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Cluster computing is an area of growing interest in search to support parallel and 

distributed applications.  Many of these applications are I/O intensive, and the limited 
bandwidth of the I/O subsystem of the cluster is an important bottleneck that is usually 
ignored.  Thus, the performance of parallel I/O primitives is critical for overall cluster 
performance.  In this work, we characterize the performance of basic ROMIO MPI-I/O 
routines on a PC cluster using the NFS and PVFS file systems.  Our goal is to detect 
weak spots in the use of these routines and to predict their impact on the application’s 
performance. 

 

Keywords: cluster computing, performance analysis, parallel I/O, MPI-I/O, ROMIO, 

NFS, PVFS 

1. INTRODUCTION 

Many parallel applications require huge data sets that have to be stored on disk.  
For instance, the authors have developed parallel scientific and engineering applications 
in diverse areas such as fluid mechanics [1], image synthesis [2] and environmental 
chemistry [3] that require efficient I/O to ensure acceptable performance.  Out-of-core 
computation is another typical example of intensive I/O.  

MPI-I/O [4] provides a standard parallel I/O interface.  The performance of the I/O 
primitives depends not only on the disk and network hardware, but also on the underlying 
file system.  It is clear that programming portability does not mean performance port-
ability.  Although an exhaustive set of experiments can be done on a cluster to assess 
quantitatively the performance of the I/O subsystem, we have focused on low-level tests 
to study basic MPI-I/O primitives.  Our aim is to estimate I/O overheads with simple 
expressions, which can help application developers to design I/O-intensive parallel pro-
grams more efficiently. Benchmark suites for MPI-I/O functions were presented in [5, 6].  
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Although the authors did not adopt any particular data model, these reports are good 
starting points for deriving analytic models and developing more in-depth tests.  

This work is organized as follows.  In the next section, we comment on some 
related works.  Section 2 gives an overview of parallel I/O topics (file systems and 
MPI-I/O routines).  In section 3, the underlying configuration of the cluster used in the 
experiments is detailed; section 4 presents experimental results and performance models 
for some MPI-I/O routines, using both the standard NFS file system and PVFS, a parallel 
file system for clusters.  Finally, conclusions are drawn in section 5. 

1.1 Related Work 

Mache et al. [7] studied the parallel I/O performance of PVFS on a PC cluster using 
a ray tracing application as a case study.  They also compared the influence of different 
disk types (IDE vs SCSI) and networks (Fast Ethernet vs Gigabit Ethernet) on I/O 
performance.  Taki and Utard [8] presented a straightforward port of ROMIO [9], an 
MPI-I/O implementation, on PVFS.  They compared typical file accesses and data 
distributions of parallel applications using ROMIO, on both NFS and PVFS.  In our 
work, we used a new version of PVFS with specific interface to ROMIO.  Neither paper 
focused on specific routines from the MPI-I/O library, and they did not model the 
behavior of these primitives.  

In this work, we do not report the raw I/O performance of NFS and PVFS, but rather 
the performance of specific ROMIO MPI-I/O primitives on both file systems, and we 
intend to model them analytically.  Therefore, the results presented here are user-level 
oriented in order to give practical help for the development of parallel applications on 
clusters.  

2. BACKGROUND TOPICS 

2.1 File Systems: NFS and PVFS 

The most widely available remote file system protocol is the Network File System 
(NFS) [10], designed by Sun Microsystems as a client-server application.  It consists of 
a client part that imports file systems from other machines and a server part that exports 
local file systems to other machines.  NFS is designed to be stateless.  As there is no 
state to maintain or recover, NFS can continue to operate even during periods of client or 
server failures.  Therefore, it is much more robust than a system that operates with a 
state, although the state requests to the server increase traffic. In addition, as the number 
of processors and the file size increase, the NFS server and the network are flooded with 
the client requests, which is an important bottleneck.  In fact, NFS was not designed for 
large parallel I/O applications that require high-performance concurrent file accesses.  

The Parallel Virtual File System (PVFS) [11] provides a high-performance and 
scalable parallel file system, and unlike other proprietary parallel file systems, it was 
developed for Linux PC clusters.  PVFS spreads data out across multiple local disks in 
cluster nodes.  Thus, applications have multiple paths to data through the network 
(which eliminates single bottlenecks in the I/O path) and multiple disks on which data is 
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stored.  PVFS consists of three components: a metadata server, which maintains 
information in files and directories stored in the parallel file system; I/O servers that store 
data on local files; and clients that contact these servers to store and retrieve data.  The 
metadata and I/O servers may be placed on dedicated resources or may be shared for 
computation purposes, in order to achieve a reasonable tradeoff between I/O and 
computing performance.  PVFS provides multiple interfaces, including an MPI-I/O 
interface via ROMIO.  

2.2 MPI-I/O Routines 

MPI-I/O is a standard parallel file I/O interface, part of the MPI-2 specification [4].  
An MPI file is an ordered list of MPI datatypes.  A view of the file defines what data are 
visible to each processor.  It consists of a displacement (an offset from the beginning of 
the file), an elementary type (the unit of data access and positioning within a file, which 
can be predefined or user-defined), and a filetype (a template for accessing the file).  

Data access primitives are classified, based on the coordination, as noncollective (or 
independent) and collective.  Noncollective routines, MPI_File_{read|write}, involve 
only one processor and an I/O request.  Collective routines, MPI_File_{read|write}_all, 
involve all the processors that have opened a given file, and they can perform better than 
noncollective routines, because, as all the processors may coordinate, small requests may 
be merged (see the discussion of collective I/O optimization given later).  In addition, 
MPI provides three types of positioning and, thus, three categories of data access routines: 
individual file pointer routines that use a private file pointer maintained by each 
processor and incremented by each read/write (they are the routines listed above); explicit 
offset primitives that take an argument that defines where the data is read or written, that 
is, MPI_File_{read|write}_at and the collective version {read|write}_at_all; and shared 
file pointer primitives, which use a shared file pointer, MPI_File_{read|write}_shared, 
and the collective {read|write}_ordered.  All the enumerated routines are blocking 
routines; that is, they do not return until data transfer is completed.  All of them have 
nonblocking counterparts, which do not wait for completion, in order to allow overlap of 
I/O with computation.  

ROMIO [9] is a portable implementation of MPI-I/O that works on most parallel 
computers and networks of PCs/workstations, and supports multiple file systems (such as 
NFS and PVFS).  It is optimized for noncontiguous access patterns (using derived 
datatypes), which are usually found in parallel applications, in order to reduce the effect 
of high I/O latency.  Specifically, it implements data sieving and collective I/O 
optimizations [12].  Data sieving makes large I/O contiguous accesses and extracts in 
memory the data really needed, instead of making several small, noncontiguous accesses.  
Collective I/O optimization performs I/O in two stages: in the first one (the I/O stage), 
processors perform I/O for the merged request and, in the second one (the communication 
stage), processors redistribute data among themselves to achieve the desired distribution 
(this is for reading data; the order of the stages is reversed for writing).  A proposal to 
improve performance of collective I/O of ROMIO on PVFS is presented in [13]. 
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3. CLUSTER CONFIGURATION 

Our PC cluster (see Fig. 1) consists of 24 nodes; one of them acts as a front-end 
providing services to the rest of the nodes (NFS, for instance).  Each node has one AMD 
K6 processor and two Fast Ethernet interfaces, except for the front-end, which is a dual 
Pentium-II with an additional network interface attached to the departmental network.  
Two different networks separate IP administrative traffic from application traffic (MPI 
programs, for instance), and it is possible to combine both networks into a single virtual 
network to achieve higher throughput, by bonding both adapters (channel bonding).  
The switches are 24-port 3Com SuperStack II 3300 units stacked in groups of two with a 
1Gbit/s link.  They can be managed directly from a console or, once they have an IP 
address assigned by SNMP, from a telnet session or from an HTML client with Java 
support.  From the management point of view, the switches are crucial devices, 
especially with Ethernet, where they can be integrated with external networks.  Switches 
are suitable points for monitoring because only they can know the real status of physical 
links, and because having them probe the nodes avoids extra traffic from a management 
workstation.  In our case, switches implement RMON monitoring: instead of directly 
managing individual nodes from the front-end or an external workstation, most of the 
work is done by the switch itself, which is then queried by SNMP from the workstation, 
thus reducing network traffic and complexity.  Further information about the cluster 
configuration can be found in [14].   

      

 

Fig. 1. PC cluster configuration. 



EVALUATION OF MPI-I/O ON A CLUSTER 

 

829

 

For illustrative purposes, we have modeled point-to-point latency (MPI_Send) in the 
cluster as T(n)=206 + 0.106n µs, broadcast latency (MPI_Bcast) as T(n, p) = 206log2p + 
(0.105log2p)n µs and reduction latency (MPI_Reduce, specifically sum reduction of 
doubles) as T(n,p) = (435log2p − 103) + (0.185log2p)n µs, where n is the message size in 
bytes and p the number of processors.  As a comparison, in [15] we obtained the 
following results for the Fujitsu AP3000 multicomputer, composed of UltraSparc-II 
processors connected via a high-speed communication network (AP-Net): T(n) = 69 + 
0.0162n µs for point-to-point, T(n,p) = 69log2p + (0.0162log2p)n µs for broadcast, and 
T(n, p) = (90log2p − 15) + (0.0222log2p)n µs for reduction.  As the AP-Net is a costly 
dedicated network, message-passing latencies in the cluster Fast Ethernet are much 
higher.  

4. I/O EXPERIMENTAL RESULTS 

4.1 Parallel I/O Performance Model 

We have based our work on well-known message-passing communication mod-
els [15] with the aim of proposing the following simple model for parallel I/O operations: 
T(n, p) = K(p)n, where T(n, p) is the execution time of the operation (in seconds), p is the 
number of processors, n is the file size (in MB), and K(p) is the I/O time per data unit (in 
s/MB).  Additional performance metrics (such as bandwidths) can be easily derived 
from this model.  As we will show in sections 4.3 and 4.4, usually K(p) = k/p or K(p) = 
k/log2p.  We have not considered a “startup” time parameter in this model (this would be 
the time it takes to perform an I/O operation on an empty file) because its cost is negligi-
ble in our framework of large files, which are our target for improving performance in 
real applications.  

4.2 Experimental Conditions 

We designed our own I/O tests.  They were repeated with different file sizes (from 
64KB to 32MB) and different numbers of processors.  Timing outliers were taken into 
account to obtain accurate measures.  As each test was repeated several times in a loop, 
a barrier was included to avoid a pipelined effect, where some processors might start the 
next call to the I/O operation even before all the processors have finished the current 
operation.  The routine MPI_File_sync, which performs an I/O flush, was also used at 
appropriate points in the tests to avoid reads/writes from intermediate memory levels that 
could distort the performance results.  The parameter K(p) of the model was derived 
from a least-squares fit of T against n and p (from p = 2) using the minimum times 
obtained in the tests.  

We installed NFS v3 and PVFS v1.5.0 under Debian Linux (kernel 2.2.18).  We 
used ROMIO v1.0.3 with the MPI implementation MPICH v1.2.1 [16].  In practice, it is 
more usual to use an implicit file pointer than an explicit offset in I/O operations; thus, 
we discarded this set of primitives in our experiments.  Regarding operations with 
shared file pointers, they involve serialization ordering (not deterministic for 
noncollective primitives), which is only desirable in some cases (for instance, to 
implement a log file of a parallel program), and is inappropriate for exploiting parallelism 
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in typical I/O-intensive applications.  Moreover, the current version of ROMIO does not 
support shared file pointers on PVFS.  Regarding nonblocking I/O primitives, it is 
difficult to quantify the global performance because it depends on the computation that 
can be performed concurrently with the I/O operation in a particular application.  

In conclusion, we only focused on blocking I/O routines (both collective and 
noncollective) that use individual file pointers.  We also considered in our experiments 
two file access patterns commonly found in parallel applications: contiguous or block 
access and interleaved or cyclic access.  

4.3 NFS Performance 

Fig. 2 shows some experimental results for the MPI-I/O routines obtained by using 
NFS and fixing p = 8 in the first graph and n = 16MB in the second one (some graphs 
presented in this paper use a log scale on the Y axis to improve readability).  We 
experimentally observed that all the primitives under evaluation (except for interleaved 
access with collective primitives) did not scale using NFS, in the sense that the read/write 
latencies did not decrease as the number of processors increased.  Latencies were even 
worse when more processors were employed; see, for instance, interleaved access using 
the noncollective routines shown in the second graph of Fig. 2, where the latency of the 
interleaved write shown exceeds the limit of the graph from p = 4.  Thus, it was not 
worth modeling the routines that did not scale to the number of processors.  We 
obtained the following models for interleaved access using collective I/O primitives: 
Tread-all = (1.7045/p)n s, Twrite-all = (2.0048/log2p)n s. 

 

 
Fig. 2. Measured MPI-I/O latencies on NFS for different file sizes (left) and number of processors 

(right) (cont.: contiguous access; int.: interleaved access). 

Regarding contiguous access, there is not much difference between collective and 
noncollective primitives.  As expected, the collective optimizations described in section 
2.2 only affected interleaved access.  
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4.4 PVFS Performance 

In the PVFS tests, 8 nodes in the cluster were configured as I/O servers, and one 
node was dedicated exclusively as a metadata server.  Unlike the NFS results, all the 
primitives analyzed speeded up contiguous I/O using PVFS.  After curve fitting, we 
obtained the following results: Tread = (0.1524/p)n s, Tread-all = (0.1570/p)n s, Twrite = 
(0.0790/log2p)n s, Twrite-all = (0.0773/log2p)n s.  As in case of NFS, for a contiguous 
access, the collective and noncollective routines exhibited practically the same behavior. 

Regarding interleaved access, only collective primitives speeded up I/O (from p = 2), 
and they had the same complexity as their contiguous counterparts: Tread-all = (1.3222/p)n 
s, Twrite-all = (0.7327/log2p)n s. Although collective I/O was optimized for noncontiguous 
accesses, note that the constant of the models increased by approximately one order of 
magnitude with respect to contiguous access.  

 

 
Fig. 3. Measured (meas.) and estimated (est.) MPI-I/O latencies on PVFS for different file sizes, 

using contiguous access (left) and interleaved access (right). 

 

Fig. 4. Measured (meas.) and estimated (est.) MPI-I/O latencies on PVFS for different number of 
processors, using contiguous access (left) and interleaved access (right). 
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Fig. 5. Measured MPI-I/O latencies on PVFS for different file sizes (left) and number of processors 

(right) (cont.: contiguous access, int.: interleaved access). 

Fig. 3 depicts measured and estimated (where applicable) latencies for p = 8, using 
contiguous access in the first graph and interleaved access in the second one.  The same 
results are presented in Fig. 4, for different numbers of processors and a file size of 
16MB.  In order to compare contiguous vs interleaved latencies, the two graphs of Fig. 
5 show the measured results of both kinds of accesses, for p = 8 and n = 16MB, 
respectively.   It can be observed from the latter graph that, although the noncollective 
routines did not scale for an interleaved access, their latencies were lower than those of 
the corresponding collective primitives for a small number of processors (typically, 2 or 
4).  However, as p increased, latencies improved through the use of collective primitives 
(this also happened with NFS; see the interleaved read shown in the second graph of Fig. 
2).  It seems that the overhead of collective optimization in an interleaved access is 
greater than the benefit of the own optimization for a small value of p. 
Finally, we found that performance tended to degrade for p > 12, due to the overlap of 
I/O servers and clients, which shared the same nodes, as the number of clients increased. 

4.5 Putting it All Together 

Table 1 summarizes the complexity of the models of each primitive, for each file 
system and access pattern.  The empty entries correspond to the routines that do not 
scale. Performance was better for the modeled read routines, O(1/p), than for the write 
routines, O(1/log2p) although the difference was more pronounced in NFS than in PVFS. 

Table 1. Model complexity of MPI-I/O routines. 

NFS PVFS 
MPI-I/O Routine 

Contiguous Interleaved Contiguous Interleaved 

MPI_File_read ____ ____ O(1/p) ____ 

MPI_File_write ____ ____ O(1/log
2
p) ____ 

MPI_File_read_all ____ O(1/p) O(1/p) O(1/p) 

MPI_File_write_all ____ O(1/log
2
p) O(1/log

2
p) O(1/log

2
p) 
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Fig. 6 compares the measured read performance using NFS and PVFS, for p = 8 in 
the first graph and n = 16MB in the second one.  The same results are presented for the 
write operation in Fig. 7 (some noncollective interleaved write results in NFS do not 
appear because they exceed the limit of the graph).  PVFS clearly outperformed NFS 
although the improvement was greater for write than for read; see, for instance, the 
latency curves of NFS/PVFS contiguous access for read (right graph of Fig. 6) and write 
(right graph of Fig. 7).  Improvement can also be easily observed for collective 
interleaved access by comparing the corresponding models for read/write under NFS and 
PVFS. 

 

 

Fig. 6. Measured MPI-I/O read latencies on NFS and PVFS for different file sizes (left) and number 
of processors (right) (cont.: contiguous access, int.: interleaved access). 

 

Fig. 7. Measured MPI-I/O write latencies on NFS and PVFS for different file sizes (left) and num-
ber of processors (right) (cont.: contiguous access, int.: interleaved access). 
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5. CONCLUSIONS 

Characterization of the I/O overhead is very important for the development of 
I/O-intensive parallel codes.  In this work, we have presented a comprehensive study of 
basic MPI-I/O primitives on a PC cluster based on the NFS and PVFS file systems.  The 
results reported here can help application developers tune the file system configuration 
and select the best I/O routine in order to improve I/O performance.  

I/O primitives can be more accurately modeled by defining different functions for 
different file size intervals.  Nevertheless, for the sake of generalization, we found it 
more interesting to show the global functions that have been experimentally proved to 
have reasonable accuracy.  They also provide a clearer overview of the I/O subsystem 
behavior.  

In general, ROMIO MPI-I/O routines do not scale using NFS.  It is clear that NFS 
was not designed for parallel I/O.  We found that, in many cases, it was better to use 
POSIX read/fread and write/fwrite routines directly (which have an easier interface, and 
are widely known to programmers) to achieve even better performance than could be 
achieved using the corresponding MPI-I/O primitives.  A file system specifically 
designed for parallel I/O (such as PVFS) is, therefore, necessary to speed up MPI-I/O 
primitives, as we have experimentally shown.  Although ROMIO is optimized for 
noncontiguous accesses using collective primitives, the overhead of these optimizations 
should be reduced. 

Network bandwidth is another key parameter in parallel I/O.  We have found that 
our Fast Ethernet network limits I/O performance from a certain number of processors.  
Thus, faster networks (e.g. Myrinet, Gigabit Ethernet, SCI), should be considered in large 
cluster configurations when it is critical to achieve good parallel I/O performances for big 
files. 
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