
Information Fusion 93 (2023) 1–20

A
1
n

F

A
m
J
a

b

A

D
e
d
H

K
U
F
M
A
H

1

i
g
p
s
c
t
p

a
e

j

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

pipeline architecture for feature-based unsupervised clustering using
ultivariate time series from HPC jobs

onatan Enes a,∗, Roberto R. Expósito a, José Fuentes b, Javier López Cacheiro b, Juan Touriño a

Universidade da Coruña, CITIC, Computer Architecture Group, Campus de A Coruña, Spain
Fundación Centro de Supercomputación de Galicia (CESGA), Santiago de Compostela, Spain

R T I C L E I N F O

ataset link: Datasets and source code for a pip
line architecture for feature-based unsupervise
clustering using multivariate time series from
PC jobs (Original data)

eywords:
nsupervised clustering
eature extraction
ultivariate time series
nomaly detection
PC jobs

A B S T R A C T

Time series are key across industrial and research areas for their ability to model behaviour across time, making
them ideal for a wide range of use cases such as event monitoring, trend prediction or anomaly detection. This
is even more so due to the increasing monitoring capabilities in many areas, with the subsequent massive data
generation. But it is also interesting to consider the potential of time series for Machine Learning processing,
often fused with Big Data, to search for useful information and solve real-world problems. However, time series
can be studied individually, representing a single entity or variable to be analysed, or in a grouped fashion,
to study and represent a more complex entity or scenario. In this latter case we are dealing with multivariate
time series, which usually imply different approaches when dealt with. In this paper, we present a pipeline
architecture to process and cluster multiple groups of multivariate time series. To implement this, we apply a
multi-process solution composed by a feature-based extraction stage, followed by a dimension reduction, and
finally, several clustering algorithms. The pipeline is also highly configurable in terms of the stage techniques to
be used, allowing to perform a search with several combinations for the most promising results. The pipeline
has been experimentally applied to batches of HPC jobs from different users of a supercomputer, with the
multivariate time series coming from the monitoring of several node resource metrics. The results show how
it is possible to apply this multi-process information fusion to create different meaningful clusters from the
batches, using only the time series, without any labelling information, thus being an unsupervised scenario.
Optionally, the pipeline also supports an outlier detection stage to find and separate jobs that are radically
different when compared to others on a dataset. These outliers can be removed for a better clustering, and
later reviewed looking for anomalies, or if numerous, fed back to the pipeline to identify possible groupings.
The results also include some outliers found in the experiments, as well as scenarios where they are clustered,
or ignored and not removed at all. In addition, by leveraging Big Data technologies like Spark, the pipeline is
proven to be scalable by working with up to hundreds of jobs and thousands of time series.
. Introduction

The clustering and automatic processing of time series is a highly
nteresting topic if we take into consideration how time series are
enerated and used across a wide range of fields [1]. In addition, im-
rovements in sensors, the rise of the Internet of Things, the emerging
o-called Industry 4.0 and the advances in data storage and processing
apabilities, have all opened the door to an increasing demand for
ime series related studies, and to new solutions that tackle challenging
roblems.

However, if we consider time series by their definition and try to
pply most of the currently used Machine Learning (ML) techniques to
xtract valuable information from them, we face a challenge as time

∗ Corresponding author.
E-mail addresses: jonatan.enes@udc.es (J. Enes), rreye@udc.es (R.R. Expósito), jfuentes@cesga.es (J. Fuentes), jlopez@cesga.es (J.L. Cacheiro),

uan@udc.es (J. Touriño).

series are not single pieces of data, but rather a time-continuous and
variable amount of usually numerical values. Even so, such challenge
is rendered only more difficult if instead of individual, univariate time
series, we try to apply ML to groups of related time series, that is, Mul-
tivariate Time Series (MTS), in particular when aiming for a clustering
result. In this latter scenario, many well-described techniques in the
literature [1] may fail to provide a solution as they are designed to work
by analysing time series individually. On the other hand, characterizing
a group of time series requires to somehow effectively summarize them
or to select a subset of information that properly represents them as a
group, an area of research in and of itself [2]. Furthermore, another
issue arises for ML, and more specifically for clustering, when taking
vailable online 20 December 2022
566-2535/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

ttps://doi.org/10.1016/j.inffus.2022.12.017
eceived 22 January 2022; Received in revised form 14 December 2022; Accepted
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

16 December 2022

https://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
mailto:jonatan.enes@udc.es
mailto:rreye@udc.es
mailto:jfuentes@cesga.es
mailto:jlopez@cesga.es
mailto:juan@udc.es
https://doi.org/10.1016/j.inffus.2022.12.017
https://doi.org/10.1016/j.inffus.2022.12.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.12.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Fusion 93 (2023) 1–20J. Enes et al.

c
a
c
m
f
n
a
t
o
u

u
p
c
s
a
o
p
r
g
t
e
j
g
l
o
u
p
t
b
(
f

m
t
C
S
I
m
p
p
b
a
c
e
p

into account the amount of data and the speed at which it is generated.
This makes the use of supervised learning and data labelling quite
tricky, thus promoting the use of unsupervised approaches instead.

In this paper, we present a new solution in the form of a pipeline
that deals with this complex scenario, and looks for a flexible, yet
simple approach of clustering MTS using both ML techniques and Big
Data technologies in a scalable and seamlessly fused manner. The
novelty of our approach is thus centred on two fronts:

• The technical one, with a focus on the design and implementation
of a scalable and efficient pipeline, used for unsupervised ML
clustering, that leverages Big Data technologies.

• The ML one, with a focus on the pipeline design and strategies
for a flexible and adaptive unsupervised clustering of MTS using
a feature-based approach. In addition, the pipeline can be used
to detect outliers, which could potentially be anomalies, and to
apply clustering to them if deemed interesting.

More specifically to our scenario, the groups of time series, or MTS,
orrespond to High Performance Computing (HPC) jobs executed on
real supercomputer, the Finis Terrae II hosted at the Galicia Super-

omputing Centre (CESGA) [3]. These time series are extracted from
easurements of different resources obtained from monitoring the in-

rastructure. Each job spans several reserved and dedicated computing
odes, which are in turn monitored for different resources such as CPU
nd memory. The fact that numerous jobs are continuously executed on
his HPC environment explains why data cannot be properly tagged,
r at least not in a useful way, thus being a potential candidate for
nsupervised clustering.

Multiple experiments presenting different scenarios are proposed,
sing as input datasets that contain jobs extracted from this supercom-
uter: (1) jobs executed by a single user; (2) jobs from the pairwise
ombination of previous single users; and (3) jobs from multiple users
elected using a time window. The results for all these experiments
re analysed, in some cases also including the outcome of applying
utlier detection and clustering. In addition, and considering the unsu-
ervised nature of our scenario, we extensively back the experimental
esults with several visualization techniques which prove useful in
uiding their human interpretation, specially when the separation of
he clusters requires many dimensions. The use cases exposed by the
xperiments can be useful to system administrators to identify groups of
obs with similar resource usages and extract job patterns. This can help
uiding decision-making processes that involve the HPC infrastructure,
ike defining separate policies for different job types. Furthermore, the
utlier detection can be used by both system administrators and HPC
sers to find potential anomalies (e.g., a job with a different resource
attern), which once isolated can be the subject of study. In addition,
hese anomalies, if numerous, can be clustered to measure the similarity
etween them, or even to find groups of closely related anomalies
e.g., a misconfigured job that keeps failing, or a computing node with
ailing hardware).

The rest of the paper is structured as follows. Section 2 briefly com-
ents on the current state of the art about time series classification for

he supervised use cases, and clustering for the unsupervised scenarios.
urrent research that focuses on anomaly detection is also discussed.
ection 3 focuses on the design of the proposed pipeline architecture.
t first introduces some key terminology, continues by describing the
ain objectives, technical details and experimental configuration of the
ipeline stages, and finishes with a discussion about scalability and the
arallelization approach. Section 4 presents several experiments backed
oth by using evaluation information, as well as visualization of the
ctual resource plots and the clustering. In addition, an analysis of the
omputational complexity is described using time measurements of the
xperiments. Finally, Section 5 presents the main conclusions of the
aper.
2

2. Related work

Considering that time series analysis is an interesting topic, there are
current approaches that can be used to extract useful information from
them via grouping techniques, either using supervised or unsupervised
learning, and also for the outlier and anomaly detection use cases. Next,
we tackle both aspects separately in Sections 2.1 and 2.2, respectively.

2.1. Time series classification and clustering

One of the most basic ways of extracting knowledge from time series
is by merely grouping them, a task that can be performed using either
classification in a supervised ML approach, or with clustering and an
unsupervised approach. On the one hand, classification techniques use
previously available and external information of the time series to be
analysed in order to better characterize the existing groups or even
create them. This in turn allows to study unclassified time series or
data and match them to an existing class, and if a group or class is
missing, create a new class. On the other hand, if there is no previous
information, we have to resort to applying clustering, where groups of
time series are identified only by their intrinsic similarity to each other.
This unsupervised ML approach can also be seen as semi-supervised, if
at any point some kind of metadata or human intervention is employed
for evaluation purposes.

Regarding supervised learning, there are multiple recent works that
expose different approaches to create the class groups using their time
series as input examples. Even though this work does not focus on
any supervised technique, they are still interesting to review as the
tools and technologies used may be the same, and they offer a basis
for comparison purposes. For example, Convolutional Neural Networks
(CNNs) are used in [4] to choose characteristics to summarize and then
classify time series. Such CNNs have also been employed in [5] for the
classification of MTS heavily focused on an industry use case, and in [6]
in conjunction with Dynamic Time Warping (DTW). DTW is a well-
known and widely studied approach that uses point-to-point similarity
measurements to calculate distances between series. For instance, au-
thors in [7] focus on revisiting this technique and improving on it using
ensembles. In the case of MTS, [8] explores how DTW can be applied
in such scenarios. Other works use the shapelet-based or subsequence-
based approach, which only takes into account relatively small portions
of the time series, usually the ones that carry the most information or
allow to better identify them. Shapelets have also been widely studied
as they have proven to be reliable to characterize time series, albeit this
technique is usually restricted to short or more or less predictable time
series. Besides shapelets, the approach in COTE [9] combines several
additional techniques in order to train different models and create an
ensemble of predictors. The techniques used in COTE rely on four ap-
proaches, the time and frequency domains and the change and shapelet
analysis. From this work it is interesting to note the idea of using an
ensemble of predictors to build a more robust and flexible approach,
relying on several models rather than on a single one. In [10], the
authors take a step further from COTE and improve on the efficiency
of the shapelet-based technique with the aim of reducing the compu-
tational complexity of the base algorithm. It is worth mentioning that
this algorithm is implemented with Big Data technologies (i.e., Apache
Spark [11]) to improve its performance. This in turn proves how these
technologies can offer a reliable basis to build scalable solutions. When
it comes to MTS and shapelets, some works like [12] have succeeded
in extending the shapelet-based analysis approach in such scenarios.
Another approach, probably popular when dealing with high amounts
of data to be processed, is to summarize the time series in a limited set
of measurements or characteristics that retain as much information as
possible while also dramatically reducing dimensionality. For this type
of feature-based clustering, several works propose different techniques
and sets of characteristics to better cluster and summarize time series.
Works like [13] use this approach for univariate time series, while

Information Fusion 93 (2023) 1–20J. Enes et al.
others like [14] extend this technique for multivariate time series. A
last approach close to the feature-based ones is proposed in [15], which
uses an elaborate fingerprinting method that is able to create a good
hierarchical classification of time series even when they present noise.

All these previous works prove that when previous information is
available, the use of classification is highly recommended, as the guid-
ance of the existing classes not only potentially improves the results
but may also grant a degree of validation of such results. However,
it is worth commenting on some of the limitations they face. Some
approaches like DTW and the shapelet-based one are sensitive to the
length of the time series. So, applying them on scenarios where time
series can potentially have radically different duration may be difficult.
In the case of DTW, it usually requires knowing beforehand the shapes
we are looking for. Other solutions can have difficulties when scaling
to encompass large amounts of time series, or MTS with a non-defined
amount of such time series.

However, an even major limitation is present on those scenar-
ios where no external information, metadata or previously identified
classes are available. This lack of knowledge may arise for many rea-
sons such as the unfeasibility of tagging or documenting a large amount
of data, which may even be generated continuously and automatically.
In these scenarios, there are still two options available. On the one
hand, it is possible to create or infer labels from the raw data in order
to turn the scenario into a supervised one, as proven by works like [16].
And on the other hand, it may still be possible to extract information
to some degree without depending on any external knowledge of any
kind or using any sort of label information, thus ultimately falling back
to unsupervised time series clustering.

When it comes to unsupervised time series clustering, there is
less research available for new techniques, considering the limited
amount of procedures that can be applied, specially for MTS and in
the absence of labelled data or assigned classes, as described in [17].
Considering the approaches presented by these authors, some works
have been able to perform clustering using only raw time series based
on distance calculation like DTW [18], distance-based fuzzy cluster-
ing [19], shapelets [20], or even using visual recognition applied to
time series [21]. We will however leave aside both raw data-based and
model-based approaches to focus on feature-based ones. The reason
behind is to increase flexibility regarding the data to be used, and
to improve the chances of successful clustering across a wide range
of scenarios, both with long and short time series, and with datasets
containing jobs with unequal number of resource time series or even
unequal in terms of length. In addition, we aim at avoiding having to
look for any specific shapelet or subsequence inside the time series,
which would be incompatible with a scenario of long and numerous
time series, as well as limited human supervision and intervention
available.

Regarding the feature-based approaches, there is a lot of research
that seeks to come up with good feature-based representations of
time series, some of which are applied to clustering. Such works
usually aim to improve the classical Symbolic Aggregate approXimation
(SAX), either through statistical features [22] or trend analysis [23],
among others [24]. Unfortunately, the current state of the art regarding
feature-based or symbolic-based clustering mostly leaves aside MTS
when features have to be extracted. Some works that take into account
MTS for unsupervised clustering, as well as a similar methodology
as the one we used, include [25,26]. On the one hand, the first
work looks for the best combination of feature extraction from highly
multidimensional sensor data and subsequent clustering, in a scenario
involving test and real driving situations, and where the generated
clusters must always contain samples of both situations. This latter
requirement is ultimately the condition that the clustering results must
meet. On the other hand, unsupervised clustering of HPC jobs was
carried out in the second work with the objective of finding both the
best resource metrics to separate the jobs, as well as the best method
3

and its parameters. The results from these two previous works prove
that the combination of feature extraction with a dimension reduc-
tion and then clustering, using both hierarchical and centroid-based
algorithms, should provide good results. These works also highlight
that the major issue is the actual finding of the best predictor, and
specially choosing the parameterization for the dimension reduction
and clustering models. In addition, the methods and configuration used
may depend on the input data. Nonetheless, our approach is closely
related with [26], although we provide a more flexible and scalable
design and implementation. Moreover, we extensively use visualization
plots of the clustering results, which greatly help to understand and
further back the predictions, as well as being significantly more human-
friendly. And on this last point it is worth mentioning [27], which
applies a semi-supervised feature-based clustering process intended to
be flexible and scalable, but also offering the user the chance to view
and alter the progress of the stages as needed.

In this paper, we present a pipeline that extracts information from
HPC jobs by creating groups. The pipeline computes several functions
to summarize an MTS into a set of features, which are then used to
optionally extract outliers, perform several clustering predictions, and
finally evaluate and rank such predictions according to their expected
accuracy. Furthermore, this pipeline is applied to untagged time series
with little to no metadata or class information from them, so we rely
solely on unsupervised learning for the clustering.

Finally, it is also worth noting some other works that have focused
on exploring the best ways of characterizing time series through li-
braries and functions. Among other models for selecting features, we
can emphasize [28] like one of the most extensive options, obtaining
more than 7000 parameters by each series. On the other hand, packages
like Tsfresh [29] and catch22 [30] offer a smaller set but include the
essential features for most problems.

2.2. Outlier and anomaly detection

As previously mentioned, the analysis and classification of time
series data is of great interest because of their ubiquity, flexibility
and potential application in all kind of areas that generate time se-
ries, including industry, HPC, health or biological research. However,
many of such scenarios produce ‘raw’ time series, that is, they may
produce data in a fashion that makes it difficult to be labelled, thus
having to resort to unsupervised time series clustering. Such clustering
may prove interesting not only to look for specific classes or groups
which can be later analysed, but also to look for specific patterns
correlated to interesting or sought-after information. There are several
examples in the literature such as detecting inefficient applications on
a supercomputer [31], genetic similarity [28], or anomalies on sensor
measurements [32], among others. These use cases can be considered
an example of looking for the abnormal and outlier data among a
deluge of ordinary time series, or what is the same in some scenarios,
detecting anomalies.

In the context of outlier and anomaly detection, time series data can
also be analysed to detect out-of-the-common behaviour. For example,
the authors in [33] propose finding change points or discontinuities
to identify anomalies. In [18], DTW is used to identify anomalous
time series data. Other works such as [34] use autoencoders in order
to establish a ‘normal’ status of an HPC system, and then compare
anomalous data to such normality, or even graph-based approaches
after a proper transformation of time series to graphs and a feature
extraction of such graphs [35]. Another option proven in several works
involves clustering, which can be used to identify tiny, or even single-
element clusters, as clusters that contain anomalous data. In some
cases, these data can be identified as elements hard to assign to any
cluster, which is natural to some density-based clustering algorithms
such as DBSCAN [36]. It is also possible to use the Long Short-Term
Memory (LSTM) [31] technique for feature extraction and classifica-
tion of anomalous jobs on a supercomputer, even being able to do

online classification. Outside of deep learning, we can highlight the

Information Fusion 93 (2023) 1–20J. Enes et al.
work described in [37], where Gaussian mixed models are used to
classify computing jobs and detect anomalies using up to three resource
metrics.

In our scenario, however, we rely on an outlier-based approach
for job anomaly detection, where the outliers are extracted from the
combined results of two outlier detection methods performed at an
early stage, before any actual clustering is carried out. These outliers
are chosen because they are too far apart from their closest neighbours
according to the distances computed from the features extracted. If
not extracted, these outliers may deteriorate the results as they may
force the following clustering stages to place them on small clusters
of their own, sometimes even having to create isolated single-job
clusters. Once extracted, and specially if the number of outliers is
high and we suspect that there could be groups of jobs with a similar
anomaly pattern, it is also possible to refeed the pipeline with a dataset
containing only these outliers and starting anew from the beginning.
Overall, this outlier-based detection using several detectors and com-
bined knowledge has already been successfully explored as part of the
ensemble learning [38], although our approach is less sophisticated and
more conservative, mainly aiming at detecting potential outliers and
separating them from the main data.

3. Pipeline architecture for time series clustering

To achieve the goals previously laid out in Section 1, a multi-process
information fusion pipeline has been designed and implemented from
scratch. This pipeline has been divided into different stages, each
using specific technologies and with its own objectives for information
processing. Overall, the pipeline starts the processing with a basic
input file containing job IDs, proceeds through the different stages and
finally produces a result that consists of several clustering predictors,
which are also in turn ranked using evaluation metrics. This result
can be visualized through several tools and techniques. However, the
technologies used to implement and efficiently execute these stages
come from different areas, mainly from Big Data and ML, and have been
fused to work together. First, Section 3.1 introduces some relevant key
terms used throughout the paper, in order to next explain in detail each
pipeline stage in Section 3.2. Finally, Section 3.3 provides an analysis
of the pipeline’s scalability and computational complexity, as well as
some details regarding the parallelization techniques used.

3.1. Previous concepts

The pipeline that lies at the core of our proposal has been specifi-
cally designed to follow the general recommendation for ML pipelines,
that is, to focus on transformers. According to the widely used Scik-
itLearn library [39], the definition of transformers in this context
would be of stateless functions or procedures that implement a basic
‘transform’ operation, which mainly consists of taking a set of data
as input and returning an updated set, either modifying the exist-
ing one or adding new information. Such design pattern, which is
described in [40] and extensively used in research works based on
pipeline architectures [41,42], allows the stages of the pipeline to be
flexible and reusable, as the transformers that implement them can be
chosen on demand and chained in a specific order as needed, while
remaining decoupled from the data being processed. This decoupling
is of special interest when considering that the pipeline is going to
process unsupervised data, that is, when the properties of the data may
be unknown and some trial-and-error experimentation might even be
expected. Moreover, this design enhances parallelism, as transformers
can be applied in parallel as long as their inputs and outputs are not
dependent on each other.

In our pipeline, specific transformers have been created according
to the objectives of each stage, as they may have slight differences
(e.g., feature extraction transformer, clustering transformer). Neverthe-
less, they expose the same ‘transform’ operation and common basic
4

input/output parameters in order to be executed in an abstracted
way. Python has been used to implement the transformers and any
auxiliary code, relying on Pandas DataFrames [43] as the basic table
data structure. Each transformer applies an operation to a subset of a
DataFrame and changes it accordingly, usually by adding new columns.
In addition, such DataFrames can be persisted as files if needed using
the HDF5 file format and can be seamlessly serialized and deserialized.

When it comes to the data that is processed, time series come from
readily available and measurable resource metrics such as User CPU
and Cached memory. We will refer to these metrics in a grouped way
(e.g., CPU, memory) throughout the paper according to the resource
they are based on, as the metrics within a group are used either all
of them or none of them. However, considering that raw time series
cannot be directly or easily used for clustering, a processing stage is
required to extract features in the form of discrete values, which on
the other hand are readily usable.

Finally, it is important to define what a ‘job’ is, because this work
has been centred around job clustering on an HPC system. In our
scenario, a job represents a user’s workload executed in a specific time
window and using a set of dedicated computing nodes. Considering this
multiple node execution, each job will have several time series, even for
the same resource metric, as each node is individually monitored. On a
last note regarding jobs, although it is usually possible to extract meta-
data from the databases provided by the queue manager/job scheduler
of the HPC system, no additional information has been used aside from
the user identifiers, which are only required to aid in assessing the
results of experiments where multiple users are present.

3.2. Auxiliary and pipeline stages

Overall, a total of eight stages have been designed and implemented,
not only from the point of view of clustering with their specific pur-
poses, but also from the point of view of their execution considering
that they have different computational requirements, as further ex-
plained in Section 3.3. As can be seen in Fig. 1, the stages can be
classified into those that are auxiliary and those that actually create the
pipeline. There are also some other processes involved, like those part
of the infrastructure operation, such as the Job Scheduling and the Re-
source Monitoring, which will only be briefly mentioned when relevant
to this work, considering that they are mostly external; or the Visu-
alization process, which will be extensively used for the experimental
results discussion. Regarding the three auxiliary stages (Job Retrieval,
Data Collection and Preprocessing), their task is to prepare the data to be
processed on the actual pipeline. First, the Job Retrieval stage produces
a list of job IDs. Afterwards, the Data Collection stage retrieves the basic
required metadata (e.g., node list). And finally, the Preprocessing stage
retrieves the resource time series and combines them with the basic job
metadata, creating a file with all the required information that will be
later used in the pipeline stages. These auxiliary stages do not follow
a transformation-based design and because of this they are not strictly
a part of the ML pipeline, although they are still required. Regarding
the five pipeline stages (Feature Extraction, Outlier Detection, Dimension
Reduction, Clustering and Evaluation), they are executed in that order to
produce the final output, although the Outlier Detection is optional. It is
also interesting to note that they can be executed either in a continuous
fashion, or stage by stage using intermediary files. Furthermore, some
of these stages (i.e., the most demanding ones) can be parallelized to
improve performance, considering that they perform the bulk of the
processing, as detailed in Section 3.3.

Next, each stage is thoroughly described detailing its objective, its
implementation when necessary, the configuration parameters avail-
able for that stage and their experimentally used values. To aid in
this purpose and given the extensive number of parameters, Table 1

summarizes such configuration.

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 1. High-level overview of the clustering pipeline architecture.
Table 1
Configuration of all the stage parameters with the experimental values used.
Stage Configuration parameters Experimentally used value

Job Retrieval • time window
• minimum number of job nodes
• minimum job runtime

• 2 UNIX timestamps
• 3 nodes
• 90 min

Preprocessing • time series downsampling
• resource metrics

• 3 min
• CPU and memory

Feature Extraction • extraction functions
• aggregation functions

• Several statistics and Tsfresh functions (Table 2)
• max, q75, mean, q25, min, std, skew

Outlier Detection • # neighbours
• % of features
• % of samples

• 5% of dataset job number
• 50% of features
• 50% of samples

Dimension Reduction • dimension reduction algorithms • Kernel PCA, Spark PCA

Clustering • clustering algorithms • KMeans, AgglomerativeClustering

Evaluation • evaluation functions • Silhouette, Davies–Bouldin, Calinski–Harabasz,
number of clusters, cluster histogram kurtosis and
skewness
3.2.1. Job retrieval
The first task is to select which jobs will be the subject of processing,

and create a job ID list. This task, carried out by the Job Retrieval stage,
consists of a database query in search of those jobs that match the
user’s criteria, such as a minimum job runtime, or even specific user
IDs. These metadata, which are continuously created and updated by
the Job Scheduling process, are stored in a relational MySQL database,
being commonly used by the Slurm scheduler [44] for job management
tasks or subsequent analysis. In our scenario, we use two timestamps
to specify a time window, a minimum number of job nodes and a minimum
job runtime as parameters to extract datasets from the database (see
Table 1). Ignoring the timestamp values, which by themselves are not
important, we set a minimum of 3 nodes and 90 minutes of job runtime
to be eligible. With these values we aim at discarding jobs that are
either too simple or too short for a supercomputer. The inclusion of
these jobs in the pipeline would not be beneficial, as with a very low
amount of time series points some feature extraction functions will only
produce unusable values (e.g., Infinite), or if the number of nodes is
too low there is a high probability of having radically different resource
patterns due to the frequent use of a manager/worker job configuration
in HPC workloads.

3.2.2. Data collection
After the jobs are retrieved and listed, it is necessary to collect basic

information about them, a task carried out by the Data Collection stage.
The details of each job (e.g., node list, job start and finish timestamps)
are extracted from the same metadata database. Using such timestamps
it will be later possible to query for the resource time series of the job,
and more specifically, of each used node from the node list. Considering
that this is a simple stage that cannot be configured, it has been omitted
in Table 1.
5

3.2.3. Preprocessing
If the pipeline is used to perform batch processing, that is, with

previously selected and listed jobs such as in our scenario, it may
be interesting to run an initial preprocessing stage that creates a file
where both the job metadata and its resource time series are combined.
Even though optional, this stage is useful when different pipeline
configurations are intended to be used, as in such scenario the time
series retrieval, which may be costly in terms of time, is only performed
once and not for every pipeline execution. If this stage is skipped, or if
there is a need to retrieve time series as they are generated (i.e., while
the jobs are being executed), they can also be retrieved on demand in
the Feature Extraction stage.

The resource time series are continuously recorded by various mon-
itoring agents deployed on the computing nodes, including telegram
and collectd [45], as part of the Resource Monitoring infrastructure
process, and ultimately persisted on a time series database deployed
using OpenTSDB [46] and HBase [47]. This database solution provides
an environment where data can be stored without scalability issues, in
order to be later queried by either this stage or the Feature Extraction
one.

When it comes to the monitoring and its configuration, it is per-
formed using a certain sampling frequency, an important parameter
that sets the degree of granularity of the time series. In our case, the
monitoring agents have been configured by the system administrator to
take samples every minute (i.e., the time series can be as fine-grained
as one minute). Even when considering that this sampling frequency
may be enough for many use cases, it is worth mentioning that time
series can still be easily downsampled using the mean value, something
that is performed on the fly at query time. This downsampling value
can be set according to the more or less expected job runtimes present
in the dataset, although the results should not vary greatly provided
that the values used are sensible. While high downsampling values will
inherently cause a loss of information, low values may cause longer

Information Fusion 93 (2023) 1–20J. Enes et al.

v

Table 2
Extraction functions and their configuration parameters.

Library Function Parameters

Statistics

max

None

q75
mean
q25
min
std
skew

Library Function Parameters

Tsfresh

count above mean

None

count below mean
first location of maximum
first location of minimum
abs energy
absolute sum of changes
kurtosis

agg autocorrelation ∙ aggregate function ∙ max lag

augmented dickey fuller ∙ attribute ∙ autolag

c3 ∙ lag

cid ce ∙ normalize

ratio beyond r sigma ∙ r sigma

fft coefficient ∙ num coefficients

agg linear trend ∙ chunk length ∙ aggregation function

ar coefficient ∙ coefficients ∙ delay samples
processing times for the Feature Extraction stage. In our scenario, a
alue of 3 min was used for the time series downsampling configuration

parameter (see Table 1).
Regarding the resource metrics themselves, there are many different

ones collected by the agents from the hardware infrastructure that can
be effectively used for the clustering: from metrics specific to the com-
puting nodes such as CPU, memory or disk, to other metrics involving
hardware monitoring such as temperature or fan speed. Nevertheless,
we will focus on two crucial resources, CPU and memory, selected using
the resource metrics parameter as shown in Table 1. These metrics are
well suited to characterize a wide range of applications and patterns.

3.2.4. Feature extraction
Considering that in our approach we intend to perform clustering

of jobs based on a set of features extracted from their time series, this
stage is at the core of the pipeline by transforming the time series (i.e., a
series of values), which may not be suitable for the distance calculation
between different jobs as needed by the clustering algorithms, into
discrete features (i.e., single values). This conversion allows using the
data in a more straightforward manner. This is referred to as feature
extraction, as time series are processed to ‘extract’ numerical values
that best represent them. To achieve this, mathematical functions are
used that ideally return different values for time series with varying
trends, and similar values for those that expose a similar behaviour.
This will allow to tell apart different time series, and to cluster those
that are similar or even identical.

There are diverse extraction functions of different types that can be
used to ‘summarize’ time series. Most of them are provided by libraries
such as Tsfresh or catch22, although we also opted to implement some
basic summary statistic functions (see top of Table 2). Overall, these
functions can be as simple as reporting the maximum and minimum val-
ues of a time series, functions of medium complexity such as counting
the number of points above or below the mean, or of high complexity
such as obtaining Fourier coefficients or entropy values. In addition,
some functions can be parameterized with different values, usually the
more complex ones like those provided by the Tsfresh library. In order
to adhere to our design of a pipeline based on transformers as previ-
ously explained in Section 3.1, every parameterized function counts
6

as one transformer (i.e., the same function with different parameters
produces several transformers). All the functions used in this work are
listed in Table 2, as named in the Tsfresh library [48], together with
their configuration parameters (one parameter per bullet).

However, because jobs are composed of several nodes (i.e., several
time series), even if features are extracted from the time series, the
result is that for each metric and extraction function there are multiple
values, one per computing node. This would not be a problem if the
number of values (i.e., the number of nodes) was the same for all the
jobs. As this fact cannot be ensured (the number of nodes is chosen
by the user at job submission), we are forced to further reduce such
variable number of feature values down to a single one. This additional
step is implemented by the aggregation functions, which take several
values and return just one by performing an aggregation operation, also
commonly known as a reduction operation. The aggregators used in our
scenario are seven, two that perform a selection, both the maximum
and minimum values, and five that perform a computation: the 25
and 75 quartiles, mean, standard deviation and skewness values. In
addition, each aggregator is applied to each existing feature by using
a transformer, in a similar way as with the extraction functions. This
reduction step is critical to later apply clustering algorithms, as it allows
working with structured data.

Overall, the combination of extraction and aggregation functions
implement the Feature Extraction stage by taking a group of time series
for a resource metric, extracting the features and then reducing the
node feature values down to a few ones using aggregation operations.
This procedure is depicted in Fig. 2. Taking Job 2 as an example, which
was executed with 4 nodes, there is a total of 8 time series, 4 for
every metric of the 2 available (𝑀1 and 𝑀2). Next, we can we apply
2 feature extraction functions (𝐹𝑒1 and 𝐹𝑒2) and the result will be 16
values, one for each combination of time series and feature extraction
function. As such number still depends on the number of nodes, we
then apply 2 aggregation functions (𝐴1 and 𝐴2) so that the previous
results are reduced to only 8, one for each combination of metric (2),
feature extraction function (2) and aggregation function (2). Therefore,
the dependency on the number of nodes has been removed in this last
step. Basically, this two-step procedure structures the data and removes
such dependency, as Jobs 1 and 3 also have the same number of results
at the end of the stage, even though they started with 3 and 5 time
series for every metric, respectively.

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 2. Example of the feature extraction stage for 2 metrics, 2 extraction functions and 2 aggregators.
However, the extraction functions might produce invalid values
(e.g., Not Available, Not a Number, Infinite) depending on the data,
specially for some parameters or for time series with ‘undesired’ char-
acteristics (e.g., too stable, short). This forces to perform a final ‘invalid
value’ removal step, as these values cannot be carried through the
pipeline. In our scenario, any extracted feature that has any invalid
value for any job is removed. Although it may cause a loss of potentially
useful data in most of the jobs, even when just a few are affected, it
prevents any failure down the pipeline in the end. It can be argued that
such invalid-value generating functions or parameters may be removed,
but we think that it is better to keep them in the Feature Extraction stage
for flexibility reasons. It is not entirely possible to know beforehand
which functions or parameters will produce the most useful or invalid
values, and it would also require human intervention to decide which
of those functions and parameters should be kept and which removed.

Finally, in order to carry out this stage, the transformers are exe-
cuted using Spark as the complexity of this stage is very high, as will
be explained later in Section 3.3. With Spark it is possible to partition
the data and parallelize the execution of the stage.

3.2.5. Outlier detection
With a set of features extracted, it is possible to optionally carry out

an outlier detection stage that identifies those jobs that are radically
different when compared to the dataset as a whole. Although not
strictly necessary, this stage may be interesting for two reasons. On
the one hand, these outlier jobs are removed from the larger dataset
(inliner jobs) to help the next stages in achieving a better clustering.
This is considering that a few outlier jobs may significantly shift the
clustering and thus increase the difficulty of choosing a good prediction
on an unsupervised scenario, where we do not know if a job or group
of jobs can be safely ignored to perform a better classification which
avoids overfitting. On the other hand, we can still extract valuable
information from these outliers, both as potential isolated anomalies,
and as the source of a dataset of outlier jobs that can also be the subject
of clustering in the search of groups of related patterns.

In our scenario we implement this stage using two different outlier
detection methods, LocalOutlierFactor and IsolationForest, which are
available in the ScikitLearn library. These methods are combined in
order to have some balance across different scenarios, considering that
one method might detect an abnormally high number of outliers in
some situations while the other only isolates a few, or vice versa.
Ultimately, we opted for a conservative approach and only those out-
liers detected by both methods are chosen and removed from the
dataset. When it comes to their configuration, LocalOutlierFactor is
configured with the number of closest neighbours whose distance is
used to compute the outlier score for each sample, and IsolationForest
is configured with the number of features to create the forest trees and
the number of samples to create the partitions. The experimental values
used are 5% the number of jobs to determine the number of neighbours
(e.g., 7 for a dataset of 130 jobs), and 50% of both the features and jobs
7

for the forest trees and samples (see Table 1). Finally, these outliers can
also be ordered according to a final score computed by adding up the
normalized scores from the two predictors, and again normalizing such
result.

3.2.6. Dimension reduction
Once the features have been extracted and properly structured, ei-

ther with or without outliers, the end result can be of several hundreds
of columns, mainly due to the combinatorial explosion of extraction
and aggregation functions. So, it is essential to reduce the dimensions
of this feature matrix (i.e., the ‘search space’) before the clustering
takes place. This is backed by the high probability of having a large
number of these columns with a very low variability in terms of values,
that is, of being unusable to differentiate a group of jobs from another
one. Unfortunately, this depends on the dataset and thus we cannot
know beforehand which will be the most useful or useless features,
that is, which columns will present the most variability. Moreover, the
remaining features can have highly variable value ranges, considering
that the input resource metrics can include very low values in the range
of hundreds (e.g., User CPU) or extremely high ones in the range of
thousands (e.g., Cached memory).

In order to address all these issues, it is useful to apply first a feature
scaling and a dimension reduction afterwards. On the one hand, this
stage uses a scaler that removes the mean and scales to unit variance
for each feature column. On the other hand, it uses several dimension
reduction algorithms that look for the features that hold the most amount
of variability (i.e., the set of columns that can be used to better separate
the jobs). With the chosen features, a reduced set of coordinates is
created that may hold +90% of the variation of the original search
space.

For the implementation of this stage, our pipeline uses the fol-
lowing methods provided by the ScikitLearn library: StandardScaler
for the scaling and Principal Component Analysis (Kernel PCA) for
the dimension reduction algorithms, as well as a Spark-based Python
implementation of a linear PCA (Spark PCA) [49]. As with the feature
extraction functions, each algorithm can be parameterized and inte-
grated in our pipeline as a transformer. The main parameter is the
number of components to use for Kernel PCA, a value we safely set
to 100, or the minimum variance to look for with Spark PCA, which in
our case is 90%. In addition, it is possible to apply Kernel PCA with a
linear reduction, or a second or third degree polynomial reduction.

The result of this stage is a projection of the previous dimensions
into fewer new ones, so throughout the paper such result may also
be referred to as ‘projection’, and the resulting dimensions as ‘compo-
nents’. Note that besides creating these projections, it is also possible to
know in this stage the variance captured by each component, and its
mathematical composition, by using the linear PCA reductors specif-
ically. Two pieces of useful information can be extracted from these
data: (1) the number of components needed to capture a percentage
of variance, which may hint at the degree of variability of the dataset;

Information Fusion 93 (2023) 1–20J. Enes et al.
and (2) which resource metrics were more important in determining the
projection, derived from the mathematical composition of the features
and considering that these were parameterized using metrics. Although
this information may not always fully apply (e.g., if a polynomial re-
duction is used), it may aid the human in case the results are inspected,
particularly in picking the resource plots to view. Such information will
be later used for some of the experiments presented in Section 4.

3.2.7. Clustering
After the features have been extracted and a small set of dimensions,

or projection, has been created from them, it is now possible to apply
several clustering models. Although many algorithms can be used for
the clustering of the jobs, we opted for distance-based ones, whether
they are centroid-based (e.g., KMeans) or hierarchical (e.g., Agglomer-
ative). This decision comes naturally considering that the components
used are purely numerical.

For these clustering algorithms, we rely on KMeans and Agglomera-
tiveClustering as provided by ScikitLearn. Both can be parameterized
with the number of clusters to use (typically, the ‘k’ parameter), which
in our case varies from 2 to 30 clusters in steps of 1. This upper value
has been chosen specifically for our scenario, as we do not expect to
find more than 30 clusters, but it may be increased if large datasets with
potentially numerous clusters are processed. Another parameter would
be the projection used, considering the different ones as generated from
the previous stage. In the case of the agglomerative algorithm, it can
also be parameterized with the linkage type: Ward or average. Once
this stage is executed, the end result is essentially a set of predictions,
each one representing the output of using a parameterized clustering
algorithm from all the possible combinations (e.g., KMeans with k = 2
and using a reduced set of dimensions from a linear Kernel PCA).

3.2.8. Evaluation
The predictions of all the different clustering algorithms can now be

evaluated using several functions. Such evaluation is needed to actually
carry out the search for the most promising result, considering also that
many predictions may be inadequate due to using non-optimal param-
eters, specially the number of clusters. Even though the pipeline relies
on unsupervised ML, it is still possible to use three evaluation metrics,
which are also implemented in ScikitLearn, to assess the cohesion of
the clusters and the degree to which their samples can be grouped
together [50]:

∙ Silhouette (Sil) [51], a common metric that assesses the consistency
of the clusters, measuring the cohesion and the separation of the data
points within each cluster and to neighbouring ones. The ideal value
is 1, and the worst scenario is −1. Generally, those values above
0.50 can be considered indicative of a possibly existing meaningful
clustering, although for our pipeline we opted to use a configurable
value of 0.30 as the minimum to take into account a predictor.

∙ Davies–Bouldin (DB) [52], a metric that measures the distance be-
tween clusters and assesses their separation. The ideal value is 0 in
this case. We empirically considered a maximum value of 2 for this
function, as most predictors with higher values also score badly on
other evaluation functions and generally underperform.

∙ Calinski–Harabasz (CB) [53], a metric that also measures dispersion,
both between clusters and inside the clusters themselves, with higher
values as better ones. In this case no restriction was applied.

Additionally, other three metrics of the prediction related to the num-
ber of clusters and their size have been taken into account for evalu-
ation purposes: the number of clusters (𝑘), and the cluster histogram
kurtosis (𝑘𝑢𝑟𝑡) and skewness (𝑠𝑘𝑒𝑤). These last three metrics can be
directly implemented with functions available in Pandas.

Unfortunately, even if these six metrics are useful to measure the
fitness of the predictions, they still pose a challenge if we want to use
them to order and compare the different predictions. To solve this,
8

it would be ideal to have a single metric that allowed to rank the
predictors, which motivated the definition and use of a heuristic that
combines the six metrics (see Eq. (1)). For the three evaluation metrics,
a scaling is performed in order to map their values to the range [0–1],
so they are referred to as 𝑠𝑆𝑖𝑙, 𝑠𝐷𝐵 and 𝑠𝐶𝐵, respectively. Moreover,
the use of this heuristic is backed by the fact that none of the evaluation
metrics by themselves can provide good predictors for a wide range
of different experiments. For example, if we only take the Silhouette
metric, it tends to favour heavily unbalanced predictions with very few
clusters that in turn either encompass most of the jobs, or only have
a few outlier jobs. On the other hand, the Calinski–Harabasz metric
heavily promotes predictors that have many clusters. The heuristic
ultimately aims to combine all the evaluation information and get those
predictors that generally have good cohesion and separation (Sil, DB
and CB), while also being balanced in the number of clusters predicted
(𝑘) as well as in the size of such clusters (𝑘𝑢𝑟𝑡 and 𝑠𝑘𝑒𝑤).

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 = (𝑠𝑆𝑖𝑙 − 𝑠𝐷𝐵 + 𝑠𝐶𝐵) × 1
𝑘
× 1

𝑎𝑏𝑠 (𝑘𝑢𝑟𝑡 × 𝑠𝑘𝑒𝑤)
(1)

By applying this heuristic we sort the predictors, so that the best
candidates appear at the top. Therefore, their clustering results can be
visually evaluated or, if necessary, manually inspected by looking at the
job resource plots for each cluster. However, note that some predictors
may have the exact same clustering result, which in turn causes them to
have the same heuristic value and be grouped together. Taking this into
account, the ordered predictors are then processed again to create ranks
and remove the spurious ordering between these same-result predictors.
This rank position will be the one actually used for the evaluation of
the experiments presented in Section 4.

3.2.9. Visualization
Regardless of the heuristic and its best effort to look for the most

suitable results, it is still advisable to perform a human assessment
on the reports generated by the pipeline, combining their evaluation
metrics and several visualization plots, both the resource and the clus-
tering ones. As proven by previous works [54], visualization frequently
allows to quickly detect at a glance if a clustering is promising or not,
if there are clear outliers that may be anomalies, or if there are easily
differentiable groups. In this work, several plotting methods have been
used both for the projections, which may be interesting to be evaluated
as the input for the clustering, and for the predictions, as the actual
result of such clustering.

For the projections, it is possible to use scatter plots and Andrews
curves, as they can be applied to the coordinate values of each job.
However, there is a limitation in the number of coordinates supported
for the scatter plot, with up to three (i.e., 3D scatter plots). In this
work, only two-dimensional scatter plots are considered, which use the
first two components of the dimension reduction. Fortunately, Andrews
curves are able to overcome this issue thanks to their design based on
Fourier series, which extends the limitation much further without any
theoretical boundary. Nevertheless, we limit such plots to the first five
dimensions, considering that any further dimension adds little value in
a vast majority of cases and renders the plot visually challenging to be
interpreted. In addition, heatmaps can be created for every dimension
reduction transformer, where the degree of variation across the jobs
can be evaluated for every component. This allows to visually assess the
number of components required to capture a great amount of variation.
Furthermore, the projections plots can also be used as a hint of the
minimum number of clusters required to separate the jobs, previous to
any clustering operation.

For the predictors, both scatter plots and Andrews curves can also be
used, but in this case with labels according to the cluster, which makes
it easy to visually check for the cohesion of the clustering. Moreover,
dendrograms can be used to show the hierarchical relationship between
jobs and clusters, as well as the relative distance that separates them.

Finally, it is possible to see the actual resource time series plots of
the jobs, for any of the metrics and for any predictor result, as well
as for outlier jobs. Examples of all these visualization plots will be
used for the experiments exposed in Section 4 to enhance the clustering
assessment and to complement the evaluation metrics.

Information Fusion 93 (2023) 1–20J. Enes et al.

3

p
h
o
t
a
s
s

t
C
l
c
s
c
b
m
h
s
p
o
t
i

d
‘
h
u
i
d
l
f
a
b
m
‘
l
‘
c
a
o

r
a
d
m
o
c
m
R
t
w
D

Table 3
Computational and memory complexity of the pipeline stages and parallelization approaches.

Stage CPU Memory Parallelization

Feature Extraction O(j × m × mlen × f) [high] O(j × m × mlen × f) [high] Spark and Python
Outlier Detection O(j × f) [low] O(j × f) [medium] None
Dimension Reduction O(j × f × r) [medium] O(j × f × r × R) [medium] Python
Clustering O(j × r × c) [low] O(j × f × r × R × c) [medium] Python
Evaluation O(j × f × c × e) [medium] O(j × f × r × R × c) [medium] None

Legend: j → #jobs | m → #metrics | mlen → metrics length | f → #feature extraction functions | r → #dimension reduction models |

R → #reduced dimensions generated per model | c → #clustering models | e → #evaluation functions.
n
t

.3. Computational complexity and parallelization

It is worth noting that the stages previously described are com-
letely decoupled from the data to be processed. This means that they
ave been developed to be independent of the data size or properties,
nly considering that such data are essentially time series. Nevertheless,
he data volume is key to the performance of the pipeline architecture
s the whole process has to be executed efficiently or, at least, in a
calable manner, specially if the aim is to cluster jobs quickly or in
hort time windows.

Although not a part of the actual pipeline, it is interesting to note
hat the underlying Resource Monitoring process, as well as the Data
ollection and the Preprocessing stages, are inherently scalable. For the

atter two stages, because the jobs are independent, their information
an be retrieved in parallel from the scheduler database and thus a
imple approach of process-based parallelism can be used. And when it
omes to the Resource Monitoring process, we can count on its scalability
ecause ultimately it is implemented by a collection of distributed
onitoring agents deployed on the computing nodes, which in turn
ave low overhead. In addition, because agents are stateless, as they
end all the data as soon as possible to an external database, it is
ossible to scale this stage if needed as long as the database is capable
f ingesting the data. Such database, HBase in our case, has proven
o be highly scalable by relying on distributing the data across several
nstances following a Big Data architecture.

Regarding the computational complexity of the pipeline stages, it is
escribed in Table 3. The variables shown are described as follows: (1)

j’ is the number of jobs, which can be greatly variable, from tens to
undreds of jobs; (2) ‘m’ is the number of resource metrics, which is
sually low due to the limited amount of ‘useful’ metrics; (3) ‘mlen’
s the length of the resource metrics, which is also greatly variable
epending on the runtime of the user jobs, although it can be modu-
ated through downsampling; (4) ‘f’ is the number of feature extraction
unctions, which although variable can be very high if these functions
re parameterized with multiple value combinations, some of them also
eing of high complexity; (5) ‘r’ is the number of dimension reduction
odels, usually a low number and of low to medium complexity; (6)

R’ is the number of generated dimensions for each model, usually a
ow number (e.g., 100) although it depends on the data variability; (7)
c’ is the number of clustering models, which is usually low and of low
omplexity (i.e., small search space if a dimension reduction is used);
nd (8) ‘e’ is the number of evaluation functions, usually a fixed number
f functions of low to medium complexity.

Using these variables, the complexity of the CPU and memory
equirements for each stage can be analysed, as they both represent the
mount of resources needed to run the pipeline. Although CPU usually
etermines the runtime and is regarded as the most important resource,
emory can also be crucial to avoid execution failures caused by out

f memory errors. On the one hand, according to Table 3, the highest
omplexity stage in terms of CPU is Feature Extraction, as it depends on
any variables with potential high values. Other stages like Dimension
eduction and Evaluation have a medium complexity, considering that

hey both depend on the number of features, or low like Clustering,
hich mainly depends on a small set of dimensions as generated by
9

imension Reduction. The Outlier Detection stage also depends on the
umber of jobs and features, but its complexity is on par or even lower
han the Clustering stage due to its behaviour based on solely distance

calculation or job and feature sampling to construct the detectors.
On the other hand, the stage with most memory requirements is also
Feature Extraction, as it must store all the job metrics on a DataFrame in
memory, as well as the features computed from them. However, once
such metrics have been used (i.e., m × mlen), they are removed. The
remaining stages have a medium memory complexity as they store the
features extracted, as well as the results of the previous transformations
and their own, that is, all the reduced sets of dimensions (i.e., r × R)
or the cluster predictions generated by the Clustering stage.

Nevertheless, the complexity of these stages, specially those with
high complexity, can be tackled by relying on the parallelization ca-
pabilities offered by Big Data frameworks. In our scenario, two par-
allelization techniques have been implemented: (1) a distributed mode
where a Big Data cluster is used to run a Spark workload; and (2) a local
mode where the Python multiprocessing library is used to distribute the
workload across several processes running on the same host, usually
pinned to different cores. This local parallelization has been imple-
mented for some stages of the pipeline, serving as a first line of defence
for those complexities that are expected to never become an issue. But
for those stages with high complexity it may be required to increase
the potential for scalability beyond that offered by a single host. This
is of particular importance for the Feature Extraction stage, as it is the
most intensive one for both resources. That is the reason why for this
stage we have used a Big Data cluster, and more specifically, Apache
Spark [11] coupled with YARN [55]. With this kind of parallelization
the amount of resources is not limited to a single host, but rather to a
pool of distributed resources from various hosts, which grants massively
parallel processing and enables the Feature Extraction stage to scale on
par with the complexities of CPU and memory.

Specifically to our scenario, in the Feature Extraction stage the entire
input dataset is split into small chunks of 80 jobs to be processed using
Spark, and for each chunk the jobs are then distributed among the
Spark workers, one job at a time [56]. In this way the CPU and memory
complexity of the worker is lowered from O(j × m × mlen × f) to
O(m × mlen × f), while the Spark driver is also not overloaded as it
only has to store one chunk at a time.

Finally, some runtime metrics recorded for the execution of the
pipeline stages during the experiments are presented in Section 4.4,
offering a hint of the effect that the two parallelization techniques have
on the experiments depending on the characteristics of the dataset.

4. Experiments

Several experiments have been designed to show the results of
applying the pipeline presented in this paper. The input datasets have
been extracted from a working environment represented by a real su-
percomputer between the 1st of January 2019 and the 1st of July 2020,
with each dataset containing jobs from either one or several users [57].
More information regarding the characteristics of the datasets will be
given in Section 4.4, where such characteristics are used in conjunction
with the pipeline runtimes to assess its scalability.

The experiments have been divided into three groups: experiments

that use datasets containing jobs from a single user, those with datasets

Information Fusion 93 (2023) 1–20J. Enes et al.
Table 4
Experimental results for single-user job clustering.

Experiment #Predictors
#Ranks

Projection Predictor Sil DB CB Job distribution Outliers

Single User 1 58
39

Kernel PCA
100 components
linear

KMeans (#7) 0.334 1.759 35 128 jobs in 3 clusters
92| 21| 15|

8 outlier jobs, ranked:
0| 12| 13| 29| 39| 41| 56| 100|

Single User 2 61
42

Spark PCA
min variance of
90%

Agglomerative (#0)
Euclidean distance
Ward linkage

0.402 0.912 233 445 jobs in 4 clusters
247| 183| 14| 1|

25 outlier jobs

Single User 3 44
30

Kernel PCA
100 components
polynomial degree 3

Agglomerative (#4)
Euclidean distance
Ward linkage

0.333 1.211 23 127 jobs in 8 clusters
73| 12| 12| 9| 6| 6| 5| 4|

6 outlier jobs, ranked:
0| 24| 30| 45| 74| 100|
(bold → displayed)Kernel PCA

100 components
polynomial degree 2

KMeans (#3) 0.332 1.179 28 127 jobs in 5 clusters
78| 21| 14| 8| 6|
containing pairs of these same users, and experiments that use a time
window which encompasses many users. For the single-user experi-
ments, outlier-based anomaly detection has also been studied, consider-
ing that in such experiments the job variability is lower (i.e., users tend
to repeat a few job templates or patterns), thus making the anomalies
stand out more. Although the anomalies are analysed, their interpre-
tation or possible connection to erroneous executions is ultimately left
to the user or system administrator, and only some guessing can be
done as to what caused the job to stand out, mainly by looking at the
resource plots.

4.1. Single-user job clustering

For these experiments, a total of three users (named 1, 2 and 3)
have been selected. Their selection was based on having datasets with
potentially different characteristics, from low or medium job variability
to high variability, as well as different dataset sizes and job runtimes.
The datasets have been extracted from a pool of users that have
executed a minimum of 100 jobs with a job duration of at least 90 min.
For each experiment, several plots are shown containing both the
visualization used as validation (top row in the forthcoming figures),
and the resource plots for the different clusters (second and third rows).
For these latter plots, a different resource is displayed in each row, with
each plot line representing a node and the title describing the resource
used and the number of nodes. Moreover, a different cluster is shown in
every column using a representative job, and in turn the column order
is the same as the cluster number from the validation plots (e.g., the
resource plots of the second column are from a job of cluster 1). For
some experiments, representative outlier jobs will also be displayed by
showing their resource plots. In addition, the predictor configuration
and its evaluation metrics are described in Table 4.

4.1.1. User 1
For the first user (see Fig. 3), a relatively simple scenario is shown

where well-defined clusters can be isolated. The top row of valida-
tion plots (see Fig. 3(a)) shows from left to right the scatter plot
of the chosen predictor, the Andrews curves for five dimensions and
a dendrogram. The scatter plot allows to identify one big cluster,
as well as two smaller ones. This can be further backed using the
Andrews curves for this same predictor, where two clusters are clearly
differentiated mainly by using the first component (i.e., the constant
term, the DC component of the curves), or if necessary, the second
component (i.e., the first harmonic of the curves). The last validation
plot, the dendrogram, also shows that if a hierarchy is used, two clusters
are separated early (i.e., great height or distance), one of which (green
coloured on the left) could be further split in a balanced fashion into
two clusters containing the second and third smaller ones in this case.
The second and third rows (Figs. 3(b) and 3(c), respectively) show
the resource plots, which can be used to prove how the clustering is
10

meaningful, considering that the dimension reduction phase associated
a total of 56% of the variance to features extracted from the User CPU
(41%) and Used memory (15%). For this user and dataset, the main
difference between the clusters would then be for the User CPU metric,
as can be seen in Fig. 3(b), while memory could also be used to a
lesser extent. When it comes to the evaluation metrics, as displayed
in Table 4, the chosen predictor for this experiment is placed in the
eighth rank (#7) by the heuristic out of a total of 39 ranks from 58
predictors that satisfied the minimum requirements previously exposed
in Section 3.2.8. Additionally, eight outliers were detected.

4.1.2. User 2
For the second user (Fig. 4), a slightly more complex scenario is

depicted as the number of different job types seems to be larger, that is,
the job variability is higher. For the validation plots (top row), we can
use the scatter plot on the left to see that there are four clusters in total:
two big clusters easily differentiated, an additional smaller one, as well
as a single-job cluster. The middle and right plots show the Andrews
curves for two and five components, respectively, in order to show the
reason behind the limitation of the scatter plot. While the scatter plot
succeeds in differentiating two groups of clusters, it is not able to fully
back the existence of four clusters, rather than two. On the left side
of the scatter plot, it is hard to say why the single-job cluster (red
coloured) has been isolated, since it is spatially close to its neighbouring
and larger cluster on both components. On the right side of the plot,
it may be dubious that the small cluster (green coloured) is different
enough from its large neighbour one (blue coloured), since it is spatially
close if we use the first dimension. This ultimately causes their gener-
ated two-dimensional Andrews curves to be similar as well, specially for
the single-job cluster. However, when using five components as on the
right validation plot, it is easy to see that the added components allow
differentiating further, strongly backing the single-job cluster as clearly
different from its neighbour one, as well as showing a different trend
for the small, green coloured cluster that sets it apart from the large,
blue coloured one. Interestingly, there is an additional job that could be
differentiated from this large cluster, and that is easily spotted both on
the scatter plot (upper right corner) and in the Andrews curves, but that
the predictor did not place on a cluster of its own. Even though these
‘isolated’ jobs have made it through the outlier detection, with these
visualization plots in hand, it may be interesting to consider them as
outliers and possibly as anomalies. Regarding the plots in the second
and third rows (Figs. 4(b) and 4(c)), they allow seeing the differences
with the resource metrics using the Cached memory and the User CPU,
respectively, which were the second and fourth metrics that captured
the most variance according to the Dimension Reduction stage. From the
Cached memory, it is easy to see that although the first three clusters
share the fact of having just one node actively consuming the resource,
they show two different patterns, with the first and third clusters being
similar, and the second one being different. In order to distinguish these
two similar clusters, we can use the User CPU resource, observing now

how these clusters have a different behaviour towards the end of the

Information Fusion 93 (2023) 1–20

11

J. Enes et al.

Fig. 3. Visualization of results and resource plots for the Single User 1 experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Visualization of results and resource plots for the Single User 2 experiment. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 5. Single User 2 outliers, showing Cached memory (in bytes) and User CPU (in %) resources.
execution. When it comes to the single-job cluster (far right plots),
although its User CPU may be similar to the second cluster, which
would explain its initial spatial closeness, its Cached memory clearly
shows an anomalous pattern, which backs the previous idea of this job
being an actual outlier and an anomaly. For the evaluation metrics (see
Table 4), the chosen predictor in this case would be the first one (#0),
as suggested by the heuristic out of 61 predictors grouped in 42 ranks.

Nevertheless, a total of 25 outliers have been detected for this
second user, which is a relatively high number as it represents approx-
imately 5% of the original number of jobs (470). Some of the most
relevant outliers according to their rank can be seen in Fig. 5. By using
the same resource plots as in Fig. 4, it can be seen that they are radically
different from the previous detected clusters on one resource (e.g., first
and third columns) or even both (e.g., second and fourth). Considering
the high number of outliers for this dataset, it may be interesting to
use the pipeline to process such outliers in the search of groups or
associations between them. The results of this processing can be seen in
Fig. 6. Note that we are applying the same clustering pipeline, but with
a low number of jobs (even though they represent a high number of
outliers), to a group of jobs that were previously discarded for being too
different and abnormal. The combination of these facts explains why
an unusually high number of clusters (9) was detected, most of them
containing four or fewer jobs. Nevertheless, the validation plots (see
Fig. 6(a)) can be used to assess that some of these clusters apparently
have a cohesion, which indicates that they are also somehow related,
even though they were outliers as a whole. The same Cached memory
metric as used earlier can now be seen for 4 out of the first 5 clusters in
Fig. 6(b). Although a job belonging to one of these clusters (the third
one) has been presented before as a representative outlier (see the first
outlier in Fig. 5), the remaining clusters and jobs were previously left
out due to a lower score when the outliers were ranked.

Considering now that the outlier detection is optional, we analyse
the scenario where the outliers were not taken out of the dataset. The
results for such scenario are available in Fig. 7. The most direct effect
of not removing the outliers is a shift in the cluster composition. Even
though the number of clusters is the same as before, we have now two
large clusters and two minimal ones when looking at the validation
plots (see Fig. 7(a)). These two large clusters are actually the first three
clusters as before with a difference. Previously, two clusters (first and
third) would tell apart those jobs according to their User CPU usage
near the end of the execution (see Fig. 4(c)), but now they are fused
into one cluster. The other two minimal clusters are most probably fully
composed by outliers, considering that two previous detected outliers
are present (see third and fourth plots in Fig. 7(b)). This scenario
points out that the outlier detection and removal phase is not actually
essential, even though it can be advantageous to take out those jobs
from the dataset so not to misguide the feature extraction functions and
the clustering models. Even when the outliers were not removed, the
larger and most important clusters were detected. Nevertheless, if the
12
objective and use case of applying clustering is either to detect such
outliers, or to look for smaller groups of jobs that deviate from such
larger clusters, then removing the outliers is crucial.

Finally, it is worth commenting for this experiment overall how
these groups of anomalous jobs, as seen in Fig. 6 and once analysed,
can be useful to detect recurring failing jobs. On the one hand, if the
similar anomalous jobs are always attached to a specific user, these
jobs could be associated with erroneous job configurations. On the
other hand, if present across different users, they may be linked to a
failing infrastructure component (e.g., wrong configuration of a node,
failing piece of hardware). Nevertheless, in both scenarios it would
be interesting to notify either the user or the system administrator,
respectively, to take corrective actions.

4.1.3. User 3
The third user represents a scenario where there is a high variability

across the jobs (see Fig. 8). In this case, two predictors (see Table 4) are
shown in the top row for the validation plots (Fig. 8(a)). According to
the scatter plots, it can be seen that between five and eight clusters may
be present, although it is much more difficult to prove this statement
without using further data, as several clusters are either too close
together or may even appear to overlap. This is mainly due to the
2D limitation of the scatter plots. However, such overlapping clusters
can be decoupled to some extent when analysing the Andrews curves
on the right plot by using more than two components. Nevertheless,
the two scatter plots are interesting to be compared if we take into
consideration that, although both use a polynomial dimension reduc-
tion, the first uses a third degree one, while the second uses a second
degree. This difference can also be seen in the fact that the clusters
tend to be arranged along lines as the number of degrees increases.
Regarding the resource plots (Figs. 8(b) and 8(c)), they show the first
four out of the five possible clusters based on the clustering results from
the second predictor (#3). In this case, User CPU and Used memory
are shown, which were the metrics that backed the features with the
most variance captured according to the Dimension Reduction (43.5%),
albeit that information is given by a linear reduction model. As can
be seen, the jobs exhibit clearly different patterns for both resources.
The difference between the predictors, as specified in Table 4, besides
the different dimension reduction used, is that they also use different
clustering models, being nonetheless ranked #3 and #4 by the heuristic
from 30 possible ranks. When it comes to outliers, a total of six were
detected, with four of them displayed in Fig. 9, including the three with
the highest scores (see Table 4). As can be appreciated, the first three
outliers correspond to jobs that followed similar patterns to the clusters
in Fig. 8, but that at some point suffered some kind of error that altered
the normal execution, while the fourth is probably linked to a failed job
from the start of the execution. This information can be useful to detect
job executions whose pattern deviates significantly from the expected
one. However, unlike User 2, in this case the anomalies were less

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 6. Single User 2 outliers clustered.
Fig. 7. Single User 2 experiment keeping the outliers.
numerous and more specific. This fact discards any need for clustering
and points out that these anomalies are less likely to be linked to a
recurring failure, and that they have to be manually inspected for more
information. Nevertheless, they can still suggest an isolated software
failure, or a piece of hardware that started to fail recently, as maybe
not enough anomalies have been accumulated yet.

4.1.4. Heatmaps analysis
In order to further understand the reasons behind the predictions

presented in the previous single-user experiments, the heatmaps shown
in Fig. 10 can be analysed, as they ultimately display the data used
by the clustering algorithms. Nevertheless, note that each row in the
heatmap represents a job previously to any grouping, and thus the
values are not ordered. Furthermore, only the first five components are
displayed considering that adding further ones hinders visualization.
For User 1, there is a relatively medium variability overall, requiring
in this case 38 components to capture at least 90% of variance, a
piece of information we can extract from the Dimension Reduction
stage as previously explained in Section 3.2.6. If we look at the first
13
component, there could be at least two dominating big clusters and
possibly other minor ones. However, if we look at the next components,
we can clearly see some radically different values that could belong
to undetected outliers jobs, or slightly different jobs inside the large
clusters. Regarding User 2, we can also see clearly the two big clusters
using the first two components, as previously seen in the scatter plots,
and some different values in the second component, which may explain
the third cluster. Unfortunately, as opposed to the Andrews curves, it
is very difficult to detect the outliers previously mentioned using the
heatmaps, both the single-job cluster and the undetected one, as they
are buried among the other numerous jobs. In this case, the projection
used needed 43 components to correctly capture the variability. For
User 3, we can observe a relatively high variability in the fact that up
to 50 components were usually required to capture enough variance,
and that visually all the components, even the first one, contain several
different grades of values for several jobs.

Finally, it is worth commenting that the experiments shown in
this section present two use cases that can be useful in our HPC
scenario to system administrators. First, the clustering allows extracting

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 8. Visualization of results and resource plots (first 4 out of 5 clusters, predictor #3) for the Single User 3 experiment.
Fig. 9. Single User 3 outliers, showing Used memory (in bytes) resource.
Fig. 10. Heatmaps for the single-user experiments.
information from job datasets, like the type of jobs a user typically
executes, mainly their resource patterns and variability both between
the jobs themselves and compared to other job types (see Figs. 3, 4
and 8). Second, and derived from the first use case, we can also extract
the outliers from a dataset, which could be labelled as anomalies after
human inspection. This would reveal if a job execution has suffered
from some kind of error and, using its resource pattern, try to diagnose
it (see Figs. 5 and 9). Furthermore, these anomalies can be clustered
14
to search for repeated execution failures or similar kinds of anomalies
(see Fig. 6).

4.2. Multiple-user job clustering

For these experiments, the previous users have been combined by
pairs. This allows us to see scenarios having some idea of what the
result should resemble. For example, a certain number of clusters

Information Fusion 93 (2023) 1–20J. Enes et al.
Table 5
Experimental results for multiple-user job clustering.
Experiment #Predictors

#Ranks
Projection Predictor Sil DB CB Job distribution

User 1+2 141
119

Kernel PCA
100 components
polynomial degree 2

KMeans (#0) 0.459 0.881 235 583 jobs in 5 clusters for 2 users
User 1: | 7| 87| 33| |

User 2: 264| 191| | | 1|
23 outliers found

User 2+3 142
123

Spark PCA
min variance of
90%

Agglomerative
(#16)
Euclidean distance
Ward linkage

0.447 1.385 239 574 jobs in 5 clusters for 2 users
User 2: 263| 186| 1| | |

User 3: | 8| 61| 37| 18|
29 outliers found

User 1+3 44
30

Kernel PCA
100 components
polynomial degree 2

Agglomerative (#1)
Euclidean distance
Ward linkage

0.331 1.067 65 259 jobs in 5 clusters for 2 users
User 1: 8| 84| 33| | 1|
User 3: 110| | | 23| |

10 outliers found
Fig. 11. Visualization results for multiple-user job clustering.
could be estimated, taking into account the results from the previous
single-user experiments. Ideally, as long as the underlying user jobs
are different enough, a robust prediction should keep the clusters from
both users separated. The results for these experiments are available in
Table 5, and Fig. 11 shows the three combinations of the users. Each
combination is displayed in a column, being the top graph the scatter
plot of such combination, and the bottom one the Andrews curves.

The first column (see Fig. 11(a)) combines the experiments from
Figs. 3 (User 1) and 4 (User 2), resulting in five clusters extracted by
the predictor (the first one out of 141 predictors across 119 ranks).
Similarly to single-user experiments, this can be seen using the scatter
plot up to a certain degree (see top graph), where the clusters are
clearly differentiated, even keeping the single-job cluster from User
2. The Andrews curves (bottom graph) further back this analysis.
Additionally, the previously undetected outlier for User 2, which the
scatter plot is still unable to detect, is also present in the curves plots.
Moreover, the evaluation data shown in the last column of Table 5
(Job distribution) allows assessing if the clustering has somehow taken
into account the fact that the jobs present in the dataset come from
two users. In this case, the five clusters have mostly maintained the
results from the previous experiments for the users individually (two
large clusters for each user), only mixing a few jobs from both users or
moving them to another cluster, which is not necessarily a sign of a bad
clustering as some jobs in particular may indeed be similar. It has also
to be taken into account that different outliers could have now been
dropped if compared with the individual experiments.
15
The second column (see Fig. 11(b)) combines the experiments from
Figs. 4 (User 2) and 8 (User 3). In this case, the predictor extracts
five clusters which, as before, are more or less related to the previous
results from the users individually if we take into account the large, or
medium-sized clusters that are close. Unfortunately, by looking at the
scatter plots we can see how the points begin to overlap substantially.
Looking at the evaluation data in Table 5, we have to go down to the
predictor ranked #16 when the results are visually inspected, which
proves that the heuristic may still fail in some cases to highlight
potentially interesting results. In addition, the single-job cluster and the
undetected outlier for User 2 do not seem to be present, neither on the
scatter plot nor on the Andrews curves. This could mean that they are
not so different now when compared to other jobs, or they have been
properly detected and dropped as outliers.

The third column (see Fig. 11(c)) mixes the experiments from Figs. 3
(User 1) and 8 (User 3). The predictor shown in this case was the
second one (#1) selected by the heuristic out of 30 ranks. The scatter
plot seems to properly separate some clusters, but two of them are
severely overlapped, although they can still be separated using the
Andrews curves. This effect is mainly due to the polynomial dimension
reduction used, which may cause the effect of grouping along lines, as
previously stated. Interestingly, a single-job cluster is also produced in
this experiment, which may be due to an outlier that was not dropped,
or to a job that is now radically different as the result of combining the
two datasets.

Information Fusion 93 (2023) 1–20J. Enes et al.

o
v
E
w
t
s
m
t
t
t
a
t
d
d
t
s
p
p
F
g
h

4

f
m
w
s
a
N
r
s
m
t
i
a
t
c

e
d
B
b
l
s
s
v
t
c
d
P

Table 6
Experimental results for time-window job clustering.
Experiment #Predictors Projection Predictor Sil DB CB Job distribution

Time window 0 97
73

Spark PCA
min variance of 90%

Agglomerative (#1)
Euclidean distance
Ward linkage

0.311 1.347 60 197 jobs in 6 clusters
for 7 users
9 outliers found

Time window 1 59
46

Kernel PCA
100 components
linear

KMeans (#3) 0.350 1.121 41 141 jobs in 6 clusters
for 6 users
9 outliers found

Time window 2 92
63

Kernel PCA
100 components
polynomial degree 2

KMeans (#2) 0.372 1.340 68 163 jobs in 4 clusters
for 5 users
13 outliers found
c
D
a
S
u
t
o
b
a

This scenario with user pairs can serve to prove or assess the degree
f similarity between the jobs that two users execute, by using the
isualization as well as the job distribution (see last column in Table 5).
ven though they were not shown for brevity and to avoid repetition, it
ould be possible to compare the clusters using the usage patterns from

he resource plots. The results could point at two users whose jobs are
imilar or totally opposite, and if the users have different job types it
ay even show if any of those is shared by both users. In our case, the

hree users have been fairly well separated and thus it can be asserted
hat they have different job patterns. Although this may be extensible
o combinations of three or more users, complexity increases with each
dded user. Nevertheless, this use case may be interesting if extended
o many users to extract job patterns that are heavily used. Once
etected and studied, these patterns can be the basis for guiding several
ecision-making processes. For example, in the short to medium term,
hese patterns can be useful to improve the configuration of the job
cheduler (Slurm in our case), or to create different resource constraint
olicies for job executions (e.g., Slurm partitions) to accommodate such
atterns, all in order to increase hardware utilization and efficiency.
urthermore, in the medium to long term, these patterns can serve to
uide the upgrade or acquisition of an HPC infrastructure by knowing
ow the resources were used in the past by users.

.3. Time-window job clustering

For the last experiments, several time windows of a week within the
irst six months of 2020 were defined. These windows may comprise
any users, but only those that submitted between 10 and 100 jobs
ere taken into account to avoid numerous outliers due to users that

poradically run a few jobs, or users that may run a really large
mount of jobs, usually with little to no variation among executions.
evertheless, the remaining jobs still have to abide by the minimum

equirements (i.e., job duration and minimum number of nodes) as
pecified in Section 3.2.1. The results for these time-window experi-
ents, including the evaluation metrics, are detailed in Table 6, and

he visualization plots are displayed in Fig. 12. The plots are organized
n columns with, from top to bottom, scatter plots, Andrews curves
nd heatmaps. For these experiments the number of users, and thus
he expected job variability, begins to increase substantially when
ompared to the previous experiments, going as far as seven users.

For the first time window (Fig. 12(a)), the result of an Agglom-
rative clustering after a dimension reduction using a Spark PCA is
isplayed, ranked second (#1) out of 73 (see fourth column in Table 6).
oth with the scatter plot and the Andrews curves, large groups can
e isolated and identified. However, while in the scatter plot several
arge clusters are fused together (clusters 0, 3 and 5), they are easily
eparated using the Andrews curves. Interestingly, the heatmap also
hows that the number of components needed starts to grow, because
ariability significantly increases by adding more users, requiring up
o 41 components to capture enough variance. In this case, all the five
omponents show variability across the values. The second time win-
ow (Fig. 12(b)) uses a KMeans prediction coupled with a linear Kernel
16

CA and is ranked #3 out of 46. The scatter plot allows to identify
several cohesive clusters, which in this case are mostly associated with
users. However, the additional components of Andrews curves allow
to better explain the assignment of those points, hinting that cluster
0 (blue coloured) could possibly be divided into two. When analysing
the heatmap, all the components show variability, which is backed by
the fact that 34 components are needed to achieve the 90% of variance
captured. Finally, a KMeans clustering is performed for the third time
window (Fig. 12(c)) using a dimension reduction with a second degree
polynomial Kernel PCA, and ranked #2 out of 63. In this case, the
scatter plot separates the jobs into four clusters, two of which overlap
substantially. This is resolved with the Andrews curves, although this
plot reveals that cluster 2 (green coloured) could actually contain
two different job types, and also the presence of two outliers inside
cluster 0 (blue coloured). The heatmap, in contrast to the previous
two ones, comes from a polynomial dimension reduction, which should
implicitly cause the values to be less ambiguous and more polarized.
However, the variability present in the experiments still forces using
several components. Interestingly, due to the smaller dataset size, the
two undetected outliers could be spotted in the heatmap as two jobs
whose component values are high, but only from the second component
onwards. This could be the reason why they have been clustered inside
a large cluster and do not appear in the scatter plot, where the first two
components are used, but they are highly noticeable in the Andrews
curves.

These last experiments may prove useful for a general analysis of the
jobs executed in a given time frame. If only the ‘active’ users are taken
into account, that is, those users that execute a minimum number of
jobs within such time frame, the results could show a rough picture of
the most common job types. This in turn could be interesting to later
analyse the resource requirements of such types, which is interesting
to prioritize resource provisioning in the future, as already explained
at the end of Section 4.2.

4.4. Infrastructure used and runtime analysis

Considering that the pipeline implementation combines two par-
allelization techniques to overcome scalability issues, a distributed
Spark-based parallelization (using a Big Data cluster) and a process-
based parallelization (using a local host), it is interesting to analyse
the runtimes alongside the complexity of the experiments (previously
commented in Section 3.3). This study is even more important taking
into account the potential for processing large datasets, whether in
terms of a large number of jobs, fewer but long-running ones, or
massively parallel jobs (i.e., using a very high number of nodes).

The Feature Extraction stage uses the first parallelization technique,
onsidering that it is by far the most compute-intensive stage, while the
imension Reduction and Clustering stages use the second one. The Evalu-
tion and the Outlier Detection stages are not parallelized. Regarding the
park parallelization, it is modulated by the number of Spark executors
sed, while the local process-based parallelization is configured with
he number of processes that are spawned. The hardware specifications
f the infrastructure used in the experiments are detailed in Table 7,
oth for the nodes of the Big Data cluster that runs the Spark workloads,
s well as for the local, single host.

Information Fusion 93 (2023) 1–20J. Enes et al.
Fig. 12. Visualization results and heatmaps for time-window job clustering. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Table 8 exposes the parameters of the experiments that determine
their complexity (first four columns), as well as the runtimes for
different parallelization configurations used for their execution (the
remaining columns). The parameters that play a significant role in the
total runtime of each experiment are the number of jobs and nodes
(second column), and the amount of actual data to be processed, which
can be measured as the added up length of all the job runtimes (third
column), or also as the total number of data points to be processed
(fourth column). Regarding parallelization, three different configura-
tions have been evaluated. For each experiment, the runtime results for
each pipeline stage are shown in consecutive rows: 20 Spark workers
and 1 process (no parallelization) in the first row, doubled to 40
workers and 2 processes in the second row, and doubled again to 80
workers and 4 processes in the third row.

The impact that the variability has across the datasets can first be
analysed by looking at the single-user experiments in Table 8. Even
though User 1 is the one with the longest total job runtime, User 2
has the highest number of jobs, while User 3 has the most number
of total nodes (i.e., raw number of time series). All these parameters
can have some impact when processing the datasets, for example, it
is not the same to process a dataset with long but ‘low-varying’ time
series (case of User 1), than with shorter but more complex time series
(case of Users 2 and 3). Regarding the parameters of the multiple-
user experiments, in the end they are derived from the single-user
ones. These parameters are harder to interpret for the time-window
experiments if datasets as a whole are taken into account, as the
17
jobs included can have widely different characteristics, specially when
many users are present. Nevertheless, it is interesting to note how the
parameters for these time-window datasets show little variation among
them. This can be explained by considering that the jobs executed
on a supercomputer tend to be a few types of periodically repeated
experiments, with some sporadic executions of specific jobs by some
less active users.

Secondly, the runtimes of the experiments for each stage can also
be analysed in Table 8, where it can be seen that the Feature Extraction
stage is the most time-consuming one. This is even more evident when
taking into account that the resources used in this stage are consider-
ably larger: 20 Spark workers for every local process spawned to run the
other stages. If we compare the three single-user experiments, we can
now experimentally observe that the dataset from User 2 takes longer
to process than the one of User 1, even when it is technically smaller,
something that may be due to the intrinsic complexity and variability
of the time series as previously explained. When analysing how the
runtimes correlate to the resources used and the parallel configuration,
it is clear that runtimes are reduced when increasing the resources.
In some cases, the runtime is close to being halved, such as for User
2, when the Spark workers are doubled from 20 to 40. However,
the gain is lower when the resources are doubled again. It should be
taken into account that the runtimes start to get significantly smaller
when the maximum parallelism is employed (80 workers), and thus it
also gets increasingly difficult to achieve a noticeable improvement.
Performance gains are also observed when analysing the runtimes of

Information Fusion 93 (2023) 1–20J. Enes et al.
Table 7
Hardware specifications of the infrastructure used.

Big Data cluster — 14x nodes Local host

CPU model 2x Intel Xeon E5-2620 v3 Haswell-EP AMD Ryzen 9 3900X

CPU speed 2.4 GHz (3.2 GHz in Turbo mode) 3.8 Ghz (4.6 GHz in Turbo mode)

Cores/Threads 12/24 12/24

Memory 64 GiB DDR4 64 GiB DDR4

Disks 1x 480 GiB SSD SATA 2.5′′ (master) 1 SSD SATA 2.5′′
12x 2 TB NL SATA 3.5′′ (worker)

Network 1 × 10 Gbps + 2 × 1 Gbps N/A

Operating System CentOS Linux release 7.2.1511 Ubuntu 20.04

Spark distribution 2.4.0-cdh6.1.1

N/AExecutors per node 8

Memory per executor 2 GiB

Cores per executor 1
Table 8
Dataset characteristics and runtimes for all the experiments (1st row: 20 workers-1 process, 2nd row: 40 workers-2 processes, 3rd row: 80 workers-4 processes).
Experiment #Jobs

#Nodes
Total job
runtime
(hours)

#Time
series
points

Feature
Extraction
(seconds)

Dimension
Reduction
(seconds)

Clustering
(seconds)

Evaluation
(seconds)

Pipeline
runtime
(seconds)

Single User 1 136
920

12,748 256,000 240
142
105

17
18
18

6
5
4

6
6
6

269
171
133

Single User 2 470
1,915

1,844 39,000 312
172
108

17
17
18

9
8
6

12
11
11

350
208
143

Single User 3 133
5,709

135 3,000 194
112
71

14
14
14

5
4
3

6
6
6

219
136
94

User 1+2 606
2,835

14,592 295,000 532
297
180

20
19
19

10
7
6

16
16
16

578
339
221

User 2+3 603
7,624

1,979 43,000 473
261
150

19
19
19

11
8
6

16
15
15

519
303
190

User 1+3 269
6,629

12,883 260,000 419
239
172

16
16
16

7
6
4

8
8
8

450
269
200

Time window 0 206
1,210

1,298 27,000 175
98
64

14
14
14

6
5
4

7
7
7

202
124
89

Time window 1 150
952

939 20,000 123
73
54

15
15
14

5
5
4

6
6
6

149
99
78

Time window 2 175
897

1,166 24,000 140
95
65

15
15
15

6
5
4

6
6
7

167
121
91
the Dimension Reduction and Clustering stages, but it is rather difficult
to achieve increasing improvements because these runtimes are already
very low. The Outlier Detection stage has been omitted as its runtimes
are the lowest ones (close to 1 second) due to its relatively simple
complexity, and the values measured were mostly the same for all
experiments. Note that the local process-based parallelism serves as a
simple first approach for the processing stages required after Feature
Extraction. However, these stages should not pose any scalability issue
as their complexity is significantly lower, as analysed in Section 3.3
(see Table 3).

5. Conclusions

Time series are present in many fields of study, as they represent
any kind of numerical measurement along time, which in essence
boils down to characterizing a behaviour. The study of time series
18

has already been extensively discussed in the literature regarding their
mathematical properties, but more recently also computer scientists
have found in time series a potential source of valuable data to be
exploited using new available tools and technologies such as Machine
Learning and Big Data. A common use case is the classification of
existing and previously labelled time series to create groups that allow
to quickly identify new time series. However, in those scenarios where
there is no available information, it is also possible to cluster the time
series to create groups, albeit such groups can or cannot be meaningful,
as no labelled data can be used for validation. In addition, in some use
cases several time series can be combined (i.e., they are multivariate)
to model the behaviour of more complex entities, although usually this
is at the expense of an increased overall difficulty.

In this paper we have presented a practical example of such mul-
tivariate scenarios that focuses on HPC jobs from several users as the
entities to be studied, using their multiple computing nodes, as well
as their multiple resource time series per node as data. With these
series we opted to apply clustering of the jobs by using only extracted
information from them, without depending on any type of labelling or

Information Fusion 93 (2023) 1–20J. Enes et al.

t
n
p
F
C
p
F

D

c
i

D

t

A

t
a
U
r
e
U

R

previous classification. Such clustering has been implemented with a
multi-process pipeline that uses feature extraction of the time series,
along with an outlier detection, a dimension reduction and a clus-
tering, all in a highly configurable manner to ultimately perform a
multi-predictor search of the most promising result in a last heuristic-
guided evaluation stage. In addition, the outlier jobs detected have
been studied as the basis for an anomaly detection scenario, as well
as for further clustering if too many outlier and potentially anomalous
jobs are produced. The computational complexity and the scalability
of our solution has also been analysed, considering that its technical
implementation relies on the fusion of ML and Big Data technologies
such as Apache Spark, and that its design is based on a pipeline
architecture and transformer operations.

To prove our proposed pipeline, several experiments have been
conducted covering different use cases: from a single user and a few
job types (medium variability) to those with several users and sev-
eral expected job types (high variability). Both evaluation metrics
and visualization techniques have been provided and used for each
experiment. They aim at assessing numerically whether a predictor
provides a promising clustering option, as well as at guiding users
(e.g., system administrators) in quickly performing a visual evaluation.
With these tools in hand we showed how it is possible to process
datasets containing hundreds of jobs, each composed of many node and
resource time series, in order to extract groups that relate to different
job patterns or to different users. Furthermore, we have shown that
outlier detection can be optionally performed on a dataset to isolate
anomalous jobs or groups of jobs that may have suffered some kind of
error.

Finally, it has to be considered that any unsupervised scenario
presents some intrinsic limits regarding the potential to have a good
separation of the jobs and to evaluate the fitness of such separation,
which arise from the lack of labelled data. Nevertheless, these scenarios
do occur in practice, and it is necessary to continue working on systems
such as our pipeline that can efficiently handle numerous multivariate
time series and extract valuable information from them in the absence
of external information.

The source code of all the programs and scripts, as well as all the
data used in this work (datasets with the metrics and features, plots,
generated files with the evaluation metrics. . .), are publicly available
in a repository hosted in Mendeley Data [57].

CRediT authorship contribution statement

Jonatan Enes: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Investigation, Data curation, Writing – origi-
al draft, Writing – review & editing, Visualization. Roberto R. Ex-
ósito: Validation, Writing – review & editing, Visualization. José
uentes: Conceptualization, Methodology. Javier López Cacheiro:
onceptualization, Methodology, Software, Validation, Resources, Su-
ervision. Juan Touriño: Writing – review & editing, Supervision,
unding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The link to the Mendeley repository containing the source code and
he datasets is available at the end of the article.

Datasets and source code for a pipeline architecture for feature-bas
ed unsupervised clustering using multivariate time series from HPC
jobs (Original data) (Mendeley Data)
19
cknowledgements

This research was funded by the Ministry of Science and Innova-
ion of Spain (PID2019-104184RB-I00/AEI/10.13039/501100011033),
nd by Xunta de Galicia, Spain and FEDER funds of the European
nion (Centro de Investigación de Galicia accreditation 2019–2022,

ef. ED431G 2019/01; Consolidation Program of Competitive Refer-
nce Groups, ref. ED431C 2021/30). Funding for open access charge:
niversidade da Coruña/CISUG.

eferences

[1] S. Aghabozorgi, A.S. Shirkhorshidi, T.Y. Wah, Time-series clustering – a decade
review, Inf. Syst. 53 (2015) 16–38.

[2] V. Bolón-Canedo, A. Alonso-Betanzos, Ensembles for feature selection: A review
and future trends, Inf. Fusion 52 (2019) 1–12.

[3] CESGA supercomputing centre, 2022, https://www.cesga.es, Last visited:
December 2022.

[4] B. Zhao, H. Lu, S. Chen, J. Liu, D. Wu, Convolutional neural networks for time
series classification, J. Syst. Eng. Electron. 28 (1) (2017) 162–169.

[5] C.-L. Liu, W.-H. Hsaio, Y.-C. Tu, Time series classification with multivari-
ate convolutional neural network, IEEE Trans. Ind. Electron. 66 (6) (2019)
4788–4797.

[6] Y. Zheng, Q. Liu, E. Chen, Y. Ge, J.L. Zhao, Exploiting multi-channels deep
convolutional neural networks for multivariate time series classification, Front.
Comput. Sci. 10 (1) (2016) 96–112.

[7] J. Lines, A. Bagnall, Time series classification with ensembles of elastic distance
measures, Data Min. Knowl. Discov. 29 (3) (2015) 565–592.

[8] T. Górecki, M. Łuczak, Multivariate time series classification with parametric
derivative dynamic time warping, Expert Syst. Appl. 42 (5) (2015) 2305–2312.

[9] A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with COTE:
The collective of transformation-based ensembles, IEEE Trans. Knowl. Data Eng.
27 (9) (2015) 2522–2535.

[10] F.J. Baldán, J.M. Benítez, Distributed fastshapelet transform: A big data time
series classification algorithm, Inform. Sci. 496 (2019) 451–463.

[11] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.
Rosen, S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I.
Stoica, Apache spark: A unified engine for big data processing, Commun. ACM
59 (11) (2016) 56–65.

[12] M.F. Ghalwash, Z. Obradovic, Early classification of multivariate temporal
observations by extraction of interpretable shapelets, BMC Bioinformatics 13
(195) (2012) 1–12.

[13] B.D. Fulcher, N.S. Jones, Highly comparative feature-based time-series
classification, IEEE Trans. Knowl. Data Eng. 26 (12) (2014) 3026–3037.

[14] A. Zagorecki, A versatile approach to classification of multivariate time series
data, in: Proceedings of 2015 Federated Conference on Computer Science and
Information Systems, FedCSIS 2015, Łódź, Poland, 2015, pp. 407–410.

[15] P. Schäfer, The BOSS is concerned with time series classification in the presence
of noise, Data Min. Knowl. Discov. 29 (6) (2015) 1505–1530.

[16] N. Tavakoli, S. Siami-Namini, M.A. Khanghah, F.M. Soltani, A.S. Namin, An
autoencoder-based deep learning approach for clustering time series data, SN
Appl. Sci. 2 (5) (2020) 1–25.

[17] T.W. Liao, Clustering of time series data – a survey, Pattern Recognit. 38 (11)
(2005) 1857–1874.

[18] S.-E. Benkabou, K. Benabdeslem, B. Canitia, Unsupervised outlier detection for
time series by entropy and dynamic time warping, Knowl. Inf. Syst. 54 (2) (2018)
463–486.

[19] H. He, Y. Tan, Unsupervised classification of multivariate time series using VPCA
and fuzzy clustering with spatial weighted matrix distance, IEEE Trans. Cybern.
50 (3) (2018) 1096–1105.

[20] J. Zakaria, A. Mueen, E. Keogh, Clustering time series using unsupervised-
shapelets, in: Proceedings of the 12th IEEE International Conference on Data
Mining, ICDM 2012, Brussels, Belgium, 2012, pp. 785–794.

[21] G. Anand, R. Nayak, Unsupervised visual time-series representation learning
and clustering, in: Proceedings of the 27th International Conference on Neural
Information Processing, ICONIP 2020, Bangkok, Thailand, Online, 2020, pp.
832–840.

[22] C.T. Zan, H. Yamana, An improved symbolic aggregate approximation distance
measure based on its statistical features, in: Proceedings of the 18th International
Conference on Information Integration and Web-Based Applications and Services,
IiWAS ’16, Singapore, 2016, pp. 72–80.

[23] Y. Yu, Y. Zhu, D. Wan, H. Liu, Q. Zhao, A novel symbolic aggregate approxi-
mation for time series, in: Proceedings of the 13th International Conference on
Ubiquitous Information Management and Communication, IMCOM 2019, Phuket,
Thailand, 2019, pp. 805–822.

[24] L. Wang, F. Lu, M. Cui, Y. Bao, Survey of methods for time series symbolic
aggregate approximation, in: Proceedings of the 5th International Conference of
Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019, Guilin,
China, 2019, pp. 645–657.

http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
http://dx.doi.org/10.17632/hgkv9cpnmn.2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
https://data.mendeley.com/datasets/hgkv9cpnmn/2
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb1
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb1
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb1
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb2
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb2
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb2
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
https://www.cesga.es
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb4
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb4
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb4
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb5
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb5
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb5
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb5
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb5
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb6
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb6
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb6
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb6
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb6
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb7
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb7
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb7
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb8
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb8
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb8
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb9
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb9
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb9
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb9
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb9
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb10
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb10
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb10
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb11
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb12
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb12
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb12
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb12
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb12
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb13
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb13
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb13
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb14
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb14
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb14
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb14
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb14
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb15
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb15
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb15
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb16
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb16
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb16
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb16
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb16
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb17
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb17
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb17
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb18
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb18
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb18
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb18
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb18
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb19
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb19
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb19
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb19
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb19
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb20
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb20
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb20
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb20
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb20
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb21
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb22
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb23
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb24

Information Fusion 93 (2023) 1–20J. Enes et al.
[25] J. Hartung, G. Gühring, V. Licht, A. Warta, Comparing multidimensional sensor
data from vehicle fleets with methods of sequential data mining, SN Appl. Sci.
2 (4) (2020) 1–13.

[26] M.S. Halawa, R.P. Díaz Redondo, A. Fernández Vilas, Unsupervised KPIs-based
clustering of jobs in HPC data centers, Sensors 20 (15) (2020) 4111:1–4111:21.

[27] D. Tiano, A. Bonifati, R. Ng, FeatTS: Feature-based time series clustering, in:
Proceedings of the 2021 International Conference on Management of Data,
SIGMOD/PODS’21, Xi’an, Shaanxi, China, Online, 2021, pp. 2784–2788.

[28] B.D. Fulcher, N.S. Jones, Hctsa: A computational framework for automated time-
series phenotyping using massive feature extraction, Cell Syst. 5 (5) (2017)
527–531.

[29] M. Christ, N. Braun, J. Neuffer, A. Kempa-Liehr, Time Series FeatuRe Ex-
traction on basis of Scalable Hypothesis tests (tsfresh – A Python package),
Neurocomputing 307 (2018) 72–77.

[30] C.H. Lubba, S. Sethi, P. Knaute, S. Schultz, B. Fulcher, N. Jones, catch22:
CAnonical Time-series CHaracteristics, Data Min. Knowl. Discov. 33 (2019)
1821–1852.

[31] D. Shaykhislamov, V. Voevodin, An approach for dynamic detection of inefficient
supercomputer applications, Procedia Comput. Sci. 136 (2018) 35–43.

[32] L. Erhan, M. Ndubuaku, M. Di Mauro, W. Song, M. Chen, G. Fortino, O. Bagdasar,
A. Liotta, Smart anomaly detection in sensor systems: A multi-perspective review,
Inf. Fusion 67 (2021) 64–79.

[33] N. Laptev, S. Amizadeh, I. Flint, Generic and scalable framework for automated
time-series anomaly detection, in: Proceedings of 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD’15, Sydney,
Australia, 2015, pp. 1939–1947.

[34] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, L. Benini, Anomaly detection
using autoencoders in high performance computing systems, in: Proceedings of
the 33rd AAAI Conference on Artificial Intelligence, AAAI-19, Honolulu, HI, USA,
2019, pp. 9428–9433.

[35] M. Erz, J.F. Kielman, B.S. Uzun, G.S. Gühring, Anomaly detection in multidi-
mensional time series – a graph-based approach, J. Phys. Complex. 2 (4) (2021)
045018.

[36] M. Çelik, F. Dadaşer-Çelik, A. Ş. Dokuz, Anomaly detection in temperature data
using DBSCAN algorithm, in: Proceedings of the 2011 International Symposium
on INnovations in Intelligent SysTems and Applications, INISTA 2011, Istanbul,
Turkey, 2011, pp. 91–95.

[37] G. Ozer, A. Netti, D. Tafani, M. Schulz, Characterizing HPC performance
variation with monitoring and unsupervised learning, in: Proceedings of the 35th
International Conference on High Performance Computing, ISC 2020, Frankfurt,
Germany, 2020, pp. 280–292.

[38] B. Wang, Z. Mao, Outlier detection based on a dynamic ensemble model: Applied
to process monitoring, Inf. Fusion 51 (2019) 244–258.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[40] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V.
Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, et al., API design for machine
learning software: Experiences from the scikit-learn project, in: European Confer-
ence on Machine Learning and Principles and Practices of Knowledge Discovery
in Databases, Languages for Data Mining and Machine Learning Workshop,
ECML/PKDD 2013, Prague, Czech Republic, 2013, pp. 108–122.
20
[41] A. Svyatkovskiy, K. Imai, M. Kroeger, Y. Shiraito, Large-scale text processing
pipeline with apache spark, in: Proceedings of the 2016 IEEE International
Conference on Big Data, IEEE BigData 2016, Washington D.C., USA, 2016, pp.
3928–3935.

[42] M. Liu, Z. Xue, X. He, A unified host-based intrusion detection framework using
spark in cloud, in: Proceedings of the IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications, TrustComp 2020,
Guangzhou, China, 2020, pp. 97–103.

[43] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy,
and IPython, O’Reilly Media, 2012.

[44] A.B. Yoo, M.A. Jette, M. Grondona, Grondona, slurm: Simple linux utility for
resource management, in: Proceedings of the 9th International Workshop on Job
Scheduling Strategies for Parallel Processing, JSSPP 2003, Seattle, WA, USA,
2003, pp. 44–60.

[45] A. Komarek, J. Pavlik, L. Mercl, V. Sobeslav, Metric based cloud infrastructure
monitoring, in: Proceedings of the 12th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, 3PGCIC 2017, Barcelona, Spain, 2017, pp.
391–400.

[46] T.W. Wlodarczyk, Overview of time series storage and processing in a cloud
environment, in: Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom’12, Taipei, Taiwan, 2012, pp.
625–628.

[47] The apache software foundation, HBase: A distributed database for large datasets,
2022, https://hbase.apache.org, Last visited: December 2022.

[48] Tsfresh list of extraction functions, 2022, https://tsfresh.readthedocs.io/en/lates
t/text/list_of_features.html, Last visited: December 2022.

[49] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al., MLlib: Machine learning in Apache Spark, J.
Mach. Learn. Res. 17 (2016) 34:1–34:7.

[50] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering
validation measures, in: Proceedings of the 10th IEEE International Conference
on Data Mining, ICDM 2010, Sydney, Australia, 2010, pp. 911–916.

[51] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53–65.

[52] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern
Anal. Mach. Intell. (2) (1979) 224–227.

[53] T. Caliński, J. Harabasz, A dendrite method for cluster analysis, Comm. Statist.
Theory Methods 3 (1) (1974) 1–27.

[54] B.C. Kwon, B. Eysenbach, J. Verma, K. Ng, C. De Filippi, W.F. Stewart, A.
Perer, Clustervision: Visual supervision of unsupervised clustering, IEEE Trans.
Vis. Comput. Graphics 24 (1) (2018) 142–151.

[55] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B.
Reed, E. Baldeschwieler, Apache hadoop YARN: Yet another resource negotiator,
in: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC’13,
Santa Clara, CA, USA, 2013, pp. 5:1–5:16.

[56] P. Singh, Data processing, in: Learn PySpark, A Press, 2019, pp. 17–48.
[57] Datasets and source code for a pipeline architecture for feature-based unsuper-

vised clustering using multivariate time series from HPC jobs, mendeley data,
2022, http://dx.doi.org/10.17632/hgkv9cpnmn.2.

http://refhub.elsevier.com/S1566-2535(22)00265-2/sb25
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb25
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb25
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb25
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb25
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb26
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb26
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb26
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb27
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb27
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb27
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb27
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb27
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb28
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb28
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb28
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb28
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb28
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb29
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb29
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb29
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb29
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb29
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb30
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb30
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb30
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb30
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb30
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb31
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb31
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb31
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb32
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb32
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb32
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb32
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb32
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb33
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb34
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb35
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb35
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb35
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb35
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb35
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb36
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb37
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb38
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb38
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb38
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb39
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb39
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb39
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb39
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb39
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb40
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb41
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb42
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb43
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb43
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb43
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb44
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb45
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb46
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://hbase.apache.org
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb49
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb49
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb49
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb49
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb49
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb50
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb50
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb50
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb50
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb50
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb51
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb51
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb51
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb52
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb52
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb52
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb53
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb53
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb53
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb54
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb54
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb54
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb54
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb54
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb55
http://refhub.elsevier.com/S1566-2535(22)00265-2/sb56
http://dx.doi.org/10.17632/hgkv9cpnmn.2

	A pipeline architecture for feature-based unsupervised clustering using multivariate time series from HPC jobs
	Introduction
	Related Work
	Time series classification and clustering
	Outlier and anomaly detection

	Pipeline architecture for time series clustering
	Previous concepts
	Auxiliary and pipeline stages
	Job Retrieval
	Data Collection
	Preprocessing
	Feature Extraction
	Outlier Detection
	Dimension Reduction
	Clustering
	Evaluation
	Visualization

	Computational complexity and parallelization

	Experiments
	Single-user job clustering
	User 1
	User 2
	User 3
	Heatmaps analysis

	Multiple-user job clustering
	Time-window job clustering
	Infrastructure used and runtime analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

