Efficiently Building the Gated Single
Assignment Form in Codes with Pointers in
Modern Optimizing Compilers*

Manuel Arenaz, Pedro Amoedo, and Juan Tourino

Computer Architecture Group
Department of Electronics and Systems
University of A Coruna, A Corufia, Spain
{arenaz,pamoedo, juan}Qudc.es

Abstract. Understanding program behavior is at the foundation of pro-
gram optimization. Techniques for automatic recognition of program con-
structs characterize the behavior of code fragments, providing compilers
with valuable information to guide code optimizations. The XARK com-
piler framework provides a complete, robust and extensible solution to
the automatic recognition problem that was shown to be effective to
characterize the behavior of Fortran77 applications. Our goal is to mi-
grate XARK to the GNU GCC compiler in order to widen its scope of
application to program constructs (e.g., pointers, objects) supported by
other programming languages (e.g., Fortran90/95, C/C++, Java). The
first step towards this goal is the translation of the GCC intermediate
representation into the Gated Single Assignment (GSA) form, an ex-
tension of Static Single Assignment (SSA) that captures data/control
dependences and reaching definition information for scalar and array
variables. This paper presents a simple and fast GSA construction al-
gorithm that takes advantage of the infrastructure for building the SSA
form available in modern optimizing compilers. An implementation on
top of the GIMPLE-SSA intermediate representation of GCC is described
and evaluated in terms of memory consumption and execution time using
the UTDSP, Perfect Club and SPEC CPU2000 benchmark suites.

1 Introduction

Automatic code optimization hinges on advanced symbolic analysis to gather
information about the behavior of programs. Compiler techniques for automatic
kernel recognition carry out symbolic analysis in order to discover program con-
structs that are frequently used by software developers (e.g., inductions, scalar

* This research was supported by the Ministry of Education and Science of Spain and
FEDER funds of the European Union (Projects TIN2004-07797-C02 and TIN2007-
67537-C03), and by the Galician Government (Projects PGIDIT05PXIC10504PN
and PGIDIT06PXIB105228PR). We gratefully thank the ArTeCS group (Universi-
dad Complutense de Madrid, Spain) for the profile information of the SPEC2000
benchmarks.

reductions, irregular reductions and array recurrences). XARK [7] (first pre-
sented in [4]) is an extensible compiler framework for the recognition of a compre-
hensive collection of kernels that appear in real codes with regular and irregular
computations, even in the presence of complex control flows. The framework an-
alyzes the Gated Single Assignment (GSA) form [12] in order to handle data and
control dependences, as well as scalar and array variables in a unified manner.
XARK was shown to be an effective tool to support parallel code generation [5],
compile-time prediction of the cache behavior [3], and program behavior char-
acterization [6].

The current implementation of XARK is built on top of the Polaris com-
piler [13], which limits its scope of application to the analysis of Fortran77 codes.
In order to handle codes written in other programming languages such as For-
tran90/95, C/C++ and Java, XARK is being ported to the GIMPLE interme-
diate representation of the GNU GCC compiler [1]. Advantages of using GCC
as a research and development compiler platform is that it is supported by an
increasing number of industrial and academic institutions, and that GCC is able
to compile codes written in many programming languages for a wide range of
computer architectures.

The contribution of this paper is a simple and fast algorithm for the con-
struction of the GSA form taking advantage of the infrastructure for building the
Static Single Assignment (SSA) form [9] available in modern optimizing compil-
ers. The key idea is to create artificial scalars that represent the memory regions
accessed through both array references and pointer dereferences, and later han-
dle these artificial scalars with the underlying SSA infrastructure. An advantage
of this approach is that it enables an optimizing compiler to run GSA-based
program transformations in the scope of an SSA-driven compilation process. An
implementation in the scope of the GIMPLE-SSA intermediate representation
of GCC is presented and evaluated with well-known benchmarks from different
application domains, namely, UTDSP, Perfect Club and SPEC CPU2000.

The rest of the paper is organized as follows. Section 2 describes the GSA form
and introduces the GSA construction algorithm. Section 3 describes the imple-
mentation in the scope of GIMPLE-SSA. Section 4 shows detailed experiments
that show the efficiency of the implementation. Finally, Section 5 concludes the
paper and outlines future work.

2 Algorithm for the Construction of the GSA Form

Modern optimizing compilers use intermediate representations based on the SSA
form in order to facilitate certain code optimizations. GSA is an extension of SSA
where the special ¢ operators inserted in the code capture both the reaching
definitions of scalar and array variables, and the predicates of the conditional
statements of the program. In GSA, different kinds of ¢s are distinguished:

— p(Zout, Tin), which appears at loop headers and selects the initial 24+ and
loop-carried x;, values of a variable.

procedure build-GSA()

[y

. Build the SSA form

2. Create pseudoscalars for each array/pointer variable

3. Replace array references and pointer dereferences with different
versions of the pseudoscalars
Replace the statements defining pseudoscalars with « operators

. Delete pseudoscalars of read-only variables

. Foreach pseudoscalar

(G20~

5.1. Run the SSA ¢-placement algorithm in order to insert ¢s
at the confluence nodes of the Control Flow Graph
5.2. Run the SSA variable renaming algorithm

6. Identify ¢ types at the confluence nodes of the Control Flow Graph
7. Create predicates for the = operators

}

Fig. 1. Pseudocode of the algorithm for building the GSA form using the infrastructure
for the construction of SSA form.

— (¢, T faise, Terue), which is located at the confluence node associated with a
branch (e.g., if-then-else construct), and captures the condition ¢ for each
definition to reach the confluence node: xfqise if ¢ is not fulfilled; z4pye, if ¢
is satisfied.

— a(aprew, S, €), which replaces array assignment statements located within ba-
sic blocks, and whose semantics is that the s-th element of an array variable
a is set to the value e, and the other elements take the values of the previous
definition of the array (denoted as aprev).

In general, building the GSA form involves three main tasks: (1) ¢-placement
for the insertion of us and ~ys in the points of the program where the control
flow merges; (2) a-placement, to replace the non-scalar assignment statements
(e.g., arrays, pointer dereferences) with as; and (3) variable renaming in order to
assure that the left-hand sides of the assignment statements are pairwise disjoint.
The key idea that enables the construction of the GSA form by means of the ¢-
placement and variable renaming algorithms of an existing SSA infrastructure is
to replace array references and pointer dereferences with artificial scalar variables
(from now on pseudoscalars). These variables represent the memory regions that
can be accessed through arrays and pointers as a unique entity.

Figure 1 presents the GSA construction algorithm proposed in this paper.
The pseudocode consists of seven steps. First, the program is rewritten into SSA
form. Second, the symbol table is analyzed in order to create a pseudoscalar for
each array variable and each pointer variable declared in the source code. Third,
the SSA form is scanned in order to replace each array reference and pointer
dereference with a new version of the corresponding pseudoscalar. Whenever a
pseudoscalar is inserted in the left-hand side of a statement, the right-hand side
is also replaced with an « operator (a-placement). Fourth, the pseudoscalars that
represent read-only variables are deleted as they will not lead to the insertion of
new ¢ operators in the fifth step. The fifth step uses the ¢-placement and variable
renaming algorithms provided by the SSA infrastructure to update the SSA form

pB = &B[0];
i= 0;
for (h=0; h<N; h++) {
if (A[n] '=0) {
*pB++ = A[h];
C[i] = h;
i++;
}
¥

Fig. 2. Gather operation implemented with array references and pointer dereferences.

with the reaching definitions of the pseudoscalars. Next, the sixth step classifies
¢ operators into p or 7y operators. Finally, for each -, the control flow of the
program that determines the reaching definitions of the v operator is captured
using the algorithm proposed in [10]. As a whole, this algorithm computes a
directed acyclic graph that reflects the hierarchy of if-then-else constructs and
that computes the set of predicates associated with each reaching definition of
the v operator.

3 Implementation using the GIMPLE-SSA Infrastructure

The algorithm described in the previous section has been implemented in the
scope of the GIMPLE-SSA intermediate representation of the GNU GCC com-
piler. GIMPLE is a three-address language with no high-level control flow struc-
tures (e.g., loops, if-then-else), which are lowered to conditional gotos. Each
GIMPLE statement contains no more than three operands and has no implicit
side effects. Temporaries are used to hold intermediate values as necessary. Vari-
ables that need to live in memory are never used in expressions. They are first
loaded into a temporary and the temporary is then used in the expression.

For illustrative purposes, Figure 2 shows an implementation of a gather op-
eration that filters out the elements of an input array A that are equal to zero.
Non-zero elements are stored in consecutive entries of an output array B by
dereferencing the pointer pB. In addition, the indices of the non-zero elements
are stored in the corresponding entries of the output array C. Figure 3(a) shows
the GIMPLE-SSA form built by GCC. The beginning of basic blocks is labeled
in the figure (e.g., <BBy>). The process of building GIMPLE works recursively,
replacing source code statements with sequences of GIMPLE statements. Thus,
the source code statement *pB++=A[h] in basic block <BBy> is substituted by five
GIMPLE statements that compute: (1) the offset of the element h with respect
to the base address of the array A (D11=h;*4); (2) the address of the memory
location that contains the entry A[h] (D2;=A+D1;); (3) the value of the array
element (D3;=*D2;); (4) the write operation to store that value in the entry of
array B pointed by pB (*pB=D3;); and (5) the increment of pB to point to the
next entry of array B (pBo=pB;1+4). Figure 3(a) also shows the variables declared
in the program, and indicates the versions of each variable created during the
construction of the SSA form.

/* Declarations */
pB :: pBo,pB1,pB2,pB3

A

B

C

i t: ig,ip,is,is
h :: hg,h;,ho,hs
D1 :: D1p,D1;
D2 :: D2¢,D2;

D3 :: D3p,D3;

D4 :: D4y

D5 :: Dbg

/* Statements */
<BBgp>:
PBo = B;
ip = 0;
ho = 0;
goto <BBy>;

<BB1>:
Dip = hy * 4;
D2y = A + Dig;
D3p = *D2p;
if (D3 !'= 0)
goto <BBx>
else
goto <BB3>

<BB3>:
D1; = hy * 4;
D27 = A + D1

D3; = *D2;;
*pB = D3;;
pB2 = pB1+4;

D4p = i1 * 4;
D5¢g = C + D4p;
*D5¢ = hi;
iog = i1+1;

<BB3>:
iz = ¢(i1,12);
pB3s = ¢(pB1,pB2);
ho = hyj+1;

<BB4>:
ip = ¢(io,i3);
hy = ¢(ho,h2);
pB1 = ¢(pBo,pB3);

if (h;<=N) goto <BB;>;

/* Declarations */
pB :: pBo,pBi,pB2,pB3

: hg,h;,hs,hs
:: D1p,D1y
2 :: D2p,D2;
D3 :: D3p,D3;
D4 :: D4y
D5 :: D5g
0pB :: OpBp, OpBi
OA :: OAp,0Aq

A
B
C
i ig,i1,1i0,1i3
h
D
D

6c :: 9C0,9C1

/* Statements */

<BBp>:
PBo = B;
ip = 0;
ho = 0;

goto <BBy>;

<BB;>:
Dip = hy * 4;
D2y = A + Dig;
D3g = OAp;
if (D3p !'= 0)
goto <BBy>
else
goto <BB3>

<BB2>:
Di; = h; * 4;
D2; A + D1;;
D3; = 0A;;
OpBy = «(6pB1,0,D31);
pB2 = pBi+4;
D4g = iy * 4;
6Co = «(6Cq1,D4p,h1);
ip = iy+1;

<BB3>:
iz = ¢(i1,i2);
pB3 = ¢(pB1,pB2);
ho = hi+1;

<BB4>:
i3 = ¢(ip,is);
h; = ¢(ho,h2);
pB1 = ¢(pBo,pB3);
if (h1<=N) goto <BB;>;

/* Declarations */
pB :: pBo,pBi,pB2,pB3

:: hp,h;,hs,hs

:: D1p,D1y

2 :: D2p,D2;

D3 :: D3p,D3;

D4 :: D4y

D5 :: Dbg

0pB :: OpBg,0pB1,0pBa,OpBs
6C :: 6Cy,0Cq1,0C5,0C3

A
B
C
i:: ig,i1,1i0,i3
h
D
D

/* Statements */

<BBp>:
pBo = B;
ig = 0;
ho = 0;

goto <BBy>;

<BB;>:
Dip = hy * 4;
D2y = A + Dig;
D3p = *D2¢p;
if (D3p !'= 0)
goto <BBy>
else
goto <BB3>

<BB2>:
Di1; = h; * 4;
D2, A + D1y
D3; = *D2;;
OpB2 = o (6pBy,0,D31);
PB = pBi+4;
D4g = i1 * 4;
6Co = «(6Cy,D40,h1);
ig = ij+1;

<BB3>:
iz = v(D30!=0,i1,i2);
pB3 = v(D3¢!=0,pB1,pB2);
0pBs = ~(D3p!=0,0pB1,0pB2) ;
6Cs = v(D3¢!=0,6C;,6C3);
ho = hi+1;

<BB4>:

i; = p(io,is);

hy = p(hp,h3);

pB1 = p(pBo,pBs);
0pB1 = p(6pBo,0pB3);
6C1 = u(hCo,0C3);

if (h1<=N) goto <BB;>;

(a) After step 1. (b) After steps 2 and 3. (c) After steps 4 to 7.

Fig. 3. Construction of the GSA form on top of GIMPLE-SSA using the algorithm of
Figure 1 for the case study of Figure 2.

Table 1. Representation of C and Fortran declarations and uses in GIMPLE form.

Source code T GIMPLE form I
Language)|| Declaration [Use] Declaration] Use [Type]]
C parameter void f(int A[]) AT int ¥A D=A+i*sizeof(int) [2
parameter void f(int *A) A+ *D
local int *A *A int *A *A 1
parameter void f(int A[NJ[M])[A[][j] [|int[M] *D |[D=A+i%sizeof(int) [2
(*D)[j]
local int A[NJ[M] AT [[Int[NTM] A TAT[] 3
Fortran |[[parameter subroutine f(A) AQ) int[N] A~ [(FA)[i-1] 3

integer A(N)
parameter subroutine f(A) AD) int[] *A
integer A(*)
parameter subroutine f{A) A(1]) [[int[NFM] FA[(FA)[G-T)*N+(G-I)]| 3
integer A(N,M)
local integer A(N) A(Y) int AN] AT-I] 3
local integer A(N,M) A1) [[Int[N*M] A TA[G-D*N+(@G-1)] 3

The translation of the GIMPLE-SSA form into GSA starts by creating pseu-
doscalars for each array variable (A4, B and C) and for each pointer variable (pB)
declared in the source code of the program. In Figure 3(b), pseudoscalars are
denoted by the name of the source code variable prefixed by the symbol 6 (A,
6B, 0C and 6pB). GIMPLE is a common representation for source codes writ-
ten in different programming languages, and thus array references and pointer
dereferences can be represented in many different ways. Table 1 presents the
GIMPLE representation of several declarations and uses in C and Fortran. Two
scopes are considered: parameter for subroutine arguments, and local for subrou-
tine local variables. The last column identifies the three types of representations
distinguished in the third step of the algorithm of Figure 1 for the creation of
new versions of the pseudoscalars:

1. Dereferences of source code pointers, which are substituted by a new version
of the pseudoscalar of that pointer (see *pB=D3; and 6pBy=« (pB;,0,D31)
in basic block <BBy> of Figures 3(a) and 3(b), respectively).

2. Dereferences of temporaries, replaced with a new version of the pseudoscalar
associated with the corresponding source array or pointer variable (see ¥*D5g=h;
and 0Cy=a(6Cy ,D4¢,hy) in basic block <BBy>).

3. Dereferences of array variables and array references, substituted by a new
version of the pseudoscalar of the corresponding source array variable.

The third step of the algorithm is completed by replacing with « operators those
GIMPLE-SSA statements whose left-hand side has been substituted by a version
of a pseudoscalar. The arguments of the a operator are: a new version of the
left-hand side pseudoscalar, the offset of the memory location whose value is
written during the execution of the statement, and the value assigned to the
memory location. The offset is determined as follows. For type one, the offset
is zero because the statement writes in the memory location pointed by the
source pointer variable (see *pB=D3; and 6pB; = «(#pB;,0,D31) in Figures 3(a)
and 3(b), respectively). For types two and three, the offset is determined by the

subscripts of the GIMPLE array reference or by the offset added to the source
pointer variable (see *D5p=h; and 6Cy=a:(6Cy,D4¢,h1)).

The fourth step deletes the pseudoscalars corresponding to read-only vari-
ables as they will not lead to the insertion of new ¢ operators. Thus, the im-
plementation of the fifth step is straightforward and consists of running the
¢-placement and variable renaming algorithms available in the GCC infrastruc-
ture. For illustrative purposes, see the versions of the pseudoscalar 6A inserted
in basic blocks <BB;> and <BBy> of Figure 3(b) after step two, which have been
removed from the GSA form of Figure 3(c).

Finally, the different types of ¢ operators inserted by the ¢-placement al-
gorithm are identified. Thus, ¢s located at loop headers are converted into p
operators, and ¢s inserted after if-then-else constructs are converted into ~ op-
erators. The GSA form is completed with the computation of the predicate that
controls the execution of the if-then-else construct in GIMPLE-SSA form (see
predicate (D3(!=0) in Figure 3(c)).

4 Experimental Results

The performance of our GSA construction algorithm was evaluated with the
UTDSP [11], Perfect Club [8] and SPEC CPU2000 [2] benchmarks. UTDSP pro-
vides routines written in different coding styles (pointer-based and array-based)
that are representative of DSP applications (e.g., filters, FF'T). The well-known
Perfect Club and SPEC CPU2000 benchmarks consist of full-scale applications
that have been used extensively in the literature. As a first step towards the
analysis of these applications as a whole, the most costly routines in terms
of execution time were selected as they would probably be the target of an
execution-time-aware optimizing compiler.

In order to characterize the behavior of an application, XARK addresses
the recognition of the computational kernels whose results are stored in both
scalar and non-scalar variables (e.g., arrays, pointers). As SSA covers scalar
variables, the effectiveness of the GSA construction algorithm is measured as the
percentage of non-scalar variables (#non_scalars) converted into pseudoscalars
(#pseudos) successfully. Table 2 shows that there are some Fortran routines in
Perfect Club and SPEC CPU2000 where #pseudos is lower than #non_scalars,
which means that the GSA form can only be built partially (the effectiveness
is less than 100%). The reason for this is that variables (in particular, arrays)
declared in Fortran common blocks are represented in GIMPLE as fields of
structure data types. This situation can be handled by distinguishing new types
of GIMPLE representations in the third step of our algorithm, which is work in
progress. Finally, note that the GSA form is built successfully (the effectiveness
is 100%) in all the C routines as well as in most of the Fortran routines of Perfect
Club and SPEC CPU2000.

Figure 4 compares memory consumption and execution time of the GSA
construction algorithm (in white) with respect to the SSA construction algorithm
of GCC (in black), the routines being ordered by increasing value of memory

Table 2. Effectiveness of the GSA construction algorithm.

[Benchmark[Application [Routine [Language[#non_scalars[#pseudos[Effectiveness]

UTDSP COMPRESS[dct_array C 2 2 100%
dct_ptr C 2 2 100%

FEFT fit_array C 2 2 100%

fit_ptr C 4 4 100%

FIR fir_array C 1 1 100%

fir_ptr C 1 1 100%

IR iir_array C 2 2 100%

iir_ptr C 2 2 100%

LATNRM Tatnrm_array [C 2 2 100%

Tatnrm_ptr [C 2 2 100%

LMSFIR Imsfir_array [C 2 2 100%

Imsfir_ptr C 2 2 100%

Perfect ADM dctdxf Fortran 1 1 100%
Club radb4 Fortran 1 1 100%
radf4 Fortran 1 1 100%

DYFESM matmul Fortran 1 1 100%

FLO52 dflux Fortran 7 4 57%

eflux Fortran 2 0 0%

MDG cshift Fortran 1 1 100%

MG3D cpass Fortran 2 2 100%

cpassm Fortran 2 2 100%

QCD mult Fortran 1 1 100%

observ Fortran 2 2 100%

TRFD olda Fortran 7 7 100%

SPEC APPLU blts Fortran 2 2 100%
CPU2000 buts Fortran 3 3 100%
jacld Fortran 4 0 0%

jacu Fortran 3 0 0%

rhs Fortran 2 1 50%

APST radbg Fortran 2 2 100%

radfg Fortran 2 2 100%

EQUAKE smvp C 3 3 100%

SWIM calcl Fortran 1 0 0%

calc2 Fortran 3 0 0%

calc3 Fortran 6 0 0%

consumption of GIMPLE-SSA. Memory consumption is calculated as the sum
of the sizes of the symbol table (including the variables declared in the source
code as well as the corresponding versions of each variable), the forest of abstract
syntax trees, the control flow graph and the data dependence graph. Execution
times were measured on an Intel Core2 Duo at 2.4Ghz (4MB of cache and 2GB
of RAM). Overall, the results show that our algorithm consumes, on average,
between 4% and 11% more memory than the SSA construction algorithm and
takes between 14% and 31% longer. The memory overhead varies between 3%
and 21%, and the time overhead between 4% and 43%. However, while the
time overhead may seem significant, the execution time does not exceed 5ms
in the worst case. Thus, the experiments demonstrate that the algorithm is
a practical solution for optimizing compilers that require advanced program
analysis techniques.

5 Conclusions

This paper has presented a simple algorithm for building the GSA representa-
tion using the infrastructure for building SSA available in modern optimizing
compilers. The approach based on the concept of pseudoscalar as a representa-
tion of references to array and pointer variables was shown to be effective for
the analysis of C and Fortran codes from different application domains.

The algorithm has been evaluated in terms of memory consumption and ex-
ecution time. The experiments have shown that the algorithm introduces an
affordable overhead to the underlying SSA implementation. Thus, it provides
a practical solution that enables the coexistence of SSA- and GSA-based opti-
mizations. In addition, it provides support for the efficient implementation of
advanced analysis techniques targeting pointer- and array-based codes in the
scope of widely extended compiler platforms such as GCC.

As future work we intend to analyze applications written in object-oriented
programming languages like C++ and Java.

References

1. GNU Compiler Collection (GCC) internals. Available at
http://gcc.gnu.org/onlinedocs/gecint.pdf [Last accessed June 2008].

2. Standard Performance Evaluation Corporation. SPEC CPU2000. Available at
http://www.spec.org/cpu2000 [Last accessed June 2008].

3. Andrade, D., Arenaz, M., Fraguela, B.B., Tourifio, J., Doallo, R. Automated and
accurate cache behavior analysis for codes with irregular access patterns. Concur-
rency and Computation: Practice and Ezperience, 19(18):2407-2423 (2007)

4. Arenaz, M., Tourifio, J., Doallo, R. A GSA-based compiler infrastructure to ex-
tract parallelism from complex loops. In: 17th ACM International Conference on
Supercomputing, San Francisco, CA, pp. 193-204 (2003)

5. Arenaz, M., Tourifio, J., Doallo, R. Compiler support for parallel code generation
through kernel recognition. In: 18th IEEE International Parallel and Distributed
Processing Symposium, Santa Fe, NM (2004)

6. Arenaz, M., Tourino, J., Doallo, R. Program behavior characterization through
advanced kernel recognition. In: 13th International Euro-Par Conference, Rennes,
France, pp. 237-247 (2007)

7. Arenaz, M., Tourino, J., Doallo, R. XARK: An eXtensible framework for Auto-
matic Recognition of computational Kernels. ACM Trans. Program. Lang. Syst.
(accepted for publication)

8. Berry, M., et al. The Perfect Club benchmarks: Effective performance evaluation
of supercomputers. Int. J. Supercomputer Apps., 3(3):5-40 (1989)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13(4):451-490 (1991)

10. Havlak, P. Construction of thinned gated single-assignment form. In: 6th Interna-
tional Workshop on Languages and Compilers for Parallel Computing, Portland,
OR, pp. 477-499 (1993)

11. Lee, C.G. UTDSP benchmarks. Available at http://wuw.eecg.toronto.edu/-
/~corinna/DSP/infrastructure/UTDSP.html [Last accessed June 2008].

12. Tu, P., Padua, D.A. Gated SSA-based demand-driven symbolic analysis for par-
allelizing compilers. In: 9th ACM International Conference on Supercomputing,
Barcelona, Spain, pp. 414-423 (1995)

13. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D.A., Paek, Y., Pottenger, W.M., Rauchwerger, L., Tu, P. Parallel
programming with Polaris. IEEE Computer, 29(12):78-82 (1996)

Memory consumption

Execution Time

kilobytes

450

Memory consumption

milliseconds

0.45, T T T T T

o
(Y
T

[31% 31%

Y $ 8
Q ‘0* ‘@* ‘@* 5“* Q9 é’ﬁ
& & 3 ? & g 9
AR\ XN AREY; Vv & /
&) &
& ¢ &N
¢ &

Execution Time

4001

N @ w
3] S 5]
S S S

kilobytes
n
S
3

150)

100,

50

Average GSA Overhead: 7%

nsumption

milliseconds

&
)
L &

&

Average GSA Overhead: 31%

Execution Time

500

4501

400r

kilobytes
N oW
a3
S 3
T T

n
=1
S

150)

100

Memory coi
T

milliseconds

45 T T T

Average GSA Overhead: 14%

(c) SPEC CPU2000.

Fig. 4. Memory consumption and execution time of the GSA construction algorithm.

