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ABSTRACT Apache Hadoop is a widely used MapReduce framework for storing and processing large
amounts of data. However, it presents some performance issues that hinder its utilization in many practical
use cases. Although existing alternatives like Spark or Hama can outperform Hadoop, they require to rewrite
the source code of the applications due to API incompatibilities. This paper studies the use of Flame-
MR, an in-memory processing architecture for MapReduce applications, to improve the performance of
real-world use cases in a transparent way while keeping application compatibility. Flame-MR adapts to
the characteristics of the workloads, managing efficiently the use of custom data formats and iterative
computations, while also reducing workload imbalance. The experimental evaluation, conducted in high
performance clusters and the Microsoft Azure cloud, shows a clear outperformance of Flame-MR over
Hadoop. In most cases, Flame-MR reduces the execution times by more than a half.

INDEX TERMS Big Data, MapReduce, performance optimization, bioinformatics, visualization.

I. INTRODUCTION
Nowadays, Big Data applications are employed in a wide
range of industrial and research fields to extract mean-
ingful information from large datasets. The adoption of
user-friendly technologies like the MapReduce programming
model [1] has allowed non-expert programmers to develop
large-scale distributed applications without needing to imple-
ment low-level functionalities such as data movement and
parallelism. This enables them to focus on the actual data
processing needed to calculate the desired result.

However, MapReduce applications do not always lever-
age the computational capabilities of the underlying sys-
tem. This is often caused by performance drawbacks in the
design of popular MapReduce frameworks like Hadoop [2],
which incurs limited efficiency on resource usage and data
pipelining. Moreover, non-expert programmers can introduce
inefficiencies in their applications due to the unawareness
of certain framework functionalities (e.g. custom data for-
mats). Although more advanced alternatives like Spark [3]
and Hama [4] would allow improving the performance of
existing Hadoop workloads, they require to rewrite the source
code completely, and so are not always a feasible option.
To solve this problem, new in-memory frameworks have
been developed to transparently improve the performance of

existing Hadoop applications, such as Flame-MR [5], [6].
This framework allows accelerating such applications with-
out changing their source code.

In our previous work [6], the acceleration of Flame-
MR was experimentally demonstrated by conducting per-
formance evaluations with synthetic benchmarks. However,
the performance of these benchmarks may not always corre-
spond with the one that can be obtained in practical scenarios.
This paper aims to overcome this limitation by presenting
an in-depth analysis of the performance benefits provided by
Flame-MR using three real-world Big Data applications. The
main contributions are:
• The identification of significant differences between
real-world applications and standard benchmarks, which
underscores the importance of using real cases when
evaluating Big Data frameworks.

• A detailed description of the techniques used by Flame-
MR to adapt to the characteristics of real-world appli-
cations, like custom input and output formats and
data objects. These techniques provide portability while
maintaining performance optimizations.

• An improved version of Flame-MR that includes a new
load balancing mode to speed up the processing of
skewed datasets.
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FIGURE 1. Hadoop data flow with multiple map and reduce tasks.

• The optimization of three real Hadoop applications
with Flame-MR to justify its efficiency by alleviating
code inefficiencies and load balancing problems. Per-
formance improvements higher than 40% are obtained
in all cases.

The rest of the paper is organized as follows: Sections II
and III introduce the background and related work, respec-
tively. Sections IV, V andVI analyze the optimization of three
use cases based on the MapReduce model. First, Section IV
describes the optimization of VELaSSCo, a visualization
architecture for simulation data. Second, Section V ana-
lyzes CloudRS, a bioinformatics application for error removal
in genomic datasets. Third, Section VI presents MarDRe,
another genomic application that removes duplicate and near-
duplicate reads. Finally, Section VII provides some general
conclusions about the results gathered in the previous use
cases.

II. BACKGROUND
The MapReduce programming model was originally pro-
posed by Google in [1]. This model allows developing large-
scale Big Data workloads by keeping some implementation
details such as parallelization and data communication hid-
den to the programmer. The only thing that has to be defined
are the data processing functions, map and reduce, that oper-
ate the input data represented in form of key-value pairs.
The map function processes each input pair independently to
extract the relevant attributes and the reduce function operates
them to get a final result.

Nowadays, the de-facto standard implementation of
MapReduce is Hadoop [2], an open-source Java-based
framework. It mainly consists of two parts, the MapRe-
duce data engine and the Hadoop Distributed File System
(HDFS) [7], which distributes the storage of large datasets
over the nodes of a cluster. Hadoop workloads commonly

use the MapReduce model to process textual data stored in
HDFS, following several steps: input, map, shuffle, merge,
reduce and output. These steps are depicted in Figure 1.
As can be seen, the input dataset stored in HDFS is divided
into many splits that are read by map operations to extract
the relevant key-value pairs. These key-value pairs are parti-
tioned, sorted by key and sent to the nodes where they will be
merged to form the reduce input. Each reduce operation reads
the pairs contained in its input partition, processing them to
generate the output result that is written to HDFS.

Hadoop can adapt its behavior to the particular needs
of each application, providing a wide set of configuration
options to do so. This includes the setting of some soft-
ware components defined via Java interfaces, modifying their
implementation according to the specific computation that
the user needs to perform. For example, the user can config-
ure a different input and output formatter class if the data is
not in textual format. Similarly, users can use primitive data
types included in Hadoop or define their own ones by devel-
oping a custom implementation of the Writable interface.
This interface establishes the methods that the custom data
types need to implement, which are mandatory to serialize
and compare the data objects.

Many applications use Hadoop to carry out MapReduce
workloads. However, Hadoop presents some performance
bottlenecks that hinder its utilization for large-scale analytics
due to poor resource utilization and inefficient data paral-
lelism. This situation has caused the appearance of several
alternative frameworks like Spark [3] and Hama [4], which
can be used to execute Big Data workloads with a more flexi-
ble API and increased performance. However, rewriting exist-
ing Hadoop applications to the new APIs generally requires a
significant programming effort. Furthermore, the source code
is not always publicly available, which precludes the users
from rewriting it.
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FIGURE 2. Flame-MR Worker architecture.

Our previous work focused on the development of Flame-
MR [5], an easy-to-use MapReduce framework that gives
solution to this problem by accelerating Hadoop applications
without changing the source code defined by the user. Flame-
MR replaces transparently the underlying implementation
of the Hadoop MapReduce data engine by an in-memory
architecture that leverages system resources efficiently.

The operation of Flame-MR is based on the deploy-
ment of several Worker processes over the nodes of a clus-
ter. Each Worker is in charge of executing multiple map
and reduce operations by using an event-driven architecture
shown in Figure 2. The thread pool executes the operations
concurrently, scheduling them to pipeline data processing
and data movement steps. The data pool allocates memory
buffers in an efficient way, reducing the amount of buffer
creations [6]. Once the buffers are filled with data, they are
stored into in-memory data structures to be processed by
subsequent operations.

Performance is further improved by minimizing the con-
nections needed to read andwrite textual data toHDFS, work-
ing with full input splits in memory. Moreover, primitive data
types of Hadoop are modified to avoid the use of redundant
memory copies, using instead references to the serialized
data to optimize pair copies and comparisons. The Hadoop
data engine is also accelerated by using efficient sort and
merge algorithms. Flame-MR has been assessed by means
of synthetic benchmarks, showing significant performance
improvement over Hadoop and other Hadoop-based alterna-
tives [5] and also providing competitive results compared to
Spark [6].

III. RELATED WORK
Many papers in the literature have compared the per-
formance of the MapReduce model when using different
data processing engines (e.g., NativeTask [8]), file systems
(e.g. MARIANE [9]), and network interconnects (e.g.
RDMA-Hadoop [10]). These works generally evaluate their
proposals by executing popular Big Data benchmarks like
TeraSort or K-Means. However, the lack of performance

results with real-world applications makes it difficult to
determine the actual performance benefit that a user can
obtain when replacing Hadoop with any of the optimized
alternatives.

Regarding large-scale applications employed in real use
cases, their optimization is often performed by translating
their source code to a more efficient computing paradigm.
For example, Kira [11] is a distributed astronomy image pro-
cessing toolkit on top of Spark. It can obtain a 3.7× speedup
on the Amazon EC2 cloud over an equivalent parallel imple-
mentation written in C and running on the GlusterFS file sys-
tem. A similar approach has been employed in [12] to adapt
high energy physics workflows to Spark, obtaining improved
usability and performance when compared to other existing
sequential implementations like ROOT [13]. Although these
works prove to accelerate the execution of real-world appli-
cations, a considerable effort is required to translate existing
applications and libraries to a new computing paradigm.

Some other works use these applications to determine
the performance benefits of framework optimizations. For
example, the Kira toolkit is used in [14] to evaluate
RDMA-Spark [15], which improves the results of stan-
dard Spark with a 1.21× speedup. In the case of Hadoop,
the authors of OEHadoop [16] evaluate their proposal by
simulating a Facebook job trace extracted from the SWIM
project [17]. OEHadoop, which offloads data replication to
a low-level optical multicast system, obtains better perfor-
mance than the original Hadoop, although the results pro-
vided are extracted from simulations and not from empirical
data.

One of the most important requirements that framework
optimizations must meet is portability, as the same MapRe-
duce application is likely to be executed in many different
systems. This makes Flame-MR a good candidate to improve
performance by leveraging memory resources, as it has been
specifically designed to accelerate applications in a portable
way. Other frameworks that employ in-memory optimiza-
tions are NativeTask [8] and M3R [18]. On the one hand,
NativeTask is based on a native C++ implementation that
replaces the task management of map and reduce functions,
while also optimizing the cache awareness of the merge-sort
mechanism [19]. As these optimizations are highly dependent
on the underlying system, they do not keep portability. On the
other hand, M3R is an in-memory framework based on the
X10 programming language [20]. Although it accelerates
Hadoop workloads by reducing the shuffling overhead and
caching intermediate data, it is restricted to Hadoop jobs that
can fit in memory. These characteristics prevent the utiliza-
tion of M3R for real-world Big Data use cases.

As commented in the previous section, the performance
benefits of Flame-MR when executing synthetic benchmarks
have already been assessed. However, the artificial nature
of this kind of workloads makes it difficult to extrapolate
these results to practical use cases. This paper provides an
in-depth performance analysis of three real-world Hadoop
applications, describing the characteristics and challenges
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of each workload. The main objective is to determine the
performance benefits that Flame-MR is able to provide in
practice without needing to change the underlying computing
paradigm.

IV. VELaSSCo: DATA VISUALIZATION QUERIES
This section addresses the optimization of VELaSSCo [21], a
Big Data visualization architecture that relies on the MapRe-
duce model to extract information from simulation datasets.
More details of this project are provided in Section IV-A,
while the main characteristics of the MapReduce workloads
are described in Section IV-B. Section IV-C explains the main
challenges of running these workloads with Flame-MR to
improve their performance. The experimental configuration
and performance results are then presented in Sections IV-D
and IV-E, respectively. Finally, some concluding remarks are
provided in Section IV-F.

A. OVERVIEW
VELaSSCo is a query-based visualization framework that
aims at providing users with a tool tomanipulate and visualize
large simulation datasets. These datasets are generated by
large parallel simulations relying on Finite Element Meth-
ods (FEM) or Discrete Element Methods (DEM). For both
methods the simulation updates the properties of the nodes
(FEM) or particles (DEM) at each time step. The user runs
a 3D visualization client to request the execution of specific
visualization algorithms on given parts of the data. The query
is sent to the VELaSSCo cluster and translated into a Hadoop
job that queries the input data and performs the expected
transformation. The result is sent back to the client for the
final 3D rendering and display. The VELaSSCo architecture
can be decomposed into three subsystems: client, analytics
and storage, described next.

The client subsystem provides data visualization to the
user, generating a new query when the user performs an
action. Each query has a certain type depending on the action
performed by the user. Analytical queries are the ones that
require to extract some information from the dataset bymeans
of a MapReduce workload (e.g. calculating the bounding box
of a model). The analytics subsystem is in charge of receiv-
ing these queries and determining the computation needed
to complete each one. That computation is performed by a
MapReduce workload on a Hadoop cluster. The workloads
employed in VELaSSCo consist of a single MapReduce job
that typically operates over a subset of the dataset (a few
simulation time steps for instance). Finally, the data persis-
tence is performed by the storage subsystem. This subsystem
employs HDFS to distribute the data among the computing
nodes of the cluster. It also relies on HBase [22], a database
system on top of HDFS, to allow the extraction of parts of
the dataset without reading it entirely. This optimizes the
amount of I/O operations needed to perform the compu-
tations. Instead of searching the relevant data through the
entire dataset, the MapReduce workload uses the key-value
format provided by HBase to fetch the required elements.

The indexed system used in HBase accelerates the retrieving
operation by avoiding the reading of unnecessary data.

As VELaSSCo is a real-time visualization platform,
the performance of the actions executed by the user is crucial
to ensure an appropriate user experience. However, Hadoop
is not able to achieve this goal when dealing with large-scale
datasets. This use case focuses on the acceleration of the
queries used in the analytics subsystem of VELaSSCo by
using Flame-MR.

B. MAPREDUCE IMPLEMENTATION
We list below the main analytical queries included in
VELaSSCo:

• GetBoundingBoxOfAModel (BB): Computes the spa-
tial bounding box for the selected dataset, i.e the min
and max coordinate of the enclosed elements in the x, y
and z dimensions.

• GetBoundaryOfAMesh (BM): Computes the set of ele-
ments that are at the boundary of the selected mesh, i.e.
the surface given by the triangles belonging to only one
mesh cell.

• GetListOfVerticesFromMesh (LVM): Obtains a list of
identifiers (IDs) of the elements contained in a mesh.

• GetMissingIDsOfVerticesWithoutResults (MIV): Obta-
ins the IDs of those mesh elements that do not contain
any simulation result.

• GetSimplifiedMesh (SM): Obtains a simplified version
of the mesh model, reducing the total dataset size by
combining nearby elements.

As mentioned in the previous section, these queries are
performed by MapReduce workloads that are composed of
a single job. All jobs extract the input data from HBase,
selecting the relevant elements according to the information
provided by the user. To read the data, the MapReduce imple-
mentation is based on a custom input formatter provided
by HBase, which is used by the mappers to iterate over
the entries allocated to them. Once the output of the job is
calculated, it is converted to text files and stored in HDFS in
order to be accessible by the client subsystem.

The implementation of each query includes the definition
of the map and reduce functions. These functions use cus-
tom data types defined in VELaSSCo, which implement the
Writable interface required for data serialization. So, map and
reduce functions are configured to use these data types when
reading and writing data.

C. CHALLENGES
The use of Flame-MR to optimize the VELaSSCo queries
must take into account the characteristics that differ from
standard Hadoop jobs. In particular, reading input data from
HBase and using custom data types must be handled correctly
to avoid incompatibility problems. This section describes
how they are supported in Flame-MR.

Flame-MR is oriented to processing large textual datasets
stored in HDFS, which is a common use case in MapReduce
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FIGURE 3. Data object serialization in Flame-MR. (a) Primitive types. (b) Writable objects.

applications. Therefore, the reading of input data has been
designed to make the common case fast. When launching
a map operation, Flame-MR connects to HDFS and reads
a full input split (e.g. 256 MB) to memory by copying the
data to a set of medium-sized buffers (e.g. 1 MB) allocated
in the data pool (see Figure 2). Once the input split is read,
the connection to HDFS is closed and the data buffers are
parsed in memory to obtain the input pairs and feed the
mappers.

The in-memory parsing mechanism of Flame-MR is only
possible when the input dataset is stored in HDFS in textual
format. For other formats, the data source is unknown, and
the software interface defined by Hadoop only allows read-
ing the input pairs one by one. Therefore, copying an input
split entirely to memory is not allowed and the reading of
input data needs to be addressed differently. That is the case
of VELaSSCo, which reads the data from HBase. When a
map operation is launched in Flame-MR, the input formatter
connects to the HBase server to read the data contained in
the input split. Then, the map operation uses the interfaces
provided by the input formatter class to read the input pairs,
passing them to the user-defined map function. By doing this,
the correct functioning of the queries is ensured. Note that this
behavior can be extrapolated to any formatter class.

The use of custom data objects in VELaSSCo has also
implications for Flame-MR. This happens because Flame-
MR modifies the behavior of primitive Hadoop data types,
like text and numerical types, in order to optimize read and
write operations. These modifications include the use of in-
memory addressing of serialized data to avoid the creation of
data objects in sort and copy operations. When a key-value
pair is stored in a buffer, a header is added to indicate the
pair and key lengths, which will be used to read data with-
out creating the objects. Therefore, the implementation of
primitive data types in Flame-MR is extended with additional
methods to obtain the length of data objects before writing
them to the buffer. As VELaSSCo implements specific data
objects inside each query, Flame-MR must adapt its behavior
to comply with the standard Writable interface defined by
Hadoop, which does not provide any information about the
length of the objects.

The serialization mechanism of Hadoop primitive data
types in Flame-MR is shown in Figure 3a. The pair and

key length are calculated before writing the key-value pair
to the buffer. To obtain the same results with custom
Writable objects, Flame-MR performs the mechanism shown
in Figure 3b. Pair and key lengths are unknown beforehand,
so their positions must be skipped, writing the key-value pair
after them. Once the data has been written, the lengths are
calculated according to the writing position after copying
the key-value pair. The lengths are then written by going
backwards on the data buffer to the original position. This
mechanism ensures compatibility with all types of Writable
objects, while maintaining the in-memory optimizations of
Flame-MR.

D. EXPERIMENTAL CONFIGURATION
This section describes the experimental testbed used in the
comparison between Hadoop and Flame-MRwhen executing
the VELaSSCo queries. The experiments have been con-
ducted in the Grid’5000 infrastructure [23]. Two cluster sizes
(n) have been used: 17 and 25 nodes with 1 master and n-1
slaves. These nodes are equipped with 2 Intel Haswell-based
processors with 8 physical cores each (i.e. 16 cores per node),
128 GB of memory and 2 local disks of 558 GB each (see
Table 1 for more details).

The experiments have used HBase 1.2.4, Hadoop 2.7.3 and
Flame-MR 1.1 (available at http://flamemr.des.udc.es). The
configuration of the frameworks has been carefully set up by
following their user guides, taking into account the charac-
teristics of the systems (e.g. number of CPU cores, memory
size). The most important parameters of the resulting config-
uration are shown in Table 2, including a brief explanation of
each one.

The VELaSSCo queries used in the evaluation are the
ones described in Section IV-B. The input dataset has been
extracted from a FEM simulation that represents the wind
flow in the city of Barcelona with an eight-meter resolution.
This dataset has 12,089,137 vertices and occupies 367 GB.
For each query, the graphs show the median elapsed time
of 10 executions, although the standard deviations observed
were not significant.

E. PERFORMANCE RESULTS
Figures 4a and 4b show the execution times of the VELaSSCo
queries using 17 and 25 nodes, respectively. Flame-MR
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TABLE 1. Node characteristics of Grid’5000.

TABLE 2. Configuration of the frameworks in Grid’5000.

FIGURE 4. Execution times of VELaSSCo queries with Hadoop and Flame-MR. (a) 17 nodes. (b) 25 nodes.

widely outperforms Hadoop with both cluster sizes, showing
an average reduction in execution time of 87% with 17 nodes
and 88% with 25 nodes. This reduction is due to the more
efficient architecture of Flame-MR, which can better leverage
the memory and CPU resources of the system. Note that each
Worker process in Flame-MR can schedule multiple map and
reduce operations, allocating them to the cores available as

they become idle. Therefore, the Worker can use the same
HBase connection for all map operations. Instead, Hadoop
allocates a single Java process to each map and reduce task,
and so it creates anHBase connection for each one, increasing
the overhead. This enables Flame-MR to process more HBase
requests per unit time compared to Hadoop, which is reflected
in the information counters provided by HBase.
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F. REMARKS
This section addressed the optimization of analytical queries
that process datasets stored in HBase. These queries imple-
ment custom input formats and data types by using the class
interfaces provided by Hadoop. Flame-MR is able to adapt
to these characteristics without hindering the optimizations
implemented in its underlying in-memory architecture. Using
Flame-MR, the performance of the queries is improved by
almost one order ofmagnitude, enhancing the user experience
of VELaSSCo.

V. CloudRS: ERROR REMOVAL IN GENOMIC DATA
This section addresses the optimization of CloudRS [24],
a bioinformatics tool that detects and corrects errors in large
genomic datasets, following the same structure as Section IV.

A. OVERVIEW
The datasets generated by Next Generation Sequencing
(NGS) platforms are composed of a large number of DNA
sequence fragments, which are small pieces of genomic infor-
mation contained in a string of characters (called reads).
Each character of a read represents a DNA base, namely
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T).
The analysis of these datasets is performed by processing the
sequences and identifying relationships between them.

During the generation of genomic datasets, NGS
sequencers often introduce errors by placing incorrect bases
in the reads. This can affect the quality of the results obtained
by downstream analysis, and so it is usually minimized by
introducing an error correction phase in the preprocessing
stage of the NGS pipeline. In fact, this is a critical step in
NGS workflows like de novo genome assembly or DNA
resequencing. CloudRS is a popular tool for performing this
preprocessing task, being based on the ReadStack (RS) algo-
rithm [25]. This algorithm makes use of the characteristics of
NGS datasets to identify common patterns in the sequences
and correct the mismatching ones.

The DNA sequences that compose a dataset are not nec-
essarily disjoint, as they can share information due to the
overlap of reads performed by the sequencer. CloudRS takes
advantage of this characteristic to identify redundant infor-
mation in the sequences and correct errors in the bases. First,
it splits each sequence into several subsequences. Second,
it compares the different candidates for each subsequence,
choosing the one that appears most of the times.

CloudRS is implemented with the MapReduce model by
operating over datasets stored in HDFS. As it is a common
step in large NGS workflows, its performance is crucial to
obtain the results of the analysis in a reasonable time. For that
reason, it has been chosen to be optimized with Flame-MR.
Further details about its implementation are provided in the
next section.

B. MAPREDUCE IMPLEMENTATION
CloudRS is an iterative workload that follows several phases
to process the input dataset, explained below:

1) LoadReads: This phase prepares the input dataset to be
processed, discarding noisy information and converting
the sequences into a more suitable format for Hadoop.
In order to avoid the comparison of very repetitive
sequences, it also builds a list of the most frequent
subsequences. Later, this list is used to filter them out
and avoid workload imbalance.

2) PreCorrection: Each sequence is split into different
subsequences that are candidates in the next phases.
The candidates for each subsequence are aligned to
allow their comparison, using a wildcard pattern.

3) ErrorCorrection: The set of subsequence candidates
is iterated through by using the information obtained
in the previous phases. First, the most frequent sub-
sequences are filtered out. Then, the candidates are
compared by emitting a vote for each position. When
all the votes have been emitted, the correct alternative
is chosen by majority. This calculation repeats several
times until the obtained subsequences remain invariant.

4) Screening: Once the correct subsequences have been
calculated, the input dataset is reprocessed to fix the
errors, replacing each subsequence with its correspond-
ing correct alternative.

5) Conversion: The output dataset is converted to a stan-
dard format in order to be processed by subsequent
NGS applications (e.g. sequence alignment).

Using these five phases, the execution of CloudRS involves
a total of 11 MapReduce jobs, some of them being repeated
during the ErrorCorrection phase. Their implementation uses
an old version of the Hadoop API, although this only affects
the interfaces used by the source code of the workload.
CloudRS also takes advantage of the DistributedCache fea-
ture provided by Hadoop to make the list of most frequent
sequences available to the mappers during the ErrorCorrec-
tion phase.

The input and output formatter classes in CloudRS are
standard ones that operate over textual data stored in HDFS.
Instead of using a custom formatter, CloudRS formats the
data within the user-defined map and reduce functions.
CloudRS uses standard Hadoop Text objects to represent the
data as strings, separating the different fields by using special
characters. Note that this is a very inefficient implementation
compared to the use of a custom formatter that can represent
in-memory data as binary objects. The approach of CloudRS
requires to parse data objects from textual data, while also
having to convert them to strings when writing the output.

C. CHALLENGES
As explained in the previous section, CloudRS is an iterative
workload that executes several MapReduce jobs to obtain the
final result. The resource management of Flame-MR adapts
better to this kind of computation than Hadoop, thus provid-
ing better performance. On the one hand, Hadoop allocates
one Java process per map/reduce task. Therefore, Hadoop
needs to create many map and reduce processes at the start of
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TABLE 3. Node characteristics of pluton.

TABLE 4. Node characteristics of L16S instances in Azure.

each job, stopping themwhen the job is finished. On the other
hand, Flame-MR deploys a single Java process per Worker
and uses a thread pool to execute the map and reduce func-
tions (see Figure 2). These processes are reutilized between
MapReduce jobs until the entire workload is finished. Note
that Flame-MR also benefits from the reutilization of internal
data structures like the allocation of memory buffers.

Regarding data input and output, Flame-MR is oriented
to the processing of large textual datasets, as mentioned in
Section IV-C. Therefore, it uses optimized input and out-
put formatters that minimize the amount of connections to
HDFS. Similarly, the implementation of textual data objects
used in Flame-MR reduces the amount of memory copies
and object creations when performing sort and copy opera-
tions. CloudRS makes use of both characteristics, and so it
is especially well suited to be optimized with Flame-MR.
However, the inefficient data formatting explained in the
previous section is intrinsic to CloudRS, as it is performed
inside the map/reduce functions. The goal of Flame-MR is to
improve applications’ performance without modifying their
source code, and so we cannot modify those user-defined
functions. Therefore, the inefficiency of the data formatting
will also be present in Flame-MR, although it is alleviated by
using its efficient implementation of textual data objects.

The use of the old Hadoop API is also supported in
Flame-MR by connecting old classes and methods with its
corresponding counterparts in the new API. Furthermore,
Flame-MR supports the use of the DistributedCache by copy-
ing the data files required by the mappers to the computing
nodes where they are being executed, thus making the data
available to the application.

D. EXPERIMENTAL CONFIGURATION
This section describes the experimental configuration used to
evaluate CloudRS with Hadoop and Flame-MR. As genomic

applications are executed inmany kinds of systems, the evalu-
ation has considered two different scenarios: a private cluster
with 9 nodes, Pluton, and a public cloud platform, Microsoft
Azure [26], using 17 and 25 instances. As in the case of
VELaSSCo, each cluster size n corresponds to 1 master and
n-1 slaves.

The hardware and software characteristics of Pluton and
Azure are shown in Tables 3 and 4, respectively. Pluton nodes
are equipped with 16 cores each, 64 GB of memory and
one local disk of 1 TB, being interconnected via InfiniBand
FDR and Gigabit Ethernet (GbE). The experiments in Azure
have been carried out using L16S virtual instances located
in the West Europe region. These instances have 16 virtual
cores per node, 128 GB of memory and a virtual SSD disk
of 2.7 TB.

The experiments have used Hadoop 2.7.4 and Flame-
MR 1.1. The configuration has been adapted to the charac-
teristics of the systems, resulting in the parameters shown
in Tables 5 and 6 for Pluton and Azure, respectively. These
parameters have been described in Table 2. Furthermore,
the frameworks have used the IP over InfiniBand (IPoIB)
interface available in Pluton, which allows taking advan-
tage of the InfiniBand network via the IP protocol. Finally,
some parameters such as the HDFS block size have been
experimentally tuned to obtain the best performance on each
system.

The input dataset used in the experiments is SRR921890,
which has been obtained from the DDBJ Sequence Read
Archive (DRA) [27]. It is composed of 16 million sequences
of 100 bases each (5.2 GB in total). The results shown in
the following section correspond to the median elapsed time
of 10 executions. The standard deviations observed were not
significant.

In this use case, the experiments have been conducted by
using the Big Data Evaluator (BDEv) tool [28] (version 3.1,
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TABLE 5. Configuration of the frameworks in pluton.

TABLE 6. Configuration of the frameworks in Azure.

available at http://bdev.des.udc.es). This tool allows automat-
ing the configuration and deployment of the frameworks and
the execution of the workloads.

E. PERFORMANCE RESULTS
Figure 5 shows the performance results of CloudRS. As can
be seen, Flame-MR clearly outperforms Hadoop in both
testbeds. In fact, Flame-MR obtains a 78% reduction in
execution time in Pluton. In the case of Azure, it obtains
a reduction of approximately 40% for both cluster sizes.
Note that Hadoop presents a huge performance improve-
ment when scaling from Pluton with 9 nodes to Azure with
17 nodes. In addition to the double amount of slave nodes,
this improvement is due to the better node characteristics of
Azure. Compared to Pluton, Azure provides a more recent
CPU microarchitecture and doubles the available memory,
while the SSD disk decreases I/Owaiting times. Furthermore,
the execution time of Flame-MR with 9 nodes in Pluton is
almost the same as using Hadoop in Azure with 17 nodes.
Therefore, Flame-MR allows reducing the execution time
of CloudRS without needing to increase the computational
resources, obtaining a performance improvement equivalent
to using a double-sized cluster in this specific case, min-
imizing incurred costs in public cloud platforms such as
Azure.

F. REMARKS
The use of Flame-MR to optimize CloudRS has shown an
important reduction in execution time. Taking into account
that the data formatting inefficiency of the source code
of CloudRS cannot be avoided, this use case is a good
example of how Flame-MR can reduce the performance
impact of those inefficiencies, without redesigning the soft-
ware or employing further computing resources.

FIGURE 5. Execution times of CloudRS with Hadoop and Flame-MR.

VI. MarDRe: DUPLICATE READ REMOVAL IN GENOME
SEQUENCING DATA
This section addresses the optimization of MarDRe [29],
a bioinformatics application that removes duplicate reads
in large genomic datasets, following the same structure as
Sections IV and V.

A. OVERVIEW
As explained in Section V-A, genomic datasets generated
by NGS sequencers contain redundant information due to
the existence of overlapped reads. This characteristic causes
the appearance of duplicate or near-duplicate sequences in
large datasets, which neither provide new information nor
improve the results of analytical processes. However, pro-
cessing them consumes system resources and wastes execu-
tion time. Therefore, they are often removed to decrease the
overall runtime of the downstream analysis.
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MarDRe is a MapReduce application that is used to detect
and remove duplicate sequences in genomic datasets stored
in HDFS. It is based on a prefix-clustering mechanism that
groups the sequences by similarity. Then, the sequences
within a group are compared by using an optimized algorithm
that discards the sequences that do not provide new informa-
tion.

As in the case of CloudRS, MarDRe is usually performed
in the preprocessing stage. Therefore, reducing its execution
time can have a significant impact on the performance of the
overall NGS pipeline. Further details of its implementation
are provided in the next section.

B. MAPREDUCE IMPLEMENTATION
TheMapReduce workload used inMarDRe performs a single
Hadoop job to process the data stored in HDFS. In con-
trast to CloudRS, MarDRe supports input datasets stored
in FASTQ/FASTA, which are standard formats commonly
employed in genomic datasets.

The map phase is used to cluster the DNA sequences into
groups. Each mapper reads the data belonging to its input
split by using a custom formatter that reads the sequences in
FASTQ/FASTA format. The input sequences are then divided
into prefix and suffix to group the ones that share the same
prefix. During the shuffle phase, the prefix is used as key
to partition and sort the map output pairs. The value of the
pair contains the sequence information by using a custom
data type defined in MarDRe. Next, the map output pairs are
sent to the reducer nodes where they are processed. Once
the reducers receive all the assigned sequences, they carry
out the comparison to filter out the duplicates by using the
optimized algorithm presented in [30]. This algorithm does
not compare all the sequences within each group, but uses
the first one as a reference for the rest. If the number of mis-
matches of a sequence with respect to the first one is higher
than a user-defined threshold, the sequence is discarded.
Moreover, the bases of the sequences are not compared one
by one. Instead, a 4-bit encoding is used to represent the
bases, determining the differences by using a bit-wise XOR
operation. After that, the output of the reducers containing the
remaining sequences without duplicates is written to HDFS
in FASTQ/FASTA format.

MarDRe is especially well suited to theMapReducemodel,
as themain part of its clustering algorithm is performed by the
underlying grouping-by-key mechanism of Hadoop. Further-
more, its implementation leverages the use of custom format-
ters and data objects to avoid inefficient parsing of the input
dataset. Although MarDRe shows good performance with
balanced workloads, real-world datasets are highly skewed,
with lots of sequences that share a common prefix. This
situation introduces important load balancing problems in the
reduce phase due to the comparison of large sets of sequences.
This causes some reducers to have excessive execution times.
As a MapReduce job has to wait for all reducers to finish,
the load balancing problem in the reduce phase affects the

FIGURE 6. Load balancing mode in Flame-MR.

overall performance. The next section discusses how Flame-
MR solves this problem in a transparent way.

C. CHALLENGES
Flame-MR must adapt to the characteristics of MarDRe
when optimizing its performance. As in the VELaSSCo
use case, the use of custom formatters and data objects in
MarDRe requires the utilization of the standard API provided
by Hadoop, while keeping the in-memory optimizations,
as explained in Section IV-C.

Regarding the load balancing problem explained before,
the standard behavior of Flame-MR emulates the way
Hadoop processes the data without modifying the operation
of the map and reduce functions. Therefore, load imbalance
also affects Flame-MR. To alleviate it without changing the
source code of the application, a new load balancingmode has
been developed in Flame-MR version 1.1. During the reduce
phase, large partitions are detected and split into several
chunks. In doing so, the computation is parallelized and the
execution time of heavy-loaded reducers is decreased.

Figure 6 illustrates the operation of the load balancing
mode. Instead of processing a large partition with a single
reduce operation, the data is split into different chunks with a
maximum size calculated upon the number of chunks defined
by the user. Next, each chunk is reduced in parallel, writing
the output to HDFS. Note that this mechanism is likely to
introduce changes in the output results of the reduce phase,
as the input pairs are passed to the reduce function in different
groups. Therefore, the load balancing mode is only appli-
cable to those Hadoop jobs that can support modifications
in the reduce partitioning without affecting the logic of the
application, even if the final output suffers slight variations.
In the particular case of MarDRe, the splitting of partitions
leads to different comparisons to be done between sequences.
Although this may modify the actual sequences that are fil-
tered in the end, it does not affect the purpose of the workload
as long as the percentage of sequences filtered does not vary
significantly. For example, in the experimental results shown
in Section VI-E, the amount of duplicate reads filtered did
not vary more than 0.02% when using the load balancing
mode.

This mode can be activated by the user via configuration,
using a single parameter to indicate the number of chunks in
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TABLE 7. Load balancing in MarDRe. (a) Pluton (9 nodes). (b) Azure (17 nodes). (c) Azure (25 nodes).

FIGURE 7. Execution times of MarDRe with Hadoop, Flame-MR and
Flame-MR-LB.

which partitions should be split. By default, this value is set
to the number of cores per Worker.

D. EXPERIMENTAL CONFIGURATION
MarDRe and CloudRS are both executed as preprocessing
steps of an NGS analysis on Big Data infrastructures. There-
fore, the evaluation of MarDRe has employed the same expe-
rimental configuration as CloudRS using Pluton and Azure
as testbeds (see Tables 3-6 in Section V-D), and the BDEv
tool to conduct the evaluation. However, the computational
requirements of CloudRS are significantly higher than those
of MarDRe, and so a larger dataset was used in these experi-
ments: SRR377645. This dataset is composed of 214 million
reads of 100 bases each (67 GB).

The evaluation includes the results of Hadoop,
Flame-MR and Flame-MR with the load balancing mode
activated (labeled as Flame-MR-LB in the graphs). In the

experiments, the number of chunks of the load balancing
mode has been tuned for improved performance, splitting
each partition in 13 and 9 chunks for Pluton and Azure,
respectively.

E. PERFORMANCE RESULTS
Figure 7 shows the execution times of MarDRe with Hadoop,
Flame-MR and Flame-MR-LB. As can be seen, Flame-MR
outperforms Hadoop by 43% in Pluton and by approximately
24% in Azure for both cluster sizes. The improvement pro-
vided by Flame-MR-LB is even better, reducing the exe-
cution time of Hadoop by 66% both in Pluton and Azure
(17 nodes), and by 77% when using 25 nodes in Azure. This
huge improvement demonstrates the effectiveness of the load
balancing mode explained in Section VI-C, together with the
efficient in-memory architecture of Flame-MR.

Note that the execution times of Hadoop and Flame-MR in
Azure using 25 nodes are higher than with 17 nodes, which
is due to the load balancing problem. With more nodes and
thus more reducers, the load per reducer is decreased, but
the reducers that process the largest partitions require the
same time. This issue, together with the additional overhead
of managing more nodes, hinders the performance of both
frameworks. However, Flame-MR-LB does not present this
problem, obtaining slightly better results with 25 nodes than
with 17.

In order to provide more information about the load balan-
cing problem of MarDRe, Table 7 shows the processing time
of the fastest, median and slowest reducer compared to the
overall execution time. As can be seen, the time consumed
by the slowest reducer is clearly correlated with the overall
execution time of the application. Furthermore, there exist
huge differences between the fastest and slowest reducers.
In the case of Hadoop and Flame-MR, the use of more
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nodes in Azure decreases the processing time of the fastest
and median reducers. This does not always happen with the
slowest reducer, which consumes more time with 25 nodes
than with 17 for both frameworks. This fact causes the overall
execution time to be higher. Flame-MR-LB shows a different
behavior.When using 25 nodes, the fastest andmedian reduc-
ers remain almost invariant, while the slowest one consumes
less time. This, in turn, reduces the overall execution time of
Flame-MR-LB.

F. REMARKS
This section has shown the benefits of optimizing MarDRe
with Flame-MR. Without modifying its source code,
it obtains significant performance improvements by better
leveraging the system resources. Furthermore, the new load
balancing mode available in Flame-MR has demonstrated
its usefulness to reduce the impact of skewed loads in
the reduce phase, reducing up to 77% the execution time
of Hadoop.

VII. CONCLUSION
The MapReduce computing model and Hadoop are
commonly used by many applications to extract valuable
information from datasets stored in HDFS. Although other
alternatives such as Spark can provide improved performance
over Hadoop, the effort of adapting existing MapReduce
applications to new APIs can be significant (provided that the
source code is available). Flame-MR solves this problem by
providing huge performance improvements in a transparent
way without needing to change the applications.

This paper has shown three different real-world use
cases from two application domains: visualization queries
(VELaSSCo) and preprocessing of genomic datasets
(CloudRS and MarDRe). On the one hand, Flame-MR
improves the execution time of the analytical queries of
VELaSSCo by adapting its behavior to the custom input
formats and data objects defined in theworkload. On the other
hand, the iterative algorithm performed by CloudRS is signif-
icantly accelerated, overcoming some of the inefficiencies of
its underlying implementation. Finally, the use of Flame-MR
in MarDRe has not only optimized the underlying Hadoop
data engine but also alleviated its load balancing problems.

The execution of several use cases with distinct characte-
ristics, together with the assessment of real-world datasets on
different systems, have proved the significant performance
benefits provided by Flame-MR over Hadoop.
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