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ABSTRACT
This paper presents a new approach for the detection of
coarse-grain parallelism in loop nests that contain complex
computations, including subscripted subscripts as well as
conditional statements that introduce complex control flows
at run-time. The approach is based on the recognition of the
computational kernels calculated in a loop without consider-
ing the semantics of the code. The detection is carried out on
top of the Gated Single Assignment (GSA) program repre-
sentation at two different levels. First, the use-def chains be-
tween the statements that compose the strongly connected
components (SCCs) of the GSA use-def chain graph are ana-
lyzed (intra-SCC analysis). As a result, the kernel computed
in each SCC is recognized. Second, the use-def chains be-
tween statements of different SCCs are examined (inter-SCC
analysis). This second abstraction level enables the detec-
tion of more complex computational kernels by the compiler.
A prototype was implemented using the infrastructure pro-
vided by the Polaris compiler. Experimental results that
show the effectiveness of our approach for the detection of
coarse-grain parallelism in a suite of real codes are presented.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processor—compilers,
optimization

General Terms
Algorithms, Languages
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Parallelizing compilers, loop-level kernel recognition, GSA,
strongly connected components
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1. INTRODUCTION
The automatic detection of parallelism in loops that con-

tain complex computations is still a challenge for current
parallelizing compilers mainly due to the presence of sub-
scripted subscripts and/or complex control constructs. We
use the term complex loop to designate loops with such char-
acteristics. In classical dependence analysis [13, 18], the po-
tential parallelism of complex loops usually cannot be un-
covered because the necessary information for dependence
testing is not available at compile-time. In other occasions,
the limitations of compiler technology arise from the use
of information-gathering techniques that are not sufficiently
sophisticated. An approach to the problem is the com-
bination of dependence testing with source code pattern-
matching techniques that recognize specific, isolated pat-
terns [12]. These methods have two major drawbacks: de-
pendence on the source code quality and difficulty in ana-
lyzing complex control constructs.

A different approach for the detection issue is automatic
program comprehension. This kind of technique [8] recog-
nizes syntactical variations of operations with vectors and
matrices by taking into account the semantics of the source
code. For this reason, the scope of application is mainly
limited to numerical programs.

In this paper, we present a compiler infrastructure that
enables the recognition of a wide range of computational
kernels independently of the semantics and the quality of
the code. It is based on the analysis of the strongly con-
nected components (SCCs) that appear in the use-def chain
graph of the Gated Single Assignment (GSA) program rep-
resentation [16], which supplies efficient support for the ex-
amination of the control constructs that appear in the loop
body. Our infrastructure provides a unified framework for
the detection of parallelism in loop nests that contain com-
plex scalar and array kernels. We use the terms scalar kernel
and array kernel to designate kernels whose result is stored
in a scalar and an array variable, respectively. A complete
list of the kernels currently detected is detailed in [1]. Some
examples are complex forms of induction variables, linked-
list traversals, masked operations with scalars and arrays,
array operations with subscripted subscripts (e.g. irregular
assignments, irregular reductions, array recurrences)... In
this paper, we only introduce the kernels needed in our case
studies.

The rest of the paper is organized as follows. Section 2
gives the reader a general overview of our proposal. Con-
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Figure 1: Block diagram of the automatic detection technique.

cepts and terms that will be used in the explanations are
also introduced. Sections 3 and 4 describe our algorithms
for the recognition of the computational kernels represented
by the SCCs of the loop body (intra-SCC analysis), and by
the combination of a set of SCCs (inter-SCC analysis). Sec-
tion 5 presents a complex case study that shows the potential
of our infrastructure for the extraction of coarse-grain par-
allelism. Section 6 is devoted to experimental results that
compare our approach with the Polaris parallelizing com-
piler. Finally, Section 7 discusses related work, and Section 8
concludes the paper.

2. FRAMEWORKOVERVIEW
Our strategy for the automatic detection (and further par-

allelization) of complex loops is based on a compiler infras-
tructure that aims at the recognition of the kernels com-
puted in a loop. The block diagram of Fig. 1 shows a scheme
of the strategy. The stages in the operation of the compiler
infrastructure are depicted as dashed ovals. The sequence
of intermediate program forms that enable the extraction of
parallelism from the source code is represented by the chain
of solid rectangular boxes.

The different stages are described in the following subsec-
tions using as a guide the consecutively written array ker-
nel [10] presented in Fig. 2(a). This kernel consists of writing
consecutive entries of an array, a, in consecutive locations
during the execution of a loop, doh. The kernel implementa-
tion usually consists of a combination of a linear induction
variable of step one (variable i) that determines the array en-
tries to be written, and an assignment operation that defines
the value of an array entry, a(i), using a linear function of
the induction variable as the left-hand side subscript expres-
sion. The complexity of this loop comes from the fact that
i is incremented in those iterations where the condition c(h)
is fulfilled. In general, the condition is not loop-invariant,
so the sequence of values of i cannot be expressed as a func-
tion of the loop index variable h. The scalar tmp represents
temporary computations that do not introduce loop-carried
dependences at run-time.

2.1 Translation into GSA Form
The first step is the translation of the source code into

the Gated Single Assignment (GSA) program representa-
tion [16]. We perform kernel recognition on top of GSA
because it has some properties that ease the development

i = 1
DO h = 1, n

IF (c(h)) THEN
tmp = f(h)
a(i) = tmp + 2
i = i + 1

END IF
END DO

(a) Source code.

i1 = 1
DO h1 = 1, n, 1

i2 = µ(i1, i4)
a1 = µ(a0, a3)
tmp1 = µ(tmp0, tmp3)
IF (c(h1)) THEN

tmp2 = f(h1)
a2 = α(a1, i2, tmp2 + 2)
i3 = i2 + 1

END IF
i4 = γ(c(h1), i3, i2)
a3 = γ(c(h1), a2, a1)
tmp3 = γ(c(h1), tmp2, tmp1)

END DO

(b) GSA form.

Figure 2: Consecutively written array computa-
tional kernel.

of tools for automatic program analysis. Some of the most
relevant are the elimination of false dependences for scalar
and array definitions (not for array element references), the
representation of reaching definition information in a syntac-
tical manner, and the capture of the conditional expressions
that determine the control flow of the program.

The GSA form is an extension of Static Single Assign-
ment (SSA) [5] that captures the flow of values of scalar
and array variables, even in loops with complex control con-
structs. This task is accomplished by inserting a set of spe-
cial statements right after the points of the program where
the control flow merges, and by renaming the variables of
the program so that they are assigned unique names in the
definition statements. The GSA form corresponding to the
loop of Fig. 2(a) is presented in Fig. 2(b). Special state-
ments are inserted for each variable defined within the loop
body, that is, the temporary scalar tmp, the linear induc-
tion variable i, and the array variable a. Three types are
distinguished on the basis of the location within the loop
body: µ-statements, associated with the header of the loop
doh1 ; γ-statements, inserted after the if-endif construct; and
α-statements, which replace array assignment statements.

2.2 Recognition of Basic Kernels
In an early stage of the work, a suite of real codes that

contain complex loops was carefully analyzed by hand. As
a result, it was found that the body of most of the loop
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Figure 3: Graph representations of the kernel shown in Fig. 2.

nests can be represented as a combination of simple ker-
nels, which will be referred to as basic computational ker-
nels. The recognition of basic kernels is carried out through
the analysis of the strongly connected components (SCCs)
that appear in the GSA graph of the loop, that is, the graph
of factored use-def chains corresponding to the GSA form.
We call SCC class to the type of basic kernel, and SCC clas-
sification algorithm to the procedure that derives the SCC
class from the GSA graph. The SCC class is denoted as
[SCC(x1...n)], x1, . . . , xn being the variables defined in the
GSA statements of the SCC.

The GSA graph associated with the loop of Fig. 2 is de-
picted in Fig. 3(a). The nodes represent the assignment
statements, and the labels are the left-hand side symbols.
The edges correspond to chains between pairs of statements.
For clarity, the information related to the index variable
of the loop, h1, was omitted from the graph. The consec-
utively written array computations contain two basic ker-
nels: a conditional linear induction variable (variable i) and
an array assignment operation (variable a). In the former
kernel, the statements that define different instances of i
(i2 = µ(i1, i4), i3 = i2 + 1 and i4 = γ(c(h1), i3, i2)) com-
pose a SCC in the GSA graph. In the latter kernel, the
SCC consists of a1 = µ(a0, a3), a2 = α(a1, i2, tmp2 + 2) and
a3 = γ(c(h1), a2, a1). We use the notations SCCS

1 (i2...4)
and SCCA

1 (a1...3) for the SCCs of i and a, respectively. The
subscript denotes the cardinality of the SCC, which is the
number of different variables of the source code that are de-
fined in the statements of the SCC. When the cardinality is
zero or one, the superscript shows whether the variable of
the source code is a scalar (S for scalar SCCs) or an array
(A for array SCCs). The GSA graph of Fig. 3(a) contains
two additional SCCs that represent the flow of values of the
temporary variable tmp: SCCS

1 (tmp2) and SCCS
0 (tmp1,3).

SCCs with cardinality greater than one are not considered in
this work as they represent a small percentage of the SCCs
that appear in our benchmark suite.

2.3 Recognition of Loop-Level Kernels
The goal of our compiler infrastructure is the recognition

of higher-level computational kernels that result from a com-
bination of a set of basic kernels. In order to illustrate this
fact, consider the loop of Fig. 2(a). The isolated detection
of the linear induction variable i, and the array assignment
operation a, does not provide enough information to recog-

nize the consecutively written array loop-level kernel. For
the compiler to have success, the relationship between both
basic kernels has to be analyzed.

The information extracted from the source code during
the execution of the SCC classification algorithm is repre-
sented in the SCC graph. In Fig. 3(b) the SCC graph of
the consecutively written array computations of Fig. 2 is
depicted. Nodes of different shapes represent SCCs with
different properties. Oval nodes highlight the presence of
trivial SCCs (e.g. SCCS

1 (tmp2)), which consist of only one
GSA statement. Shaded ovals represent the trivial SCCs
corresponding to loop index variables (e.g. SCCS

1 (h1)). Re-
garding non-trivial SCCs, two subtypes are distinguished:
structural non-trivial SCCs (rectangular nodes), where the
variable of the kernel is not tested in the conditional ex-
pression of any γ-statement of the SCC (e.g. SCCA

1 (a1...3));
and semantic non-trivial SCCs, whose variable is tested (not
used in our example). The class of each SCC is printed
next to the corresponding node. The notations for the SCC
classes are introduced using the examples of Fig. 3(b). The
class of the scalar component SCCS

1 (i2...4) is denoted by
the pair cond/lin, where the term lin means that the kernel
consists of a linear induction variable, and the term cond
indicates that it is conditionally computed during the exe-
cution of the loop. The value none is used for the initial-
ization of the classes before the execution of the SCC clas-
sification algorithm. As a result, when the SCC contains
only µ or γ statements, the class inherits that value (e.g.
SCCS

1 (tmp1,3)). The notation used for trivial SCCs consists
of one term that shows the scalar kernel computed in the
statements of the SCC. Thus, the value subs (abbreviation
of subscripted) of [SCCS

1 (tmp2)] indicates the loop-variant
nature of the expression f(h1) assigned to tmp in each it-
eration of doh1 . Finally, the notation cond/assig/lin corre-
sponding to the class of the array component SCCA

1 (a1...3)
is as follows. The first element (cond) is the conditionality of
the kernel, the second element is related to the structure of
the assignment statements (assig for assignment operations),
and the third element captures the class of the left-hand side
subscript expression of the statements (lin for a linear access
to the entries of the array). The interpretation of the SCC
graph is completed with the description of the edges. The
edges represent the use-def chains (and thus relationships)
between statements of different SCCs. In order to identify
the use-def chains that are relevant for the recognition of



loop-level kernels, three types are distinguished: structural
use-def chains (solid edges), non-structural use-def chains
(dashed edges) and control use-def chains (dotted edges).
The labels of the edges show the expression that contains
the occurrence of the variable of the target SCC. For struc-
tural and non-structural use-def chains, the location of the
expression within the statement of the source SCC is also
presented: left-hand side subscript (lhs index), right-hand
side subscript (rhs index), or right-hand side non-subscript
expression (rhs). The relevance of this information for kernel
recognition will be pointed out throughout the paper.

The SCC graph is an intermediate program representa-
tion that exhibits the minimal set of properties that char-
acterize the computation of a loop-level kernel. We have
designed a SCC graph classification algorithm that iden-
tifies these typical scenarios in the SCC graph, providing
a compiler environment that guides the execution of addi-
tional checks that actually lead to the recognition of loop-
level kernels. We illustrate this key idea with the exam-
ple of Fig. 3(b). Consider the structural chain denoted as
SCCA

1 (a1...3) ⇒ SCCS
1 (i2...4), and depicted as a solid edge

in the figure. It indicates that the induction variable i is ref-
erenced in the index expression of the left-hand side array
reference (the label of the use-def chain contains lhs index) of
the source code assignment statement a(i) = tmp + 2. This
information points out the existence of a potential consecu-
tively written array kernel. As will be shown in Section 4,
the kernel is recognized after carrying out some additional
checks.

2.4 Generation of Parallel Code
The last stage of our automatic parallelization approach is

the generation of parallel code. This task, which is outside
the scope of this paper, basically consists of applying a paral-
lelizing technique to each loop-level kernel that, according to
our framework, can be executed in parallel. Techniques that
cover the parallelization of doacross loops [11, 20], irregular
reductions [7, 21], irregular assignments [3, 9] or even sev-
eral types of kernels [10] can be found in the literature. The
kernel recognition algorithms are a powerful information-
gathering infrastructure that supplies the information that
the implementation of the parallelizing transformations re-
quire. For instance, some techniques based on the inspector-
executor model reorder the iterations of a loop by analyzing
the contents of a set of index arrays. During the operation of
our algorithms these arrays are identified straightforwardly.
Another example consists of determining the optimal point
of a program for the insertion of a run-time test or an in-
spector. This issue can be addressed efficiently by using the
reaching definition information of the GSA form.

3. RECOGNITION OF BASIC KERNELS
The recognition of basic kernels is addressed through the

classification of the SCCs of the GSA graph according to
the taxonomy of SCC classes presented in [2]. We have de-
signed a recursive algorithm that reduces the computation
of a SCC class to determining the class of the statements
and the expressions that compose the SCC. The core of
the procedure is a demand-driven contextual classification
scheme that computes the class of an expression by means
of a transfer function that merges the classes of the cor-
responding subexpressions. The objective of this analysis
is searching the occurrences of the variable that introduces

DO h = 1, gsize

. . .
i = g(i)

END DO

(a) Loop that traverses
a linked-list implemented
with the array g.

DO h = 1, gsize

. . .
i = h + 1
r = r + g(i)

END DO

(b) Loop that computes
a scalar reduction using
the variable r.

Figure 4: Source codes to illustrate the contextual
classification of expressions.

loop-carried dependences, i.e. the variable associated with
the SCC. When the classification of a different statement
or SCC is needed for the analysis, the recursive step is exe-
cuted. The SCC classification algorithm provides the com-
piler with the classes of the SCCs and the use-def chains
between pairs of SCCs. This information is represented in
the SCC graph of the loop nest.

The term contextual classification refers to the fact that
an expression is not always assigned the same class. The
notation [e]

eref
p:l,E is used to represent the contextual class of

an expression e. The parameters that define the context
are: eref , the reference expression whose occurrences are
searched; l, the level of e within the tree representation of
E, e being a subexpression of another expression E (see
the concept level of an expression [18, Chapter 3]); and p,
which indicates if E is a subexpression of the left-hand side
of a statement (denoted as ), the right-hand side ( ), or
the conditional expression of a γ-statement (denoted as ?).
Consider the loops presented in Fig. 4. Let us focus on
the expression g(i) to illustrate why contextual classification
is needed. In Fig. 4(a), the loop-carried dependence intro-
duced by the scalar variable i is represented by a SCC in the
GSA graph. The right-hand side of the statement i = g(i)
is the expression g(i). Thus, the class [g(i)]i :0,g(i) is said to
be a linked-list traversal (denoted by the class list) because
the right-hand side expression consists of a reference to an
array variable g whose subscript expression is an occurrence
of eref , which is the left-hand side variable i. On the other
hand, the loop of Fig. 4(b) calculates a scalar reduction us-
ing the variable r. In this case, g(i) is an operand of the
sum operator that appears in the statement r = r + g(i), i
being a scalar variable that takes a different value in each
loop iteration. Thus, [g(i)]r :1,r+g(i) represents the compu-
tation of a loop-variant expression (class subs) because the
subscript i does not match the reference expression r.

The rest of this section is organized as follows. Section 3.1
describes the SCC classification algorithm. Section 3.2 ex-
plains this algorithm in detail using the example loop of
Fig. 2 as a guide.

3.1 SCC Classification Algorithm
The goals of this algorithm are the classification of the

set of SCCs of the GSA graph, and the classification of the
use-def chains between pairs of SCCs. It proceeds as fol-
lows. For each non-classified component, SCC(x1...n), it
is pushed onto a stack of SCCs and the computation of its
class, [SCC(x1...n)], is started. If the SCC is trivial, then the
class is [SCC(x1)]=[x1 = e1], where x1 = e1 is the unique



statement of the SCC. If it is non-trivial, then [SCC(x1...n)]
is calculated as [x1 = µ(x0, xn)], where x1 = µ(x0, xn) is the
µ-statement inserted after the header of the outermost loop
of the loop nest. As shown above, the determination of
[SCC(x1...n)] is simplified to the computation of the class
of a statement. Let x = e be a GSA statement. The class
[x = e] is calculated as the contextual class of the right-
hand side expression [e]x :0,e. From this moment, the trans-
fer functions perform a systematic traversal of e that aims
at the recognition of occurrences of the reference expression
x. The contextual classification of these occurrences will
lead to the recognition of the different classes of SCCs. Fi-
nally, if the SCC is semantic (see Section 2.3), the algorithm
determines the appropriate semantic class by checking the
properties of the corresponding conditional expressions.

The base case of our recursive algorithm is the classifica-
tion of independent SCCs as they contain no occurrence
of variables defined in statements of other SCCs. Once
[SCC(x1...n)] is determined, SCC(x1...n) is popped from the
stack, and the classification process of the remaining SCCs
continues.

The recursive step is executed when a non-independent
component, SCC(x1...n), is found. During the analysis of
the statements of the SCC, the occurrences of the variables
defined in other strongly connected components are found.
Each occurrence y enables the detection of a use-def chain
SCC(x1...n) → SCC(y1...m). At this moment, the classifi-
cation process of the source component SCC(x1...n) is de-
ferred, SCC(x1...n) is pushed onto the stack of SCCs, and
the classification of the target component SCC(y1...m) is
started. When [SCC(y1...m)] is computed, SCC(y1...m) is
popped from the stack, and the classification of SCC(x1...n)
continues at the same point where it had been deferred.
Once all the occurrences have been processed, [SCC(x1...n)]
is successfully determined. The final stage of the algorithm
is the classification of the use-def chains whose source com-
ponent is SCC(x1...n) as structural, non-structural or con-
trol chains.

The algorithm described above reaches a deadlock state
when the GSA graph contains mutually dependent SCCs.
These situations arise because, in order to enable a proper
kernel recognition, the SCCs of the GSA graph are con-
structed by ignoring the control use-def chains. The de-
tection of mutually dependent SCCs is performed by us-
ing the stack of SCCs in the following manner. If a use-
def chain SCC(x1...n) → SCC(y1...m) is found, the contents
of the stack are checked before starting the classification
of SCC(y1...m). If SCC(y1...m) is already in the stack, it
means that there is a set of use-def chains from SCC(y1...m)
to SCC(x1...n). Consequently, SCC(x1...n) and SCC(y1...m)
are mutually dependent. The transfer functions of the algo-
rithm have been designed so that mutually dependent SCCs
are assigned the class unknown.

3.2 Case Study
The graphs of Fig. 3 consist of five components. Two

non-trivial SCCs, SCCS
1 (i2...4) and SCCA

1 (a1...3), represent
the conditional induction variable i, and the conditional ar-
ray assignment operation a, respectively. There are also two
trivial SCCs, SCCS

1 (h1) and SCCS
1 (tmp2), which capture

the loop index h, and the temporary variable tmp. As tmp is
computed inside an if-endif construct, an additional compo-
nent, SCCS

0 (tmp1,3), appears in the GSA graph in order to

represent the flow of values. Without loss of generality, let us
assume that the SCCs are processed in the following order:
SCCS

1 (i2...4), SCCS
0 (tmp1,3), SCCA

1 (a1...3), SCCS
1 (h1) and

SCCS
1 (tmp2).

The class [SCCS
1 (i2...4)] is determined first. A tree repre-

sentation of the classification process is depicted in Fig. 5.
The picture consists of two trees. The tree on the left il-
lustrates the decomposition of [SCCS

1 (i2...4)] into the clas-
sification of the statements and the expressions included in
the component. The labels of the child nodes represent the
classes that have to be determined in order to compute the
class shown in the label of the parent node. The solid edges
highlight this top-down process. The tree on the right shows
the class derived for each node of the left-hand side tree. The
dashed edges depicted in the first three levels emphasize this
correspondence. The class of each expression, statement or
SCC is calculated by means of an appropriate transfer func-
tion that merges the classes associated with the child nodes.
In [1] we have defined a set of transfer functions that check
the characteristics of a wide range of kernels. Note that by
making little changes in the transfer functions, the infras-
tructure can be easily extended to recognize new kernels.
Due to space limitations, partial definitions of the transfer
functions that cover the relevant situations for the analysis
of our example loop are presented in this paper. For clarity,
the name of the transfer function is not shown in the figure
when a parent node inherits the class of its unique child.
The dotted edges highlight this bottom-up process.

The execution of the SCC classification algorithm corre-
sponds to the depth-first traversal of the tree on the left. As
stated in Section 3.1, [SCCS

1 (i2...4)] is reduced to determin-
ing the class of the statement associated with the header
of doh1 , i.e. [i2 = µ(i1, i4)]. The class [i2 = µ(i1, i4)] in-
herits the contextual class of its right-hand side expression,
[µ(i1, i4)]

i
:0,µ(i1,i4) , which will be obtained after the clas-

sification of the arguments i1 and i4. The occurrence i1
corresponds to the initialization of the induction variable
before the execution of the loop. As the statement i1 = 1 is
located outside the loop body, the class [i1]

i
:1,µ(i1,i4) is de-

termined by applying the transfer function of loop-invariant
expressions, K:

TK : [K]
eref
p:l,E =

=

inv if eref is scalar

assig/[s]a(s)
:1,a(s) if eref matches a(s), l = 0

inv if eref matches a(s), l > 0

(1)

where the class inv represents a loop-invariant expression.
As explained in Section 2.3, the notation for the classes of
scalar and array SCCs consists of tuples whose first element
represents the conditionality of the SCC. As the condition-
ality refers to the presence of γ-statements in the SCC, it
will only be modified in the transfer function of the γ special
operator, Tγ . For the sake of clarity, this information (i.e.,
the term cond) is not shown in the transfer functions. Re-
garding our example, as the reference expression is a scalar
variable i, the first entry of TK is applied and [i1]

i
:1,µ(i1,i4)

is set to inv.
The second argument of µ(i1, i4) is an occurrence of the

variable defined in the γ-statement, i4 = γ(c(h1), i3, i2) of
SCCS

1 (i2...4). The class [i4]
i

:1,µ(i1 ,i4) will be the result of



Figure 5: Classification of the components 1 ( 2 4) and 1 ( 1) of the SCC graph shown in Fig. 3(b).

the transfer function of the identifier of a scalar/array vari-
able (generically denoted as y):

Ty : [y]
eref
p:l,E =

=

[stmdef ] if stmdef ∈SCC(x1...n)

and stmdef %∈ stackstm

lin if stmdef ∈SCC(x1...n)

and stmdef ∈ stackstm

and stmdef is a µ-statement

and y is a scalar variable

and stmuse is a scalar

or an α-statement

[SCC(y1...m)] if stmdef %∈SCC(x1...n)

and stmdef ∈SCC(y1...m)

and stmdef is a scalar, α

or γ-statement

and [SCC(y1...m)] %=unk

and SCC(y1...m) is scalar

and l > 0

(2)

where SCC(x1...n) is the component whose classification
is in progress (i.e. SCCS

1 (i2...4)); stmdef and stmuse are
the definition and use statements of the variable within
the loop body (in our case study, i4 = γ(c(h1), i3, i2) and
i2 = µ(i1, i4), respectively); SCC(y1...m) represents the SCC
where y is defined; and stackstm is the stack of statements
already visited in SCC(x1...n). As i4 = γ(c(h1), i3, i2) is

a statement of SCCS
1 (i2...4) that has not been visited yet,

it is not included in stackstm. Thus, according to the first
entry of Eq. (2), the computation of [SCCS

1 (i2...4)] is re-
duced to determining the class of the definition statement
[i4 = γ(c(h1), i3, i2)].

The classification of i4 = γ(c(h1), i3, i2) continues with
the analysis of the right-hand side γ expression and, later,
the analysis of the subexpressions c(h1), i3 and i2. Let us
focus on the classification of c(h1). The array reference con-
tains two subexpressions c and h1 that are classified before
applying the transfer function Ta(s):

Ta(s) : [a(s)]yp:l,E =

=

unk if [s]yp:(l+1),E=unk

inv if [a]yp:l,E=[s]yp:(l+1),E=inv

list if [a]yp:l,E=inv, and [s]yp:(l+1),E=list

subs otherwise

(3)

where a(s) is the array reference target for classification, y
represents a reference expression that consists of a scalar
variable, and the class unk (abbreviation of unknown) de-
notes a non-recognized scalar kernel. First, [c]i?:1,γ(c(h1),i3,i2)

is set to inv by applying the first entry of TK in Eq. (1).
The computation of [h1]

i
?:2,γ(c(h1),i3,i2) deserves special

mention because, as h1 is defined in a different component
SCCS

1 (h1), the recursive step of the SCC classification algo-
rithm is applied (see the third entry of Ty in Eq. (2)). Thus,
the classification of SCCS

1 (i2...4) is deferred, it is pushed
onto the stack of SCCs, and the classification of SCCS

1 (h1)



is started on demand. The details of the computation of
[SCCS

1 (h1)] are depicted inside boxes in the trees of Fig. 5.
As SCCS

1 (h1) is independent (DO h1 = 1, n, 1 contains no
occurrences of the variables associated with other SCCs),
[SCCS

1 (h1)] is assigned the value lin according to the third
entry of the transfer function for loop header statements,
which is presented below:

TDO : [do v = einit, elimit, estep] =

=

unk if [einit]
v

:1,einit
=unk or

[elimit]
v

:1,elimit
=unk or

[estep]v :1,estep=unk

subs if [einit]
v

:1,einit
=subs or

[elimit]
v

:1,elimit
=subs or

[estep]v :1,estep=subs

lin otherwise

(4)

Next, SCCS
1 (i2...4) is popped from the stack and its clas-

sification process continues at the same point where it had
been deferred. Thus, the fourth entry of Eq. (3) is applied
and [c(h1)]

i
?:1,γ(c(h1),i3,i2) is set to the class subs.

The execution of the SCC classification algorithm con-
tinues in a similar manner. At the end, after applying
more transfer functions (see T+, Tγ or Tµ in Fig. 5), the
class cond/lin that represents the conditional linear induc-
tion variable kernel is derived for [SCCS

1 (i2...4)]. When the
classification of SCCS

1 (i2...4) finishes, two components of
the loop have been successfully classified: SCCS

1 (i2...4) and
SCCS

1 (h1). Due to space limitations, the details about the
classification of the remaining components, [SCCS

0 (tmp1,3)],
[SCCA

1 (a1...3)] and [SCCS
1 (tmp2)], are not presented. The

results are shown in the SCC graph of Fig. 3(b).
The information gathered from the source code during the

execution of the SCC classification algorithm is represented
in the SCC graph. The nodes show the SCCs and the SCC
classes. The edges are the use-def chains between SCCs,
which are found when the classification process of a new
SCC is launched on demand. The label of a use-def chain is
determined as follows:

label =

E′ if p =?

lhs index : E′ if p = , subscript-level> 0

rhs index : E′ if p = , subscript-level> 0

rhs : E′ if p = , subscript-level= 0
(5)

where E′ is the scalar/array reference of minimum level
within E that contains the occurrence; the term subscript-
level represents the indirection level of the occurrence within
E, i.e., the number of array references that there are in
the path from the root node of E. Furthermore, the differ-
ent classes of use-def chains are distinguished at this mo-
ment. The chain SCCS

0 (tmp1,3) ⇒ SCCS
1 (tmp2) is struc-

tural (solid edges in Fig. 3(b)) because it captures a depen-
dence between two scalar SCCs that are associated with the
same variable in the source code, namely, tmp. Furthermore,
the components SCCA

1 (a1...3) and SCCS
1 (i2...4) belong to

the classes cond/assig/lin and cond/lin, respectively. As the
class of the index expression and that of the scalar variable
coincide (lin), the use-def chain SCCA

1 (a1...3) ⇒ SCCS
1 (i2...4)

is classified as structural. The loop contains three SCCs
that include a γ-statement: SCCS

1 (i2...4), SCCS
0 (tmp1,3)

and SCCA
1 (a1...3). In all the cases, the conditional expres-

sion is c(h1). Thus, the SCC graph contains three con-
trol chains (dotted edges) whose target SCC is SCCS

1 (h1):
SCCS

1 (i2...4) SCCS
1 (h1), SCCS

0 (tmp1,3) SCCS
1 (h1),

and SCCA
1 (a1...3) SCCS

1 (h1). Finally, the use-def chains
represented by the notation SCCS

1 (tmp2) SCCS
1 (h1) and

SCCA
1 (a1...3) SCCS

1 (tmp2) are determined to be non-
structural (dashed edges in Fig. 3(b)) because they do not
fulfill the conditions stated above for structural and con-
trol chains. In the following section, an algorithm for the
analysis of the SCC graph is presented.

4. RECOGNITIONOFLOOP-LEVELKER-
NELS

The recognition of loop-level kernels involves two main
tasks. On the one hand, the analysis of the SCC graph
in order to isolate the set of kernels computed in a loop
nest. And, on the other hand, the actual recognition of the
different kernels. Section 4.1 presents our SCC graph classi-
fication algorithm, which carries out both tasks in a unique
traversal of the graph. Section 4.2 describes the algorithm
in the scope of our case study.

4.1 SCC Graph Classification Algorithm
The analysis of the SCC graph is performed as follows. For

each connected subgraph that appears in the SCC graph,
a demand-driven classification algorithm starts from each
non-wrap-around source node (abbreviated as NWSN). The
wrap-around source nodes are not considered because they
are associated with SCCs that consist of µ-statements only,
and thus they do not correspond with any statement of the
source code of the loop. The procedure for the classification
of NWSN subgraphs (i.e. the subgraph composed of the
set of nodes and edges that are reachable from a NWSN) is
the core of the SCC graph classification algorithm. It ba-
sically consists of a post-order traversal of the NWSN sub-
graph. When a node SCC(x1...n) is visited, the successors
in the SCC graph that are reached through structural, con-
trol and non-structural use-def chains are classified in that
order. The structural chains are analyzed first because they
capture the typical scenarios for the computation of the ker-
nels, and thus they serve as a guide for the execution of ad-
ditional checks. When a loop-level kernel is detected, the
corresponding class is added to the NWSN subgraph class,
i.e. the set of loop-level kernel classes associated with the
NWSN subgraph. Next, control and non-structural chains
are analyzed in order to gather additional information from
the source code of the loop nest. When the classification
of a successor finishes, a transfer function determines the
loop-level kernel represented by the target and source SCCs
of the corresponding use-def chain. The classification of the
NWSN subgraph fails if the class of the target SCC or the
class of the source SCC are unknown. In that case, the
NWSN subgraph class is set to unknown, and the classifica-
tion process of inner loops starts. It should be noted that
the nodes are visited only once. If a target SCC has already
been visited, the transfer function is applied directly. At the
end of the NWSN classification algorithm, the class of the
SCC of the NWSN is added to the NWSN subgraph class.

The final goal is to determine the set of loop-level ker-
nels computed in the loop nest. It is accomplished through
a transfer function that basically makes the union of the
classes of the NWSN subgraphs included in the SCC graph.



4.2 Case Study
The SCC graph of our example, shown in Fig. 3(b), con-

tains two NWSNs: SCCA
1 (a1...3) and SCCS

0 (tmp1,3). As-
sume that the NWSN subgraph associated with SCCA

1 (a1...3)
is classified first. The demand-driven algorithm visits the
node associated with SCCS

1 (i2...4) through the structural
chain SCCA

1 (a1...3) ⇒ SCCS
1 (i2...4), and begins with the

classification of the control chain SCCS
1 (i2...4) SCCS

1 (h1).
As the target component SCCS

1 (h1) is independent, the
demand-driven algorithm addresses the analysis of the con-
trol chain. The corresponding transfer function does not find
a loop-level kernel because SCCS

1 (h1) represents the com-
putation of the temporary variable h1 associated with the
loop index. Consequently, the analysis of the structural use-
def chain SCCA

1 (a1...3) ⇒ SCCS
1 (i2...4) is accomplished. As

the class of the source array SCC is cond/assig/lin, the class
of the target scalar SCC is cond/lin, and the occurrence of
i appears in the left-hand side subscript of the statement
a(i) = tmp + 2 (which is represented as lhs index in the la-
bel of the edge), the transfer function of structural chains
identifies the typical scenario for the computation of a con-
secutively written array kernel. Next, further checks are
performed in order to confirm the existence of the kernel.
For this purpose, we have used the approach of [10]:

1. All the operations on i are increments (or decrements)
of one unit.

2. Every time an array entry a(i) is written, the corre-
sponding induction variable i is updated. This task is
accomplished through the analysis of the control flow
graph (CFG) of the loop.

At this moment, the compiler recognizes the consecutively
written array kernel and adds the class cond/cwa to the
NWSN subgraph class. The demand-driven algorithm con-
tinues the analysis of the remaining edges and nodes of the
NWSN subgraph. However, no more loop-level kernels are
detected because the target SCCs of the use-def chains rep-
resent the computation of temporary variables.

The SCC graph contains another NWSN subgraph that
starts from SCCS

0 (tmp1,3). However, no loop-level kernel
is detected (i.e. the NWSN subgraph class is empty) be-
cause the NWSN SCCS

0 (tmp1,3) consists only of µ and γ
statements that capture the flow of values of the tempo-
rary scalar tmp, which does not provide the compiler with
relevant information from the point of view of kernel recog-
nition. Finally, the union of the NWSN subgraph classes
(the class cond/cwa and the empty class) determines that
the loop computes a consecutively written array.

5. ANALYSIS OFCOMPLEXLOOPNESTS
More complex computational kernels can be found in full-

scale programs. In order to show the potential of our GSA-
based compiler infrastructure, we have selected the source
code of Fig. 6. The example corresponds to a routine that
builds a sparse matrix in compressed row storage format (c,
jc, ic) from an input matrix (a, ja, ia) by extracting only the
elements that are stored in the positions pointed by a mask
matrix in sparse format (imask, jmask). In this section,
the detection of the loop-level kernels is described with no
previous assumption and independently of the semantics of
this code.

Consider the GSA form presented in Fig. 7. The code
consists of two outer loops. In the first loop, doj1 , the ini-
tialization of the temporary array iw to the logical constant
value false is performed. The second loop nest, doii1 , is
mainly devoted to the computation of two conditional con-
secutively written arrays c and jc, the scalar len being the
corresponding conditional induction variable. The complex-
ity of this example comes from the use of the variable iw
to control what loop iterations of dok3 actually compute the
array entries jc(len) and c(len). This mechanism is imple-
mented with two inner loops, dok2 and dok4 , which are exe-
cuted, respectively, at the beginning and at the end of each
doii1 iteration. In the first loop dok2 , the array elements
to be processed are marked. The value of iw is tested in
dok3 . If the mark is set, the corresponding elements c(len)
and jc(len) are calculated. Otherwise, no processing is per-
formed. Finally, the marks are unset in the second loop
dok4 .

Let us focus on the recognition of loop-level kernels. Con-
sider the SCC graph of the level-2 loop doii1 depicted in
Fig. 8. It contains three NWSNs: SCCA

1 (jc1...4), SCCA
1 (c1...4)

and SCCA
1 (ic1,2). As the classification of the NWSN sub-

graphs associated with the NWSN nodes SCCA
1 (jc1...4) and

SCCA
1 (c1...4) are very similar, we will focus on the detection

of the consecutively written array jc. The section concludes
with the classification of the NWSN subgraph corresponding
to SCCA

1 (ic1,2).
The demand-driven classification of the NWSN subgraph

of SCCA
1 (jc1...4) begins with the non-structural use-def chains

SCCS
1 (k2) SCCS

1 (ii1) and SCCS
1 (k4) SCCS

1 (ii1). As
SCCS

1 (ii1) is associated with the temporary loop index vari-
able, the algorithm continues with the analysis of the struc-
tural chains whose source component is SCCA

1 (iw3...7). This
SCC captures the flow of values of iw and, thus, enables the
recognition of the masking mechanism by the compiler. It
is accomplished by checking the following properties:

1. The class [SCCA
1 (iw3...7)] is non-cond/assig/subs, with

two structural chains SCCA
1 (iw3...7) ⇒ SCCS

1 (k2) and
SCCA

1 (iw3...7) ⇒ SCCS
1 (k4).

2. SCCA
1 (iw3...7) contains two α-statements that belong

to the body of the loops dok2 and dok4 .

3. The same elements of the auxiliary array iw are writ-
ten in dok2 and dok4 . This constraint is tested as fol-
lows:

(a) Check that the iteration spaces are equal. This
can be assured by proving that the init, limit and
step expressions of dok2 and dok4 are pair-wise
syntactically identical, so that both loop indices
take the same values. In the GSA form of Fig. 7,
the init, limit and step expressions are, respec-
tively, imask(ii1), imask(ii1 + 1) − 1 and 1 in
both loops.

(b) Check that the left-hand side subscript expres-
sions of the α-statements also take the same value
during the execution of doii1 . This condition is
fulfilled because both expressions, jmask(k2) and
jmask(k4), are syntactically identical except for
the occurrences of the index variables k2 and k4.
However, as shown above, k2 and k4 also take the
same values.



DO j = 1, ncol
iw(j) = false

END DO

DO ii = 1, nrow
DO k = imask(ii), imask(ii + 1) − 1

iw(jmask(k)) = true
END DO
k1 = ia(ii)
k2 = ia(ii + 1) − 1
ic(ii) = len + 1
DO k = k1, k2

j = ja(k)
IF (iw(j)) THEN

len = len + 1
jc(len) = j
c(len) = a(k)

END IF
END DO
DO k = imask(ii), imask(ii + 1) − 1

iw(jmask(k)) = false
END DO

END DO

Figure 6: Source code that filters the contents of
a sparse matrix using a mask matrix (extracted
from the SparsKit-II library, module unary, sub-
routine amask).

DO j1 = 1, ncol, 1
iw1 = µ(iw0, iw2)
iw2 = α(iw1, j1, false)

END DO

DO ii1 = 1, nrow, 1
iw3 = µ(iw1, iw6)
len2 = µ(len1, len3)
k1 = µ(k0, k4)
j2 = µ(j1, j3)
c1 = µ(c0, c2)
k11 = µ(k10, k12)
k21 = µ(k20, k22)
jc1 = µ(jc0, jc2)
ic1 = µ(ic0, ic2)
DO k2 = imask(ii1), imask(ii1 + 1) − 1, 1

iw4 = µ(iw3, iw5)
iw5 = α(iw4, jmask(k2), true)

END DO
k12 = ia(ii1)
k22 = ia(ii1 + 1) − 1
ic2 = α(ic1, ii1, len2 + 1)
DO k3 = k12, k22, 1

len3 = µ(len2, len5)
j3 = µ(j2, j4)
c2 = µ(c1, c4)
jc2 = µ(jc1, jc4)
j4 = ja(k3)
IF (iw4(j4)) THEN

len4 = len3 + 1
jc3 = α(jc2, len4, j4)
c3 = α(c2, len4, a(k3))

END IF
len5 = γ(iw4(j4), len4, len3)
c4 = γ(iw4(j4), c3, c2)
jc4 = γ(iw4(j4), jc3, jc2)

END DO
DO k4 = imask(ii1), imask(ii1 + 1) − 1, 1

iw6 = µ(iw4, iw7)
iw7 = α(iw6, jmask(k4), false)

END DO
END DO

Figure 7: GSA form of the loop shown in Fig. 6.
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Figure 8: SCC graph of the code presented in Fig. 6.



4. The temporary array iw is initialized in doj1 (value
false of iw2).

5. The elements of array iw are set to a value different
from false in dok2 (true of iw5), and those marks are
deleted in dok4 (false of iw7).

After the successful detection, the demand-driven algorithm
addresses the control chain SCCS

1 (len2...5) SCCA
1 (iw3...7).

It does not enable neither kernel separation nor kernel clas-
sification. However, it is relevant because it enables the
identification of those kernels whose execution is controlled
by the contents of the temporary array iw (in the exam-
ple, the cond/lin and cond/assig/lin basic kernels associated
with len and jc, respectively). The compiler performs the
following checks during the execution of the corresponding
transfer function:

1. The conditional expression iw4(j4) consists of an equal-
ity comparison between the value of the auxiliary array
iw and the value of the marks (true in iw5).

2. The loop dok2 precedes dok3 in the CFG, and dok3

precedes dok4 in the CFG.

In the next step, the consecutively written array jc is de-
tected as explained in Section 4.2 through the analysis of
the structural chain SCCA

1 (jc1...4) ⇒ SCCS
1 (len2...5). As a

result, the class cond/cwa is added to the NWSN subgraph
class. Hereafter, no more loop-level kernels are recognized
because the remaining nodes represent the computation of
temporary scalar variables. Consequently, the class derived
for the NWSN subgraph of SCCA

1 (jc1...4) is cond/cwa.
Apart from the consecutively written arrays jc and c, the

loop doh1 also calculates a non-cond/assig/lin kernel using
the array ic. This kernel is recognized through the classifi-
cation of the NWSN subgraph associated with SCCA

1 (ic1,2),
which proceeds as follows. As the target SCC of the struc-
tural use-def chain SCCA

1 (ic1,2) ⇒ SCCS
1 (ii1) is associated

with the temporary loop index variable ii, no loop-level ker-
nel is detected. The algorithm continues with the analysis of
the non-structural chain SCCA

1 (ic1,2) SCCS
1 (len2...5). It

does not enable the detection of new kernels, but it provides
useful information for the parallelization of the loop nest. In
particular, it indicates that the values of the array entries
ic(ii), which are determined by the induction variable len,
must be post-processed after the parallel execution of doii

in order to preserve the sequential semantics. Finally, the
classification of the NWSN subgraph finishes with the inser-
tion of the class of the NWSN, non-cond/assig/lin, in the
NWSN subgraph class. As a result, all the loop-level ker-
nels that appear in the level-2 loop nest of Fig. 6 have been
successfully recognized. Thus, the coarse-grain parallelism
implicit in the loop has been uncovered.

6. EXPERIMENTAL RESULTS

6.1 Experimental Conditions
We have developed a prototype of approximately 30, 000

lines of C++ code. The core of the prototype are the algo-
rithms to recognize basic and loop-level computational ker-
nels (see Fig. 1). We have used the support given by the
internal representation of the Polaris compiler [4]. Polaris
also provides the GSA form and the CFG of a Fortran77
source code.

Table 1: Number of complex loops detected by our
approach and by Polaris.

Detected by Also detected
our approach by Polaris

Level-1 parallel loops 33 15
non-cond/reduc 4 4
non-cond/assig/subs 12 0
cond/assig/subs 3 0
non-cond/reduc/subs 9 9
cond/reduc/subs 1 1
non-cond/cwa 1 1
cond/cwa 2 0
scalar-minimum-w/loc 1 0

Level-2 parallel loops 39 17
non-cond/assig/lin 6 1
cond/assig/lin 2 1
non-cond/assig/subs 6 1
cond/assig/subs 1 0
non-cond/reduc/lin 1 1
non-cond/reduc/subs 10 9
cond/reduc/subs 4 4
non-cond/cwa 1 0
cond/cwa 8 0

Level-4 parallel loops 1 0
non-cond/reduc/subs 1 0

Our benchmark suite is the SparsKit-II library [14], which
consists of a set of costly routines to perform operations
with sparse matrices. The routines are organized in four
modules: matvec, that includes basic matrix-vector opera-
tions (matrix-vector products and triangular system solvers)
with different types of sparse storage formats; blassm, which
supplies basic linear algebra operations for sparse matrices
(e.g. matrix-matrix products and sums); unary, that pro-
vides unary operations with sparse matrices (e.g. extract
a submatrix from a sparse matrix and perform mask op-
erations with matrices); and formats, which is devoted to
format conversion routines for different types of sparse stor-
ages. This library is a representative benchmark suite be-
cause it contains most of the complex computational kernels
enumerated in the introduction of the paper. Moreover, a
subset of those kernels was considered relevant for the anal-
ysis of full-scale sparse applications in [10].

6.2 Recognition Results
The experiments presented in this section focus on com-

plex loop nests because the analysis of regular computations
is a well-established topic. Table 1 compares the effective-
ness of our approach with the Polaris parallelizing compiler.
The results corresponding to the Polaris column show the
number of parallel loops detected by our approach that are
also detected by Polaris. The table is organized in sets that
present the results for the different nesting levels (level-1
refers to innermost loops). The first row summarizes the
totals, and the subsequent rows detail the results for each
loop-level kernel class. In some cases, Polaris only extracts
parallelism from the inner loops of the level-2 loop nests
handled by our approach.

The improvement in automatic parallelization effective-
ness is approximately 56%. Most of the increase results from
the recognition of (non-)conditional consecutively written



arrays (denoted as (non-)cond/cwa), and (non-)conditional
irregular assignments (class (non-)cond/assig/subs). Polaris
cannot parallelize loops that contain cond/cwa kernels be-
cause it cannot compute a closed form expression for the
corresponding conditional induction variable. An interest-
ing example of potentially parallel cond/cwa is the level-2
loop do100 of the routine rperm of the module unary. It
contains a conditional linear induction variable that is in-
cremented during the execution of an inner loop, and it is
reinitialized to a loop-variant expression at the beginning of
each iteration in the outer loop do100. This complex form of
induction variable is not handled by Polaris. However, this
level-2 loop can be executed in parallel with appropriate
run-time support. Our infrastructure provides an adequate
environment for the parallelization of this loop. The details,
which are outside the scope of this paper, are shown in [1].

The recognition of irregular assignment computations en-
ables the parallel execution of a wider set of loop nests, for
instance, the level-2 loops do1 of the routines diamua and
amudia of the module blassm. However, the detection of this
kernel is even more relevant because it provides support for
the recognition of variations of other kernels. The detection
of the cond/cwa kernel computed in the level-2 loop nest
analyzed in Section 5 (loop do100 of the routine amask of
unary) illustrates this issue.

The SparsKit-II library includes some complex loop nests
that contain other interesting computational kernels. Ta-
ble 1 shows the existence of a scalar-minimum-w/loc seman-
tic kernel (level-1 loop do1 of the routine blkfnd of mod-
ule unary). The class scalar-minimum-w/loc represents the
computation of both the minimum value of a set of val-
ues, and the position of that value within the set. Polaris
also fails to extract coarse-grain parallelism from two loop
nests that compute the well-known irregular reduction ker-
nel (captured by the class non-cond/reduc/subs). The most
interesting case is a level-4 loop that appears in the rou-
tine vbrmv of the module matvec, which includes a non-
conditional linear induction variable whose closed form ex-
pression cannot be computed by Polaris.

7. RELATED WORK
Several approaches have been proposed for the automatic

extraction of loop-level parallelism. Automatic program com-
prehension addresses the automatic parallelization of sequen-
tial codes by taking into account the semantics of the code.
Keßler [8] proposes a speculative program comprehension
method for a set of computational kernels with sparse vec-
tors and matrices. The code is analyzed with the aim of
recognizing syntactical variations that are frequently used
in full-scale applications. Program comprehension enables
aggressive code transformations such as local algorithm re-
placement using available parallel algorithms and machine-
specific library routines. The information could also be used
as a guide for applying optimizing transformations tuned for
each sparse kernel specifically. However, unlike the approach
presented in this paper, the scope of application is limited
because the semantics of the code is considered.

Gerlek, Stoltz and Wolfe [6] describe a method that ad-
dresses the recognition of integer-valued scalar computa-
tional kernels even in the presence of complex control con-
structs. The technique basically consists of a classification
scheme that recognizes the type of kernel calculated in the
statements of the SCCs that appear in the use-def chain

graph of the SSA form. The scheme can only handle ex-
pressions that involve scalar integer-valued variables. Thus,
expressions with array references, which appear very often
in real applications, are outside the scope of that technique.
In contrast, our technique based on the GSA form supports
not only integer-valued scalar expressions, but also floating-
point-valued expressions and references to array variables.
In particular, the array references with subscripted sub-
script expressions that characterize irregular codes can be
analyzed. This extension could seem to be of little signifi-
cance. However, the spectrum of computational kernels that
can be detected by the compiler is extended considerably.

Previous works on detection of parallelism in irregular
codes addressed the problem of recognizing specific and iso-
lated kernels (usually using pattern-matching to analyze the
source code), for instance, irregular reductions [12] or irreg-
ular assignments [9]. In this paper we presented a compiler
infrastructure that enables the detection of a wide range of
structural and semantic kernels in a unified manner. The
recognition of semantic kernels also allows the paralleliza-
tion of a wider set of complex loops. Furthermore, unlike
classic source code pattern-matching, our approach can be
easily extended to recognize new kernels by checking addi-
tional characteristics during the execution of the transfer
functions.

Suganuma et al. [15] present a technique limited to the
detection of complex scalar reduction constructs, including
semantic reductions, which are also detected by our ap-
proach. As in [6], the approach is based on the analysis of
the strongly connected components of a dependence graph.
However, the graph is constructed directly from the source
code of the program. Thus, it does not take advantage of
the information about the flow of values provided by inter-
mediate representations such as SSA or GSA.

Complex loops usually contain induction variables that
introduce loop-carried dependences at run-time. In classical
dependence analysis, the occurrences of non-conditional in-
duction variables are substituted for closed form expressions
in order to remove the loop-carried dependences introduced
by these variables. Different techniques have been proposed
for the computation of closed form expressions [6, 12, 22]. In
general, the approach described above cannot be applied to
loops with conditional induction variables. Wolfe [17] and
Wu et al. [19] address the problem by analyzing how the
induction variable changes during the execution of a loop.
The study focuses on determining whether the induction
variable is (strictly) increasing or decreasing. This infor-
mation is later used in dependence tests for discarding the
existence of loop-carried dependences in the references to
array variables. Our compiler infrastructure is compatible
with the techniques mentioned above. In fact, it can be used
to provide information to decide which is the most appro-
priate technique in each case, and apply these techniques on
demand.

8. CONCLUSIONS
This paper has addressed the automatic detection of co-

arse-grain parallelism in complex loop nests, as the com-
piler technology for the analysis of regular codes is well-
established. We have proposed a GSA-based compiler in-
frastructure that enables the recognition of a wide variety
of computational kernels independently of the semantics and
the quality of the code. Unlike other detection methods



that focus on partial aspects, our scheme is general, han-
dles scalar/array and structural/semantic kernels in a uni-
fied manner, and is easily extensible. Furthermore, the case
studies presented in this paper show the potential of our in-
frastructure for the recognition of complex variations of the
kernels. The experiments have shown that our infrastruc-
ture enables the detection of coarse-grain parallelism where
the Polaris parallelizing compiler fails.

As future work, we intend to measure the effectiveness of
our kernel recognition scheme in the analysis of complex loop
nests included in other representative benchmark suites. We
believe that this study would lead to the identification of
new computational kernels, and to the development of new
parallelizing transformations.
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