
An Inspector-Executor Algorithm for Irregular
Assignment Parallelization

Manuel Arenaz, Juan Touriño, Ramón Doallo

Computer Architecture Group
Dep. Electronics and Systems, University of A Coruña, Spain

{arenaz,juan,doallo}@udc.es

Abstract. A loop with irregular assignment computations contains loop-
carried output data dependences that can only be detected at run-time.
In this paper, a load-balanced method based on the inspector-executor
model is proposed to parallelize this loop pattern. The basic idea lies in
splitting the iteration space of the sequential loop into sets of conflict-
free iterations that can be executed concurrently on different processors.
As will be demonstrated, this method outperforms existing techniques.
Irregular access patterns with different load-balancing and reusability
properties are considered in the experiments.

1 Introduction

Research on run-time techniques for the efficient parallelization of irregular com-
putations has been frequently referenced in the literature in recent years [4, 5,
7, 8, 10, 14, 15]. An irregular assignment pattern consists of a loop with fsize ite-
rations, fsize being the size of the subscript array f (see Figure 1). At each
iteration h, value rhs(h) is assigned to the array element A(f(h)). Neither the
right-hand side expression rhs(h) nor any function call make within it contain
occurrences of A, thus the code is free of loop-carried true data dependences.
Nevertheless, as the subscript expression f(h) is loop-variant, loop-carried out-
put data dependences may be present at run-time (unless f is a permutation
array). This loop pattern can be found in different application fields such as
computer graphics algorithms [3], finite elements applications [12], or routines
for sparse matrix computations [11].

Knobe and Sarkar [6] describe a program representation that uses array ex-
pansion [13] to enable the parallel execution of irregular assignment computa-
tions. Each processor executes a set of iterations preserving the same relative
order of the sequential loop. Array A is expanded in order to allow different
processors to store partial results in separate memory locations. For each array
entry A(j), with j = 1, ..., Asize, the global result is computed by means of a
reduction operation that obtains the partial result that corresponds with the
highest iteration number. Each processor computes this reduction operation for
a subset of array elements.

An optimization to perform element-level dead code elimination at run-time
is also presented in [6]. In irregular assignments, the same array element may be

A(...) = ...
DO h = 1, fsize

A(f(h)) = rhs(h)
END DO
... = ...A(...)...

Fig. 1. Irregular assignment pattern.

computed several times, though only the last value is used after the loop ends.
Consequently, intermediate values need not be computed. Classical dead code
elimination typically removes assignment statements from the source code. This
technique eliminates unnecessary array element definitions at run-time.

In this paper we use the inspector-executor model to parallelize irregular as-
signments on scalable shared memory multiprocessors. We show that this model
can be efficiently applied to the parallelization of static/adaptive irregular ap-
plications, preserving load-balancing and exploiting uniprocessor data write lo-
cality. A preliminary work [1] did not include a theoretical performance analysis
based on a formal characterization of static/adaptative irregular applications,
and presented a quite limited performance evalutation. The technique described
in this paper is embedded in our compiler framework [2] for automatic kernel
recognition and its application to automatic parallelization of irregular codes.

The rest of the paper is organized as follows. Our parallelization method is
presented in Section 2. The performance of our technique is compared with the
array expansion approach in Section 3. Experimental results conducted on a SGI
Origin 2000 using a rasterization algorithm as case study are shown in Section 4.
Finally, conclusions are discussed in Section 5.

2 Parallel Irregular Assignment

In this section, we propose a run-time technique that uses the inspector-executor
model to parallelize irregular assignments. The basic idea lies in reordering loop
iterations so that data write locality is exploited on each processor. Furthermore,
the amount of computations assigned to each processor is adjusted so that load-
balancing is preserved.

The method is as follows. In the inspector code shown in Figure 2, array
A is divided into subarrays of consecutive locations, Ap (p = 1, ..., P where P
is the number of processors), and the computations associated with each block
are assigned to different processors. Thus, the loop iteration space (1, ..., fsize) is
partitioned into sets fp that perform write operations on different blocks Ap. The
sets fp are implemented as linked lists of iteration numbers using two arrays,
count(1 : P) and next(1 : fsize + P). Each processor p has an entry in both
arrays, count(p) and next(fsize + p). The entry next(fsize + p) stores the first
iteration number hp

1 assigned to processor p. The next iteration number, hp
2, is

stored in array entry next(hp
1). This process is repeated count(p) times, i.e. the

number of elements in the list. In the executor code of Figure 3, each processor

! Accumulative frequency distribution
his(1 : Asize) = 0
DO h = 1, fsize

his(f(h)) = his(f(h)) + 1
END DO
DO h = 2, Asize

his(h) = his(h) + his(h − 1)
END DO

! Computation of the linked lists
Refs = (his(Asize)/P) + 1
count(1 : P) = 0
DO h = 1, fsize

thread = (his(f(h))/Refs) + 1
IF (count(thread).eq.0) THEN

next(fsize + thread) = h
ELSE

next(prev(thread)) = h
END IF
prev(thread) = h
count(thread) = count(thread) + 1

END DO

Fig. 2. Inspector code.

A(...) = ...
DOALL p = 1, P

h = next(fsize + p)
DO k = 1, count(p)

A(f(h)) = ...
h = next(h)

END DO
END DOALL
... = ...A(...)...

Fig. 3. Executor code.

P

...

1
2P
P

P

...

1
2P
P

2
his
1
0
0
0
1
1
2
1
2

A

A

1

2

Anext f

5
5

count

h

Fig. 4. Inspector-executor approach.

p executes the conflict-free computations associated with the loop iterations
contained in a set fp. Figure 4 shows a graphical description of the method. The
figure represents the linked-lists f1 and f2 of processors p1 and p2 as solid and
dashed lines, respectively. The corresponding subarrays A1 and A2 are depicted
as shaded regions within array A.

Load-balancing is preserved by splitting array A into subarrays Ap of different
size in the inspector stage. As shown in the code of Figure 2, the inspector first
computates the accumulative frequency distribution his(1 : Asize). For each
array entry A(j) with j = 1, ..., Asize, his(j) stores the sum of the number
of write references to A(1), A(2), ..., A(j). The second step consists of building
the linked lists fp by determining the list corresponding to each entry of the
subscript array f (see variable thread in Figure 2). The appropiate list is easily
computed as his(f(h))/Refs + 1, where Refs is the mean number of iterations
of the sequential loop per processor. As illustrated in Figure 4, load-balancing
is preserved because, as A1 and A2 have different sizes (7 and 3, respectively),
processors P1 and P2 are both assigned 5 iterations of the sequential loop.

Element-level dead code elimination can be implemented in the inspector-
executor model, too. In this case, the linked lists only contain the last iteration
at which array elements, A(j), are modified. This difference is highlighted in
Figure 5 where, unlike Figure 4, there are dotted arrows representing the loop
iterations that are not computed. The code of the optimized inspector (the
executor does not change) is shown in Figure 6. The accumulative frequency
distribution array, his(1 : Asize), contains the number of array entries in the
range A(1), A(2), ..., A(j) that are modified during the execution of the irregular
assignment. Note that an additional array, iter, is needed to store the last iter-
ation number at which the elements of array A are modified. Finally, the phase
that computes the linked lists is rewritten accordingly.

3 Performance Analysis

Memory overhead complexity of the array expansion technique proposed in [6] is
O(Asize×P) which, in practice, prevents the application of this method for large
array sizes and a high number of processors. In contrast, memory overhead of
our inspector-executor method is O(max(fsize + P, Asize)). Note that the extra
memory is not directly proportional to the number of processors. In practice,
the complexity is usually O(fsize), as fsize " P , or O(Asize).

The efficiency of the parallelization techniques for irregular assignments is
determined by the properties of the irregular access pattern. In our analysis, we
have considered the following parameters proposed in [15] for the paralleliza-
tion of irregular reductions: degree of contention (C), number of loop iterations
referencing an array element; sparsity (SP), ratio of different elements referenced
in the loop (Aupdated) and the array size; connectivity (CON), ratio of the num-
ber of loop iterations and the number of distinct array elements referenced in
the loop; and adaptivity or reusability (R), the number of times that an access
pattern is reused before being updated.

P

...
1
2P
P

P

...

1
2P
P

Anext f

count
4
3

iter

A

A

1

2

1
his
1
0
0
0
1
1
1
1
1

6
12
0
0
0
10
16

h

19

Fig. 5. Inspector-executor approach when dead code elimination is applied.

! Accumulative frequency distribution
iter(1 : Asize) = 0
his(1 : Asize) = 0
DO h = 1, fsize

iter(f(h)) = h
his(f(h)) = 1

END DO
DO h = 2, Asize

his(h) = his(h) + his(h − 1)
END DO

! Computation of the linked lists
Refs = (his(Asize)/P) + 1
count(1 : P) = 0
DO h = 1, Asize

IF (iter(h).gt.0) THEN
thread = (his(h)/Refs) + 1
IF (count(thread).eq.0) THEN

next(fsize + thread) = iter(h)
ELSE

next(prev(thread)) = iter(h)
END IF
prev(thread) = iter(h)
count(thread) = count(thread) + 1

END IF
END DO

Fig. 6. Inspector when dead code elimination is applied.

Unlike the array expansion approach, the inspector-executor technique takes
advantage of the adaptive nature of irregular applications. The computational
overhead is associated with the inspector stage because the executor is fully
parallel (it performs conflict-free computations). In static codes, the inspector
overhead is negligible because it is computed only once and then reused during
the program execution (R → ∞). Thus, as the parallel execution time can be
accurately approximated by the time of the executor, the efficiency E → 1 as
reusability R increases. In dynamic codes, the inspector is recomputed periodi-
cally. Supposing that the access pattern changes every time the executor is run
(R = 0), a lower bound of the efficiency is

E =
#iters ts

P (T INSP
s + #iters

P ts)
=

#iters ts
PT INSP

s + #iters ts
(1)

where ts is the execution time of one iteration of the sequential irregular loop,
T INSP

s represents the execution time of the sequential inspector, and #iters is
the number of loop iterations actually executed: fsize when dead-code elimina-
tion is not applied, and Aupdated when dead-code is applied. The execution time
of the parallel irregular assignment is given by Tp = T INSP

s + #iters
P ts.

As a result, the efficiency of the inspector-executor approach for any R is
bounded as follows:

fsize ts
PT INSP

s + #iters ts
≤ E ≤ 1 (2)

Lower efficiencies are obtained as R decreases because the irregular access pat-
tern changes more frequently. From now on we will assume a fixed array size
Asize. When dead code is not applied, T INSP

s increases as fsize raises (if SP is
constant, CON and fsize raise at the same rate). Thus, a higher lower bound is
achieved if the time devoted to useful computations (fsizets) grows faster than
the computational overhead (PT INSP

s). Supposing that SP is constant, when
dead code elimination is applied, the lower bound does not change because both
useful computations (Aupdatedts) and overhead T INSP

s remain constant as fsize

raises.
The inspector-executor method presented in this paper preserves load-balan-

cing, the exception being the case in which dead code elimination is not applied
and the access pattern contains hot spots, i.e. array entries where most of the
computation is concentrated (SP → 0 and C → ∞). On the other hand, the
array expansion approach may unbalance workload if dead code elimination is
applied. This is because as rhs(h) (see Figure 1) is computed during the re-
duction operation that finds the partial result corresponding to the highest it-
eration number, it is only computed for Aupdated array elements. As a result,
workload will be unbalanced if computations associated with modified elements
are not uniformly distributed among processors. In other words, load-balancing
is achieved if SP → 1. Otherwise, the array expansion approach does not as-
sure load-balancing because the contention distribution C of the irregular access
pattern is not considered in the the mapping of computations to processors.

(a) Poor load-balancing.

(b) Medium load-balancing.

(c) Uniform distribution.

Fig. 7. Irregular access patterns.

4 Performance Evaluation

In this section we present experimental results to compare the performances of
our technique and the array expansion method; different parameter combina-
tions that characterize irregular assignments are considered. The target machine
was a SGI Origin2000 cc-NUMA multiprocessor. OpenMP [9] shared memory
directives have been used in the parallel implementation.

4.1 Experimental Conditions

In our experiments, we have considered the parameters degree of contention (C),
sparsity (SP), connectivity (CON) and reusability (R), defined in Section 3. As
case study, we use the generic convex polygon scan conversion [3], a well-known
rasterization algorithm from computer graphics. This algorithm presents output
dependences that arise from the depiction of a set of polygons, which compose an
image/scene, on a display buffer, A. A typical size for the display buffer is Asize =
512 × 512 = 262, 144 pixels. We have also considered three access patterns that
represent typical cases in which the scan conversion is used (see Figure 7): a
pattern with poor load-balancing that represents an scene where all the objects
are displayed on a region of the buffer (SP = 0.36, array elements with C > 0 are
confined in a specific region); a second pattern presents medium load-balancing
that is associated with an image where most objects are concentrated on several
regions of the display (SP = 0.30, array elements with C > 0 are uniformly
distributed along the array, but there exist several regions with a higher C); and a
third pattern that is characterized by uniformly distributed objects (SP = 0.32).
We have considered 5, 000, 10, 000 and 20, 000 polygons to cover a reasonable
range typically found in rasterization. Assuming a fixed mean number of 20

pixels per polygon, the total number of references (i.e. loop iterations, fsize) to
the array A is 100, 000 (CON ≈ 1.20), 200, 000 (CON ≈ 2.41) and 400, 000
(CON ≈ 4.81), respectively. The experimental results presented in the following
sections were obtained by fixing Asize = 262, 144 and SP ≈ 0.33, on average.
As a result, conclusions can be stated in terms of CON and fsize.

4.2 Experimental Results

When element-level dead code elimination is not applied, computational load
is measured as the maximum number of loop iterations that is assigned to the
processors. Both methods preserve load-balancing by assigning approximately
fsize/P iterations to each processor, P being the number of processors. Figures 8
and 9 present execution times and speed-ups for different CON and R values.
The access pattern, which is defined in terms of SP and C, is not relevant in this
case. Execution times increase as CON raises because CON is related to the
amount of computational load assigned to processors; it does not affect workload
distribution. Note that memory overhead O(Asize×P) prevents the execution of
the array expansion approach on more than 15 processors, which is a drawback
if a high number of processors is needed.

The speed-ups of the array expansion approach (dotted lines) increase as
CON raises (this method does not take advantage of reusability) because the
computational overhead of this method mainly depends on the reduction ope-
ration that determines the value of each array element A(j), j = 1, ..., Asize,
by combining the partial results computed by the processors (Asize and SP are
constants). In the figure, speed-ups increase approximately 35% on 15 processors
when CON is doubled for Asize = 262, 144 and SP ≈ 0.33. In contrast, the
speed-ups of our inspector-executor technique (shaded region) depend on CON
and R. In static codes (R → ∞), efficiency is approximately 1 in any case (solid-
star line). However, in dynamic applications, the sequential inspector imposes
an upper limit on the maximum achievable speed-up (see Section 3). The curve
of speed-ups for totally dynamic codes is a lower bound of the speed-up of
the inspector-executor approach (see Eq. (2)). The lower bound raises when
CON is increased (solid lines with R = 0) because the time devoted to useful
computations grows faster than the computational overhead. In particular, the
increment is approximately 6% on 32 processors when CON is doubled. Lower
speed-ups are obtained as R decreases because the access pattern has to be
rescanned a higher number of times during the execution of the program.

4.3 Results with Dead Code Elimination

The generic scan conversion algorithm depicts all the polygons that represent
an image on the display buffer although, at the end, only the visible regions
of the polygons remain on the display. As a result, computational resources
are consumed in the depiction of invisible polygons. When element-level dead
code elimination is applied, only the visible regions of the polygons are printed
on the display buffer, with the corresponding saving of resources. In this case,

5 10 15 20 25 30

100

101

Processors

Ex
ec

ut
io

n
tim

e
(s

ec
co

nd
s)

Array expansion (CON=1.20)
Array expansion (CON=2.41)
Array expansion (CON=4.81)
Inspector!Executor (CON=1.20, R infinity)
Inspector!Executor (CON=2.41, R infinity)
Inspector!Executor (CON=4.81, R infinity)

Fig. 8. Execution times.

5 10 15 20 25 30
0

5

10

15

20

25

30

Processors

Sp
ee

d!
up

Array expansion (CON=1.20)
Array expansion (CON=2.41)
Array expansion (CON=4.81)
Inspector!Executor (CON=1.20, R=0)
Inspector!Executor (CON=2.41, R=0)
Inspector!Executor (CON=4.81, R=0)
Inspector!Executor (R infinity)

Fig. 9. Speed-ups.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10
x 104

Processors

M
ax

im
um

 n
um

be
r o

f a
rra

y
el

em
en

ts

Inspector!executor (poor, SP=0.36)
Array expansion (poor, SP=0.36)

Fig. 10. Computational load when dead code elimination is applied.

computational load is measured as the maximum number of array elements that
are computed by the processors. Figure 10 represents the computational load
corresponding to the access pattern with poor load-balancing (SP = 0.36 and
C = 0 for large subarrays of A) when dead code elimination is applied. Unlike
our inspector-executor technique (black bars), the array expansion method (gray
bars) presents load-unbalancing because array elements A(j) are assigned to
processors independently of the contention distribution C.

Note that workload depends on the distribution of modified array elements
(SP and C), while it depends on CON if dead code elimination is not applied.
Figures 11 and 12 show execution times and speed-ups when dead code elimina-
tion is applied. The parameter SP is ≈ 0.33 for all the access patterns described
in Section 4.1 because load-balancing increases in the array expansion approach
as SP → 1. The inspector-executor method outperforms the array expansion
technique which, in addition, is highly sensitive to the contention distribution of
the access pattern.

5 Conclusions

A scalable method to parallelize irregular assignment computations is described
in this work. Unlike previous techniques based on array expansion, the method
uses the inspector-executor model to reorder computations so that load-balancing
is preserved and data write locality is exploited.

Performance evaluation shows that our method outperforms the array ex-
pansion approach either using dead code elimination or not. Furthermore, the
applicability of array expansion is limited by its memory requirements in prac-
tice. The inspector-executor model is appropriate to develop parallelization tech-
niques that take advantage of the adaptive nature of irregular applications.

5 10 15 20 25 30

10!1

100

101

Processors

Ex
ec

ut
io

n
tim

e
(s

ec
co

nd
s)

Array expansion (poor, SP=0.36)
Array expansion (medium, SP=0.30)
Array expansion (uniform, SP=0.32)
Inspector!Executor (poor, SP=0.36, R infinity)
Inspector!Executor (medium, SP=0.30, R infinity)
Inspector!Executor (uniform, SP=0.32, R infinity)

Fig. 11. Execution times when dead code elimination is applied.

5 10 15 20 25 30
0

5

10

15

20

25

30

Processors

Sp
ee

d!
up

Array expansion (poor, SP=0.36)
Array expansion (medium, SP=0.30)
Array expansion (uniform, SP=0.32)
Inspector!Executor (poor, SP=0.36, R=0)
Inspector!Executor (medium, SP=0.30, R=0)
Inspector!Executor (uniform, SP=0.32, R=0)
Inspector!Executor (R infinity)

Fig. 12. Speed-ups when dead code elimination is applied.

Acknowledgements

We gratefully thank Complutense Supercomputing Center in Madrid for pro-
viding access to the SGI Origin 2000 multiprocessor. This work was supported
by the Ministry of Science and Technology of Spain and FEDER funds under
contract TIC2001-3694-C02-02.

References

1. Arenaz, M., Touriño, J., Doallo, R.: Irregular Assignment Computations on cc-
NUMA Multiprocessors. In Proceedings of 4th International Symposium on High
Performance Computing, ISHPC-IV, Kansai Science City, Japan, Lecture Notes in
Computer Science, Vol. 2327 (2002) 361–369

2. Arenaz, M., Touriño, J., Doallo, R.: A GSA-Based Compiler Infrastructure to Ex-
tract Parallelism from Complex Loops. In Proceedings of 17th ACM International
Conference on Supercomputing, ICS’2003, San Francisco, CA (2003) 193–204

3. Glassner, A.: Graphics Gems. Academic Press (1993)
4. Gutiérrez, E., Plata, O., Zapata, E.L.: Balanced, Locality-Based Parallel Irregu-

lar Reductions. In Proceedings of 14th International Workshop on Languages and
Compilers for Parallel Computing, LCPC’2001, Cumberland Falls, KY (2001)

5. Han, H., Tseng, C.-W.: Efficient Compiler and Run-Time Support for Parallel Ir-
regular Reductions. Parallel Computing 26(13-14) (2000) 1861–1887

6. Knobe, K., Sarkar, V.: Array SSA Form and Its Use in Parallelization. In Pro-
ceedings ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages (1998) 107–120

7. Lin, Y., Padua, D.A.: On the Automatic Parallelization of Sparse and Irregular
Fortran Programs. In Proceedings of 4th Workshop on Languages, Compilers, and
Run-Time Systems for Scalable Computers, LCR’98, Pittsburgh, PA, Lecture Notes
in Computer Science, Vol. 1511 (1998) 41–56

8. Mart́ın, M.J., Singh, D.E., Touriño, J., Rivera, F.F.: Exploiting Locality in the
Run-time Parallelization of Irregular Loops. In Proceedings of 31st International
Conference on Parallel Processing, ICPP 2002, Vancouver, Canada (2002) 27–34

9. OpenMP Architecture Review Board: OpenMP: A Proposed Industry Standard API
for Shared Memory Programming (1997)

10. Rauchwerger, L., Padua, D.A.: The LRPD Test: Speculative Run-Time Paralleliza-
tion of Loops with Privatization and Reduction Parallelization. IEEE Transactions
on Parallel and Distributed Systems 10(2) (1999) 160–180

11. Saad, Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations.
http://www.cs.umn.edu/Research/darpa/SPARSKIT/sparskit.html (1994)

12. Turek, S., Becker, C.: Featflow: Finite Element Software for the Incompressible
Navier-Stokes Equations. User Manual. http://www.featflow.de (1998)

13. Wolfe, M.J.: Optimizing Supercompilers for Supercomputers. Pitman, London and
The MIT Press, Cambridge, Massachussets (1989)

14. Xu, C.-Z., Chaudhary, V.: Time Stamp Algorithms for Runtime Parallelization of
DOACROSS Loops with Dynamic Dependences. IEEE Transactions on Parallel and
Distributed Systems 12(5) (2001) 433–450

15. Yu, H., Rauchwerger, L.: Adaptive Reduction Parallelization Techniques. In Pro-
ceedings of the 14th ACM International Conference on Supercomputing, Santa Fe,
NM (2000) 66–77

