2011 IEEE 17th International Conference on Parallel and Distributed Systems

Design and Implementation of MapReduce using
the PGAS Programming Model with UPC

Carlos Teijeiro, Guillermo L. Taboada, Juan Tourifilo, Ramén Doallo
Computer Architecture Group
Department of Electronics and Systems, University of A Coruiia
Facultade de Informatica, Campus de Elvifia s/n, 15071 A Coruiia (Spain)

Abstract—MapReduce is a powerful tool for processing large
data sets used by many applications running in distributed
environments. However, despite the increasing number of com-
putationally intensive problems that require low-latency com-
munications, the adoption of MapReduce in High Performance
Computing (HPC) is still emerging. Here languages based on
the Partitioned Global Address Space (PGAS) programming
model have shown to be a good choice for implementing parallel
applications, in order to take advantage of the increasing number
of cores per node and the programmability benefits achieved
by their global memory view, such as the transparent access to
remote data.

This paper presents the first PGAS-based MapReduce imple-
mentation that uses the Unified Parallel C (UPC) language, which
(1) obtains programmability benefits in parallel programming, (2)
offers advanced configuration options to define a customized load
distribution for different codes, and (3) overcomes performance
penalties and bottlenecks that have traditionally prevented the
deployment of MapReduce applications in HPC. The perfor-
mance evaluation of representative applications on shared and
distributed memory environments assesses the scalability of the
presented MapReduce framework, confirming its suitability.

Index Terms—UPC, MapReduce, HPC, programmability, col-
lective primitives

I. INTRODUCTION

The implementation of coarse-grain parallelism to process
large data sets in a distributed environment has become a very
relevant issue nowadays. Here the use of the MapReduce [1]
paradigm has proved to be a suitable solution in a wide variety
of environments and applications. It consists of two phases:
the “Map” stage, in which a function is applied in parallel to
a set of input elements to generate another set of intermediate
key/value pairs, and the “Reduce” stage, in which all the
intermediate pairs with the same key are combined to obtain
the final output. MapReduce is being used in many application
fields, such as information retrieval [2], pattern recognition [3]
or processing of medical information [4].

Regarding current HPC platforms, the use of multicore clus-
ters with heterogeneous processors and hardware accelerators,
such as GPUs and FPGAs, is increasing because of their
capabilities for data processing. However, the use of MapRe-
duce for HPC requires high efficiency, and the exploitation of
data locality with parallel languages and libraries. Therefore,
a good approach is the use of new programming paradigms to
provide efficiency and programmability in code development,
such as PGAS [5]. The PGAS model is an emerging paradigm

1521-9097/11 $26.00 © 2011 IEEE 196

DOI 10.1109/ICPADS.2011.162

in which the memory is viewed as a global address space
divided in two areas, private and shared, both of them logically
partitioned in chunks that have affinity to different threads.
Thus, each thread has its own shared memory area that is used
to process data locally. The most relevant PGAS languages
are extensions of popular languages, such as C (UPC), Java
(Titanium) and Fortran (Co-array Fortran).

This work presents an implementation of MapReduce using
the PGAS programming model. The goal of this new approach
is to put together the potential of MapReduce for large
data sets and the programmability and efficiency of PGAS
languages in order to manage current and upcoming hardware
architectures. The UPC language [6] has been selected to
implement this framework, because it merges the powerful
features of C with constructs for parallel programming, such as
collective functions and remote memory copies using assign-
ments. The proposed MapReduce implementation has been
designed to be generic, that is, with ability to accept any type
of map and reduce operations defined by the programmer.
In order to illustrate the behavior of this framework, three
different applications have been selected for their analysis on
shared and distributed memory environments.

The rest of this paper is structured in the following sections.
Section 2 presents the state of the art in MapReduce implemen-
tations. Section 3 discusses the design and implementation of
MapReduce in UPC, explaining the most relevant design deci-
sions taken. Section 4 presents performance results using three
representative applications. Finally, Section 5 summarizes the
main conclusions of this work.

II. RELATED WORK

Currently, following the guidelines of the first MapReduce
framework published by Google [7], many other implemen-
tations of this framework using different languages have
been developed. In general, most of the existing MapReduce
implementations are written using object-oriented languages:
for example, the Google MapReduce framework was devel-
oped in C++, and a popular open source implementation of
MapReduce included in the Apache Hadoop project [8] was
written in Java.

The use of MapReduce has been generally applied to large
data-parallel problems that deal with the processing of large
sets of files, and these kinds of problems have also been used
as testbed for performance evaluations [9]. As these tasks are

@) CO‘ pute
1(!) I
& SOCIety

int map(void xinput, void =xkey,
int reduce(void xkey, void xvalue,
int ApplyMap(

int userDefDistrFlag,
void xApplyReduce(

int

int collFlag, int sizeKey,

void xvalue);
int nelems,

int (xmapfunc)(void #,void =x,void =x),
int algorithm ,

int (xreducefunc)(void x,void x,int,void x),
sizeValue);

void *result);

void xinputElems, int nelems,

int xweights);

int nelems, int gathFlag,

Listing 1.

usually integrated in applications written in Java or C++, all
these works have been focused on those languages using dis-
tributed memory environments. There is also a recent work on
the implementation of MapReduce for the X10 programming
language [10], which uses PGAS as basis for parallelism,
focusing specifically on exploiting programmability. The use
of X10 provides a Java-like approach that benefits of dealing
with heterogeneous platforms using a tuned virtual machine.
Even though the use of high-level structures is interesting for
general-purpose distributed applications, this type of process-
ing does not fit naturally on many HPC applications, such
as the simulation of biological processes, where performance
plays the most important role.

Although there is still very little work on MapReduce
applied to HPC, some interesting frameworks have been
implemented in C on shared memory, such as the Phoenix
project [11] and Metis [12], or using MPI C (linked to
a C++ library) for distributed memory environments, like
MapReduce-MPI [13]. Additionally, a study of the possibil-
ities of implementing an optimized version of MapReduce
with MPI [14] concluded that it is feasible, but additional
features to favor productivity and performance in MPI, such as
improved collective communications, are needed. Therefore,
our framework has been developed in order to overcome
these previous limitations in MapReduce support for HPC
and provide a simple and efficient implementation for both
shared and distributed memory environments based on UPC
and PGAS.

III. DESIGN AND IMPLEMENTATION OF UPC MAPREDUCE

The UPC MapReduce code is structured in two types of
functions: the generic management functions and the user-
defined functions. Management functions are used to support
the UPC MapReduce functionality, that is, they initialize
the framework and perform the necessary communications
between threads for work distribution at “Map” and data
collection at “Reduce”. User-defined functions include the
processing that should be performed on each element at the
map stage and on the intermediate elements at the reduction
stage. In order to maximize simplicity and usability, some
basic ideas have guided the implementation of the UPC
MapReduce framework:

o No parallel code development is needed: the management
functions can perform all the parallel work, thus the user

Signatures of the basic functions in UPC MapReduce

can simply write the sequential C code for the map
and reduce functions that will be applied to the input
and intermediate elements, respectively. However, if more
control on the work distribution at the “Map” stage is
desired, the framework also allows the user to disable
all these mechanisms and define a custom parallelization
routine within the map function.

« Simplicity in management: the generic management func-
tions for MapReduce should also be written in an expres-
sive and simple way. If the user needs to modify them, the
use of a clear coding favors a better understanding of the
processing of the management functions. Traditionally,
UPC code has always tried to exploit performance by
using privatizations and direct data movements using bulk
memory copies [15], but here the UPC MapReduce man-
agement codes tend to use higher level constructs, such
as collective functions, that encapsulate data movements
between threads.

« Reusability and flexibility: the tasks implemented by the
management functions are kept as generic as possible.
Thus, the parameters to these functions are treated as a
homogeneous set of values, in which each value has to
be processed in the same way, regardless of its type. This
generic typing is obtained by means of arrays of void type
(void *), and the correct interpretation of input and output
data to these functions is left to the user, because it can
vary depending on the application in which MapReduce
is used.

The piece of code included in Listing 1 presents the signa-
tures of the two user-defined map and reduce functions in
this framework, and the MapReduce management functions
that perform the mapping (ApplyMap) and the reduction
(ApplyReduce). The next subsections give a more detailed
description of the implementation process of the latter two,
and also some general remarks on the UPC implementation
of the framework.

A. Function ApplyMap

As can be seen in Listing 1, this function receives six
input parameters: (1) the function that should be used for
the “Map” stage, (2) the list of elements to which it has
to be applied, (3) the number of elements in that list, (4)
a flag (userDefDistrFlag) that indicates whether the
work distribution is performed by ApplyMap or the user

197

ARRAY OF WEIGHTS FOR 9 INPUT ELEMENTS
2 9 3 1 8 7 9 8 8
TH.0 TH. 1 TH. 2 MAX DIFF
BLOCK 2 9 3 1 8 7 9 8 8 11
CYCLIC 2 1 9 9 8 8 3 7 8 13
BALANCED 2 1 8 8 9 9 3 7 8 1
Figure 1. Examples of BLOCK, CYCLIC and BALANCED work distribution

defines a custom distribution, (5) an integer that identifies
the distribution algorithm, and (6) an array of weights that
indicates the workload assigned to each input element in the
list. According to this interface, first each thread must have the
whole list of input elements stored in their private memory
before calling to ApplyMap, and then the list is split in
subsets of elements that should be processed by each thread.
The work distribution flag determines the type of processing
used in ApplyMap. If this flag is not enabled, ApplyMap
distributes the input elements between threads according to the
algorithm selector passed as parameter, and the map function
provided by the user is applied to each single element to
generate an intermediate key/value pair (from now on, this
will be referred as ‘“element-by-element map”). If the flag
is enabled, the following two parameters in ApplyMap are
ignored, and the work distribution routine is performed inside
the map function for the whole set of input elements (“array-
based map”), thus returning a set of intermediate elements.
As a result of this, the implementation of the map function
(defined by the user) must be consistent with the work distri-
bution selected in ApplyMap. When an element-by-element
processing is chosen, ApplyMap implements four different
algorithms, that are selected using the following values for
the algorithm parameter:

¢ BLOCK: this algorithm divides the number of input ele-
ments according to a block distribution.

CYCLIC: this option assigns each input element to a
thread in a cyclic (round-robin) way, according to the
element position in the input array and the thread identi-
fier. The block and cyclic algorithms do not require the
definition of the weights parameter.

BALANCED: this algorithm implements a heuristic to
obtain a load-balanced distribution of input elements
between threads according to the values passed as pa-

198

rameters in the weights array (positive integer values).
The basis is that a high value for a weight indicates that
the associated input element presents a high workload,
thus each element in the input vector is assigned to the
thread whose current associated workload (according to
the value defined in a counter) presents the lowest value
of all threads.

BEST FIT: this option indicates the selection of the
most efficient algorithm among the three previous candi-
dates. To do this in a compact way, the first element in the
array of weights represents here a threshold value, and the
weights associated to the input elements are stored in the
following array positions. The threshold value indicates
the maximum difference between workloads for different
threads that may be considered as acceptable in order
to have a load-balanced execution. The workloads for
the block and cyclic algorithms are computed, and if the
highest workload difference is below the threshold for one
of them, that algorithm is selected for work distribution
(if both pass the test, the block distribution is selected
by default). If none of these is suitable, the balanced
algorithm is selected.

Figure 1 presents an example of work distribution among
three threads using a set of 9 input elements with different
computational weights, with the maximum difference of work-
load between threads. Here the BALANCED algorithm obtains
a more similar distribution of workload between threads than
the BLOCK or CYCLIC ones, because it takes advantage
of the implemented heuristic. Consequently, for this input
set the BEST_FIT algorithm would select the BALANCED
distribution.

It is important to remark that after the execution of
ApplyMap each thread keeps its own sublist of intermedi-
ate elements stored in the private memory space, which is

completely independent from the rest of the threads. These
intermediate elements are managed by the MapReduce frame-
work transparently to the user, thus they do not need to be
returned by ApplyMap.

B. Function ApplyReduce

This function takes six parameters (see Listing 1): (1) the
function that will be used to combine the elements produced by
each thread in the “Map” stage, (2) the number of intermediate
key/value pairs per thread, (3) the gathering flag, (4) the
collective communications flag (col1Flag), (5) the size of
each intermediate key, and (6) the size of each intermediate
value. The gathering flag (gathFlag) plays an important role
in deciding the necessary communications between threads at
the beginning of ApplyReduce. If its value is NOCOMM,
it indicates that each thread only requires its intermediate
values to return the final result, thus no communications
are performed. When set to ALLCOMM, all threads should
gather the intermediate data from the rest of the threads in
order to compute the reduction. Otherwise, a positive integer
value from 0 to THREADS-1 (being THREADS the number
of threads in the UPC execution) indicates the identifier of
the only thread that should gather the intermediate data and
compute the final result.

The communications required here by ApplyReduce are
performed at the same time by all threads, so collective
functions can be used. However, UPC MapReduce cannot
apply here directly the standard UPC collective primitives,
for two major reasons: (1) MapReduce operates on each
thread’s private memory space, but standard UPC collectives
must use shared arrays as source and destination, and (2)
some collective communications, such as the gathering of
intermediate elements, generally have a different number of
elements per thread, which is not supported with the standard
UPC collectives. Thus, in order to solve these issues and
improve programmability, a set of extended UPC collec-
tive operations has been implemented. They are based on
different proposals by the UPC community for extending
the standard collectives [16], including the use of private
arrays as source and destination, and communications with
a different number of elements in each thread (vector-variant
collectives). The decision of implementing a set of collec-
tives is justified because the use of these collectives is not
restricted to ApplyReduce, as they are also useful for some
implementations of the map function for array-based map.
These collectives use efficient algorithms for multicore cluster
architectures, implementing binomial-tree communications be-
tween nodes and flat-tree communications on shared memory
within a node, and are completely written in UPC using the
standard memory copy primitives, therefore they are portable.
Their use in ApplyReduce for communications between
threads is controlled using the collective communications flag
(collFlag parameter in Listing 1). If this flag is enabled,
collective functions are used for communication, and the user
should indicate the size of each key and value in the set of
intermediate elements as parameters to ApplyReduce. When

collFlag is not enabled, the intermediate elements are
transferred one by one to their corresponding destination(s).
The only requirement to use collectives in ApplyReduce is
that all intermediate keys and values must have the same size,
but this situation can be considered as the most common case
in practice. Listing 2 presents the signature of the extended
allgather collective used in ApplyReduce compared to the
standard UPC allgather: the vector-variant collective (named
upc_all gather all v priv) canread any amount of
data (nelems) with any given displacement in the source and
destination arrays (sdisp and ddisp, respectively), and also
being aware of the size of each element (typesize).

After the data communication step in ApplyReduce (if
required), the reduce function (first parameter) is applied to
the set of intermediate elements stored in the private memory
space of each thread. This user-defined function receives as
input parameters two arrays of keys and values (that represent
the set of intermediate elements) and the number of elements.
The combination of all these intermediate elements is con-
sidered as the final result of MapReduce, and it is returned
by one or all threads. If no communications between threads
took place in the previous step, each thread returns a portion
of the final result, and if communications were performed, all
threads (or only the selected thread) return the complete final
result.

The implemented approach establishes that the reduce
function defined by the user must always process all the
intermediate elements associated to each thread in a single
call, analogously to the definition of the array-based map in
ApplyMap commented in Section III-A. This design decision
allows a more flexible definition of customized reduction func-
tions for the user. An alternative design for ApplyReduce
could have also allowed the use of an element-by-element
reduction, but this type of processing would only be useful
for a restricted set of reduction operations on basic datatypes
(e.g. a sum of integers or a logical AND operation), and
it would be difficult to perform many other operations. For
example, the computation of the average value in a list of
integers would imply either the definition of a variable number
of parameters for the element-by-element reduce operation
(which would complicate the design of the function and thus
cause unnecessary trouble to the user), or the transfer of the
essential part of the processing to the ApplyReduce function
(which would not be acceptable for abstraction purposes).
Therefore, the definition of the reduction on the complete
set of intermediate elements has been considered as the best
choice for this implementation.

IV. PERFORMANCE EVALUATION

This section includes performance results for UPC MapRe-
duce on shared and distributed memory compared to the
Phoenix system [17] on shared memory, and the MapReduce-
MPI framework [13] for distributed memory. Both frameworks
rely on C++ libraries, but the MapReduce codes developed
with them can be written in C (using the MPI library for
MapReduce-MPI), therefore they can offer better performance

199

void upc_all_gather_all (
shared void xdst,

void upc_all_gather_all_v_priv (
void xdst, const void =xsrc,
shared int xnelems, size_t

shared
src_blk ,

shared const void =*src,

size_t nbytes, upc_flag_t mode)

int xddisp, shared
size_t typesize,

int xsdisp,
upc_flag_t mode)

Listing 2.

than other approaches that use Java codes, as stated in previous
evaluations [9].

A. Experimental Conditions

In order to evaluate the MapReduce framework, three ap-
plications have been selected: (1) Histogram (Hist), (2) Linear
Regression (LinReg) and (3) Word Count (WCount). Hist
obtains the values of the pixels in a bitmap image (values
for RGB colors, ranging from 0 to 255) and computes the
histogram of the image, that is, it counts the number of
pixels that have the same value for a color. LinReg takes
two lists of double-precision paired values that represent
coordinates, and computes the line that fits best for them.
WCount processes a set of input text files in order to count
the number of occurrences of distinct words. The UPC codes
for Hist and LinReg are based on the ones included in the
Phoenix distribution, although some changes have been made
in order to perform representative tests (e.g. the input values to
LinReg used here are double-precision numbers) and provide
analogous codes for UPC, C and MPI. It is important to note
that, according to the approaches described in Section III-A,
Phoenix always performs an array-based map at the “Map”
stage, whereas MapReduce-MPI always uses an element-by-
element map; thus, the UPC code has been adapted to have
a fair comparison with both approaches. Additionally, the
work distribution for all tests has been implemented using a
block algorithm, and collectives are used for all codes except
WCount. The input images for Hist were obtained from the
Phoenix web page, the LinReg coordinates were randomly
generated and the files for WCount were taken from the SPAM
corpus in the TREC Conference collection [18], widely used
in information retrieval.

The UPC MapReduce implementation has been evaluated
using two different testbeds. The first one (named SMP) is a
multicore system with 2 Intel Xeon E5520 processors (4 cores
per processor with hyper-threading enabled, thus 8 cores per
node which are able to run 16 threads simultaneously), and
8 GB of memory. The second one (FT) is the Finis Terrae
supercomputer installed at the Galicia Supercomputing Center
(CESGA) [19], which has 142 nodes with 16 cores per node
in 8 MontVale Itanium2 (IA64) dual-core processors at 1.6
GHz, 128 GB of memory per node and InfiniBand network.
In both environments, the UPC compiler used was Berkeley
UPC [20] (BUPC) 2.12.1 (released in December 2010), with
Intel icc 11.1 as C background compiler. BUPC uses threads
for intra-node communication and InfiniBand Verbs transfers
for inter-node communication. The HP MPI 3.3-005 library

Signatures of the standard UPC allgather collective and the extended vector-variant private collective used in ApplyReduce

was used in FT by MapReduce-MPI.

The SMP environment has been used for shared memory
executions, whereas the FT is only able to perform distributed
memory executions. The reason is that the optimizations in
Phoenix do not support the IA64 architecture of FT. Only
the most representative results for the three applications on
shared and/or distributed memory have been included because
of space limitations. Regarding executions on distributed mem-
ory, all executions maximize the number of threads (or MPI
processes) per node: all tests with up to 16 threads in FT were
executed on the same node, 2 nodes were used for 32 threads,
and so forth.

B. Performance Results

Figure 2 presents the most relevant comparative execution
times on distributed memory (for InfiniBand communications)
using UPC and MPI for Hist and WCount. The graph on the
left shows that the execution times of UPC are clearly lower
than those of MPI for Hist using 104.53 millions of input
values (only the results up to 32 threads are shown because for
a larger number of threads MapReduce-MPI does not scale),
but in the graph on the right the WCount execution times
with 75419 input files are very similar, achieving a speedup
of about 75 for 128 threads with both implementations. The
reasons for this behavior are the amount of input elements used
in each code and the implementation of MapReduce support
on MPI using C++ libraries. Even though the computational
load for WCount is clearly higher than for Hist in these
experiments, UPC MapReduce presents a more lightweight
implementation than MapReduce-MPI. We have observed that
90% of the sequential execution time of MapReduce-MPI for
Hist is spent in handling the C++ library structures associated
to every input element, whereas the same percentage falls to
an 8% for the presented WCount problem size (values obtained
from a performance profiling). Therefore, when there is a
very large number of input elements with little computation
(value testing and clustering in Hist), the element-by-element
map processing performed by MapReduce-MPI involves much
more overhead than processing a reduced number of input ele-
ments with more intensive computation for each one (obtaining
the words in a file in WCount). Nevertheless, the element-
by-element map in UPC MapReduce is not affected by this
circumstance because of its pure UPC implementation, thus it
obtains better results for Hist, and very similar performance for
WCount. As a consequence of this, MPI results are not shown
in the following figures for LinReg and Hist, because of their
poor performance with a large number of input elements.

200

Histogram with 104.53M values - MPI vs. UPC

Word Count with whole corpus (75419 files) - MPI vs. UPC

MapReduce-MP| =

100 F UPC MapReduce (element-by-element map) Emm=m |4

-
o
T

Execution Time (s)

0.1
1 2 4 8 16 32 64 128

Number of Threads

Figure 2. Performance comparison of MapReduce-MPI and UPC MapReduce on distributed memory (FT)

MapReduce-MP| o
UPC MapReduce (element-by-element map) ===
100 UPC MapReduce (array-based map) s
z
o 10
E
[=
c
]
'-g 1
o
Q
X
w
0.1
0.01
1 2 4 8 16 32
Number of Threads
Histogram with 468.75M values - Shared memory
8 T T T
Phoenix
UPC MapReduce (array-based map) ===
4 L.
z
o
E 2
=
c
2
5 9
o
Q
>
w
0.5

0.25

Number of Threads

Figure 3.

Additionally, the graph on the left shows that the use of an
array-based map with UPC for Hist obtains better results than
the default element-by-element map in ApplyMap, because
the array-based approach allows the user to define an opti-
mized map implementation for the whole set of input data,
and not just for every single element separately. Regarding
the WCount code, these differences are negligible, therefore
the results obtained using an array-based map are not shown
in the graph on the right. The possibility of implementing an
optimized array-based map for a given code greatly depends
on the nature of input data. For instance, the optimization
performed here for the Hist code consists in reading all
input data as a single array of characters, distributing it in
THREADS balanced chunks (one per thread) and classifying
the elements using bytewise comparison. This procedure can
be implemented because all input elements in Hist have
the same size (sizeof (int)), but it is impossible to do
the same optimization for WCount because the words have
different length. As a result of this, when the use of an
optimized array-based map is possible, it is the best option to

201

Histogram with 468.75M values - UPC on Infiniband

e MapReddce (elerﬁent-by-élement rﬁap) []
UPC MapReduce (array-based map) ===

100

10
CX
o
E
=
s
=
5
o
o
i
0.1

0.01

1 2 4 8 16 32 64 128
Number of Threads

Performance of Hist on shared and distributed memory (SMP and FT, respectively)

obtain the best performance. However, for a low or medium
amount of input data, such as in WCount, the programmers
can safely rely on the default element-by-element map, which
does not require the implementation of UPC routines for data
distribution.

Figure 3 shows performance results for Hist using 468.75
millions of input values. In our SMP testbed, the UPC imple-
mentation of Hist has better performance on shared memory
than Phoenix. This is related to the amount of input elements
processed and the use of shared C++ objects in Phoenix to
process the intermediate data, which involve a higher overhead
than the UPC processing. Additionally, one main reason for
this behavior is that the current version of the BUPC compiler
includes optimized shared memory communications through
threads, obtaining better performance. Unlike MapReduce-
MPI, Phoenix has similar execution times than UPC MapRe-
duce, mainly because of the use of an array-based approach
at the “Map” stage. Regarding distributed memory (InfiniBand
communications), the graph on the right presents the execution
times for the UPC implementation in order to show that

Linear regression with 60M doubles - Shared memory

64 T T T
Phoenix
UPC MapReduce (array-based map) ===

32

Execution Time (s)
©

Number of Threads

Linear regression with 60M doubles - UPC on Infiniband

UPC I\)IapReddce (eleﬁent-by-élement rhap) []
UPC MapReduce (array-based map) === |

Execution Time (s)

1 2 4 8 16 32 64 128
Number of Threads

Figure 4. Performance of LinReg on shared and distributed memory (SMP and FT, respectively)

the use of an array-based map is very relevant to obtain
lower execution times, because of the use of the optimizations
commented for the graph on the left in Figure 2.

Figure 4 presents the results of the LinReg code using
60 millions of input values. These graphs confirm that UPC
presents slightly better results than Phoenix for LinReg on
shared memory. Although the global computational workload
of this test is similar to that of Hist shown in Figure 3, here the
differences are smaller because the amount of input elements
is also smaller and thus the Phoenix C++ library overhead is
reduced. We have checked that the execution times for WCount
on shared memory (not shown for simplicity) follow the same
trend: they are almost similar for Phoenix and UPC (tested
with the whole TREC corpus, 75419 files). Once again, the
graph on the right of Figure 4 shows that the use of an array-
based map is a key factor to obtain better performance.

V. CONCLUSIONS

This paper has presented the first (to our knowledge) imple-
mentation of MapReduce using UPC that is intended to take
advantage of the productive programming of the PGAS mem-
ory model: it provides a shared memory view of distributed
memory systems, thus increasing programmability while al-
lowing data locality exploitation. This UPC MapReduce im-
plementation consists of two management functions for each
stage of processing (ApplyMap and ApplyReduce) that
can manipulate any kind of input elements in a generic way,
using two sequential user-defined map and reduce functions
and allowing flexible control on the workload distribution at
the “Map” stage, either automatically or user-defined. This
framework has been designed and implemented on a basis of
simplicity and usability, exploiting language facilities such as
collective functions, but always focusing on obtaining good
performance.

The UPC implementation of MapReduce has been evalu-
ated on shared and distributed memory environments using
three representative applications. The UPC MapReduce codes
have been compared to alternative frameworks (Phoenix and

202

MapReduce-MPI). According to the evaluations accomplished,
UPC MapReduce has obtained similar or better results than
those approaches on all shared and distributed memory ex-
ecutions, because of the use of a generic and simple UPC
framework that is based only on its own language constructs,
without calling external libraries, and also relying on efficient
communications at low level, specially on shared memory.
As a result, UPC has proved to be a good and feasible
solution for implementing a MapReduce framework in order
to execute codes on different HPC environments, offering
programmability without performance penalties, even being
able to achieve performance advantages.

ACKNOWLEDGMENTS

This work was funded by Hewlett-Packard and partially
supported by the Spanish Ministry of Science and Innovation
under Project TIN2010-16735. We gratefully thank CESGA
for providing access to the Finis Terrae supercomputer.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing
Tool,” Communications of the ACM, vol. 53, no. 1, pp. pp. 72-77, 2010.

[2] R. M. C. McCreadie, C. Macdonald, and I. Ounis, “On Single-Pass
Indexing with MapReduce,” in 32nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR’09),
Boston (MA, USA), 2009, pp. 742-743.

[3] P. Krajca and V. Vychodil, “Distributed Algorithm for Computing
Formal Concepts Using Map-Reduce Framework,” in 8th International
Symposium on Intelligent Data Analysis (IDA’09), Lyon (France), 2009,
pp. 333-344.

[4] S. J. Matthews and T. L. Williams, “MrsRF: an Efficient MapReduce
Algorithm for Analyzing Large Collections of Evolutionary Trees,” BMC
Bioinformatics 2010, vol. 11, no. Suppl. 1:S15, 2010.

[5] W. Carlson, T. El-Ghazawi, R. Numrich, and K. Yelick, “Programming
in the Partitioned Global Address Space Model,” in Tutorial at the 15th
Conference on High Performance Networking and Computing (SC’03),
Phoenix (AZ, USA), 2003.

[6] Unified Parallel C at George Washington University. http://upc.gwu.edu
[Last visited: May 2011].

[7]1 J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in 6th Symposium on Operating System Design and
Implementation (OSDI’04), San Francisco (CA, USA), 2004, pp. 137-
150.

[8] Hadoop Project. http://hadoop.apache.org [Last visited: May 2011].

[9]

[10]

[11]

[12]

[13]

C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and
C. Kozyrakis, “Evaluating MapReduce for Multi-core and Multiproces-
sor Systems,” in /3th International Conference on High-Performance
Computer Architecture (HPCA’07), Phoenix (AZ, USA), 2007, pp. 13—
24.

H. Dong, S. Zhou, and D. Grove, “X10-Enabled MapReduce,” in 4th
Conference on Partitioned Global Address Space Programming Model
(PGAS’10), New York (NY, USA), 2010.

R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System,” in 2009 IEEE
International Symposium on Workload Characterization (IISWC’09),
Austin (TX, USA), 2009, pp. 198-207.

Y. Mao, R. Morris, and F. Kaashoek, “Optimizing MapReduce for
Multicore Architectures,” in Technical Report MIT-CSAIL-TR-2010-020,
MIT, 2010.

MapReduce-MPI Library. http://www.sandia.gov/"sjplimp/mapreduce.html
[Last visited: May 2011].

[14]

[15]

[16]

(17]
[18]
[19]

[20]

203

T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards Efficient MapRe-
duce Using MPL” in 16th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’09), Espoo (Finland), 2009, pp. 240-249.

T. El-Ghazawi and S. Chauvin, “UPC Benchmarking Issues,” in 30th
International Conference on Parallel Processing (ICPP’02), Valencia
(Spain), 2001, pp. 365-372.

Z. Ryne and S. Seidel. UPC Extended Collective Operations Specifi-
cation. http://www.upc.mtu.edu/papers/UPC_CollExt.pdf [Last visited:
May 2011].

The Phoenix System for MapReduce
http://mapreduce.stanford.edu [Last visited: May 2011].
Text Retrieval Conference (TREC). http://trec.nist.gov [Last visited: May
2011].

Galicia Supercomputing Center (CESGA).
http://www.cesga.es/index.php?lang=en [Last visited: May 2011].
Berkeley UPC Project. http://upc.lbl.gov [Last visited: May 2011].

Programming.

