
1

ParRADMeth: Identification of Differentially
Methylated Regions on Multicore Clusters

Alejandro Fernández-Fraga∗, Jorge González-Domı́nguez and Juan Touriño

F

Abstract—The discovery of Differentially Methylated (DM) regions is
an important research field in biology, as it can help to anticipate the
risk of suffering from specific diseases. Nevertheless, the high com-
putational cost of the bioinformatic tools developed for this purpose
prevents their application to large-scale datasets. Hence, much faster
tools are required to further progress in this research field. In this
work we present ParRADMeth, a parallel tool that applies beta-binomial
regression for the identification of these DM regions. It is based on
the state-of-the-art sequential tool RADMeth, which proved superior
biological accuracy compared to counterparts in previous experimental
evaluations. ParRADMeth provides the same DM regions as RADMeth
but at significantly reduced runtime thanks to exploiting the compute
capabilities of common multicore CPU clusters. For example, our tool
is up to 189 times faster for real data experiments on a cluster with
16 nodes, each one containing two eight-core processors. The source
code of ParRADMeth, as well as a reference manual, are available at
https://github.com/UDC-GAC/ParRADMeth.

Index Terms—Differential Methylation, Bioinformatics, High Perfor-
mance Computing, MPI, OpenMP

1 INTRODUCTION

Methylation is an epigenetic procedure that modifies the
DNA by adding a methyl group (an alkyl derived from
methane) to a DNA nucleotide. Methylation analysis is
key for biologists as it is associated to different biological
functions, and abnormal methylation levels can indicate the
presence of certain diseases. Traditional analyses consisted
in detecting Differentially Methylated (DM) sites (i.e., in-
dividual nucleotides), but the identification of DM regions
(parts of the DNA dominated by DM sites) has gained
attention in recent years as it provides more interesting
biological insights. For instance, several studies have found
DM regions related to diseases such as memory cell fate [1]
or liver tumors [2].

RADMeth [3] is a cutting-edge tool to identify DM
regions based on beta-binomial regression. It has demon-
strated high sensitivity, specificity and control of type I
errors compared to alternative tools in recent indepen-
dent experimental evaluations with both synthetic and real
data [4]–[6], which makes it an excellent choice for biological
studies, such as [7]–[9].

• A. Fernández-Fraga, J. González-Domı́nguez and J. Touriño are with the
Universidade da Coruña, CITIC, Computer Architecture Group, Spain.
E-mail: {a.fernandez3,jgonzalezd,juan}@udc.es

Although analyses that identify DM regions can obtain
more interesting biological insights than those only based
on DM sites, this comes with a significantly higher com-
putational cost. The main drawback of RADMeth and other
alternative tools (see Section 2) is that they require a high
runtime for large input datasets. In this paper we present
ParRADMeth, a tool that can accelerate the identification
of DM regions on modern multicore clusters. It obtains
the same highly accurate biological results as RADMeth,
but in significantly shorter time. It uses an efficient hybrid
approach that combines Message Passing Interface (MPI)
processes and OpenMP threads. Each MPI process launches
multiple threads to efficiently exploit the cores available
on each node and take advantage of the Hyperthreading
technology supported by many CPU architectures.

The rest of the paper is organized as follows. Section 2
presents the state of the art related to the automatic identifi-
cation of DM regions. Section 3 presents, as background,
some concepts about the original RADMeth tool that are
necessary to understand the goal of this work and the
implementation of our method. Section 4 describes the par-
allel implementation of ParRADMeth. Section 5 provides the
experimental evaluation in terms of runtime and scalability.
Finally, concluding remarks are presented in Section 6.

2 RELATED WORK

There has been an extensive effort for many years in the
development of tools to identify DM regions [10], [11]. They
can be divided into the following classes:

• Tools based on logistic regression such as the popular
methylKit [12] or eDMR [13].

• Tools that assume that methylation levels of the CpG
sites vary smoothly across the genome. The first
tool that applied smoothing to find DM regions was
BSmooth [14], but there exist other options such as
BiSeq [15].

• Tools based on beta-binomial distributions, such as
MACAU [16], DSS-general [17] or GetisDMR [18],
among others. Although all these approaches use
a common idea, they differ from each other in the
way they estimate the regression parameters. RAD-
Meth [3] can also be included in this class.

• Tools based on Hidden Markov Models (HMM),
whose main advantage is that they can identify
DM regions with variable size. Some examples of

2

this type are HMM-Fisher [19], HMM-DM [20], and
DMCHMM [21].

• Tools based on Shannon entropy, which is a quan-
titative metric of change in an event series. Some
examples are QMDR [22] and CpG MPs [23].

• Tools that rely on statistical tests such as FET,
ANOVA, t-test or Kruskal-Walls. Examples as CO-
HCAP [24], DMAP [25] or swDMR [26] are flexible
enough to allow the user to choose the most suitable
test for each experiment, while DMRFusion [27] in-
tegrates several tests and decides among the results
with a voting function.

Not included in these groups we can find metilene [28],
with a circular binary segmentation algorithm to recursively
divide the genome and identify DM regions.

Up to our knowledge, there is no previous work focused
on accelerating the identification of DM regions with High
Performance Computing (HPC) techniques. Nevertheless,
we can find in the literature other bioinformatics tools
that are able to exploit the computational capabilities of
multicore clusters. These previous tools have been used
by biologists to complete experiments on large real-world
datasets in reasonable time, proving that a tool such as
ParRADMeth can be attractive for the scientific community.
Some examples are MPIGeneNet [29], that includes MPI
routines and OpenMP directives (similarly to ParRADMeth)
to construct genetic networks; parMATT [30], based on a
similar approach to accelerate the alignment of multiple
protein 3D-structures; SparkBWA [31], which uses Spark to
distribute DNA sequences among workers and align them
to a certain genome; or HipMer [32], based on the Unified
Parallel C (UPC) language for genome assembling.

3 BACKGROUND: RADMETH

RADMeth [3] is a publicly available software (as part of the
MethPipe pipeline1) for computing individual DM sites and
regions. The tool uses beta-binomial regression [33], a form
of regression based on a beta-binomial distribution (the
binomial distribution in which the probability of success
at each of t trials is not fixed but randomly drawn from
a beta distribution). This model allows high-precision DM
analysis, it can handle medium-size experiments where it is
critical to accurately model variation in methylation levels
among replicates, and it accounts for influence of various
experimental factors such as cell types or batch effects.

RADMeth is a command-line tool written in C++ that
can receive several configuration parameters and obtains
the biological input data from a text file. Concretely, this
input must be a proportion table, i.e., a 2D matrix that
indicates the coverage and methylation level for each CpG
site (fragment of DNA where a cytosine (C) nucleotide is
followed by a guanine (G) and are likely to be methylated).
Figure 1 shows an example of a proportion table, where each
row is dedicated to one CpG site and the columns represent
the type of individuals.

RADMeth generates a single output file for each ex-
periment. As in the input proportion table, the output file
contains the information for all the CpG sites analyzed, one

1. http://smithlabresearch.org/software/methpipe/

chr1:108:109
chr1:114:115
chr1:160:161
chr1:309:310
chr1:499:500

control_a control_b control_c case_a case_b case_c

9
17
12
1
8

10
10
10
1
6

1
14
17
17
15

2
5

15
12
14

2
9

13
2

14

14
7
4

19
15

6
7
8
1
4

8
0
5
0
5

1
3
4

12
6

2
1

14
8

10

1
1
6
1

11

1
1
4
8
1

control_a coverage control_a methylation

Fig. 1. Example of a proportion table

line per site. Concretely, for each CpG site its line contains
four columns with general information about the site (e.g.,
its position), one column with the p-value of the experiment
for that CpG site, and four final columns that correspond to
the total coverage counts and methylated read counts of the
case and control groups, respectively.

The behavior of the tool can be logically divided into
three phases:

1) Input phase, where data is read from input files into
the appropriate structures.

2) Computation phase, where data is processed by the
algorithm to produce final results.

3) Output phase, where results are written to the out-
put text file, using one line per CpG site.

In the computation phase the regression model is fitted
separately for every CpG site. In fact, to determine if one
or more DM regions arise on a CpG site, two regression
models are fitted: the full model and the reduced model
without the test factor. The significance of DM is determined
by comparing the full and the reduced models using the log-
likelihood ratio test.

Algorithm 1 illustrates this computation phase. The tool
starts reading each row from the input proportion table to
the appropriate structure (Line 3). It calculates the coverage
and methylation levels for all samples with and without the
test factor (Lines 8-13). Then it checks if the CpG site has
either low coverage or the same methylation levels through
all samples with or without the test factor (Lines 14-17).
If the CpG site passes the checks, RADMeth fits full and
reduced regressions and analyzes their results to obtain the
p-value (Lines 18-22). Finally, the results of that CpG site are
written to the output file (Line 23). More information about
this method can be found in [3].

4 IMPLEMENTATION

ParRADMeth is a novel tool to accelerate the identification
of DM regions that provides exactly the same output results
as RADMeth (and thus its high accuracy), but at significantly
lower runtime thanks to exploiting the computational capa-
bilities of multicore clusters. These parallel computers are
distributed-memory systems with several nodes intercon-
nected through a network, each of them with a memory
module and several cores (see an example in Figure 2).
Parallel computing on these types of systems usually follow
the Single Program Multiple Data (SPMD) model, meaning
that the workload is divided into different tasks that are
split up among multiple processors and run simultaneously
with different inputs, so that all nodes and cores cooperate

3

Algorithm 1: RADMeth’s computation phase pseudocode

1 test factor← GetTestFactor()
2 foreach CpG site cpg site in the proportion table do
3 full regresion← WriteData(cpg site)
4 coverage factor← 0
5 coverage rest← 0
6 methylation level factor← 0
7 methylation level rest← 0

/* Agregate coverage and methylation levels */
8 foreach Sample s in the design matrix do
9 if s has the test factor then

10 coverage factor += full regression[s].coverage
11 methylation level factor += full regression[s].methylation level

else
12 coverage rest += full regression[s].coverage
13 methylation level rest += full regression[s].methylation level

end
end
/* Calculate the p-value */

14 if zero coverage over all case or control samples then
15 p value← -1
16 else if methylation level is identical in all samples then
17 p value← -1
18 else
19 Fit(full regression)
20 reduced regression← CopyWithoutTestFactor(full regression, test factor)
21 Fit(reduced regression)
22 p value← LoglikeratioTest(reduced regression, full regression)

end
23 WriteToOutputFile(cpg site, p value, coverage factor, coverage rest, methylation level factor,

methylation level rest)
end

Interconnection network

Core Core
Core Core

Memory

Core Core
Core Core

Memory

Core Core
Core Core

Memory

..............

Node Node Node

Fig. 2. Abstraction of a distributed-memory system with several cores
and one memory module per node

to obtain results faster. Computational performance on a
cluster depends on several factors such as the number of
nodes and cores, the number of cores per node, the network
features or the memory transfer rates.

A node is a unit that can be seen as a computer, that is, it
is composed of main memory, processing cores, storage, and
input/output system. Different nodes form the first level
to distribute the workload: each node can execute different
tasks of the main program. Since each node has its own
memory address space, data that must be shared among
nodes is sent through the network, that is why these sorts

of systems are traditionally programmed with the message
passing paradigm. MPI is used in ParRADMeth as it is
the de facto standard for programming distributed-memory
systems and the most widely used programming framework
in the HPC community. A parallel MPI program consists of
several processes, each one with associated local memory,
that can communicate through the interconnection network
by using send and receive routines. The MPI standard
includes point-to-point and collective message passing com-
munications, group and communicator concepts, process
topologies, and parallel I/O, among other features.

Even though a pure MPI program can take advantage of
all the cluster hardware by mapping one process to each
core, using a hybrid approach with processes that create
threads within each node has several benefits:

• Threads are lighter than processes, so creating and
destroying them is faster. Also, context switching
among threads of the same process is less expensive.

• Memory overhead reduction, as threads can access
the same shared-memory structures, while MPI pro-
cesses need a copy of the structures for each process.

• Possibility of exploiting Hyperthreading in modern
CPUs, which is based on the concurrent execution of
several logical threads on a single CPU core, to merge
one thread instructions with the instructions of the

4

others, taking advantage of CPU cycles that would
be free in other ways. Two concurrent threads per
CPU core are common, but some processors support
up to eight concurrent threads per core.

Multithreading support is included in ParRADMeth with
OpenMP, which defines a collection of compiler directives,
library routines and environment variables that implement
multithreading with the fork-join model: a main thread
runs the sequential parts of the program, while additional
threads are forked to execute parallel tasks. Threads com-
municate and synchronize by using the shared memory. The
main advantages of OpenMP are its portability and ease of
use.

Finally, note that ParRADMeth uses the same config-
uration mechanism as RADMeth in order to simplify its
adoption by those biologists who are already familiar with
the original tool. More information about this configuration
procedure can be found in the reference manual, available
in the public repository of the source code of ParRADMeth 2.

4.1 Parallel Implementation of the Computation Phase

ParRADMeth includes two levels of parallelism in order to
exploit the computational capabilities of current clusters to
accelerate the identification of DM regions. First, MPI rou-
tines allow distributing data and workload among processes
that can be placed on different nodes of a cluster (illustrated
in Figure 2). As seen in Section 3, RADMeth must perform
the same operations on different CpG sites (each one con-
tained in a different line of the input file). ParRADMeth
distributes those CpG sites among the MPI processes and,
consequently, the workload is also distributed. Specifically,
the proportion table is split into equal-size blocks (consecu-
tive lines are assigned to the same process), so each process
only computes its corresponding part.

The original RADMeth works with rows one by one, i.e.,
it reads one row, performs the computations related to it,
writes the results to the output file, and goes to the next
line. This means that only one row is kept in memory at a
time. Although this is the best choice in terms of memory
requirements, it may not be the best option in terms of
execution time, especially for parallel computing, since it
will force the tool to be continuously accessing the file.
That is why ParRADMeth comes with a technique that we
have named AllInOneGo File Processing to process the input
proportion table.

This technique consists in reading the whole file at once
and keeping the whole proportion table in memory before
starting with the computations in order to reduce cache
misses. Concretely, each process will only save into its local
memory the rows of the input file that are assigned to it.
The AllInOneGo File Processing is also applied to the output:
instead of writing the regions obtained for each CpG site
one by one, an array is created in the local memory of the
MPI process, and it is used to save the resultant information
of all the CpG sites assigned to the process. When the
process finishes with the whole block, all the results are
written at once to the output file. More information about

2. https://github.com/UDC-GAC/ParRADMeth

Fig. 3. Workflow of ParRADMeth

how ParRADMeth efficiently deals with input/output files
is provided in Subsection 4.2.

In addition, the values of the rows of the proportion table
are stored as size_t (in general, 32 or 64 bits long) in RAD-
Meth, which seems unnecessarily large because the range
of values is limited and small, so they can be represented
with just 16 bits. To alleviate the memory requirements of
the AllInOneGo File Processing, the data type was changed to
unsigned int, which is sufficient to represent the infor-
mation of the proportion table.

However, the pure block data distribution applied to
the MPI processes comes with a workload imbalance as
there is a huge variation among the workload associated
to different CpG sites. On the one hand, some rows are
extreme cases that do not need to execute the fitting phase
(see Algorithm 1, Lines 14-17). On the other hand, the fitting
algorithm does not take the same time to execute on differ-
ent data. This leads to situations where even if the number of
lines in the input dataset is fairly distributed the workload is
not. This is the reason why ParRADMeth does not use a pure
MPI parallelization, with one process per CPU core. Instead,
each process is related to a group of cores and launches
several OpenMP threads (one per core). In this case the
CpG sites that were previously assigned to a certain MPI
process are distributed among the associated threads in a
dynamic way (new sites are assigned once threads finish the
processing of the previous ones). Each thread can directly
access the part of the proportion table that was stored in the
local memory belonging to its parent MPI process, without
need for synchronization. Furthermore, the threads do not
need any synchronization to store the resulting DM regions
obtained for each CpG site in the output array created with
the AllInOneGo File Processing, as each thread always works
on different CpG sites (i.e., on different indexes of the output
array).

Figure 3 provides a graphical overview of the two-
level parallel implementation applied in ParRADMeth. Note
that this hybrid MPI/OpenMP approach is able to exploit
Hyperthreading on CPUs (where available).

4.2 Parallel Input/Output

As explained in the previous subsection, the AllInOneGo
File Processing technique included in ParRADMeth makes
each MPI process read a block of CpG sites (rows in the
input file) and write its resulting DM regions at once. In

5

Algorithm 2: ParRADMeth’s parallel input phase pseudocode
Input: A string, path to input file, containing the path to the proportion table
Output: A string, input block string, containing the input lines for each process

1 input file← MPI_File_open(path to input file)
/* Figure out who reads what */

2 filesize← MPI_File_get_size(input file)
3 start offset← CalculateStartOffset(filesize)
4 end offset← CalculateEndOffset(filesize)
5 overlap← CalculateLineLength(input file)
6 end offset += overlap
7 input block← MPI_File_read_at_all(input file, start offset, end offset)
/* Avoid half lines at the start and at the end and ensure no two processes keep the

same line in their buffers */
8 true start← 0
9 while input block[true start] is not a newline character do true start++

10 true start++
11 true end← end offset - start offset - overlap
12 while input block[true end] is not a newline character do true end++
13 input block[true end+ 1]← ’\0’
14 input block string = string(input block[true start])
15 MPI_File_close(input file)

a preliminary version of ParRADMeth there was a main
process in charge of reading the input proportion table and
distributing the data among the other processes, as well as
gathering their results and writing them to the output file. It
means that the phases of reading the input and writing the
output were sequential. A preliminary benchmarking of this
version pointed out that, after having applied an efficient
data distribution with MPI processes and OpenMP threads,
these phases were a bottleneck that degraded the overall
performance of the program. Therefore, these I/O phases
were redesigned with parallel computing in mind.

First, MPI-IO functions were used to parallelize the input
phase, allowing each process to read from a certain offset.
The input format (see Figure 1) is very appropriate for
parallel processing, since we are interested in having a block
of consecutive CpG sites (rows) in each process and that is
the way they are physically stored in the file. Therefore, in
ParRADMeth each process only reads the block of rows that
it will process instead of reading the whole file.

However, this approach is not so straightforward as not
all rows have the same length and the number of rows in a
file is not known in advance. Algorithm 2 shows the pseu-
docode of the parallel input. ParRADMeth uses the function
MPI_File_get_size (Line 2), to know in advance the size
of the input file (in bytes) and then distribute bytes among
processes to create a fair distribution of rows (Lines 3 and 4).
To avoid one line to be split between two processes, making
none of them able to compute it correctly, an overlapping
technique was also implemented: assuming p processes,
process n ∈ [0, p-1] reads its block and extra final bytes to
ensure that it will be able to correctly process the row that
it may share with process n+1 (Lines 5 to 7). Some of these
overlapped bytes at the start and at the end of the block
belong to rows assigned to neighbor processes, so process n
must adjust the real limits of its block to avoid processing
the same row twice by different processes (Lines 8 to 14).

A similar version that used Unix I/O to read the input in

parallel was also implemented. However, it was discarded
after a preliminary benchmarking showed that it obtained
significantly worse performance than using MPI-IO.

Regarding the output file, as explained in Section 3,
each row in the input proportion table produces a row
in the output file, so after a certain process computes all
consecutive rows on its input block, it will generate an
output block of also consecutive rows. The AllInOneGo File
Processing technique explained in the previous subsection
saves these results in an array. Note that the output blocks
must be written in order (i.e., block of process n just after the
block of process n−1). Algorithm 3 shows how ParRADMeth
writes the DM regions to the output file. All processes
need to know the size of the output block generated by
the previous processes to calculate its offset in the file. The
MPI_Allgather collective is used to share this information
among all processes (Line 2). Then, this offset is used to
write in the correct position of the output file with the
MPI_File_write_at_all routine (Line 5).

5 EXPERIMENTAL EVALUATION

The experimental evaluation of ParRADMeth has been per-
formed in terms of execution time and scalability, as our
tool provides the same DM regions as RADMeth. Previous
works have already proved the high accuracy of the original
tool compared with the state of the art [4]–[6]. These results
are completely valid, thus, for ParRADMeth. The speedup
S is used in this section as a measure of performance
scalability. It is calculated as the acceleration by comparing
the sequential time Ts and the parallel time using n cores
Tn (either with threads and/or processes): S(n) = Ts

Tn . A
parallel application is scalable when the speedup increases
with the number of cores. The closer S(n) is to n, the better
parallel scalability the algorithm presents.

This section provides a performance comparison of Par-
RADMeth versus RADMeth on a 16-node cluster with 256

6

Algorithm 3: ParRADMeth’s parallel output phase pseudocode
Input: A string, my output block, containing the output block of the process

A string, path to output file, containing a path to the output file
Output: The output file with every output block correctly written

1 my output length← my output block.length()
/* Gather all output blocks lengths in every process */

2 output blocks lengths← MPI_Allgather(my output length)
3 my write offset← CalculateOffset(output blocks lengths)
/* Write in parallel to the output file */

4 output file← MPI_File_open(path to output file)
5 MPI_File_write_at_all(output file, my output block, my write offset)
6 MPI_File_close(output file)

TABLE 1
Datasets specification

Dataset #CpG sites #Samples Size prop. table Seq. time
Akalin 28,670,426 2 823 MB 10,886 s
Heyn 28,299,639 2 869 MB 18,736 s

Berman 28,149,963 2 880 MB 42,800 s
Hansen 28,217,449 6 1.4 GB 45,931 s

CPU cores (16 cores per node). Each node has two octa-
core Intel Xeon E5-2660 Sandy Bridge-EP processors which
support Hyperthreading (up to two logical threads per CPU
core), and 64 GB of memory. The nodes are interconnected
through a low-latency and high-bandwidth InfiniBand FDR
network. Regarding software, both RADMeth and ParRAD-
Meth were compiled with the GNU GCC compiler v.8.3.0,
and the latter is linked to the OpenMPI library v.3.1.4.

Four different real biological datasets were used for this
experimental evaluation. Table 1 summarizes the charac-
teristics of these datasets, which are named according to
the first author of the experiment where they were pub-
lished. The Akalin dataset is used to compare methylomas
of HCT116 cells with those of cells cloned without DNMT1
and DNMT3b [34]. The Heyn dataset provides information
about centenarians and newborns, which can be very useful
to analyze the differences in methylation between these two
extremely different individuals [35]. Berman shows informa-
tion of individuals with and without colorectal cancer [36],
while the Hansen dataset compares cells immortalized with
EBV virus with others activated with CD40 [37]. Table 1
includes two columns with the size of the input proportion
table and the sequential time required by RADMeth to
analyze these datasets, which can be more than 12 hours.

5.1 Experiments on One Node
The hybrid MPI/OpenMP implementation included in Par-
RADMeth allows the user to choose among different config-
urations of number of processes and threads. Before starting
testing the scalability of the tool it is necessary to select
the configuration that provides the best performance in one
single node and this configuration will be assumed as the
best one when increasing the number of nodes.

As was already mentioned in Section 3, each row of the
input file may take a different time to be processed. The
data distribution applied to the MPI processes does not take
into account this variability, as it always provides the same

amount of CpG sites (rows in the input file) to each process.
The impact on performance of this workload imbalance can
be alleviated with the use of several OpenMP threads per
process. Figure 4 shows the speedups obtained by the hy-
brid MPI/OpenMP parallel implementation of ParRADMeth
when using one MPI process, variable number of threads
(up to 32 with Hyperthreading) and the static, dynamic
and guided OpenMP scheduling policies. The baseline is
the sequential execution time of RADMeth. It can be seen
that the dynamic schedule achieves the best performance
for all experiments. In all datasets except Akalin it is closely
followed by the guided schedule. The reason is that this
dataset has an isolated block of very high computational
demanding rows, and when using guided or static
schedules this whole block is assigned to the same thread.

The high speedups shown in Figure 4 prove that a
configuration with only one MPI process with 16 or 32
threads (depending on the use of Hyperthreading) and the
dynamic policy is adequate, and thus it will be used for
the following experiments when working with the hybrid
implementation.

5.2 Experiments for Scalability

Figure 5 shows the speedups over the sequential tool RAD-
Meth of the three following configurations of ParRADMeth,
for a varying number of nodes (16 cores per node):

• One MPI process per CPU core, without spawning
any OpenMP thread (pure MPI version).

• One MPI process per node, each one with 16 threads
associated and using a dynamic scheduling policy
(hybrid version).

• One MPI process per node, each one spawning 32
threads with a dynamic scheduling policy (hybrid
with Hypethreading).

The first conclusion that can be drawn is that executions
with processes launching several OpenMP threads with the
dynamic schedule get higher speedups than those with
only MPI processes. On average, these hybrid executions
are 4.47 and 3.69 times faster than the pure MPI one, with
or without Hyperthreading, respectively. The difference is
more significant for the Akalin dataset where the workload
is mainly concentrated in a small block of rows and thus
it is completely unbalanced. With this dataset the use of
threads and Hyperthreading reduces the runtime by a factor

7

 4

 8

 12

 16

 20

 24

2 4 8 16
16

(H
t)

Sp
ee

du
p

Cores

Static
Guided

Dynamic

Akalin

 4

 8

 12

 16

 20

 24

2 4 8 16
16

(H
t)

Sp
ee

du
p

Cores

Static
Guided

Dynamic

Heyn

 4

 8

 12

 16

 20

 24

2 4 8 16
16

(H
t)

Sp
ee

du
p

Cores

Static
Guided

Dynamic

Berman

 4

 8

 12

 16

 20

 24

2 4 8 16
16

(H
t)

Sp
ee

du
p

Cores

Static
Guided

Dynamic

Hansen

Fig. 4. Speedup of ParRADMeth over RADMeth on one node. ParRADMeth uses one MPI process, a varying number of threads and the three
scheduling options

 0

 25

 50

 75

 100

 125

 150

 175

 200

16 32 64 12
8

25
6

Sp
ee

du
p

Cores

Pure MPI
MPI + OpenMP

MPI + OpenMP (Ht)

Akalin

 0

 25

 50

 75

 100

 125

 150

 175

 200

16 32 64 12
8

25
6

Sp
ee

du
p

Cores

Pure MPI
MPI + OpenMP

MPI + OpenMP (Ht)

Heyn

 0

 25

 50

 75

 100

 125

 150

 175

 200

16 32 64 12
8

25
6

Sp
ee

du
p

Cores

Pure MPI
MPI + OpenMP

MPI + OpenMP (Ht)

Berman

 0

 25

 50

 75

 100

 125

 150

 175

 200

16 32 64 12
8

25
6

Sp
ee

du
p

Cores

Pure MPI
MPI + OpenMP

MPI + OpenMP (Ht)

Hansen

Fig. 5. Speedup of ParRADMeth over RADMeth using three versions of the parallel implementation and a varying number of nodes

8

TABLE 2
Execution times for different versions of the tool (in seconds)

Dataset RADMeth ParRADMeth
1 core 1 core (Ht) 256 cores 256 cores (Ht)

Akalin 10,886 8,186 147 121
Heyn 18,736 13,968 150 136

Berman 42,800 31,629 273 219
Hansen 45,931 34,224 297 242

of 11.70 compared to pure MPI execution, which is never
able to achieve a speedup greater than eight, even working
on up to 256 cores. This proves that a mechanism to alleviate
the impact of the workload imbalance among different CpG
sites (rows of the input file) is compulsory in order to
achieve high performance.

These experimental results prove that ParRADMeth can
be useful for scientists to dramatically reduce the runtime
needed to find DM regions. Table 2 provides a summary of
this runtime reduction. It shows that ParRADMeth is faster
than the original RADMeth even using the same hardware
(one core). There are two reasons. One, ParRADMeth is
able to exploit Hyperthreading on that core by launching
two logical threads. And two, the AllInOneGo File Processing
technique presented in Subsection 4.1 is also beneficial when
working only with one core, as it prevents alternating com-
putation with disk access, thus reducing the associated over-
head through a more effective use of the memory hierarchy.
Furthermore, the exploitation of the 16 nodes of the cluster,
including the Hyperthreading technique, allows reducing
the runtime of the most expensive dataset (Hansen) from 12
hours and 45 minutes to only 4 minutes (189x speedup).
Finally, ParRADMeth is also beneficial for extremely unbal-
anced datasets such as Akalin, reducing the runtime from 3
hours to 2 minutes.

6 CONCLUSIONS

Currently, one interesting goal in DNA methylation studies
consists in detecting DM regions under different biological
conditions, which can help to better understand the function
of the methylation process. However, these analyses may
take a huge time for large or even medium size datasets.
In this work we have presented ParRADMeth, a parallel
application that obtains the same biological results as the
previously tested RADMeth tool, but at reduced runtime
thanks to exploiting the hardware of multicore clusters.

ParRADMeth is based on a hybrid MPI/OpenMP parallel
implementation. On the one hand, the MPI routines allow
the execution on several nodes of a distributed-memory
system by assigning a similar number of CpG sites per pro-
cess. On the other hand, the use of several OpenMP threads
per process reduces the impact of the workload imbalance
among different CpG sites, which can be extremely im-
portant in real scenarios. The experimental evaluation was
performed on a cluster with 16 nodes, each one with 16 CPU
cores (a total of 256 cores), using four representative datasets
with real biological data and different characteristics. For
instance, one dataset presents an extreme case where most
of the computational workload is generated by a few CpG
sites. ParRADMeth is faster than RADMeth in all scenarios,
even using the same hardware resources. Its impact is more

remarkable for a large number of resources, being able to
reduce an execution from more than a half day (12 hours
and 45 minutes) to only 4 minutes.

As future work our plan is to apply similar parallel
approaches to other stages of the MethPipe pipeline, so
the different stages could be integrated in order to exploit
altogether the resources of a multicore cluster.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science
and Innovation of Spain (PID2019-104184RB-I00 / AEI
/ 10.13039/501100011033), and by Xunta de Galicia and
FEDER funds (Centro de Investigación de Galicia accred-
itation 2019-2022 and Consolidation Program of Competi-
tive Reference Groups, under Grants ED431G 2019/01 and
ED431C 2021/30, respectively).

REFERENCES

[1] S. A. Carty, M. Gohil, L. B. Banks, R. M. Cotton, M. E. Johnson,
E. Stelekati, A. D. Wells, E. J. Wherry, G. A. Koretzky, and M. S.
Jordan, “The loss of TET2 promotes CD8+ T cell memory differ-
entiation,” The Journal of Immunology, vol. 200, no. 1, pp. 82–91,
2018.

[2] J. Matsushita, K. Okamura, K. Nakabayashi, T. Suzuki, Y. Horibe,
T. Kawai, T. Sakurai, S. Yamashita, Y. Higami, G. Ichihara et al.,
“The DNA methylation profile of liver tumors in C3H mice and
identification of differentially methylated regions involved in the
regulation of tumorigenic genes,” BMC Cancer, vol. 18, no. 1, pp.
1–15, 2018.

[3] E. Dolzhenko and A. D. Smith, “Using beta-binomial regression
for high-precision differential methylation analysis in multifactor
whole-genome bisulfite sequencing experiments,” BMC Bioinfor-
matics, vol. 15, no. 1, pp. 1–8, 2014.

[4] H.-U. Klein and K. Hebestreit, “An evaluation of methods to
test predefined genomic regions for differential methylation in
bisulfite sequencing data,” Briefings in Bioinformatics, vol. 17, no. 5,
pp. 796–807, 2016.

[5] C. Han, H. Tang, S. Lou, Y. Gao, M. H. Cho, and S. Lin, “Evaluation
of recent statistical methods for detecting differential methylation
using BS-seq data,” OBM Genetics, vol. 2, no. 4, pp. 1–1, 2018.

[6] I. Huh, X. Wu, T. Park, and S. V. Yi, “Detecting differential
DNA methylation from sequencing of bisulfite converted DNA
of diverse species,” Briefings in Bioinformatics, vol. 20, no. 1, pp.
33–46, 2019.

[7] R. J. Lund, M. Kyläniemi, N. Pettersson, R. Kaukonen, M. Konki,
N. M. Scheinin, L. Karlsson, H. Karlsson, and E. Ekholm, “Pla-
cental DNA methylation marks are associated with maternal de-
pressive symptoms during early pregnancy,” Neurobiology of Stress,
vol. 15, p. 100374, 2021.

[8] X. Wu, A. R. Lindsey, P. Chatterjee, J. H. Werren, R. Stouthamer,
and S. V. Yi, “Distinct epigenomic and transcriptomic modi-
fications associated with wolbachia-mediated asexuality,” PLoS
Pathogens, vol. 16, no. 3, p. e1008397, 2020.

[9] L. T. Ong, S. D. Schibeci, N. L. Fewings, D. R. Booth, and G. P.
Parnell, “Age-dependent VDR peak DNA methylation as a mech-
anism for latitude-dependent multiple sclerosis risk,” Epigenetics
& Chromatin, vol. 14, no. 1, pp. 1–12, 2021.

[10] M. D. Robinson, A. Kahraman, C. W. Law, H. Lindsay, M. Now-
icka, L. M. Weber, and X. Zhou, “Statistical methods for detecting
differentially methylated loci and regions,” Frontiers in Genetics,
vol. 5, p. 324, 2014.

[11] A. Shafi, C. Mitrea, T. Nguyen, and S. Draghici, “A survey of the
approaches for identifying differential methylation using bisulfite
sequencing data,” Briefings in Bioinformatics, vol. 19, no. 5, pp. 737–
753, 2018.

[12] A. Akalin, M. Kormaksson, S. Li, F. E. Garrett-Bakelman, M. E.
Figueroa, A. Melnick, and C. E. Mason, “methylKit: a comprehen-
sive R package for the analysis of genome-wide DNA methylation
profiles,” Genome Biology, vol. 13, no. 10, pp. 1–9, 2012.

9

[13] S. Li, F. E. Garrett-Bakelman, A. Akalin, P. Zumbo, R. Levine, B. L.
To, I. D. Lewis, A. L. Brown, R. J. D’Andrea, A. Melnick et al.,
“An optimized algorithm for detecting and annotating regional
differential methylation,” BMC Bioinformatics, vol. 14, no. 5, pp.
1–9, 2013.

[14] K. D. Hansen, B. Langmead, and R. A. Irizarry, “BSmooth: from
whole genome bisulfite sequencing reads to differentially methy-
lated regions,” Genome Biology, vol. 13, no. 10, pp. 1–10, 2012.

[15] K. Hebestreit, M. Dugas, and H.-U. Klein, “Detection of sig-
nificantly differentially methylated regions in targeted bisulfite
sequencing data,” Bioinformatics, vol. 29, no. 13, pp. 1647–1653,
2013.

[16] A. J. Lea, J. Tung, and X. Zhou, “A flexible, efficient binomial
mixed model for identifying differential DNA methylation in
bisulfite sequencing data,” PLoS Genetics, vol. 11, no. 11, p.
e1005650, 2015.

[17] Y. Park and H. Wu, “Differential methylation analysis for BS-seq
data under general experimental design,” Bioinformatics, vol. 32,
no. 10, pp. 1446–1453, 2016.

[18] Y. Wen, F. Chen, Q. Zhang, Y. Zhuang, and Z. Li, “Detection
of differentially methylated regions in whole genome bisulfite
sequencing data using local Getis-Ord statistics,” Bioinformatics,
vol. 32, no. 22, pp. 3396–3404, 2016.

[19] S. Sun and X. Yu, “HMM-Fisher: identifying differential methy-
lation using a hidden Markov model and Fisher’s exact test,”
Statistical Applications in Genetics and Molecular Biology, vol. 15,
no. 1, pp. 55–67, 2016.

[20] X. Yu and S. Sun, “HMM-DM: identifying differentially methy-
lated regions using a hidden Markov model,” Statistical Applica-
tions in Genetics and Molecular Biology, vol. 15, no. 1, pp. 69–81,
2016.

[21] F. Shokoohi, D. A. Stephens, G. Bourque, T. Pastinen, C. M.
Greenwood, and A. Labbe, “A hidden Markov model for identi-
fying differentially methylated sites in bisulfite sequencing data,”
Biometrics, vol. 75, no. 1, pp. 210–221, 2019.

[22] Y. Zhang, H. Liu, J. Lv, X. Xiao, J. Zhu, X. Liu, J. Su, X. Li, Q. Wu,
F. Wang et al., “QDMR: a quantitative method for identification
of differentially methylated regions by entropy,” Nucleic Acids
Research, vol. 39, no. 9, p. e58, 2011.

[23] J. Su, H. Yan, Y. Wei, H. Liu, H. Liu, F. Wang, J. Lv, Q. Wu, and
Y. Zhang, “CpG MPs: identification of CpG methylation patterns
of genomic regions from high-throughput bisulfite sequencing
data,” Nucleic Acids Research, vol. 41, no. 1, p. e4, 2013.

[24] C. D. Warden, H. Lee, J. D. Tompkins, X. Li, C. Wang, A. D. Riggs,
H. Yu, R. Jove, and Y.-C. Yuan, “COHCAP: an integrative genomic
pipeline for single-nucleotide resolution DNA methylation analy-
sis,” Nucleic Acids Research, vol. 41, no. 11, p. e117, 2013.

[25] P. A. Stockwell, A. Chatterjee, E. J. Rodger, and I. M. Morison,
“DMAP: differential methylation analysis package for RRBS and
WGBS data,” Bioinformatics, vol. 30, no. 13, pp. 1814–1822, 2014.

[26] Z. Wang, X. Li, Y. Jiang, Q. Shao, Q. Liu, B. Chen, and D. Huang,
“swDMR: a sliding window approach to identify differentially
methylated regions based on whole genome bisulfite sequencing,”
PloS One, vol. 10, no. 7, p. e0132866, 2015.

[27] M. Yassi, E. S. Davodly, A. M. Shariatpanahi, M. Heidari,
M. Dayyani, A. Heravi-Moussavi, M. H. Moattar, and M. A. Ker-
achian, “DMRFusion: a differentially methylated region detection
tool based on the ranked fusion method,” Genomics, vol. 110, no. 6,
pp. 366–374, 2018.

[28] F. Jühling, H. Kretzmer, S. H. Bernhart, C. Otto, P. F. Stadler, and
S. Hoffmann, “metilene: fast and sensitive calling of differentially
methylated regions from bisulfite sequencing data,” Genome Re-
search, vol. 26, no. 2, pp. 256–262, 2016.

[29] J. Gonzalez-Dominguez and M. J. Martin, “MPIGeneNet: Parallel
calculation of gene co-expression networks on multicore clusters,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 15, no. 5, pp. 1732–1737, 2017.

[30] M. V. Shegay, D. A. Suplatov, N. N. Popova, V. K. Švedas, and
V. V. Voevodin, “parMATT: parallel multiple alignment of protein
3D-structures with translations and twists for distributed-memory
systems,” Bioinformatics, vol. 35, no. 21, pp. 4456–4458, 2019.

[31] J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “SparkBWA:
speeding up the alignment of high-throughput DNA sequencing
data,” PloS One, vol. 11, no. 5, p. e0155461, 2016.

[32] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru,
R. Egan, L. Oliker, D. Rokhsar, and K. Yelick, “HipMer: an extreme-
scale de novo genome assembler,” in SC’15: Proceedings of the

International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–11.

[33] M. J. Crowder, “Beta-binomial ANOVA for proportions,” Applied
Statistics, vol. 27, no. 1, pp. 34–37, 1978.

[34] A. Akalin, F. E. Garrett-Bakelman, M. Kormaksson, J. Busuttil,
L. Zhang, I. Khrebtukova, T. A. Milne, Y. Huang, D. Biswas,
J. L. Hess et al., “Base-pair resolution DNA methylation sequenc-
ing reveals profoundly divergent epigenetic landscapes in acute
myeloid leukemia,” PLoS Genetics, vol. 8, no. 6, p. e1002781, 2012.

[35] H. Heyn, N. Li, H. J. Ferreira, S. Moran, D. G. Pisano, A. Gomez,
J. Diez, J. V. Sanchez-Mut, F. Setien, F. J. Carmona et al., “Distinct
DNA methylomes of newborns and centenarians,” Proceedings of
the National Academy of Sciences, vol. 109, no. 26, pp. 10 522–10 527,
2012.

[36] B. P. Berman, D. J. Weisenberger, J. F. Aman, T. Hinoue, Z. Ramjan,
Y. Liu, H. Noushmehr, C. P. Lange, C. M. van Dijk, R. A. Tol-
lenaar et al., “Regions of focal DNA hypermethylation and long-
range hypomethylation in colorectal cancer coincide with nuclear
lamina–associated domains,” Nature Genetics, vol. 44, no. 1, pp.
40–46, 2012.

[37] K. D. Hansen, S. Sabunciyan, B. Langmead, N. Nagy, R. Curley,
G. Klein, E. Klein, D. Salamon, and A. P. Feinberg, “Large-scale hy-
pomethylated blocks associated with Epstein-Barr virus–induced
B-cell immortalization,” Genome Research, vol. 24, no. 2, pp. 177–
184, 2014.

Alejandro Fernández-Fraga received the B.S.
in computer science from the Universidade da
Coruña (UDC), Spain, in 2021, where he is cur-
rently pursuing a Ph.D. He also holds an M.S. in
High Performance Computing from UDC since
2022. His research interests are related to the
acceleration of bioinformatic tools using HPC
techniques.

Jorge González-Domı́nguez received the B.S.,
M.S., and Ph.D. degrees in computer science
from the Universidade da Coruña (UDC), Spain,
in 2008, 2009, and 2013, respectively. He is cur-
rently an Associate Professor with the Depart-
ment of Computer Engineering, UDC. His main
research interests include the development of
parallel applications on multiple fields, such as
bioinformatics, data mining, and machine learn-
ing, focused on different architectures (multicore
systems, GPUs, clusters, and so on). His home-

page is http://gac.udc.es/∼jorgeg

Juan Touriño is a Full Professor with the De-
partment of Computer Engineering, Universi-
dade da Coruña, where he leads the Com-
puter Architecture Group. He has extensively
published in the area of HPC: HPC in Bioin-
formatics, HPC & Big Data convergence, high
performance architectures and networks, HPC
programming languages and compilers, parallel
algorithms and applications. He is coauthor of
more than 170 papers on these topics in interna-
tional conferences and journals. His homepage

is http://gac.udc.es/∼juan.

