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Abstract Unified Parallel C (UPC) is a parallel extension of ANSI C based on the Partitioned Global

Address Space (PGAS) programming model, which provides a shared memory view that simplifies code

development while it can take advantage of the scalability of distributed memory architectures. Therefore,

UPC allows programmers to write parallel applications on hybrid shared/distributed memory architec-

tures, such as multi-core clusters, in a more productive way, accessing remote memory by means of

different high-level language constructs, such as assignments to shared variables or collective primitives.

However, the standard UPC collectives library includes a reduced set of eight basic primitives with quite
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limited functionality. This work presents the design and implementation of extended UPC collective

functions that overcome the limitations of the standard collectives library, allowing, for example, the use

of a specific source and destination thread or defining the amount of data transferred by each particu-

lar thread. This library fulfills the demands made by the UPC developers community and implements

portable algorithms, independent of the specific UPC compiler/runtime being used. The use of a repre-

sentative set of these extended collectives has been evaluated using two applications and four kernels as

case studies. The results obtained confirm the suitability of the new library to provide easier programming

without trading off performance, thus achieving high productivity in parallel programming to harness the

performance of hybrid shared/distributed memory architectures in High Performance Computing (HPC).

Keywords Unified Parallel C (UPC), collective operations, programmability, Partitioned Global Ad-

dress Space (PGAS), High Performance Computing (HPC)

1 Introduction

Although multi-core processors mitigate

single-core processor problems, such as the

power wall, the memory wall and the

instruction-level parallelism wall, they have

raised the programmability wall. Thus, cur-

rent developers, generally trained only for the

development of sequential programs, have to

confront the growing complexity of program-

ming clusters of multi-core processors. In this

scenario the use of a suitable parallel program-

ming model is highly recommended in order to

facilitate the development for multi-core plat-

forms, compared to the cumbersome process

of using a sequential programming model to-

gether with a parallel library. This paradigm

shift from sequential to parallel programming

models demands an extensive number of avail-

able tools and libraries in order to support the

productive development of parallel software.

The PGAS parallel programming model is

grabbing the attention of developers of parallel

applications looking for programmability. This

model provides a shared memory view that sim-

plifies code development while it can take ad-

vantage of the scalability of distributed mem-

ory architectures. In PGAS languages each

program is executed by N threads that have two

different memory spaces: (1) a private space

that is only accessible by each thread, and (2) a

shared space that allows communication among

threads. Collective primitives, which involve

data movements and computational operations

among several threads, contribute significantly

to the programmability of PGAS as they im-

plement common operations such as broadcast,
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scatter and gather of data, thus allowing a more

rapid development.

One of the most extended PGAS languages

is Unified Parallel C (UPC) [1], a parallel ex-

tension of ANSI C. Every C code can be run in

parallel with UPC, thus favoring its adoption.

Moreover, UPC programmability is supported

both by: (1) standard language constructs,

such as implicit data transfers in assignments

of shared variables and the predefined con-

stants THREADS (total number of threads in a

program) and MYTHREAD (identifier of each

thread), and (2) libraries that provide high

level constructs, such as collective functions,

which is the focus of this paper. The UPC

standard collectives library [2], which is part

of the UPC standard specification [3], includes

eight data-movement (e.g., broadcast, scatter

and gather) and computational (reduce) func-

tions, most of them already used in traditional

parallel programming approaches, such as mes-

sage passing libraries like MPI. However, UPC

collectives have not become very popular be-

cause of two main reasons: (1) the generally low

performance of many of these functions, which

has led programmers to replace them by bulk

data copy functions for efficiency purposes [4]

although at the cost of increasing programming

complexity, and (2) some limitations for their

use that make them unsuitable for different si-

tuations: for instance, source and destination

arrays must be different and stored on shared

memory, and the amount of data per thread

involved in the operation should be the same.

In the last years, the UPC community [5] has

made different proposals in order to provide ex-

tended functionality to the standard collectives

library, but their implementation is still pend-

ing.

This paper presents a new library of ex-

tended UPC collective functions that aims to

improve programmability in UPC by address-

ing the current limitations of the standard col-

lectives library. The organization of this work is

as follows. First, Section 2 comments the most

relevant related work on UPC collective func-

tions and the motivation of this work. After

that, the design and implementation of the col-

lectives is explained in Section 3, discussing the

decisions and strategies that have driven the

development of this library. Section 4 presents

six examples of application of these collectives,

in order to illustrate the suitability and poten-

tial benefits of their use. The evaluated codes

are four computational kernels (Matrix Multi-

plication, both for dense and sparse computa-

tion, Integer Sort and 3D Fast Fourier Trans-

form), and two MapReduce applications. Sec-

tion 5 shows the performance results of the pre-

vious codes, and finally, the conclusions derived
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from this work are discussed in Section 6.

2 Related Work and Motivation

The main goal of this work is to pro-

vide new collective functions that overcome the

limitations of the standard UPC collectives li-

brary, and also addressing any performance is-

sues on them in a portable way. Up to now,

the most relevant proposals on extensions for

UPC collectives were described in a techni-

cal report [6] and in a draft specification [7]

elaborated at Michigan Technological Univer-

sity (MTU), where a Reference Implementa-

tion of UPC standard collectives was also de-

veloped [8]. These documents propose the im-

plementation of several extensions to them us-

ing concepts already present in other paral-

lel programming languages and libraries (e.g.

MPI [9]), such as the definition of variable-

sized data blocks for communications (vector-

variant collectives), a simplified interface for

communications in the same shared array (in-

place collectives), the use of teams (subsets of

the threads that execute a UPC program), and

also asynchronous data transfers. The use of

one-sided communications, that is, communi-

cations in a single direction with an active and

a passive peer, is proposed as the main basis to

implement collectives [10]. Other related pro-

posals are Value-Based Collectives [11], which

use single-valued variables, either shared or pri-

vate, as source and destination of communica-

tions.

However, the vast majority of these works

on extended UPC collectives represents just a

sketch on how these collectives could be im-

plemented. In fact, only the MTU report [6]

presents some implementation details and a

preliminary benchmarking for a small subset

of these functions, whereas many other issues,

such as the implementation of teams or in-

place operations, are simply mentioned, with-

out further discussion. One main reason for

this is the fact that the UPC community has

scarcely adopted the use of collectives, because

of their limitations and generally poor effi-

ciency. Therefore, the main research efforts

on UPC collectives have traditionally focused

on performance analysis [12] and the proposal

of potential performance optimizations to the

standard collectives library [13], whereas the

improvement of programmability for collectives

has been considered as a secondary issue. Even

though UPC is regarded as a good language for

programmability, there are still very few works

that focus on evaluating or improving this fea-

ture: the most relevant ones are an early study

of UPC programmability in terms of Source

Lines of Code (SLOCs) [14], and two recent

works on implementing strided collectives for
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their use on different computational kernels [15]

and tuning collective functions at low level in

order to build a more efficient library [16]. This

latter work also comments some hints about the

use of routines to put a subset of threads in a

team according to the affinity of the data in-

volved in the collective call, similarly to MPI

communicators. Nevertheless, few implemen-

tation details are given on this issue, because

it focuses mainly on performance testing with

different systems.

Thus, in order to improve the work on

programmability for UPC, the current paper

presents an extensive set of the collectives dis-

cussed in previous proposals (in-place, vector-

variant, team-based), and also new functions

(get-put-priv) whose features are also com-

bined with the previous ones (e.g., get-put-priv

vector-variant collectives). As a result, this

library covers practically all the demands of

the collective communications required by UPC

programmers on their applications. Moreover,

an implementation of UPC teams at library

level has been developed to support team-based

collectives, thus alleviating its lack in the stan-

dard UPC language. The main contributions

of this work are not only the definition of

the interfaces and the operation of each func-

tion, but also (1) the implementation of the

one-sided primitives using standard UPC con-

structs, thus making the library completely

portable to any compliant UPC compiler and

runtime, and (2) the design decisions taken to

implement some operations, which are evalu-

ated in terms of performance and programma-

bility through its application in the develop-

ment of several UPC codes.

3 Design and Implementation of Ex-

tended Collective Primitives

The functions included in the new ex-

tended UPC collectives library are distributed

in four different groups, each of them focusing

on overcoming a specific limitation of the stan-

dard UPC collectives. Figure 1 presents four

significant limitations in the standard collec-

tive framework (left-hand side), and the groups

of implemented collective functions (right-hand

side) that address the corresponding issue.

Thus, these groups of collectives provide dif-

ferent programmability improvements:

• In-place collectives : overcome the need of

using different buffers for source and des-

tination data.

• Vector-variant collectives: allow the com-

munication of a varying data size per

thread.

• Team-based collectives : execute collective

operations within a particular team of
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Fig. 1. Scheme of the Extended Collectives library

threads.

• Get-Put-Priv collectives : skip the limita-

tion of using shared memory addresses as

function parameters.

The arguments of all the extended collec-

tives are always derived from their standard

UPC collective counterparts, and new parame-

ters are added in order to implement the re-

quired extended functionality. Additionally,

several versions of many extended collectives

are also included in this library. Every ver-

sion adds a specific feature to the associated

extended collective, in order to allow more fle-

xibility. One common version for the whole set

of implemented collectives consists in the use of

an additional parameter to specify the thread

that will act as root for the collective, which is

referred as rooted version in this work.

The operations implemented are those

present in the standard UPC collective library,

namely broadcast, scatter, gather, allgather,

exchange, permute, reduce and prefix-reduce,

alongside one more function: allreduce. The

next subsections detail each group of extended

collectives with its associated additional ver-

sions.

3.1 In-place Collectives

These collectives use only one argument

to specify both the source and destination of

the data involved in the operation, in order to

facilitate communications within the same ar-

ray. The rest of parameters to these functions

are the same as in the standard counterparts.

Listing 1 presents the signatures of two rep-

resentative in-place collectives (broadcast and
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reduce).

The codes for these collectives are highly

dependent on the operation performed. For

instance, an in-place broadcast presents a

straightforward implementation, because in

this case the source data is moved directly

to different locations in remote thread’s mem-

ory. This situation is analogous for scatter and

gather. However, other implemented collec-

tives (e.g., permute, exchange, allgather) have

to operate on the source data locations, there-

fore it is necessary to implement different levels

of synchronization to execute the collective cor-

rectly.

void up c a l l b r o a d c a s t i n p l a c e (

shared void ∗ s r cds t , s i ze t nbytes ,

upc flag t sync mode

) ;

void upc a l l r e du c eD in p l a c e (

shared void ∗ s r cds t , upc op t op ,

s i ze t nelems , s i ze t b l k s i z e ,

double (∗ func ) (double , double ) ,

upc flag t sync mode

) ;

List. 1. Signature of representative in-place collec-

tives

Regarding the permute collective, its algo-

rithm has been implemented using an auxiliary

private array in each thread to perform the data

exchanges between them. The reduce, prefix

reduce and allreduce collectives also present

a behavior similar to their standard counter-

parts: first, in parallel, each thread performs

the reduction operation on its data; after that,

all threads are synchronized, and finally the

partial results are sent among threads to pro-

duce the final result. Regarding the allgather

and exchange in-place algorithms, some opti-

mizations have been introduced to minimize

the number of communications, thus favoring

a more efficient processing.

Figure 2 presents the data movements im-

plemented for the in-place allgather collective

using 3 threads. Here the numbering at each

arrow indicates the order in which each com-

munication is performed, thus the arrows with

equal numbering represent parallel data move-

ments. First, each thread moves its source data

chunk to its corresponding final location within

the shared memory space. Then, a synchro-

nization is needed to make sure that all threads

have performed this first copy, otherwise source

data could be overwritten. Finally, each thread

sends its corresponding chunk to the rest of the

threads without further synchronizations.

(1)(1)

(2)

(2) (2)

(2)

(2)

(2)

srcdst

THREAD 0 THREAD 1 THREAD 2

Fig. 2. Communications for

upc all gather all in place (3 threads)

The in-place exchange algorithm is pre-
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(1,1)

(1,1)
(1,1)

(1,1)

(1,2) (1,2)

(1,2)
(1,2)

(1,3)

(1,3)

(1,3)

(1,3)

(2,1)

(2,1)

(2,2) (2,2)

(2,3) (2,3)

buffer

aux

SHARED
MEMORY

PRIVATE
MEMORY

THREAD 0 THREAD 1 THREAD 2 THREAD 3

Fig. 3. Communications for upc all exchange in place (4 threads)

sented in Figure 3 using four threads. It uses

a concatenation-like procedure [17], including

additional logic that avoids the overwriting of

source data and also balances the workload

among threads. Moreover, it only needs a

single private array of nbytes (being this the

value passed as parameter to the collective)

as extra memory space. This algorithm is

performed, at most, in (THREADS/2 ) stages.

Each stage always consists of three steps: (1) a

piece of local source data is moved from shared

memory to an auxiliary private array, (2) the

corresponding remote data is copied to that

source location, and (3) the private memory

copy of the source data is moved to the re-

mote location used in the previous step. In

the first stage, each thread copies data from/to

its right neighbor (that is, thread i and thread

(i+1)%THREADS are associated), and in the

next stages data exchanges continue with the

following neighbors (for thread i, it would be

thread (i+s)%THREADS, where s is the num-

ber of stage). In order to avoid data depen-

dencies, all threads are synchronized after the

execution of each stage. When the number of

threads is even, the last stage only needs to be

performed by a half of the threads (in this im-

plementation, the threads with an identifier less

than THREADS/2 ). The arrow numbering for

Figure 3 consists of two values, that indicate

the number of stage (left) and step (right) in

which the data movement is performed. No

synchronizations are required between steps or

stages, and in the ideal scenario all commu-

nications with the same numbering would be

executed in parallel.

Additionally, a rooted version has been

implemented for the four in-place collectives

where it is possible to define a root thread

(broadcast, scatter, gather and reduce). List-

ing 2 presents the signature of the rooted in-

place broadcast collective as an example of
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them. As commented before, these functions

take the same arguments as the corresponding

in-place collectives, but including the identifier

of the root thread (parameter rth). Their inter-

nal implementation is also very similar to their

associated extended function, but changing the

source (broadcast, scatter) or the destination

(gather, reduce) address according to the given

root thread.

void up c a l l b r o a d c a s t r o o t e d i n p l a c e (

shared void ∗ s r cds t , s i ze t nbytes ,

int root , upc flag t sync mode

) ;

List. 2. Signature of a representative rooted in-

place collective

The main advantage of in-place collectives

is that they operate on a single array, and thus

the memory allocation for the destination array

is not required. To illustrate their use, a com-

mon routine for time measuring is presented in

Listing 3. The use of the selected extended col-

lective (upc all reduceD all in place) re-

turns the final result in the shared memory as-

sociated to all threads using only a shared array

of THREADS elements.

shared double t imes [THREADS] ;

. . .

t imes [MYTHREAD] −= getCurrentTime ( ) ;

. . .

t imes [MYTHREAD] += getCurrentTime ( ) ;

u p c a l l r e d u c eD a l l i n p l a c e ( times , UPC MAX,

THREADS, 1 , NULL, sync mode ) ;

List. 3. Time measuring routine using in-place col-

lectives

3.2 Vector-variant Collectives

This set of collectives allows the definition

of a variant number of elements for communi-

cations in each thread. The library includes

vector-variant implementations for the eight

standard UPC collectives plus allreduce. Ad-

ditionally, a generalized memory copy function

named upc all vector copy is also provided.

This function performs a custom number of

data movements between any pair of threads,

allowing the user to specify the displacement

and number of elements for each communica-

tion, thus supporting a high level of flexibility

in the library. The signatures of four represen-

tative vector-variant collectives are included in

Listing 4.

The size of the data type of the elements

in the arrays (typesize) is used as an argument

to these collectives, as it allows the definition

of the number of elements in each communica-

tion instead of the data size, thus making the

code more intuitive. However, the number of

arguments used to implement these collectives

may vary for each function, because of their

different data requirements to compute the po-

sition of every memory chunk involved in com-

munications. For example, the broadcast col-

lective requires the definition of the block size

of the destination array, whereas scatter and

gather also need the value of the block size of
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void upc a l l b r o ad ca s t v (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp , int nelems ,

s i ze t dst b lk , s i ze t types i z e , upc flag t sync mode

) ;

void u p c a l l s c a t t e r v (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp , shared int ∗nelems ,

s i ze t dst b lk , s i ze t s r c b lk , s i ze t types i z e , upc flag t sync mode

) ;

void up c a l l r e du c e I v (

shared void ∗dst , shared const void ∗ src , upc op t op , shared int ∗ sd isp ,

shared int ∗ndisp , int nchunks , s i ze t b l k s i z e , int (∗ func ) ( int , int ) ,

upc flag t sync mode

) ;

void upc a l l v e c t o r c opy (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp , shared int ∗ sd isp ,

shared int ∗nelems , int nchunks , s i ze t dst b lk , s i ze t s r c b lk ,

s i ze t types i z e , upc flag t sync mode

) ;

List. 4. Signatures of representative vector-variant collectives

the source array (src blk in Listing 4). The ad-

ditional parameters related to displacements on

source/destination arrays (sdisp and ddisp, res-

pectively) and number of elements per thread

(nelems) are defined in the interface as shared

variables in order to favor a global view of the

parameters, but the access to these variables is

internally privatized for each thread to avoid

performance issues.

The vector-variant implementations of the

standard data-movement collectives (broad-

cast, scatter, gather, allgather, exchange and

permute) follow a similar structure: all the

arrays that define the displacements and the

number of elements in each communication

have THREADS elements (except for broad-

cast, that only needs a scalar value). Never-

theless, the implementation of reduce, prefix-

reduce, allreduce and vector-copy is substan-

tially different, because these operations can

involve the definition of more than one data

movement per thread. In fact, the best op-

tion in terms of programmability is to let the

user define a custom number of chunks in

the source array to execute the collective re-

gardless of their thread affinity, thus this ap-

proach has been used for these four collec-

tives. Figure 4 shows the operation of a call to

upc all reduceI v using three chunks, whose

communications associated to the reduced data

are labeled with the same number as in the

arrays containing displacements (sdisp) and el-

ements per chunk (ndisp).

Four additional versions of these functions

have been included in the library:

• rooted : these versions (only available for

broadcast, scatter and gather) include

the label rooted at the end of the name

and an additional integer argument that
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 (1)

     0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15

   THREAD 0   THREAD 1   THREAD 2   THREAD 3

src

  nchunks

 sdisp

 ndisp      1

     3

     3

     2

    12

     3

dst

        (3)
            (2)

    55

    (1)                                                          (2)                                                               (3)

upc_all_reduceI_v (&dst[2], src, UPC_ADD, sdisp, ndisp, nchunks, 4, NULL, sync_mode)

     6

Fig. 4. Communications for upc all reduceI v (4 threads)

represents the root thread.

• local : they provide the possibility of

defining array displacements as relative

positions inside a thread, instead of using

the default absolute array values. These

versions add the label local at the end

of their name, and they are available for

broadcast, scatter, gather, allgather, per-

mute and exchange.

• raw : these functions (labeled with raw)

allow the user to define the number of

bytes transferred by each thread analo-

gously to the standard collectives, instead

of using the number of elements and the

element size. Therefore, they use a pa-

rameter shared size t *nbytes instead of

parameters nelems and typesize.

• privparam: these versions (only available

for allgather and exchange) take the pa-

rameters of source/destination displace-

ments and number of elements as private

variables. These collectives (allgather

and exchange) perform multiple accesses

to these arrays in order to obtain the

source and destination locations for each

data chunk, so keeping this data private

improves performance and scalability.

Additionally, a merge version for the

vector-variant exchange has been implemented.

The difference lies in the way the ele-

ments are gathered by each thread: the

upc all exchange v collective copies each

chunk to the same relative position in the des-

tination array as in the source thread, whereas

the merge version puts all chunks in consec-

utive memory locations. It uses an additional

array argument with THREADS positions that

indicates the location of the first element copied

from thread 0 to each thread, and the rest of the
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elements are copied consecutively using that

value as reference.

An example of use of the vector-variant

collectives is the copy of an upper triangular

matrix from vector A to B, which is imple-

mented in Listing 5.

shared [N∗N/THREADS] int A[N∗N] , B[N∗N] ;

shared int sd i sp [N] , ddisp [N] , nelems [N ] ;

. . .

// I n i t i a l i z a t i o n o f shared argument a r ray s

up c f o r a l l ( i =0; i<N; i++; &sd i sp [ i ] ) {

sd i sp [ i ]= i ∗N+i ; ddisp [ i ]= i ∗N+i ;

nelems [ i ]=N−i ;

}

upc ba r r i e r ;

up c a l l v e c t o r c opy (B, A, ddisp , sd isp ,

nelems , N, N∗N/THREADS, N∗N/THREADS,

s izeof ( int ) , sync mode ) ;

List. 5. Copy of a triangular matrix using vector-

variant collectives

Here the initialization consists in set-

ting the displacement arrays for the source

and destination addresses, as well as the

number of elements for each of the N rows

(chunks) of the matrices. After that, a call to

upc all vector copy is enough to perform all

necessary data movements.

3.3 Team-based Collectives

These collectives are based on teams,

which are subsets of the UPC threads run-

ning an application. The use of teams has

been addressed by the UPC community, mainly

focusing on an implementation at language

level [15][7], although the use of MPI has also

been suggested [18]. However, up to now no

standard UPC team implementation has been

defined. In order to overcome this limitation

and support the use of teams in collectives,

this section presents a library-based support for

UPC teams, which uses a C structure to define

the necessary variables to implement them.

struct teamContent {

shared t boo l ean

∗ isThreadInTeam ; // THREADS e l emen t s

shared int ∗numthreads ;

shared int ∗ counte rBar r i e r ; // 2 e l emen t s

shared int ∗ f l a gBa r r i e r ; // 2 e l emen t s

upc l o ck t ∗ lockTeam ;

shared void ∗shared

∗pointerArg ; // THREADS e l emen t s

} ;

typedef struct teamContent team ;

List. 6. Structure for UPC teams support

Listing 6 presents the struct data type that

defines a team. It uses an array of THREADS

boolean elements (isThreadInTeam) that indi-

cate whether a thread is included in the team

or not. A team identifier (tid) for each thread

is assigned in increasing order of the UPC

thread identifier. The variable numthreads in-

dicates the number of threads in the team. The

counterBarrier and flagBarrier arrays include

two thread counters and two flags, respecti-

vely, that are used as auxiliary variables for

the implementation of synchronization barri-

ers through an active-wait algorithm. The lock

variable lockTeam is used to implement atomic

operations in the team (e.g., in the execution

of team barriers or team management opera-
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tions, such as thread insertions). Finally, the

pointerArg variable is an auxiliary array used

for memory allocation within the team. Using

these variables, our implementation is able to

provide full support for team-based collectives.

The team-based collectives have been im-

plemented independently from the underlying

team library, by dealing with teams through

different management functions for basic team

operations, such as barriers or memory allo-

cation routines. Using these functions as in-

terface, the separation between collectives and

team libraries is achieved. Thus, in order to

implement each team-based collective, only an

additional team variable is added to the argu-

ments of the standard collective counterpart.

void upc a l l g a the r t eam (

shared void ∗dst , shared const void ∗ src ,

s i ze t nbytes , team t , upc flag t sync mode

) ;

List. 7. Signature of a team-based collective

Listing 7 shows the signature of the team-

based gather collective as an example. All

team-based collectives (labeled with team)

present the same arguments as their stan-

dard counterparts, plus the private variable

that represents the team description. This

team-based implementation interprets the ar-

gument that represents the size of communi-

cations (nbytes) as the total amount of data

that is transferred by all threads in the team.

Thus, nbytes/numthreads bytes are transferred

by each thread, and the first chunk goes to the

thread with tid 0. Only the members of the

team can invoke these functions.

Additionally, the scatter, gather, allgather

and exchange collectives admit the imple-

mentation of a filter version (labeled with

team allthr). It has the same behavior as

the standard counterpart, but here the team

prevents the threads that are not included in

it from executing the operation. Therefore,

this version does not consider team identifiers

for communication, and the argument nbytes is

considered as the amount of data transferred by

each thread. Nevertheless, all these filter ope-

rations maintain the same type of arguments

as the corresponding team collective.

Figure 5 illustrates the behavior of both

types of team-based collectives with a scatter

collective executed in a program with 4 threads.

Both functions have a source array of 12 KB,

which is distributed according to the definition

of each collective among the three threads (0,

1 and 3, that have tids 0, 1 and 2, respectively)

included in team t. The piece of code in List-

ing 8 presents an example of the use of these

collectives: two teams execute the same func-

tion (computation of Pi using the Monte Carlo

method) in parallel in the same UPC program.
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THREAD 0 THREAD 1 THREAD 3THREAD 2

4KB 4KB 4KB

tid 0 tid 1 tid 2

src

dst

upc_all_scatter_team (dst, src, 12*1024, t, sync_mode)

THREAD 0 THREAD 1 THREAD 3THREAD 2

tid 0 tid 1 tid 2

src

dst

3KB 3KB 3KB 3KB

upc_all_scatter_team_allthr (dst, src, 3*1024, t, sync_mode)

                  

Fig. 5. Communications for team-based scatter operations (4 threads)

void computePiMontecarlo ( int t r i a l s , team t ,

shared double ∗ e s t imat ion ) {

shared int g l o b a l h i t s [THREADS] ;

shared int l o c a l h i t s [THREADS] ;

double piEst imat ion ;

// F i l t e r a l l t h r e a d s t h a t are not

// i n c l u d e d in t h e team

i f ( ! isThreadInTeam (MYTHREAD, t ) ) return ;

// Aux i l i a r y f un c t i o n

int nth = getNumThreads ( t ) ;

// Compute l o c a l h i t s , put r e s u l t

// in l o c a l h i t s [MYTHREAD]

. . .

u p c a l l r e d u c e I a l l t e am ( g l o b a l h i t s ,

l o c a l h i t s , UPC ADD, nth , 1 , NULL, t ,

sync mode ) ;

// Compute p i e s t ima t i o n

. . .

∗ e s t imat ion = piEst imat ion ;

return ;

}

int main ( ) {

team t1 , t2 ;

shared double est1 , e s t2 ;

// I n i t i a l i z e v a r i a b l e s and c r e a t e

// teams ( d i s j o i n t s e t s )

. . .

// Execute t a s k s

computePiMontecarlo ( t r i a l s 1 , t1 , &es t1 ) ;

computePiMontecarlo ( t r i a l s 2 , t2 , &es t2 ) ;

i f (MYTHREAD == 0) {

p r i n t f ( ”Est imation : %l f \n” ,

( e s t1 ∗ t r i a l s 1+es t2 ∗ t r i a l s 2 )/

( t r i a l s 1+t r i a l s 2 ) ) ;

}

}

List. 8. Computation of Pi using team-based col-

lectives

This code has been implemented using

team-based collectives, in which both teams

execute their tasks independently. This type

of execution is highly interesting for heteroge-

neous architectures, which require custom sup-

port for every kind of resource: a team could

group different processors (even hardware ac-

celerators such as GPUs) according to their fea-

tures, thus helping handle workload imbalance.

3.4 Get-Put-Priv Collectives

These collectives allow to use a private ar-

ray as source and/or destination parameter in

all the previous extended collectives (in-place,

vector-variant and team-based, alongside their

own additional versions), and also in the stan-

dard collectives plus allreduce. Thus, they rep-

resent the largest subset of collectives included

in the extended library. These collectives can

be classified in three subgroups:

• Get collectives : shared source and private

destination



Carlos Teijeiro et al.: An Extended Collectives Library for UPC 15

• Put collectives : private source and shared

destination

• Priv collectives : the source and destina-

tion are both private

In-place collectives only have the priv ver-

sion as they have the same array as source and

destination. For illustrative purposes, Listing 9

shows the signatures of the allgather get-put-

priv versions.

void u p c a l l g a t h e r a l l g e t (

void ∗dst , shared const void ∗ src ,

s i ze t nbytes , upc flag t sync mode

) ;

void up c a l l g a t h e r a l l p u t (

shared void ∗dst , const void ∗ src ,

s i ze t nbytes , upc flag t sync mode

) ;

void u p c a l l g a t h e r a l l p r i v (

void ∗dst , const void ∗ src ,

s i ze t nbytes , upc flag t sync mode

) ;

List. 9. Signatures of representative get-put-priv

collectives

The algorithms implemented in these col-

lectives minimize the number of communica-

tions, avoiding unnecessary remote data trans-

fers and maximizing parallel processing among

threads using as few synchronization points

as possible. In general, only the priv collec-

tives require the allocation of additional shared

memory to allow the data transfers, at most the

same size as the communications performed.

As an example, Figure 6 shows the priv ver-

sion of a broadcast that uses 4 threads. First,

thread 0 stores its data on an auxiliary buffer

in shared memory, then a synchronization is

necessary to make sure that the data has been

made available, and finally all threads copy the

data to the final location. Thread 0 only needs

to move data inside its private memory space,

implementing such data copy with the memcpy

system library routine.

 SHARED
MEMORY

 PRIVATE
MEMORY

THREAD 0 THREAD 1 THREAD 2 THREAD 3

src

dst

tmp

                   upc_memput (1)

         3 x upc_memget (2)

 
                           memcpy (2)

Fig. 6. Data movements for

upc all broadcast priv (4 threads)

The usefulness of these functions can be

assessed in a parallel image filtering algorithm,

presented in Listing 10. The input data, a

matrix of N xN elements, is stored in the pri-

vate memory of thread 0 (in matrix img), thus

the private versions of the standard scatter and

in-place broadcast perform the necessary data

movements to distribute the workload to the

private memory spaces of all threads (in ma-

trix aux ). The filtering algorithm is executed

on private memory in order to efficiently ex-

ploit data locality, because the operation with

private memory is more efficient than dealing

with shared memory [4]. Finally, the private

version of the standard gather collective returns
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the final result in the private memory of thread

0 (in matrix filteredImg).

// I n i t i a l i z e ’ img ’ as t h e source N∗N image ,

// ’ aux ’ as an a u x i l i a r y array o f

// (N∗N/THREADS) e l emen t s on each th r ead

// and ’ f i l t e r ’ as a 3 x3 matr ix

// A l l p r i v a t e v a r i a b l e s , i n i t . on t h r ead 0

u p c a l l s c a t t e r p r i v ( aux , img ,

(N∗N/THREADS)∗ s izeof (double ) , sync mode ) ;

u p c a l l b r o a d c a s t i n p l a c e p r i v ( f i l t e r ,

3∗3∗ s izeof (double ) , sync mode ) ;

f i l t e rMa t r i x ( aux , f i l t e r , N, N, 3 , 3 ) ;

u p c a l l g a t h e r p r i v ( f i l t e r ed Img , aux ,

(N∗N/THREADS)∗ s izeof (double ) , sync mode ) ;

List. 10. Image filtering using get-put-priv collec-

tives

4 Use of Extended Collectives: Case

Studies

The extended collectives improve pro-

grammability for a wide variety of problems by

reducing the number of SLOCs and favoring

code expressiveness. Nevertheless, their adop-

tion requires that their performance should also

be competitive when compared to their equiv-

alent implementation in standard UPC. Thus,

this section analyzes the impact of introducing

extended collectives on different codes, justify-

ing the benefits in terms of programmability

obtained from their use. Next section presents

the performance of the implemented kernels.

The selected codes are four kernels (dense

and sparse matrix multiplication, Integer Sort

and 3D Fast Fourier Transform) and two UPC

MapReduce applications.

4.1 Dense Matrix Multiplication Ker-

nel

Listing 11 presents an optimized standard

UPC code that multiplies two dense N xN ma-

trices (C=A×B). The source matrices A and

B are stored in the private memory of thread 0.

All matrices are stored in a linearized form (1D)

according to the UPC standard. To parallelize

the operation, matrix A is split in chunks, dis-

tributed evenly among all threads and stored

in their private memory spaces together with

a copy of matrix B, which is broadcast from

thread 0. After the local multiplication, the

result matrix is finally gathered in thread 0.

All the data movements between threads

are performed using a significant number of

one-sided communications with memory copy

functions, because of the lack of collectives sup-

port for operating with different private mem-

ory spaces as source and destination addresses,

and thus auxiliary shared arrays (temp A,

temp B and temp C ) and synchronizations

(three calls to upc barrier) are necessary to

perform the data transfers between threads.

The use of extended collective functions

can reduce significantly the complexity of the

UPC implementation of this kernel, as pre-

sented in Listing 12. Here all the data move-
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ments associated to the source and destination

arrays are implemented within the extended

collective function with private arguments.

#define chunk s i z e N∗N/THREADS;

double ∗A, B[N∗N] , ∗C;

double l o ca l A [ chunk s i z e ] ,

l o ca l C [ chunk s i z e ] ;

shared [ chunk s i z e ] double temp A [N∗N] ,

temp C [N∗N] ;

shared [ ] double temp B [N∗N] ;

i f (MYTHREAD == 0) {

// A l l o c a t e and i n i t i a l i z e a r ray s A, B, C

. . .

memcpy( loca l A , A,

chunk s i z e ∗ s izeof (double ) ) ;

for ( i =1; i<THREADS; i++) {

upc memput(&temp A [ i ∗ chunk s i z e ] ,

&A[ i ∗ chunk s i z e ] ,

chunk s i z e ∗ s izeof (double ) ) ;

}

}

upc ba r r i e r ;

i f (MYTHREAD != 0) {

upc memget ( loca l A ,

&temp A [MYTHREAD∗ chunk s i z e ] ,

chunk s i z e ∗ s izeof (double ) ) ;

}

i f (MYTHREAD == 0) {

upc memput ( temp B , B,

N∗N∗ s izeof (double ) ) ;

}

upc ba r r i e r ;

i f (MYTHREAD != 0) {

upc memget (B, temp B ,

N∗N∗ s izeof (double ) ) ;

}

computeSubmatrix ( loca l A , B, loca l C ,

N/THREADS, N, N) ;

i f (MYTHREAD != 0) {

upc memput(&temp C [MYTHREAD∗ chunk s i z e ] ,

l oca l C , chunk s i z e ∗ s izeof (double ) ) ;

}

upc ba r r i e r ;

i f (MYTHREAD == 0) {

memcpy(C, loca l C ,

chunk s i z e ∗ s izeof (double ) ) ;

for ( i =1; i<THREADS; i++) {

upc memget(&C[ i ∗ chunk s i z e ] ,

&temp C [ i ∗ chunk s i z e ] ,

chunk s i z e ∗ s izeof (double ) ) ;

}

}

List. 11. Original UPC dense matrix multiplica-

tion code

Matrix A is evenly distributed to all

threads using a scatter priv collective, whereas

an in-place broadcast transfers the whole ma-

trix B to all threads. Finally, the gathering of

the result matrix C is performed by a gather

priv collective. It is important to note that the

programmer does not need to deal with any

temporary buffer to perform the communica-

tions, as the extended collectives handle the

auxiliary memory space transparently to the

user. Therefore, extended collectives allow the

parallelization of this code without requiring

the user to deal with shared memory addresses

or temporary buffers, and they even take ad-

vantage transparently of efficient communica-

tion algorithms for data transfers.

double l o ca l A [ chunk s i z e ] ,

l o ca l C [ chunk s i z e ] ;

u p c a l l s c a t t e r p r i v ( loca l A , A,

(N∗N/THREADS)∗ s izeof (double ) , sync mode ) ;

u p c a l l b r o a d c a s t i n p l a c e p r i v (B,

N∗N∗ s izeof (double ) , sync mode ) ;

computeSubmatrix ( loca l A , B, loca l C ,

N∗N/THREADS, N, N) ;

u p c a l l g a t h e r p r i v (C, loca l C ,

(N∗N/THREADS)∗ s izeof (double ) , sync mode ) ;

List. 12. UPC dense matrix multiplication code

with extended collectives

4.2 Sparse Matrix Multiplication Ker-

nel

This kernel performs the multiplication of

a sparse matrix (stored in Compressed Sparse

Row -CSR- format) by a dense matrix. Here



18 J. Comput. Sci. & Technol., September. 2012, ,

// I n i t i a l i z e v a r i a b l e s : ’ v a l ’ , ’ c o l i n d ’ , ’ r ow p t r ’ ( va l ue s , column index and row po i n t e r

// ar ray s in CSR format ) , ’B ’ ( ’ k ’∗ ’ n ’ dense source matr i x ) , ’C ’ , ’ C d i s t ’ ( f i n a l ’m ’∗ ’ n ’

// and p a r t i a l r e s u l t ma t r i c e s ) , ’ nz ’ ( number o f non−z e ro v a l u e s ) , ’ d i s p . . . ’ ( some

// d i s p l a c emen t v e c t o r s ) , ’ ne lems ’ , ’ nrows ’ ( e l ement s i z e parameters )

. . .

u p c a l l s c a t t e r v p r i v ( v a l d i s t , val , disp , nelems , nz , s izeof (double ) , sync mode ) ;

u p c a l l s c a t t e r v p r i v ( c o l i n d d i s t , c o l i nd , disp , nelems , nz , s izeof ( int ) , sync mode ) ;

u p c a l l v e c t o r c o py p r i v ( row pt r d i s t , row ptr , d i sp rows ds t , d i sp rows s r c ,

nrows , THREADS, m+1, m+1, s izeof ( int ) , sync mode ) ;

u p c a l l b r o a d c a s t i n p l a c e p r i v (B, k∗n∗ s izeof (double ) , sync mode ) ;

// Modify ’ nrows ’ to a l l ow s e pa r a t e c a l l s t o t h e m u l t i p l i c a t i o n a l g o r i t hm on each th r ead

. . .

computeMMSparse ( v a l d i s t , c o l i n d d i s t , r ow pt r d i s t , B, C dist , nrows [MYTHREAD] , k , n ) ;

// Modify v a r i a b l e s to g a t h e r t h e computed subma t r i c e s

. . .

u p c a l l g a t h e r v p r i v (C, C dist , disp , numvalues , m∗n , s izeof (double ) , sync mode ) ;

List. 13. UPC sparse matrix multiplication code with extended collectives

the work distribution is done by subdividing

the different arrays that define the compressed

sparse matrix (values, column index and row

pointer), selecting the number of rows that each

thread should process to obtain balanced work-

loads. As the number of elements in each array

can be different for each thread, the scatter and

gather operations are performed using vector-

variant collectives. Listing 13 shows the most

relevant parts of the sparse matrix multiplica-

tion code that use extended collectives. The

multiplication routine is performed by calling

the sequential multiplication routine separately

on each thread, which involves some small mod-

ifications to the CSR arrays (both for standard

UPC and using the extended library) in order

to use this function, considering each sparse

matrix chunk as an independent matrix. The

equivalent standard code requires many more

SLOCs in order to support the vector-variant

data transfers using loops and array subscrip-

tions, which are here avoided by using collec-

tives.

4.3 Integer Sort Kernel

The Integer Sort (IS) kernel from the NAS

Parallel Benchmark (NPB) suite for UPC [19]

has been traditionally used in UPC benchmark-

ing [20][21][22]. The core of the kernel is the

rank function, which performs the bucket sort

of a set of integer keys, and a piece of its code

consists in redistributing the keys by means of

an all-to-all operation with data chunks of dif-

ferent sizes.

Listing 14 presents the original implemen-

tation of the data exchange performed in the
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rank function of IS. The keys are stored in

a shared array (key buff1 shd), and the infor-

mation about the data chunks that correspond

to each thread is stored in a private array of

THREADS structures (infos). Each structure

in this auxiliary array contains the number of

elements and the offset of the first element for

each data chunk. The chunks received by a

thread after the all-to-all communication are

stored consecutively in its private memory (ar-

ray key buff2 ).

// ( I n i t . o f v a r i a b l e s would be here )

upc ba r r i e r ;

for ( i =0; i<THREADS; i++) {

upc memget(& i n f o s [ i ] ,

&s end i n f o s s hd [MYTHREAD] [ i ] ,

s izeof ( s end in f o ) ) ;

}

for ( i =0; i<THREADS; i++) {

i f ( i == MYTHREAD)

memcpy( key bu f f2 + t o t a l d i s p l ,

key bu f f1 + i n f o s [ i ] . d i sp l ,

i n f o s [ i ] . count ∗ s izeof (INT TYPE ) ) ;

else

upc memget ( key bu f f2 + t o t a l d i s p l ,

key bu f f 1 shd+i+i n f o s [ i ] . d i s p l ∗THREADS,

i n f o s [ i ] . count ∗ s izeof (INT TYPE ) ) ;

t o t a l d i s p l += i n f o s [ i ] . count ;

}

upc ba r r i e r ;

List. 14. Original UPC code in Integer Sort

Listing 15 shows the implementa-

tion of the all-to-all communications of

rank in IS using the get version of the

upc all exchange v merge local extended

collective. As the displacements used are rela-

tive array positions, a local version is required,

and the get variant is necessary to use the same

source and destination arrays as in the original

code. However, the extended collective han-

dles the displacements (send displ shd) and

element counts (send count shd) separately,

thus the array of structs is split in two sep-

arate shared arrays. Additionally, a displace-

ment vector (disp) is required by the collec-

tive call to indicate the offset for the first ele-

ment received at the destination (set to 0 for

all threads in this code) as well as the block

size of the source array (SIZE OF BUFFERS ),

which is a predefined constant in the code. For

a better understanding of this code, the use

of upc all exchange v merge local is illus-

trated in Figure 7 using a simple scenario with

two threads.

// I n i t i a l i z a t i o n o f v a r i a b l e s

. . .

u p c a l l e x chang e v me r g e l o c a l g e t (

key buf f2 , key buf f1 shd , s end d i sp l shd ,

send count shd , disp , SIZE OF BUFFERS ,

SIZE OF BUFFERS , s izeof ( int ) , sync mode ) ;

List. 15. UPC code in Integer Sort using extended

collectives

4.4 3D Fast Fourier Transform Kernel

The 3D Fast Fourier Transform (FFT) is

another kernel from the UPC NPB suite. It

computes the Fourier transform algorithm on

a three-dimensional matrix using different do-

main decompositions, representing a widely ex-

tended code in scientific and engineering com-

puting. This UPC kernel has been derived from

the OpenMP FFT NPB implementation, and
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Fig. 7. Communications for upc all exchange v merge local (2 threads)

thus includes some significant changes on the

variables with respect to the original Fortran

code, in order to allow a better adaptation to its

syntax (e.g. user-defined data types are used to

facilitate the storage of complex values on each

thread). The main computations of this kernel

are performed in private memory using an array

of structs (u0 ) that stores the initial conditions

of the system in a linearized way analogously

to the matrices of Section 4.1, and two working

arrays (u1 and u2 ) that assist the computa-

tion of the Fourier transform by storing inter-

mediate calculations. The key part of this code

is the computation of the transpose of the lin-

earized matrix (stored in array u1 ) in u2, which

is performed using a heavy all-to-all communi-

cation. Listing 16 shows the implementation

of the remote communications used in the ma-

trix transposition in the UPC FFT code, using

upc memget to obtain the corresponding array

chunk from each thread: the data associated to

a thread is stored in an array of complex val-

ues defined as the member of a struct, which

is defined for each thread in an array of shared

structs with THREADS elements. This tech-

nique is used to avoid the definition of an array

with a very large block size, which would affect

performance.

for ( i = 0 ; i < THREADS; i++) {

upc memget (

( dcomplex ∗)&u2 [MYTHREAD] . c e l l [ chunk∗ i ] ,

&u1 [ i ] . c e l l [ chunk∗MYTHREAD] ,

s izeof ( dcomplex ) ∗ chunk ) ;

}

List. 16. Original UPC code in 3D FFT

Here the introduction of an extended ex-

change collective represents a better solution

to implement all-to-all communications. How-

ever, the definition of the array of shared

structs to store the data does not allow a di-
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rect application of this collective, as the source

data is split. Therefore, some small changes

are performed: the shared source array is ref-

erenced by a private pointer for each thread,

and the priv variant of the exchange collective

is applied here to obtain higher performance, as

stated in Listing 17. Considering that the copy

from u1 to u2 in this transposition is performed

just to simplify the code, a second in-place so-

lution is proposed, in which the all-to-all com-

munication is performed on the same array u1.

This approach only implies that the results of

the communication are stored in u1 instead of

u2, which does not affect the final results of

the FFT because the source data in u1 is not

reused after this communication. Both imple-

mentations with extended collectives, alongside

with the standard approach, will be evaluated

and tested in Section 5.1.

// F i r s t approach : u1 as s r c and u2 as d s t

upc a l l e x change p r i v (

( dcomplex ∗)my u2−>c e l l ,

( dcomplex ∗)my u1−>c e l l ,

s izeof ( dcomplex ) ∗ chunk , sync mode ) ;

// Second approach : in−p l a c e comms in u1

up c a l l e x c h ang e i n p l a c e p r i v (

( dcomplex ∗)my u1−>c e l l ,

s izeof ( dcomplex ) ∗ chunk , sync mode ) ;

List. 17. UPC code in 3D Fast Fourier Transform

using extended collectives

4.5 UPC MapReduce Framework

MapReduce [23] is an emerging program-

ming model for coarse-grain parallelism. It is

based on the application of a map function to

each element of an input data set, which gener-

ates another set of intermediate elements that

are combined using a reduce operation to gen-

erate a final output. MapReduce implementa-

tions are typically written using object-oriented

languages, such as Java and C++, although

this programming model can also take advan-

tage of the PGAS features of UPC on multi-

core clusters. Thus, a UPC MapReduce frame-

work has been implemented [24].

The proposed framework consists of two

template functions: (1) ApplyMap, which gen-

erates a list of intermediate values according to

a list of input elements and a sequential map

function, and (2) ApplyReduce, which merges

the intermediate values from all threads ac-

cording to a sequential reduce operation. List-

ing 18 presents the signatures of ApplyMap,

ApplyReduce and the two user-defined map

and reduce functions that should be passed as

argument to them.

The communications in the UPC MapRe-

duce framework involve all threads, although

two facts prevent the use of the standard UPC

collectives: (1) UPC MapReduce operates in

the private memory space, which cannot be

used as parameter to the standard collectives,

and (2) the processing of different workloads

per thread and a varying number of elements
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in the reduction phase cannot be handled by

standard collectives.

void ∗mapfunc (void ∗ input , void ∗key ,

void ∗value ) ;

void ∗ reduce func (void ∗key , void ∗value ,

int nelems , void ∗ r e s u l t ) ;

int ApplyMap(

int (∗mapfunc ) ( void ∗ ,void ∗ ,void ∗ ) ,

void ∗ inputElems , int nelems ,

int userDefDistrFlag , int algorithm ,

int ∗weights ) ;

void ∗ApplyReduce (

int (∗ reduce func ) ( void∗ ,void∗ , int , void ∗ ) ,

int nelems , int gathFlag , int co l lF l ag ,

int sizeKey , int s i z eVa lue ) ;

List. 18. Signatures of the basic functions in UPC

MapReduce

In order to solve these issues, the UPC

MapReduce framework uses extended collec-

tives. The most relevant one is the gather-

ing of intermediate data among all threads in

ApplyReduce: this is done through a call to a

priv version of the vector-variant allgather col-

lective (upc all gather all v priv), in which

the source arrays of each thread are the

variable-size lists that result from the call to

ApplyMap. However, if all intermediate el-

ements are not equal in size, the raw ver-

sion of the previous collective has to be used

in order to indicate the amount of raw data

that is transferred to each thread, whereas the

MapReduce framework keeps track of the start

position of every intermediate element to re-

construct them and perform the reduction.

The two applications used to evaluate this

UPC MapReduce framework are a malware de-

tection code and the computation of a linear

regression. The details of both of them will be

presented in the following section.

5 Performance Evaluation

This section presents a performance analy-

sis of the codes discussed in the previous section

on two testbed systems. The first one is the

JuRoPa supercomputer (from now on, JRP) at

Forschungszentrum Jülich (ranked 63rd in the

TOP500 List of June 2012), which consists of

2208 compute nodes, each of them with 2 Intel

Xeon X5570 (Nehalem-EP) quad-core proces-

sors at 2.93 GHz and 24 GB of DDR3 memory

at 1066 MHz, and also InfiniBand QDR HCA

with non-blocking Fat Tree topology. The sec-

ond system is the Finis Terrae supercomputer

(from now on, FT) at Galicia Supercomputing

Center (CESGA), which consists of 142 HP In-

tegrity RX 7640 nodes, each of them with 8

Montvale Itanium 2 (IA64) dual-core proces-

sors at 1.6 GHz, 128 GB of memory and Infini-

Band as interconnection network (4X DDR, 16

Gbps of theoretical effective bandwidth). On

both systems, the UPC compiler is Berkeley

UPC [25] v2.14.2, using Intel icc v11.1 as back-

end C compiler, and its InfiniBand Verbs con-

duit for distributed memory communications

on InfiniBand. The Intel Math Kernel Library

(MKL) v10.2 has also been used in the matrix
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multiplication kernels.

The experimental results of the evaluated

codes have been obtained using two different

configurations of number of threads per node:

(1) one thread per node, and (2) the maximum

number of cores per node in each testbed sys-

tem, that is, 16 threads for FT and 8 for JRP.

Each of the analyzed codes has one implemen-

tation using standard UPC operations and an

alternative version using the extended collec-

tives library (see Section 4 for further details

about its application to these codes). The stan-

dard UPC versions of NPB IS and FFT are

available at [19], whereas the other codes that

use standard UPC operations have been im-

plemented following general guidelines for UPC

hand-optimized codes [4].

5.1 Evaluation of Numerical Kernels

Figure 8 shows the performance in terms

of execution times and GFLOPS for the dense

matrix multiplication of two 4480×4480 matri-

ces of double precision floating-point elements,

using a standard UPC code (labeled as “Stan-

dard UPC”) and the extended collectives (“Ex-

tended Colls”). Here each UPC thread calls

a sequential MKL matrix multiplication func-

tion, and all data movements associated to the

workload distribution are performed by the col-

lective functions. The results indicate that the

use of extended collectives represents the best

option for implementing this code in nearly all

test cases, and especially when using one thread

per node, where the differences are larger.
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Fig. 8. Performance of dense matrix multiplication

(4480×4480)

The reason for this is the internal

implementation of the extended collectives,

which obtains good performance on hybrid

shared/distributed memory systems transpar-

ently to the user. These collectives use a

flat-tree algorithm for intranode communica-

tions and a binomial-tree approach for intern-

ode communications, thus taking advantage of
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both shared memory and high-speed intercon-

nection networks. For the executions using the

maximum number of threads per node in each

system, the differences between the standard

code and the extended collectives are smaller

because of the maximization of flat-tree intra-

node communication. The benefits of their use

are noticeable specially when using 32 threads

or more in both testbeds. In these cases, some

performance benefits are also obtained, mainly

in FT, by using message partitioning in chunks

in order to optimize the use of caches and

the memory consumed (i.e., here the memory

buffers are limited to the chunk size).

Figure 9 displays the performance of the

sparse matrix multiplication code. The sparse

matrix is a symmetric 16614×16614 matrix

with 1,091,362 non-zero entries (0.4% of non-

zero elements), taken from the set of matri-

ces generated by the FIDAP package in the

SPARSKIT Collection [26], and the dense ma-

trix has 16614×4480 double precision elements.

Once again, almost all the tests performed

show that the extended collectives provide bet-

ter performance than the standard UPC code,

especially as the number of threads increases.

This improvement is a bit larger than in the

dense case because of the larger amount of

communications involved. As a result, the use

of more efficient communication algorithms,

which take advantage of hybrid shared/dis-

tributed memory architectures especially when

maximizing intranode communications, is also

a key factor in this scenario.
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Fig. 9. Performance of sparse matrix multiplica-

tion (16614×16614 sparse matrix and 16614×4480

dense matrix)

Here the execution times are higher (the

GFLOPS smaller) than for the dense case. This

is due to the communications overhead intro-

duced by the data transfers required for this

kernel (implemented with the vector-variant

collectives in Listing 13), which makes the opti-
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mizations depend on a well balanced work dis-

tribution in terms of the number and size of the

memory chunks processed by each thread.

Figure 10 presents the performance of

NPB UPC IS in terms of execution times

and millions of operations per second (Mop/s),

compared to a version using the extended

exchange collective (merge-local-get vector-

variant, see Figure 7 for a similar example). For

a small number of threads, the standard NPB

code obtains similar results to the version using

the extended collectives for all configurations,

although the difference increases for a larger

number of threads, because the binomial-tree

algorithms for the extended collective functions

help improving the performance. It is also im-

portant to note that this kernel takes advan-

tage of intranode communications when using

a single node on FT, whereas when using 32

or more threads the best results are always ob-

tained using one thread per node, which is also

the most efficient configuration for all tests in

JRP. The IS kernel performs several all-to-all

operations that exchange a significant number

of messages between threads, and here the large

memory size of the FT nodes allows a more ef-

ficient intra-node data exchange, but the con-

tention of the InfiniBand adapter on inter-node

communications with 16 threads per node (in

executions with multiple nodes) causes a sig-

nificant performance drop. Regarding JRP, the

use of a maximum of 8 threads per node limits

the impact of the network communication bot-

tleneck, allowing better communication scala-

bility.

Regarding the different testbed systems,

the results in JRP clearly outperform the re-

sults of FT for all the previous kernels, because

of the higher processor power and the higher

efficiency of the InfiniBand network. As a re-

sult of this, the next evaluations (3D FFT and

MapReduce applications) will only include for

clarity purposes the performance results of the

JRP system.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

1 2 4 8 16 32 64 128

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Number of Threads

NPB Integer Sort Kernel (size C) - Execution Times

FT Standard UPC - 1 th/node
FT Extended Colls - 1 th/node
FT Standard UPC - 16 th/node
FT Extended Colls - 16 th/node
JRP Standard UPC - 1 th/node
JRP Extended Colls - 1 th/node
JRP Standard UPC - 8 th/node
JRP Extended Colls - 8 th/node

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

1 2 4 8 16 32 64 128

M
o

p
/s

Number of Threads

NPB Integer Sort Kernel (size C) - Mop/s

FT Standard UPC - 1 th/node
FT Extended Colls - 1 th/node
FT Standard UPC - 16 th/node

FT Extended Colls - 16 th/node
JRP Standard UPC - 1 th/node
JRP Extended Colls - 1 th/node
JRP Standard UPC - 8 th/node
JRP Extended Colls - 8 th/node

Fig. 10. Performance of NPB Integer Sort



26 J. Comput. Sci. & Technol., September. 2012, ,

Figures 11 and 12 show the performance

results in terms of execution times and billions

(109) of operations per second (Gop/s) of dif-

ferent implementations of the 3D FFT kernel,

for 1 and 8 threads per node respectively.
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1 thread/node

In addition to the UPC codes described in

Section 4.4 (the original standard UPC code,

the one using a priv extended collective and

the one using the priv in-place function), two

more codes that use the C MPI library have

been implemented in order to have a traditional

parallel programming approach as a reference

implementation for the UPC results: one code

uses the standard MPI Alltoall collective and

the other uses the same collective with the

MPI IN PLACE option, thus the array u1 is

used both as source and destination. These

MPI codes follow an analogous approach to the

original UPC kernel to show a fair comparison

with the UPC codes. The MPI compiler used

in JuRoPa is ParaStation MPI 5.0.26-1 [27].
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The comparison of these five codes gives

out that MPI obtains slightly better perfor-

mance for up to 32 threads, but from then on
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the UPC in-place collective clearly presents the

most efficient results. The main reason is the

use of the algorithm described in Figure 3 of

Section 3.1, which is able to maximize the par-

allelism at a lower computational cost. More-

over, the higher the communication cost of the

all-to-all, the better the priv in-place collective

is able to perform, thus an execution with a

high number of threads highlights the benefits

of this implementation. Regarding the number

of threads per node, the use of all cores in a

node is worse than using only one for all UPC

and MPI codes, which is due to the contention

of InfiniBand communications similarly to the

IS case.

5.2 Evaluation of the UPC MapReduce

Framework

The performance of UPC MapReduce has

been assessed using two applications. The first

one processes a large corpus of HTML files in

order to count the number of occurrences of a

set of 256 words associated to malware (“Spam

Count” code from now on). The Spam Count

code consists of two sequential functions, map

and reduce, that are passed as arguments to

ApplyMap and ApplyReduce, respectively, ac-

cording to the interfaces shown in Listing 18.

The map function takes a file name as its first

argument and returns the number of words in

the malware set that have been read from the

files. This number of occurrences are collected

by all threads using a priv allgather collective

in ApplyReduce (because all threads present

the same amount of counters, one for each de-

tected word). Next, the user-defined reduce

function is applied to the whole set of target

malware words to obtain the total number of

occurrences for each one of them.

The second application performs a linear

regression, which consists in taking two lists of

double-precision paired values of two random

variables X and Y, and computing the line that

fits best for them (“LinReg” code from now

on). The map function processes a determined

set of elements on each thread, and then the

definition of the adjusted line is obtained at

the reduce stage. As in the previous case, the

number of elements transferred at the reduce

stage is the same in all threads: a single corre-

lation value obtained from the results processed

by each thread.

Figure 13 presents the performance re-

sults (execution times and speedup) for the

Spam Count application using 100,000 input

files from the Webb Spam Corpus [28] (which

has been widely used for similar tests in the

area of Information Retrieval), and for LinReg

using 1 billion (109) of paired values for vari-

ables X and Y. In order to obtain the best
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performance for a large number of threads,

the reduce stage is here implemented with the

priv version of the allgather collective (see Sec-

tion 3.4).
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Fig. 13. Performance of UPC MapReduce in JRP

for Spam Count and LinReg

The results show that both implementa-

tions are able to scale up to a large number of

threads, mainly because of the large computa-

tional power and high scalability provided by

the JRP system, as well as the small weight of

the reduce stage in the total execution time of

both applications. As a result of this, the dif-

ferences between the standard communications

and the extended collectives are only noticeable

for more than 64 threads in Spam Count, and

even more threads in LinReg.

In general, the size of communications at

the reduce stage for both applications is in-

cremented proportionally with the number of

threads, and therefore the speedup tends to

decrease for a large number of threads. This

happens when the execution time of the re-

duction stage becomes relevant when compared

to the map stage, especially for reduced work-

loads. Despite these facts, the benefits ob-

tained by the extended allgather collective for a

large number of threads are more significant for

the Spam Count code than for LinReg, that is,

when the amount of data transferred per thread

at the reduce stage is larger.

6 Conclusions

This paper has presented the design, im-

plementation and evaluation of a library of

extended UPC collectives focused on provid-

ing higher programmability and overcoming

the limitations of the standard UPC collec-

tives library by enabling: (1) communications

from/to private memory, (2) customized mes-

sage sizes on each thread, and (3) the use of

teams, among other features. The library con-

sists of about 50 in-place, vector-variant and
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team-based collective functions (not including

the type variations of reduce, prefix-reduce and

allreduce), alongside versions of many of them

(e.g. rooted) and get-put-priv functions, which

in total sum up more than 15000 SLOCs. The

algorithms implemented for these collectives

are intended to maximize parallelism and ef-

ficiency by exploiting one-sided communica-

tions with standard memory copy functions.

Moreover, an implementation at library level

of teams has been developed to support team-

based collectives, providing a general function-

ality that can be applied to any UPC code.

Six representative codes have been used for

a comparative evaluation of the implemented

library, and the results have shown that the

use of the extended collectives has provided

good solutions for all tested cases in terms of

both performance and programmability. The

extended collectives have been able to provide

a more compact implementation of different

communication patterns for the selected appli-

cations. Moreover, the use of efficient collec-

tive algorithms enhanced performance for all

the tests, especially for the 3D FFT code, in

which the results have outperformed even the

MPI counterpart (the UPC in-place collective

obtained up to 28% of performance improve-

ment for 256 threads). As a general outcome

of the evaluation, these functions are able to

obtain a better exploitation of computational

resources as the number of threads and the

amount of data to be transferred increases. In

summary, these collectives provide a powerful

and productive way for inexperienced parallel

programmers to implement custom data trans-

fers and parallelize sequential codes, as well as

a wide variety of resources for expert UPC pro-

grammers, that can transparently take advan-

tage of the optimizations implemented in this

library.
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