (2009)775

