
Ontological Configuration Management for
Wireless Mesh Routers

Iván Dı́az∗, Cristian Popi†, Olivier Festor†, Juan Touriño∗, Ramón Doallo∗

{idiaz,juan,doallo}@udc.es∗
Computer Architecture Group

Department of Electronics and Systems,
University of A Coruña

Campus de Elviña s/n, 15071 A Coruña,
Spain

{popicris,Olivier.Festor}@loria.fr†
MADYNES - INRIA Nancy
Grand Est - Research Center
615, rue du jardin botanique

54602 Villers-les-Nancy,
France

Abstract. Wireless mesh networks (WMNs) are a category of wireless
networks that are self-organized, robust and which offer more flexible
client coverage with less equipment requirements than wired networks.
In WMNs, mesh routers constitute the network’s “backbone”. The dis-
tributed, ever-changing and ad-hoc nature of these networks poses new
challenges in configuration management. In order to face them, we mod-
elize the configuration and semantics of a preexisting mesh router using
the CIM model and OWL ontology language and implementing XSLT
transformations from the original configuration format to CIM/OWL
and back. We thus represent it in a higher level of abstraction, an on-
tological representation that supports configuration semantic checking,
policy enforcing and reasoning on the configuration of WMN nodes. We
also use the capabilities of our AdCIM framework for persistence and the
generation of web configuration interfaces.

1 Introduction

Wireless Mesh Networks [1] replace the classical wired network distribution with
a wireless, self-organizing and self-healing infrastructure. This allows for an easy
and cheap deployment of access points in places where cabling is costly. A WMN
consists of access points, and client nodes. Access points (or mesh routers) form
a mesh of fixed nodes, the “backbone”, and have a double function: providing
access to roaming clients, and relaying data for other routers and other networks
(see left side of figure 1). The coverage of a wireless mesh network is extended by
means of multi-hop communications. Therefore, mesh routers have additional
functions to support mesh networking (i.e. routing capabilities), functions which
are very important to manage for the performance and health of the network.
∗This work was funded by the Ministry of Education and Science of Spain under

Project TIN2007-67537-C03, and by the Galician Government (Xunta de Galicia) under
Project PGIDIT06PXIB105228PR
†This work was partially supported by the French Ministry of Research project,

AIRNET, under contract ANR-05-RNRT-012-01.

Fig. 1. Application of the AdCIM framework to WMN management

There is currently a lack of frameworks for the integrated configuration of
WMN routers, so this work explores the application of the AdCIM framework [2]
to the configuration of WMN routers. Our approach is shown in figure 1. The
router configuration is mapped to the CIM object model [3] and then converted
using XSLT into CIM instances (in our custom miniCIM format). Then the
functionality of the AdCIM framework is exploited, including persistence in
LDAP directories and the generation of web forms to manipulate these instances.
The modified data is reverted to its original format and updated in the router,
or transformed to an OWL [4] based semantic representation, to check internal
consistency in the configuration and infer new data.

Using the CIM model and its OWL representation opens new possibilities
to diagnose mesh network problems or to simulate the effect of a proposed
configuration change globally. It also provides a higher level view that hides
implementation details and that is generalizable to routers with other architectures
which could then be managed homogeneously. We chose the configuration of a
modular wireless router developed by the Image Sciences, Computer Sciences
and Remote Sensing Laboratory (LSIIT) RP team [5]. This router configuration
is managed using the OSGi [6] Java-based framework, which supports on-the-fly
management and deployment of modules, and to support starting, stopping and
uninstalling them independently.

This paper is structured as follows. First, Section 2 details background
information and persistence and user interface aspects of the AdCIM framework
related with this work. Section 3 contains an analysis of the router configuration
and the entities it represents. After that, Section 4 elaborates about the mapping
of these entities to CIM and the implementation of this mapping in CIM. The
transformation from CIM to the ontological representation, and its use in semantic
checking are developed in Section 5. Section 6 explores works related with this
paper, and, finally, Section 7 the conclusions.

2 Background and Management Infrastructure

This section outlines some technologies used in this work and the management
infrastructure provided by AdCIM.

From the W3C we use three standards: XSLT, XForms, and OWL. XSLT [7] is
a template language for XML transformations. Its declarative nature allows trans-
formations to be further optimized and parallelized by the interpreter. XForms [8]
is designed as a replacement for HTML forms and uses XML data as input and
output, supports dynamic form changes and off-line validation without server
intervention or Javascript support. OWL (Web Ontology Language) [4] represents
formally knowledge domains organized as hierarchical classifications and supports
reasoning tasks on them, such as concept satisfiability and consistency. OWL
supports three flavors, OWL Lite, OWL-DL, and OWL Full, which represent
various compromises between expressivity and computability.

CIM (Common Information Model) [3] is a standard from the Distributed
Management Task Force (DMTF) that defines an object-oriented and extensible
information model to represent configuration data. It covers a vast spectrum of
configuration information, ranging from the logical (such as device capabilities,
operational status, software dependencies) to the physical (e.g., temperature,
physical location, cabling, card placement), and relates all these entities via
associations, which represent much of the semantical information in CIM.

To manage these CIM instances and associations, in this case modelling the
configuration of the router, we use our AdCIM framework [2], of which figure 1
shows a rough overview. This framework supports the extraction of configuration
data as CIM instances, even from unstructured sources. It validates and stores
these data in LDAP directories and generate user interfaces via XForms. OWL
data for the reasoning processes that will be presented in Section 5 are also
generated using XSLT and divided into ABox (declarative) statements deriving
from the instances, and TBox (terminological) statements deriving from the
schema, as depicted in the figure.

Data persistence in AdCIM is modularized, but the preferred solution is
LDAP [9], since it supports partial replication and scalability for efficient decen-
tralized management. Also, it is more flexible than relational databases to store
and retrieve miniCIM instances. LDAP storage of miniCIM data is handled with
XSLT stylesheets that transform XML to and from LDAP format according to
the miniCIM schema and the DMTF recommendations in [10].

Since the transformation to and from directory data must be called at ev-
ery query, the stylesheet processor is configured to cache the CIM schema to
ensure optimal response times and stylesheets make intensive use of the XSLT
<xsl:key/> operator, as well as other optimization techniques.

AdCIM generates forms that retrieve the entities represented by CIM classes
from the repository, modify them honoring schema restrictions, and support
adding or deleting supported fields and instances. These forms are generated on-
the-fly from the schema and a preexisting template, and then further processed to
generate a standard HTML+Javascript form compatible with all major browsers.

<configurations>
<level name="device">
<level name="ethernet">
<level name="interface">
<configuration name="br31">
<String name="ConfigurationType">interface</String>
<Integer name="UpdateType">0</Integer>
<String name="device.deviceType">ethernet</String>
<String name="device.ethernet.broadcast">0.0.0.0</String>
<Short name="device.ethernet.flags">1</Short>
<String name="device.ethernet.ip">130.79.91.223</String>
<Boolean name="device.ethernet.ipDesactivated">false</Boolean>
<StringArray name="device.ethernet.ipv6addresses"/>
<Integer name="device.ethernet.mtu">1500</Integer>
<String name="device.ethernet.netmask">255.255.254.0</String>
<Boolean name="device.ethernet.usingDHCP">false</Boolean>
<String name="device.interfaceName">br31</String>
<String name="device.virtualName">br31</String>
<String name="service.bundleLocation"> file:ap-bundles/devmng_eth.jar </String>
<String name="service.pid"> device.ethernet.interface.br31 </String>

</configuration>
</level>

</level>
</level>

</configurations>

Fig. 2. OSGi-based mesh router configuration for an IP interface

<CIM_OSGiConfSettingData namespace="dc=udc">
<BundleLocation>
file:ap-bundles/devmng_eth.jar

</BundleLocation>
<InstanceID>device.ethernet.interface.br31</InstanceID>
<ConfigurationType>interface</ConfigurationType>
<UpdateType>0</UpdateType>

<CIM_IPProtocolEndpoint namespace="dc=udc">
<SystemCreationClassName>
CIM_ComputerSystem

</SystemCreationClassName>
<SystemName>LSIIT</SystemName>
<CreationClassName>
CIM_IPProtocolEndpoint

</CreationClassName>
<Name>device.ethernet.interface.br31</Name>
<Caption>br31</Caption>

</CIM_IPProtocolEndpoint>

<CIM_ElementSettingData namespace="dc=udc">
<IsCurrent>Is Current</IsCurrent>
<ManagedElement>
<ref classname="CIM_IPProtocolEndpoint"

namespace="dc=udc">
<CreationClassName>
CIM_IPProtocolEndpoint

</CreationClassName>
<Name>device.ethernet.interface.br31</Name>
<SystemCreationClassName>
CIM_ComputerSystem

</SystemCreationClassName>
<SystemName>LSIIT</SystemName>

</ref>
</ManagedElement>
<SettingData>
<ref classname="CIM_OSGiConfSettingData"

namespace="dc=udc">
<InstanceID>
device.ethernet.interface.br31

</InstanceID>
</ref>

</SettingData>
</CIM_ElementSettingData>

<CIM_IPAssignmentSettingData namespace="dc=udc">
<InstanceID>br31</InstanceID>
<AddressOrigin>Static</AddressOrigin>

</CIM_IPAssignmentSettingData>
<CIM_StaticIPAssignmentSettingData namespace="dc=udc">

<InstanceID>br31-static</InstanceID>
<IPv4Address>130.79.91.223</IPv4Address>
<SubnetMask>255.255.254.0</SubnetMask>
<GatewayIPv4Address>130.79.91.254</GatewayIPv4Address>

</CIM_StaticIPAssignmentSettingData>

<CIM_ElementSettingData namespace="dc=udc">
<ManagedElement>
<ref classname="CIM_IPProtocolEndpoint"

namespace="dc=udc">
<CreationClassName>
CIM_IPProtocolEndpoint

</CreationClassName>
<Name>device.ethernet.interface.br31</Name>
<SystemCreationClassName>
CIM_ComputerSystem

</SystemCreationClassName>
<SystemName>LSIIT</SystemName>

</ref>
</ManagedElement>
<SettingData>
<ref classname="CIM_IPAssignmentSettingData"

namespace="dc=udc">
<InstanceID>br31</InstanceID>

</ref>
</SettingData>

</CIM_ElementSettingData>

<CIM_ConcreteComponent namespace="dc=udc">
<GroupComponent>
<ref classname="CIM_IPAssignmentSettingData"

namespace="dc=udc">
<InstanceID>br31</InstanceID>

</ref>
</GroupComponent>
<PartComponent>

<ref classname="CIM_StaticIPAssignmentSettingData"
namespace="dc=udc">

<InstanceID>br31-static</InstanceID>
</ref>

</PartComponent>
</CIM_ConcreteComponent>

Fig. 3. Excerpt from output of transforming fig. 2 configuration into miniCIM format

To find inconsistencies in the miniCIM data shown by these forms we use the
programmatic Java interface of the Pellet reasoner.

3 OSGi Configuration Analysis

The router subject to study provides a naming schema and structure for the
configuration attributes that conform to the standard OSGi Configuration Service
which is the component of OSGi tasked with managing the settings of other
services and their persistence. It defines configuration objects that contain config-
uration dictionaries, a collection of name-value pairs that represent the settings
of an OSGi service; objects also have a PID (persistent identifier) as primary key.
OSGi services can register themselves to a PID to receive a dictionary, or to a
configuration factory to receive an arbitrary number of dictionaries registered in
the factory.

The LSIIT router stores its configuration objects as XML data in the format
seen in figure 2. Configuration objects have structured PIDs used for references
and located in a hierarchy similar to that of Java packages. OSGi properties
name, type and value are codified as an XML element attribute, name, and value,
respectively. The router conceptual entities mapped by these objects are:

Services There are three services in the router configuration: SNMP, Bridging
and Telnet. Each has a very different configuration: SNMP only needs to be set
as started or stopped, Bridging needs a list of network interfaces; so the mapping
of each service is different in each case.
IP Interfaces These entities represent various virtual interfaces on top of the
wireless interfaces. Their set of properties includes IP address and net mask
and DHCP configuration. While located in level device.ethernet.interface,
they mostly represent IP configurations, with two properties (MTU and Flags)
representing transport level properties. They can be related to wireless interfaces
or be implemented by the bridging service.
Logical Wireless Interfaces They represent the aspects of wireless interface con-
figuration that reside in a higher level than physical configuration. These aspects
include encryption algorithms and settings, Radius server configuration, VLAN
configuration, SSID (wireless network name), MAC filtering and related parame-
ters like the link quality level, window size or link hysteresis control. Each one of
these entities are generally associated with an IP interface and a physical wireless
interface.
Physical Wireless Interfaces They represent the low-level settings of a wireless
interface and are bound to logical interfaces. These settings include transmission
channel or frequency and transmission power.
Other entities Other entities in the configuration include a generic IP routing
default gateway setting and password information. There are also entities to
represent virtual LAN settings.

Fig. 4. CIM mapping class hierarchy

4 Mapping of the Router Configuration to CIM

This section covers the mapping from the original format of the router config-
uration to the CIM model that is later translated to OWL. According to the
classification presented in Rivière et al [11], the mapping in this work follows the
“recast” philosophy, since “concepts” are mapped. It also follows the principle
of abstract translation, since redundant information is removed. Finally, the
organization is independent, since the resulting model is standard. In figure 4,
we show the CIM class hierarchy used to map the router configuration. We will
explore both this mapping and the XSLT templates that implement it.

The CIM mapping of figure 4 can be separated in two abstraction levels, one
including the OSGIConfSettingData and OSGIConfFactorySettingData classes,
both representing OSGi-related structures and identifiers, and the other level
representing more abstract entities. The two abstraction levels simplify the
recovery of the original configuration file and, at the same time, avoid pollution
of OSGi specific attributes on abstract entities.

The second abstraction level includes some specialized service classes, such as
SNMPService. SwitchService represents the bridging facility and is associated
to a list of SwitchPort instances, each associated to an IPProtocolEndpoint.
The bridging service is also accessed as an IP interface of its own, related with
ProvidesEndpoint. These IPProtocolEndpoints, which represent IP interfaces,
are related to an IPAssignmentSettingData which indicates if the address
setting is static or via DHCP. In the first case, it is further associated with a
StaticIPAssignmentSettingData which contains the IP data. There are cases
in which no IP assignment data will be given.

IPProtocolEndpoint instances can be associated to a WirelessLANEndpoint
instance which represents logical wireless interfaces. Each one can have several
Radius configurations, represented by the RadiusSettingData class. The IP
interfaces maximum transfer unit value is moved to the EthernetPort class.
Finally, physical wireless interface data are included in WirelessPort instances,
related to WirelessLANEndpoint by the PortImplementsEndpoint association.

The properties of an OSGi dictionary are usually directly mapped to CIM
properties, but there are some properties that are not mapped at all to CIM, such
as boolean values that control the expression of others. For example, device-
.ethernet.ipDesactivated shows if the IP interface has a valid IP configuration.
Similarly, invalid fields can be omitted instead of being represented by dummy
values.

4.1 XSLT implementation

The implementation of the transformations is done with two XSLT stylesheets:
one that transforms the XML OSGi configuration data into CIM data and another
one that does the opposite process. The result of the application of the first one to
the configuration shown in figure 2 can be seen in figure 3. We use the miniCIM
XML format (more detailed in [2]), which is a custom format that stores schema

data separately, being much more compact and efficient than CIM-XML [12], the
official XML mapping representing CIM data.

Internally, the first stylesheet can create any particular CIM association
with the association endpoints and properties as arguments. Depending on the
configuration PID of each entry, appropriate templates that create CIM classes
and associations are invoked and a second pass adds relationships which would
require backtracking in the first pass. The second template, which converts CIM
data back to the OSGi configuration, can similarly follow CIM associations and
thus rebuild the OSGi configuration retrieving the CIM instances pointed by OSGi-
related associations. This template can also recover the level structure of the file
by parsing their PID values. These two templates use pattern matching to allow
extensibility: recognized elements trigger special case processing and unknown
elements only are mapped at low level, without aborting the transformation.

5 Ontology Representation

Section 4 showed a semi-formal representation that covers taxonomical classi-
fication and domain knowledge, but this representation is not formal because
many domain constraints and metadata are not expressed explicitly, so is not
possible to infer and reason over the data without a priori knowledge of the
semantics of the domain (see Quirolgico et al. [13]). For example, in the domain
of WMNs, the channel information of a wireless interface actually maps into
a range of frequencies that might be unusable because of national regulation
or interference with other nearby equipment. The existence of several usable
bands, and proprietary wi-fi protocols further complicates the issue. The use of
an ontology and a reasoner (a program implementing logical reasoning) allows to
deduce a conflict in those situations.

Configuration semantic checking is another motivator. Sinz et al. [14] and
Glasner et al. [15], verify logical constraints in the Apache configuration file.
These constraints are not concerned with mere well-formedness, but with semantic
integrity. Checking this with ontologies has many advantages. For instance,
problems in higher levels of abstraction are traced logically by the reasoner to
lower-level causes and other configuration formats can be expressed with the
same model, without changing the underlying logic.

Other advantage is the formal enactment of policies. A rule language like
SWRL [16] allows to specify Horn-like rules of the form H ← B1, . . . , Bn, in
which the head H is asserted if all the body atoms B1...n are true. Nevertheless,
Motik et al. [17] show that the näıve combination of OWL-DL and unrestricted
SWRL rules is undecidable (not guaranteed to end in the worst case), but it
is decidable if rule variables are restricted to known individuals. SWRL rules
extend OWL when more expressivity is needed (e.g. role composition like in a
hypothetical property uncleOf) or there is no reasoner support (e.g. reasoning
and mathematical operations with datatypes).

We chose OWL-DL as the format for our ontologies. Among the OWL flavors,
OWL-DL has the best balance between expressivity and efficiency; Lite is too

restrictive and Full is undecidable and inefficient. All are based on description
logics, that are fragments of first order logic (FOL), in turn, propositional logic
with existential and universal quantifiers. Full FOL is not used because of its
undecidability and computational intractability. Description logics differ in the
operations retained (or added) from FOL. OWL-DL supports these operators:

C → ¬C | C1 u C2 | C1 t C2 | A | ∃R.C | ∀R.C |≥ nS |≤ nS | a1, . . . , an (1)

where C and Ci are concepts or classes, A an atomic concept, R.C describes a
binary role or property, S is a property name, n is an integer number that indicates
its minimum or maximum cardinality, and ai are named individuals. Thus, the
operations include negation, set union, set intersection, existential quantification,
universal quantification, number restrictions and named individuals. Individuals
can belong to several concepts and roles represent logic predicates involving
concepts that can be transitive. Known facts or “axioms” are grouped in the
knowledge base, divided in the TBox (“terminological box”) which hierarchically
groups axioms about concepts and roles and their mutual inclusion, and the
ABox (“assertional box”), which contains knowledge about individuals (and
their inclusion in a concept). A reasoner can perform several tasks with that
information, such as classifying individuals in concepts, restructuring the concept
hierarchy and detecting inconsistencies. We have used the open-source reasoner
Pellet [18], which has support for both OWL and SWRL.

5.1 CIM transformation to OWL

Works like the ones by Heimbigner [19], Majewska et al. [20] and Garćıa et al. [21]
have already implemented mappings of CIM to OWL-DL, and remark the lack
of equivalences for some CIM constructs in OWL. Our mapping is closer to the
second and third works, and is implemented with XSLT. Our mapping approach
from the CIM schema to OWL TBox is roughly described as:

CIM entity OWL TBox mapping

Class <owl:Class>, defined as a closed set of individuals using <owl:OneOf>

SubClass <rdfs:subClassOf>, all subclasses declared as disjoint to one another

Properties DataProperties with appropriate types to map CIM types

References cardinality 1 ObjectProperty. Inverse properties are inferred
automatically by the reasoner

Association subclasses of Association. Each instance limited to DataProperty

and two cardinality 1 ObjectProperty

Cardinality Normal in DataProperty. ObjectProperty in associated classes
by limiting the cardinality of inverse object properties

Key Not implemented, causes undecidability without being needed

We adapted some of the ideas of previous works and rejected others, for
example, the approach for mapping property names in [19] is very cumbersome
and we chose instead to append the class name as a prefix. Mapping CIM
key properties requires OWL Full, which is undecidable, so instead a unique

identifier is assigned for each instance conserving the semantics. Our approach of
“splitting” associations tries to simplify their closure and preserves the semantics
of cardinality. Since OWL properties are binary, we require separate instances
for associations to house possible association attributes.

Closing the world Our mapping provides axioms to obtain world closure. OWL
reasoners by default operate by the Open World Assumption, so unstated facts
are not false, merely unknown. This also makes membership by negation (or
negation as failure) very hard to verify, so it only works if there is no possible
new knowledge that invalidates the negation. In this case, since the configuration
file is a closed universe of discourse, we prevent this by declaring explicitly the
inexistence of additional instances, restricting the cardinality of associations,
and defining all individuals pairwise disjoint. This closes the world and allows
negation as failure. This can be viewed as a drawback of OWL, but it also allows
to open parts of the world, e.g. parts modifiable by unknown external imports.

5.2 OWL reasoning implementation

Once the information contained in the miniCIM schema and instances is translated
to TBox and ABox axioms, additional axioms are introduced in an included
file that verify some conditions. This section shows some examples of applicable
restrictions for configuration checking. To better understand this section, refer to
figure 4.

The first example shows a simple case in which unconfigured entities are
detected; in this case, ports in a switching service that are not configured. This
avoids the possibility of the switching service failing due to misconfiguration and
causing a malfunction in the node.

SwitchPort Undefined ≡ SwitchPort ∩ (2a)

¬(∃EndpointIdentitySystemElement−.EndpointIdentity) (2b)

This restriction declares an undefined port in a switching service as a port
not represented with a network endpoint. This is checked by the presence of an
inverse property from association EndpointIdentity, x− in 2b. The values of
these inverse properties are inferred automatically by the reasoner. Since this re-
striction uses negation as failure, the possible instances of the EndpointIdentity
association and SwitchPort must be closed for it to work.

The effects of a configuration error are made to cascade to other entities
defining intermediate classes (OWL-DL does not support composition of proper-
ties). The reasoner automatically determines the proper evaluation order, and
the cascading can be made arbitrarily deep. The type of errors detected by this
process are important in wireless nodes, since obscure high-level errors might
have simple motivations solvable on-the-fly:

Not current IP setting ≡ (3a)

ElementSettingData ∩ (3b)

(∃ElementSettingDataIsCurrent = false |xsd : string) ∩ (3c)

(∃ElementSettingDataSettingData.IPAssignmentSettingData) (3d)

Unconfigured IP Endpoint ≡ IPProtocolEndpoint ∩ (3e)

((∀ElementSettingDataManagedElement−.Not current IP setting) (3f)

∪ (¬(∃ElementSettingDataManagedElement−.IP setting))) (3g)

BindsTo Unconfigured IP Endpoint ≡ (3h)

BindsTo ∩ (∃BindsToAntecedent.Unconfigured IP Endpoint) (3i)

The term 3c selects IP setting instances that are not currently used, term 3d
deselects ElementSettingData instances not related to IP Settings and the
special intermediate class Unconfigured IP Endpoint is defined as one Endpoint
with no IP settings (3e), or one in which none are current (3f). Finally, term 3h
declares a subclass of the association Binds To grouping those instances that
bind with Unconfigured IP Endpoint instances. In that way, semantic errors
are propagated so they can help diagnose problems in top-level entities.

Policies are also implemented by SWRL rule chaining. SWRL allows both
straightforward composition without intermediate classes, and performing in-
equality comparisons with datatype ranges (instead of only supporting equality
comparisons) . Some OWL reasoners translate the rules and relevant OWL axioms
to another rule engine, sometimes changing the semantics, but the Pellet reasoner
integrates them fully with OWL axioms. These rules, for example, detect wireless
ports that have illegal frequencies depending on the legislation of the country:

WirelessPortChannel(?x, ?y) ∧ swrlb : multiply(?y5, ?y, 5) (4a)

∧ swrlb : add(?z, ?y5, 2412)→WirelessPortFrequency(?x, ?z) (4b)

located(Japan, ?y) ∧ ComputerSystem(?y) ∧ (4c)

∧ SystemDeviceGroupComponent(?z, ?y) ∧ (4d)

∧ SystemDevicePartComponent(?z, ?a) ∧ WirelessPort(?a) ∧ (4e)

∧ WirelessPortChannel(?a, ?b) ∧ swrlb : greaterThanOrEqual(?b, 2500) (4f)

→ IllegalFrequency WirelessPort(?a) (4g)

located(USA, ?y) ∧ ComputerSystem(?y) ∧ (4h)

∧ SystemDeviceGroupComponent(?z, ?y) ∧ (4i)

∧ SystemDevicePartComponent(?z, ?a) ∧ WirelessPort(?a) ∧ (4j)

∧ WirelessPortFrequency(?a, ?b) ∧ swrlb : greaterThanOrEqual(?b, 2467) (4k)

→ IllegalFrequency WirelessPort(?a) (4l)

Since the legal spectrum depends on the country, it first determines the
location of the system housing the wireless ports (4c, 4h), and then finding
their frequency (4d-4g, 4i-4k). Since these frequencies will be usually expressed
as channels, terms 4a and 4b calculate the frequency by using SWRL built-
in operations. Finally, the frequency of each port is compared with the legal
maximum (term 4f, 4k) and minimum (not shown). If this value is out of
limits (for example, channel 13 in the USA), the ports are classified in the
IllegalFrequency WirelessPort subclass.

More complex policies and taxonomies are defined using SWRL to define new
properties. In the following example, WirelessPorts are defined as interfering
one another (i.e. a symmetric property) if their frequency difference is less than
25Mhz (5g). This property can be used in turn in more complex rules. For
example, if throughput degradation between two ports is detected, interference
can explain its origin.

ComputerSystem(?y) ∧ SystemDeviceGroupComponent(?z, ?y) ∧ (5a)

∧ SystemDevicePartComponent(?z, ?a) ∧ (5b)

∧ SystemDeviceGroupComponent(?z, ?y1) ∧ (5c)

∧ SystemDevicePartComponent(?z, ?a1) ∧ WirelessPort(?a) ∧ (5d)

∧ WirelessPort(?a1) ∧ WirelessPortFrequency(?a, ?b) ∧ (5e)

∧ WirelessPortFrequency(?a1, ?b1) ∧ swrlb : subtract(?delta, ?b, ?b1) ∧ (5f)

∧ swrlb : lessThanOrEqual(?delta, 24)→ interferes(?a, ?a1) (5g)

6 Related Work

Some works have been done in the area of managing wireless mesh networks, for
example, a simulator-based scheme for troubleshooting faults in WMNs by Qiu
et al [22]. Zhang et al [23] present an attack–resilient security architecture for
WMNs.

For the configuration and accounting of WMNs, commercial solutions are avail-
able from Nortel [24] or LocustWorld [25]. Staub et al [26] tackle the challenges
of defective configurations or errors in mesh routers, and propose a distributed
automated reconfiguration architecture. The approach uses cfengine [27] to dis-
tribute configuration and updates among the nodes in the WMN backbone, but
it is based on the over-writing of the current configuration and does not allow
for extraction and analysis of the current state of the network.

Other works use ontologies or logic models for configuration. Sinz et al.
develop in [14] a CIM-based formal model similar to description logics to check
for inconsistencies on the Apache configuration, as does Glasner et al. in [15] but
using a custom OWL model and with more emphasis on decidability. Garćıa et
al. [21] transform the CIM model into OWL and use SWRL rules, but do not

give details about their implementation or undecidability. Quirolgico et al. [13] is
an earlier exploratory effort using RDFS, but lacks cardinality restrictions, used
in [14][15] and in our work for certain structural constraints.

7 Conclusions

We have presented support in our AdCIM framework for the configuration of
wireless mesh networks as well as reasoning processes on their management data.
We have implemented it analyzing the configuration of a real mesh network router,
separating its format and underlying entities, and defining a CIM mapping that
supports the complete expression of this configuration, taking special care to store
format intricacies without losing abstraction. This mapping and its opposite was
implemented with XSLT templates. AdCIM is model-driven, based on standards
and supports automatically generated forms and LDAP-based persistence.

Our approach represents the current state of the WMN in an integrated
manner that allows off-line analysis, useful to prevent broken configuration states
before deployment. This analysis is supported with an ontological model that
detects semantic errors and conflicts and supports policy enforcement. This
semantical representation is exploited by discovering semantical equivalences (i.e.,
inferring individuals class pertenence and property values), and by navigating the
associations in the underlying CIM model (e.g. using both the physical location
and vendor of a product to enforce rules). We are currently working on the
integration of our approach with other mesh routers, and reusing the same basic
ontology and reasoning processes with other configuration formats and domains.

References

1. I.F. Akyildiz, X. Wang, W. Wang. Wireless Mesh Networks: A survey. Computer
Networks, vol. 47, n. 4, pp. 445–487, March 2005.

2. I. Diaz, J. Touriño, J. Salceda, R. Doallo. A framework focus on configuration
modeling and integration with transparent persistence. In Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS’05).
Workshop on System Management Tools for Large-Scale Parallel Systems, pp. 297a,
Denver, Colorado, USA, April 2005. (More information in http://adcim.des.udc.

es).
3. DMTF. Common Information Model (CIM) Standards, http://www.dmtf.org/

standards/cim. [Accessed July 2009].
4. W3C. OWL 1.0. http://www.w3.org/TR/2004/REC-owl-features-20040210/,

2004. [Accessed July 2009].
5. Image Sciences, Computer Sciences and Remote Sensing Laboratory Research Unit,

http://lsiit.u-strasbg.fr/. [Accessed July 2009].
6. OSGi Alliance. http://www.osgi.org/Main/HomePage. [Accessed July 2009].
7. W3C. XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt,

1999. [Accessed July 2009].
8. W3C. XForms 1.0. http://www.w3.org/TR/xforms, 2003. [Accessed July 2009].
9. P. Loshin. Big book of LDAP RFCs. Morgan Kaufmann, 2000.

10. E. Wood. Guidelines for CIM-to-LDAP directory mappings. http://www.dmtf.org/
standards/documents/DEN/DSP0100.pdf, 2000. [Accessed July 2009].

11. A. Rivière, M. Sibilla. Management information models integration: From existing
approaches to new unifying guidelines. Journal of Networks and System Manage-
ment, vol. 6, n. 3, pp. 333-356, September 1998.

12. DMTF. Specification for the Representation of CIM in XML. http://www.dmtf.
org/standards/documents/WBEM/DSP201.html, 2002. [Accessed July 2009].

13. S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, E. Stokes. Toward a formal
Common Information Model ontology. In Proceedings of the 5th International
Conference on Web Information Systems Engineering, WISE 2004, vol. 3307,
Lecture Notes in Computer Science, pp. 11–21, Brisbane, Australia, November 2004.

14. C. Sinz, A. Khosravizadeh, W. Kuchlin, V. Mihajlovski. Verifying CIM models of
Apache web-server configurations. In Proceedings of the 3rd International Conference
on Quality Software, QSIC 2003, pp. 290–297, Dallas, USA, November, 2003.

15. D. Glasner, V.C. Sreedhar. Configuration reasoning and ontology for web. In
Proceedings of the 4th IEEE International Conference on Services Computing, SCC
2007, pp. 387–394, Salt Lake City, USA, July 2007.

16. W3C Member submission. SWRL. http://www.w3.org/Submission/SWRL/, 2004.
[Accessed July 2009].

17. B. Motik, U. Sattler, R. Studer. Query answering for OWL-DL with rules. In
Proceedings of the 3rd International Semantic Web Conference, ISWC2004, vol.
3298, Lecture Notes in Computer Science, pp 549–563, Hiroshima, Japan, November
2004.

18. K. Clark, B. Parsia. Pellet: The Open Source OWL DL Reasoner. http://

clarkparsia.com/pellet/. [Accessed July 2009].
19. D. Heimbigner. DMTF - CIM to OWL: A case study in ontology conversion.

In Proceedings of the 16th Conference on Software Engineering and Knowledge
Engineering, SEKE 2004, pp. 470–473, Banff, Canada, June, 2004.

20. M. Majewska, B. Kryza, J Kitowsky. Translation of Common Information Model
to Web Ontology Language. In Proceedings of the 7th International Conference on
Computational Science, ICCS 2007, vol. 4487, Lecture Notes in Computer Science,
pp. 414–417, Beijing, China, May 2007.

21. F. Garćıa, G. Mart́ınez, J. Bot́ıa, A. Gómez-Skarmeta. On the application of the
Semantic Web Rule Language in the definition of policies for system security
management. In Proceedings of 3th On The Move to Meaningful Internet Systems
Conference, OTM 2005, vol. 3762, Lecture Notes in Computer Science, pp. 69–78,
Agia Napa, Cyprus, October 2005.

22. L. Qiu, P. Bahl, A. Rao, L. Zhou. Troubleshooting wireless mesh networks. ACM
SIGCOMM Computer Communication Review, vol. 36, n. 5, pp. 17–28, October
2006.

23. Y. Zhang, Y. Fang. ARSA: An Attack-Resilient Security Architecture for multihop
wireless mesh networks. IEEE Journal on Selected Areas in Communications, vol.
24, n. 10, pp. 1916–1928, October 2006.

24. Nortel WMN solutions. http://www.nortel.com. [Accessed July 2009].
25. LocustWorld. http://www.locustworld.com. [Accessed July 2009].
26. T. Staub, D. Balsiger, M. Lustenberger, T. Braun. Secure remote management

and software distribution for wireless mesh networks. In Proceedings of the 7th
International Workshop on Applications and Services in Wireless Networks. ASWN
2007, Santander, Spain, May 2007.

27. M. Burgess. Cfengine: A site configuration engine. Computing Systems, vol. 8, n. 3,
pp. 1–29, 1995.

