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Abstract  

This paper presents a performance analysis of message-passing overhead on high-speed 

clusters. Communication performance is critical for the overall high -speed cluster 

performance. In order to analyze the communication overhead, a new linear model proposed 

in this work is used for its characterization. Performance models have been derived using 

our own micro-benchmark suite on MPI C and emerging Java message-passing libraries. 

These models predict communication overhead quite accurately.  Representative 

performance metrics have also been obtained in order to evaluate message-passing 

performance and establish comparisons among different message-passing libraries and 

clusters. Besides the evaluation process, communication models are useful to optimize 

parallel applications. Several model-based performance optimizations have been reported. 

Thus, inefficient primitives have been replaced by more efficient equivalent combinations 

of primitives. Through an application-level kernel benchmarking it has been analyzed the 

influence of multiple processor nodes and the message-passing overhead on the overall 

application performance. From this analysis, it has been concluded that current message -

passing implementations do not fully benefit from multiple processor nodes .  
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1 Introduction  
 

There is a growing interest of both scientific and enterprise environments in high-speed 

clusters as they deliver outstanding parallel performance at a competitive cost. A high-speed 

cluster consists of computing nodes connected together by a specific purpose high-speed 

network for achieving higher communication performance on clusters. SCI (Scalable 

Coherent Interface), Myrinet, Quadrics, Infiniband and 10-Gigabit Ethernet are examples of 

high-speed interconnects. Scalability is a key factor to confront new challenges in cluster 

computing, and it depends heavily on the use of high-speed interconnects. But this scalability 

must reach the parallel application level, and here is where the message-passing paradigm 

plays an important role, providing programming flexibility and good performance on these 

architectures. 

In this work, C and Java message-passing libraries are analyzed on high-speed clusters in 

order to estimate overheads. The inclusion of Java message-passing libraries is motivated by 

the emergence of Java as an option for high performance computing [1].  The goal of this 
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paper is to identify inefficient primitive implementations,  as well as to report performance 

results for these specific environments, particularly for Myrinet and SCI clusters, which can 

guide developers to improve their parallel applications.  A proposal of a more accurate 

analytical model for high-speed cluster communications, as well as a micro-benchmark suite 

(http://www.des.udc.es/~gltaboada/micro-bench/), are made available to parallel programmers.  

These tools provide a useful way to quantify the influence of the message -passing libraries 

and system configuration on the overall application performance. This influence has been 

corroborated through an application-level kernel benchmarking. The obtained analytical 

performance models are also useful in optimizing message-passing performance. Thus, 

communication overhead can be reduced through replacing inefficient communication 

primitives by more efficient equivalent combinations of primitives.  

The paper is organized as follows: the next section introduces existing message-passing 

performance models and analyzes their suitability for evaluation purposes.  As the accuracy 

and simplicity of these models have not been as expected, a new linear model is proposed, 

focused on obtaining higher accuracy on high-speed clusters. Section 3 presents the 

formulation of this model, some performance metrics derived from it, the micro-

benchmarking process and a preliminary accuracy analysis.  Section 4 presents experimental 

results: the communication performance of two clusters, with two representative h igh-speed 

interconnects, Myrinet and SCI, has been modeled and analyzed. A further discussion on the 

experimental results and performance estimation is the focus of Section 5, together with a 

proposal of a model-based performance optimization. Section 6 presents an analysis of the 

influence of message-passing overhead on applications through an application-level kernel 

benchmarking. Section 7 analyzes the influence of the use of multiple processor nodes on the 

overall cluster performance. This evaluation has been done with the aid of the previous 

application-level kernel benchmarking. Finally, Section 8 concludes the paper with a 

summary of contributions and future research directions.   

 

2 Message-Passing Performance Models 

 

The appropriateness of existing communication models has been evaluated in terms of their 

simplicity and accuracy for high-speed clusters. Models discussed in this paper can be 

classified into LogP- and linear-based models. 

The LogP model [2] characterizes communications by four parameters: network 

communication time , overhead , gap  and number of processors . Some LogP variants 

have been proposed to support additional characteristics  by adding parameters to the model. 

Thus, LogGP [3] introduces , gap per byte, to support long messages, LoPC [4] and LoGPC 

[5] add  to model resource contention, LogGPS [6] incorporates synchronization costs  by 

adding , and LogPQ [7] introduces , referring to communication queues.  Additional 

models are memory logP [8] which applies and augments the original LogP model to estimate 

overheads in a hierarchical memory subsystem, parameterized LogP (P-LogP) [9], which 

presents a gap  that depends on the message size , lognP [10], that addresses the 

communication cost as a sum of middleware, memory and interconnection network 
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overheads, and HLogP [11], which is targeted to model Grid systems.  

Regarding the appropriateness of these models, LogP is too basic to perform a thorough 

analysis. This model assumes single processor nodes and small messages, determining that  it 

is only effective when L dominates overall cost.  In this case, the influence of message size 

and data distribution on memory communication overhead is negligible.  The need to include 

these parameters has led models to include , gap per byte, or the data size. However, this is 

effective only in tightly synchronized communication patterns.  In fact, the contention  for 

message-processing resources is a significant factor in  the total application runtime for many 

fine-grain message-passing algorithms, particularly on clusters. Nevertheless, LogP with 

additional  and/or  parameters usually omits significant costs, such as the influence  of the 

memory gap on performance. memory logP models this influence, although only for shared 

memory architectures. The model lognP extends memory logP (in fact, memory logP is log1P) 

taking into account the number of communication steps.  Thus, log3P would describe 

communications on high-speed clusters: (1) communication source memory / source Network 

Interface Card (NIC), (2) communication source NIC / destination NIC, and (3) 

communication destination NIC / destination memory. Experimental results from 

characterizing communication overhead using these models on high-speed clusters report 

average absolute relative errors of 28% for LogGP predictions, and of 5% for log3P [10]. 

Nevertheless, these accurate results are limited to regular access patterns.  

Linear models are also a popular method to characterize message -passing overhead. 

These models are usually based on Hockney’s model for point-to-point communications and 

on Xu and Wang’s model for collective primitives [12].  Thus, message latency ( ) of point-

to-point communications is modeled as an affine function of the message length n:  

, where  is the startup time, the time taken for a zero length  message, and  is the 

transfer time per byte. Communication bandwidth is easily derived as . A 

generalization of the point-to-point model is used to characterize collective communications:  

, where  is the number of processors involved in the communication. 

This characterization of message-passing overhead is relatively easy to develop and usually 

provides good predictions, but its simplicity is thought to be a restricting factor to  its 

accuracy. 

The lack of accuracy of linear models on high-speed clusters affects both to  and  

parameters. The combination into a unique parameter  of the overhead ( ) and network 

communication time ( ) differentiated in the LogP model is considered to be only appropriate  

for long messages, not giving enough detail for shor t messages [3]. Moreover, as linear 

models usually assume constant , the accuracy of the models turned out to be much better 

on Ethernet-based than on high-speed clusters, where different high performance 

communication protocols, with different , are used depending on the message size.  A 

previous work [13] on modeling communication performance on high-speed clusters has 

shown the limitations of the Hockney’s model to predict performance accurately.  In fact, 

Hockney’s model on Fast Ethernet predicts performance with average absolute relative errors 

of 13% for Send and 21% for collective communications. Hockney’s model on SCI presented 

average absolute relative errors of 18% and 28%, respectively.  
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Once turned out to be unsuitable the linear model  due to the dearth of accuracy, the lognP 

model was selected as the most suitable choice among LogP-based models. Nevertheless, 

apart from its lack of direct collective primitive support, it exhibits a certain complexity in 

its formulation. Although the possibility of simplification by ignoring some parameters 

exists, sometimes this is not an advantageous choice. In fact, while too many parameters 

keep non-experts from drawing conclusions about performance, too few parameters do  not 

provide enough information.  

 

3 Modeling Process and Performance Metrics  

 

This paper aims at using a model realistic enough to characterize more accurately 

communication overhead despite the complexity of current communication middleware, but 

simple enough for programmers to design and analyze parallel algorithms overhead. As 

existing models do not fit completely this purpose, a new linear model is proposed to address 

the main drawbacks of high-speed cluster communications modeling. This model takes into 

account the influence of different protocols involved in the communication process. This is 

done by augmenting the linear model described in [12] with a new parameter, , which is the 

intercept from the linear regression of  versus . In high-speed clusters,  is quite 

small and  is usually higher. According to the previous considerations,  message latency ( ) 

of point-to-point communications on high-speed clusters should be modeled as 

. Nevertheless, this tentative model predicts inaccurately  for short messages (i.e. 

 and the model predicts ). In order to solve this issue,  must be 

weighted by the ratio of transfer time ( ) to the latency predicted by Hockney’s model 

( ). Thus, point-to-point communications are modeled as:  

 

and collective communications are modeled generalizing the point -to-point model: 

 

Regarding point-to-point communications, this new model predicts accurately , 

and shows higher accuracy than Hockney’s model, especially for medium messages.  In fact, 

the higher relative difference between this model and Hockney’s model occurs at a -byte 

message. This maximum relative difference has been obtained by setting the derivative of 

( –  equals to zero and solving for . This value, , 

varies on high-speed clusters from 1KB to tens of KB, in the range of medium messages. In 

fact, Hockney’s model usually underestimates latency of medium messages on high -speed 

clusters. The reason for this is that message-passing libraries use different communication 

protocols for short and long messages.  Long message protocols usually show lower  than 

short message protocols, focused on lower . As  is obtained from a linear regression of  

vs.  in which the long message performance dominates, its value is quite similar to the  of 

long message protocols. Thus, using the obtained , short message latency is 
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underestimated. In order to illustrate this scenario, an example is provided:  an MPI C 

primitive on an SCI cluster presents  = 4µs,  = 13µs and  = 3.89  (see ScaMPI 

Send in Table 2). The estimates of the models are , and 

. As  the proposed model estimates performance 

more accurately. 

The addition to Hockney’s model of a new explanatory variable ( ) has shown that 

increasing slightly the complexity of the model, higher accuracy can be obtained, especially 

for medium messages. A different alternative would be defining a function in pieces for each 

communication protocol. Nevertheless, this approach requires knowledge about protocol 

boundaries. 

A benchmark suite for both C and Java message-passing libraries appropriate for the 

modeling process has not been found. Thus, a micro-benchmark suite has been developed 

(http://www.des.udc.es/~gltaboada/micro-bench/). It consists of a set of tests for both C and Java 

codes adapted to the modeling needs. Regarding point-to-point primitives, a ping-pong test 

takes 150 measurements of the runtime varying the message size in powers of four from 0 

bytes. It has been chosen as test time the minimum value to avoid distortions due to timing 

outliers. The parameter  is the startup time. The parameters  (intercept) and  (slope) 

were derived from a linear regression of  vs . Similar tests were applied to 

collective primitives, but also varying the number of processors (from 2 up to the number of 

available processors in the testbed).  The parameter   was derived from a linear 

regression of startup times vs . The parameters   and  were derived from a 

regression of  vs  and . A Barrier was included to avoid a pipelined effect 

and to prevent the network contention that might appear by the overlap of collective 

communications executed on different iterations of the test. Double precision addition was 

the operation used in computational primitives (Reduce, Allreduce, Reduce -scatter and 

Scan). 

In order to test the accuracy of the proposed model the average absolute relative error  of 

20 random messages for each primitive has been calculated.  The results, a 7% error for Send 

and below 7% error for collective primitives, are much better than the 18% and 28% error  for 

Hockney’s model for Send and collective primitives, respectively. Moreover, the predictions 

obtained from this model (Section 4) are consistent with the application-level kernel 

benchmarking (Section 6). 

Figure 1 illustrates, through bandwidth graphs, the better fitting of experimentally 

measured bandwidth (empty symbols) by the proposed model compared to Hockney’s model. 

Graph (a) shows Send bandwidth on Myrinet, and Graph (b) Broadcast bandwidth on SCI. 

The complete details of the experimental results and models are presented in Section 4.  It can 

be seen that the estimates improve especially on the native message-passing library (MPI C), 

as there are more major differences among native communication protocols than among Java 

communication protocols for Java message-passing (MPJ) [14]. It can also be observed that 

the higher relative difference between the proposed model and Hockney’s model occurs  at a 

-byte message.  is 1KB for MPI C and 11KB for MPJ. In fact, at this point, the 

proposed model estimates the bandwidth much better than Hockney’s model.  
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Figure 1: Hockney’s model vs. proposed model comparison 

 

Two metrics are derived from the model: the asymptotic bandwidth , 

the maximum throughput achievable when n → ∞, and the specific performance      

.  shows long message performance, whereas  characterizes short message 

bandwidth. Another metric is the aggregated asymptotic bandwidth , 

defined as the ratio of the total number of bytes transferred in the collective  operation to the 

time required to perform the operation, as . The function  is the relationship 

between the total number of bytes transferred in the collective primitive and the message 

length.  depends on the communication pattern of each primitive:  e.g. a Broadcast of  

bytes to  processors implemented with a binomial tree sends  messages of  bytes. In 

our case  for Broadcast, Alltoall, Reduce and Scan;  for Scatter 

and Gather;  for Allreduce, and  for Allgather and Reduce-

scatter. Similarly, the aggregated specific performance is defined as  to 

show the performance of a collective operation for short messages. All these metrics for 

collective primitives are functions depending on . In order to have numbers rather than 

functions to straightforwardly compare the performance of the different message-passing 

libraries, peak metrics have also been used in our experimental results (see Tables 1 –4): the 

peak aggregated bandwidth , and the peak aggregated specific 

performance , being  the maximum  available. For point-to-

point communications  and .  

 

4 Experimental Results  

 

4.1  Cluster Hardware/Software Configuration  

 

Performance analytical models have been obtained from two high -speed clusters. The first 

cluster consists of 16 single-processor nodes (PIII at 1GHz and 512MB of memory) 

interconnected via Myrinet 2000 cards plugged into 64bit/33MHz PCI slots. The OS is Linux 

Red Hat 7.1, kernel 2.4, C compiler gcc 2.96, and Java Virtual Machine (JVM) Sun 1.5.0. 

The second cluster consists of 8 dual-processor nodes (PIV Xeon with Hyper-Threading at 

1.8GHz and 1GB of memory) interconnected via D334 SCI cards plugged into 64bit/66MHz 
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PCI slots in a 2-D torus topology. The OS is Red Hat 7.3, kernel 2.4, C compiler gcc 3.2.2, 

and JVM Sun 1.5.0. Three different hardware configurations have been used for the SCI 

cluster: SCI-single, running one message-passing process on each node; SCI-dual, running 

two message-passing processes on each node; and SCI-dual w/HT (with Hyper-Threading 

enabled), running four message-passing processes on each node. The Hyper-Threading allows 

one processor to operate as two processors internally, with a potential increase in 

performance claimed to be of about 30%, according to the manufacturer, Intel.  Thus, a dual 

node with Hyper-Threading enabled has 4 “virtual” processors. The other two configurations, 

SCI-single and SCI-dual, have Hyper-Threading disabled. 

Two MPI C libraries have been analyzed on the SCI cluster: ScaMPI (version 1.13.8), 

and SCI-MPICH (version 1.2.1), an MPICH implementation for SCI. As ScaMPI has shown 

better performance than SCI-MPICH, especially on SCI-dual and SCI-dual w/HT, only some 

SCI-MPICH models are shown for comparative purposes (Tables 2 and 3).  MPICH-GM 

(version 1.2.4..8), a port of MPICH on top of GM (a low-level message-passing system for 

Myrinet) was selected for Myrinet.  

Three representative Java message-passing libraries have been selected: mpiJava [15] 

(version 1.2.5), MPJ/Ibis [16] (version 1.4) and MPJ Express [17] (version 0.26).  The 

mpiJava library consists of a collection of wrapper classes that call a native MPI 

implementation through Java Native Interface (JNI). On Myrinet, mpiJava calls MPICH-GM, 

whereas on SCI, it calls ScaMPI. This wrapper-based approach provides efficient 

communication relying on native libraries, adding just a small JNI overhead.  Nevertheless, 

its major drawback is the lack of portability, caused by the need of a native MPI 

implementation. This problem is overcome with the use of “pure” Java message-passing 

libraries that implement the whole messaging system in Java.  Nevertheless, these 

implementations are less efficient than native implementations.  MPJ/Ibis is an MPI-like 

“pure” Java message-passing implementation integrated in the Ibis framework [18]. It is 

implemented on top of TCPIbis Sockets (similar to Java I/O Sockets). MPJ Express is 

another MPI-like “pure” Java message-passing implementation based on Java NIO Sockets.  It 

implements more high-level MPI features than MPJ/Ibis,  like derived datatypes, virtual 

topologies and inter-communicators. It also includes a runtime execution environment.  

Despite these differences, in terms of performance both “pure” Java libraries behave 

similarly. In fact, the differences between these libraries are mainly explained by the 

underlying communication layer. TCPIbis Sockets obtain lower  and higher  than Java 

NIO Sockets. Thus, MPJ/Ibis shows slightly better performance for short messages, whereas 

MPJ Express achieves higher bandwidths. For conciseness, only one  “pure” Java message-

passing library has been modeled. MPJ/Ibis has been selected as the representative library for 

showing slightly better short message performance, an extremely important characteristic on 

high-speed clusters. 

 

4.2  Analytical Models and Metrics  

 

Table 1 presents the parameters of the latency models ( ,  and ) for the standard 
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Send and for collective communications on the Myrinet cluster.  Two peak metrics derived 

from the models (  and , see Section 3) are also provided in order to show short  and 

long message performance, respectively, as well as to compare among libraries for each 

primitive. Regarding these two metrics, the higher, the better.  Tables 2, 3 and 4 present the 

same results for the different SCI configurations:  SCI-single, SCI-dual and SCI-dual w/HT, 

respectively. These models are valid for communications from 2 nodes up to the total number 

of processors of the cluster. Thus, the models are valid for  on Myrinet, for 

 on SCI-single, for  on SCI-dual, and for  on SCI-dual 

w/HT. Transfer times, , show  complexity in almost all collective 

communications, which reveals a binomial tree-structured implementation of the primitives. 

Nevertheless, inefficient communication patterns have been detected on ScaMPI and 

MPJ/Ibis Scan (they are ). Other implementations, e.g. MPJ/Ibis Allreduce, performs 

badly. In this particular case a Reduce followed by a Broadcast performs better than the 

equivalent Allreduce. This statement can be obtained from the values of  and  from 

the tables (e.g. ). Both  and  usually present 

 complexities. 

 

4.2.1  Native Communication Libraries  

 

As can be observed from Tables 1–4, native primitives on the SCI cluster show, in general, 

lower startups and transfer times per byte than on the Myrinet cluster. These differences can 

be attributed to: (1) the lower theoretical startup of the NIC:  for SCI and  for 

Myrinet, (2) the higher theoretical bandwidth of the PCI bus, 528MB/s on the SCI cluster and 

264MB/s on the Myrinet cluster, and (3) the higher computational power of the nodes, dual 

PIV Xeon at 1.8GHz on the SCI cluster and PIII at 1GHz on the Myrinet  cluster. 

Regarding performance metrics  and  from the tables, it can be seen that 

ScaMPI outperforms SCI-MPICH, except for Reduce-scatter and Scan. Generally, these 

metrics present the highest values (best performance) on SCI-dual, although communication 

primitives with more complex communication patterns, such as Alltoall, present the highest  

values on SCI-single. 

 

4.2.2  Java Communication Libraries  

 

From the models it can be observed that mpiJava adds little overhead to the underlying 

message-passing library. Regarding MPJ/Ibis, both the transfer time and, mainly, the startup 

time, increase significantly with respect to the native libraries.  This overhead corresponds to: 

(1) the additional communication layers involved in the communication, TCPIbis Sockets and 

Ibis Portability Layer (IPL), and (2) the interpreted nature of the JVM, basic for  the 

portability of the library. The most immediate way of running this library on high-speed 

interconnects is on top of IP emulation libraries:  IP over GM on Myrinet and ScaIP on SCI. 

Nevertheless, MPJ/Ibis was slightly adapted to run on top of Sockets -GM on Myrinet, and on 

top of SCI Sockets. 
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Table 1:  Myrinet:  analytical models and peak aggregated metrics ( plp 2log ) 

 

Primitive Library )(0 pt  )( pt i  )( ptb  
pag

0  pag

asBw  

     {μs}
 

{μs}
 

{ns/byte}
 

{KB/s}
 

{MB/s}
 

  MPICH-GM 9 20 5.330 111.1 187.6 

Send mpiJava 15 20       5.360 66.67 186.6 

  MPJ/Ibis 65 69 5.951 15.38 168.0 

 MPICH-GM -3+16⌈lp⌉ N/A N/A 245.9 N/A 

Barrier mpiJava 5+15⌈lp⌉ N/A N/A 230.8 N/A 

 MPJ/Ibis 194+73p N/A N/A 11.01 N/A 

  MPICH-GM 3+8⌈lp⌉ 17+23⌈lp⌉ 0.017+5.649⌈lp⌉ 428.6 663.3 

Broadcast mpiJava 20+17⌈lp⌉ 33+31⌈lp⌉ 0.136+5.741⌈lp⌉ 170.5 649.4 

  MPJ/Ibis 22+21p 3+24p 3.006+6.670⌈lp⌉ 41.90 505.3 

 MPICH-GM -7+9p 1+11p 4.271+0.412⌈lp⌉ 45.45 158.9 

Scatter mpiJava 42+10p 39+13p 4.336+0.421⌈lp⌉ 9.146 156.3 

 MPJ/Ibis 37+19p 8+23p 4.421+0.673⌈lp⌉ 6.667 135.9 

  MPICH-GM 7+5p 13+7p 3.782+0.503⌈lp⌉ 29.41 165.4 

Gather mpiJava 47+5p 44+7p 4.981+0.174⌈lp⌉ 11.19 140.4 

  MPJ/Ibis 78+8p 83+16⌈lp⌉ 6.216+0.487⌈lp⌉ 6.818 114.8 

 MPICH-GM -10+15p 3+19p 5.272+1.093⌈lp⌉ 75.00 1653 

Allgather mpiJava 30+17p 41+23p 8.489+0.479⌈lp⌉ 52.77 1532 

 MPJ/Ibis 17+61p 4+72p 4.096+2.970⌈lp⌉ 16.05 997.6 

  MPICH-GM -10+13p -6+16p 4.182+2.690⌈lp⌉ 75.76 1004 

Alltoall mpiJava 37+15p 28+19p 7.371+1.830⌈lp⌉ 54.15 1014 

  MPJ/Ibis 296+523p 213+465p 5.810+3.857⌈lp⌉ 1.731 706.3 

 MPICH-GM 12+3p 9+5p 2.698+10.83⌈lp⌉ 250.0 326.0 

Reduce mpiJava 45+4p 29+6p 5.161+11.16⌈lp⌉ 137.6 301.2 

 MPJ/Ibis 107+98⌈lp⌉ 63+100⌈lp⌉ 7.618+15.38⌈lp⌉ 30.06 217.0 

  MPICH-GM 18+4p 21+6p 3.219+16.35⌈lp⌉ 365.9 437.2 

Allreduce mpiJava 44+6p 58+8p 4.319+15.39⌈lp⌉ 214.3 455.4 

  MPJ/Ibis 223+290⌈lp⌉ 381+256⌈lp⌉ 5.536+22.03⌈lp⌉ 21.69 320.3 

 MPICH-GM -3+13p 2+16p 9.326+10.81⌈lp⌉ 77.97 303.2 

Reducescatter mpiJava 24+15p 18+19p 11.37+11.51⌈lp⌉ 60.37 277.6 

 MPJ/Ibis 13+76p 7+89p 13.91+17.83⌈lp⌉ 12.97 187.0 

  MPICH-GM 13+4p 31+6p -4.487+9.284⌈2lp⌉ 194.8 357.7 

Scan mpiJava 50+6p 67+8p -0.234+10.15⌈2lp⌉ 102.7 296.9 

  MPJ/Ibis -1+97p 9+112p 3.380+21.62p 9.671 42.94 
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Table 2:  SCI-single:  analytical models and peak aggregated metrics ( plp 2log ) 

 

Primitive Library )(0 pt  )( pt i  )( ptb  
pag

0  pag

asBw  

     {μs}
 

       {μs}
 

  {ns/byte}
 

{KB/s}
 

{MB/s}
 

  ScaMPI 4 13 3.890 250.0 257.1 

Send SCI-MPICH 6 5 4.560 166.7 219.3 

 mpiJava 10 11 3.924 100.0 254.8 

  MPJ/Ibis 49 43 4.272 20.41 234.1 

 ScaMPI 7+0.4p N/A N/A 686.2 N/A 

Barrier SCI-MPICH -2+9⌈lp⌉ N/A N/A 280.0 N/A 

 mpiJava 8+1.2p N/A N/A 397.7 N/A 

 MPJ/Ibis 133+48p N/A N/A 13.54 N/A 

  ScaMPI 6⌈lp⌉ 12+8⌈lp⌉ -0.093+4.099⌈lp⌉ 388.9 573.6 

Broadcast SCI-MPICH 6⌈lp⌉ 17+7⌈lp⌉ 3.403+2.987⌈lp⌉ 388.9 566.1 

 mpiJava 33+7⌈lp⌉ 59+9⌈lp⌉ 0.391+4.451⌈lp⌉ 129.6 509.3 

  MPJ/Ibis -7+15p -9+16p 0.720+4.870⌈lp⌉ 61.95 456.6 

 ScaMPI -5+6p 2+8p 2.714+0.251⌈lp⌉ 71.43 252.4 

Scatter SCI-MPICH 5+2p 19+5p 2.011+0.718⌈lp⌉ 57.69 217.6 

 mpiJava 27+6p 58+11p 2.443+0.394⌈lp⌉ 14.71 241.4 

 MPJ/Ibis 11p -16+16p 2.412+0.511⌈lp⌉ 19.23 221.8 

  ScaMPI 4+p 18+2p 0.612+1.222⌈lp⌉ 93.75 272.6 

Gather SCI-MPICH 2+2p 22+3p 2.139+0.719⌈lp⌉ 83.33 209.7 

 mpiJava 36+p 53+4p 1.411+0.989⌈lp⌉ 19.89 221.3 

  MPJ/Ibis 54+p 6+2⌈lp⌉ 1.333+0.970⌈lp⌉ 14.11 229.1 

 ScaMPI -6+14⌈lp⌉ 12+18⌈lp⌉ 3.510+1.327⌈lp⌉ 218.8 1051 

Allgather SCI-MPICH -1+5p 13+9p 1.936+2.571⌈lp⌉ 201.9 816.1 

 mpiJava 23+16⌈lp⌉ 49+22⌈lp⌉ 2.963+1.603⌈lp⌉ 110.9 1013 

 MPJ/Ibis 32p -15+37p 1.101+2.679⌈lp⌉ 30.76 861.8 

  ScaMPI -10+8p 3+11p 1.693+2.310⌈lp⌉ 166.7 811.8 

Alltoall SCI-MPICH -6+9p 12+12p 2.412+2.230⌈lp⌉ 106.1 769.1 

 mpiJava 22+9p 39+14p 2.347+2.120⌈lp⌉ 74.47 804.0 

  MPJ/Ibis 92+307p 73+271p 1.408+2.658⌈lp⌉ 2.747 746.1 

 ScaMPI 1+6⌈lp⌉ 7+9⌈lp⌉ 9.834+1.761⌈lp⌉ 368.4 463.1 

Reduce SCI-MPICH 7+2p 18+4p -3.718+6.381⌈lp⌉ 304.3 453.8 

 mpiJava 13+8⌈lp⌉ 24+11⌈lp⌉ 9.681+1.911⌈lp⌉ 189.2 454.1 

 MPJ/Ibis 26+42⌈lp⌉ 6+42⌈lp⌉ 1.507+9.299⌈lp⌉ 46.05 238.1 

  ScaMPI -1+12⌈lp⌉ 11+15⌈lp⌉ 9.281+2.536⌈lp⌉ 400.0 828.9 

Allreduce SCI-MPICH 11+5p 14+6p 5.591+3.859⌈lp⌉ 274.5 815.5 

 mpiJava 7+15⌈lp⌉ 26+18⌈lp⌉ 8.819+3.048⌈lp⌉ 269.2 779.4 

  MPJ/Ibis -60+258⌈lp⌉ 39+165⌈lp⌉ 0.666+15.49⌈lp⌉ 19.61 297.0 

 ScaMPI -1+8p 17+10p 12.51+2.068⌈lp⌉ 125.0 420.8 

Reducescatter SCI-MPICH -6+9p 5+12p 9.138+2.345⌈lp⌉ 125.0 486.9 

 mpiJava 23+9p 39+12p 13.04+2.149⌈lp⌉ 82.89 404.1 

 MPJ/Ibis 42+25p 31+29p 4.267+10.05⌈lp⌉ 32.54 228.8 

  ScaMPI -9+6p 13+9p -3.361+5.183p 333.3 183.7 

Scan SCI-MPICH -1+4p 10+10p 3.799+1.544⌈2lp⌉ 225.8 701.8 

 mpiJava 19+7p 42+12p -5.423+8.299p 93.33 114.8 

  MPJ/Ibis -62+39p -77+43p -5.650+8.989p 62.50 105.6 
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Table 3:  SCI-dual:  analytical models and peak aggregated metrics ( plp 2log ) 

 

Primitive Library )(0 pt  
    

)( pt i  )( ptb  
pag

0  pag

asBw  

     {μs}
 

{μs}
 

{ns/byte}
 

{KB/s}
 

{MB/s}
 

 ScaMPI 5+2⌈lp⌉ N/A N/A 1154 N/A 

Barrier SCI-MPICH -169+140⌈lp⌉ N/A N/A 38.36 N/A 

 mpiJava 11+⌈lp⌉ N/A N/A 1000 N/A 

 MPJ/Ibis 204+42p N/A N/A 17.12 N/A 

  ScaMPI -3+6⌈lp⌉ 7+9⌈lp⌉ -0.605+4.297⌈lp⌉ 714.2 904.6 

Broadcast SCI-MPICH -11+11⌈lp⌉ 3+18⌈lp⌉ -0.531+4.919⌈lp⌉ 454.5 783.5 

 mpiJava 21+7⌈lp⌉ 39+12⌈lp⌉ -0.629+4.371⌈lp⌉ 306.1 889.9 

  MPJ/Ibis 6+15p 2+15p -2.096+4.887⌈lp⌉ 60.97 859.5 

 ScaMPI -12+6p 3+9p 2.199+0.339⌈lp⌉ 62.50 272.1 

Scatter SCI-MPICH 6+2p 21+7p 2.158+1.702⌈lp⌉ 53.57 134.8 

 mpiJava 17+6p 38+13p 2.833+0.212⌈lp⌉ 18.29 254.7 

 MPJ/Ibis -1+12p -21+17p 2.417+0.408⌈lp⌉ 15.96 240.3 

  ScaMPI 7+2p 34+4p 0.921+0.949⌈lp⌉ 50.00 266.1 

Gather SCI-MPICH -41+35p -3+53p 0.941+1.778⌈lp⌉ 7.575 166.8 

 mpiJava 41+p 51+6p 1.037+0.944⌈lp⌉ 17.85 256.4 

  MPJ/Ibis 83+3p 70+4⌈lp⌉ 0.968+0.995⌈lp⌉ 8.177 253.5 

 ScaMPI 4+2p 24+4p 4.515+1.863⌈lp⌉ 442.7 1332 

Allgather SCI-MPICH 55+28p 63+33p 11.42+3.688⌈lp⌉ 31.68 608.9 

 mpiJava 41+2p 49+4p 5.831+1.592⌈lp⌉ 218.3 1306 

 MPJ/Ibis -51+50p -105+55p 2.713+2.374⌈lp⌉ 20.13 1305 

  ScaMPI -24+14p 4+18p 0.369+4.499⌈lp⌉ 93.75 816.7 

Alltoall SCI-MPICH -221+103p -193+121p -2.970+8.391⌈lp⌉ 15.71 490.3 

 mpiJava 8+14p 35+21p 1.190+4.331⌈lp⌉ 64.66 810.2 

  MPJ/Ibis -57+377p -84+315p -3.012+5.481⌈lp⌉ 2.510 793.1 

 ScaMPI 9+p 8+2p 6.519+3.352⌈lp⌉ 600.0 752.7 

Reduce SCI-MPICH 38+23p 51+38p 8.017+3.695⌈lp⌉ 36.94 657.9 

 mpiJava 24+p 38+3p 7.598+3.616⌈lp⌉ 375.0 679.9 

 MPJ/Ibis 74+38⌈lp⌉ 1+48⌈lp⌉ 1.748+8.176⌈lp⌉ 66.37 435.4 

  ScaMPI 7+2p 9+4p 11.41+3.693⌈lp⌉ 769.2 1145 

Allreduce SCI-MPICH 198+71p 228+83p -15.03+20.94⌈lp⌉ 22.48 436.4 

 mpiJava 29+2p 41+5p 11.04+4.177⌈lp⌉ 491.8 1081 

  MPJ/Ibis -61+288⌈lp⌉ -3+192⌈lp⌉ -9.143+22.39⌈lp⌉ 27.50 373.1 

 ScaMPI -10+9p 3+11p 10.48+3.248⌈lp⌉ 144.2 679.0 

Reducescatter SCI-MPICH -673+216p -540+239p 7.711+3.620⌈lp⌉ 19.63 718.2 

 mpiJava 22+8p 41+14p 11.31+3.761⌈lp⌉ 106.2 604.7 

 MPJ/Ibis 62+24p 46+28p 3.563+9.245⌈lp⌉ 35.73 393.1 

  ScaMPI -5+4p 1+6p -2.939+5.050p 272.7 192.7 

Scan SCI-MPICH -24+82p 17+87p -0.726+2.015⌈2lp⌉ 11.64 1604 

 mpiJava 16+5p 32+8p -4.596+7.903p 156.2 123.1 

  MPJ/Ibis -85+49p -33+48p -11.68+8.462p 27.03 135.3 
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Table 4:  SCI-dual w/HT:  analytical models and peak aggregated metrics ( plp 2log )  

 

Primitive Library )(0 pt  )( pt i  )( ptb  
pag

0  pag

asBw  

     {μs}
 

   {μs}
 

 {ns/byte}
 

{KB/s}
 

{MB/s}
 

  ScaMPI 3+2⌈lp⌉ N/A N/A 2067 N/A 

Barrier mpiJava 8+4⌈lp⌉ N/A N/A 1937 N/A 

  MPJ/Ibis 331+32p N/A N/A 22.88 N/A 

 ScaMPI -7+7⌈lp⌉ -3+11⌈lp⌉ 3.210+4.480⌈lp⌉ 1107 1210 

Broadcast mpiJava 45+9⌈lp⌉ 57+14⌈lp⌉ -1.097+5.719⌈lp⌉ 344.4 1127 

 MPJ/Ibis 11+15p 37+13p -0.997+5.397⌈lp⌉ 63.14 1191 

  ScaMPI -17+6p 3+8p 0.519+1.150⌈lp⌉ 28.22 220.4 

Scatter mpiJava 18+8p 41+11p 1.630+0.937⌈lp⌉ 10.67 197.0 

  MPJ/Ibis 9+13p -3+16p 0.553+1.295⌈lp⌉ 7.743 197.2 

 ScaMPI 15+2p 83+5p -1.403+2.017⌈lp⌉ 28.23 188.3 

Gather mpiJava 55+2p 131+9p -1.031+2.053⌈lp⌉ 12.32 170.6 

 MPJ/Ibis 71+3p -39+44⌈lp⌉ 0.344+1.835⌈lp⌉ 9.211 149.6 

  ScaMPI -1+3p 45+5p 10.23+1.987⌈lp⌉ 342.4 1585 

Allgather mpiJava 74+2p 128+7p 9.648+2.238⌈lp⌉ 231.7 1534 

  MPJ/Ibis -68+67p -162+79p 5.645+3.320⌈lp⌉ 16.83 1437 

 ScaMPI -123+36p -83+43p -7.585+12.41⌈lp⌉ 42.42 569.2 

Alltoall mpiJava -114+44p -45+60p -5.969+12.10⌈lp⌉ 29.41 568.5 

 MPJ/Ibis -575+547p -773+465p -1.950+11.92⌈lp⌉ 1.842 537.7 

  ScaMPI 14+p 31+2p 13.31+4.690⌈lp⌉ 673.9 843.3 

Reduce mpiJava 47+p 77+3p 12.91+5.796⌈lp⌉ 392.4 740.0 

  MPJ/Ibis 56+51⌈lp⌉ -11+49⌈lp⌉ 1.486+10.93⌈lp⌉ 99.68 552.2 

 ScaMPI 15+p 33+2p 22.31+5.513⌈lp⌉ 1319 1243 

Allreduce mpiJava 51+2p 83+4p 20.70+7.131⌈lp⌉ 539.1 1100 

 MPJ/Ibis -135+358⌈lp⌉ 82+219⌈lp⌉ -133.3+62.74⌈lp⌉ 37.46 306.3 

  ScaMPI 7+8p 30+11p 18.72+4.798⌈lp⌉ 121.6 748.5 

Reducescatter mpiJava 44+8p 79+15p 15.92+6.586⌈lp⌉ 106.6 654.4 

  MPJ/Ibis 81+27p 75+28p 6.588+11.09⌈lp⌉ 33.83 515.3 

  ScaMPI -3+5p 6+9p -7.813+5.407p 197.4 197.5 

Scan mpiJava 29+6p 41+11p -7.864+9.645p 140.3 103.1 

  MPJ/Ibis -120+58p -325+78p -5.730+8.071p 20.35 122.8 
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Regarding peak performance metrics, it can be observed that MPJ/Ibis collective 

primitives generally present the highest values (best performance) on SCI-single 

configuration, except for computational primitives (Reduce, Allreduce, Reduce -scatter and 

Scan). 

 

5 Analysis and Discussion of Performance Results  

 

5.1  Point-to-Point Communication 

  

Figure 2 shows experimentally measured (empty symbols) and estimated (filled symbols) 

latencies and bandwidths of the Send primitive as a function of the message length for the 

different networks. Bandwidth graphs are useful to compare long message performance, 

whereas latency graphs serve to compare short message performance (note that their scale is 

logarithmic). 

 

        
 

        
 

Figure 2: Measured and estimated latencies and bandwidths of Send  

 

Regarding MPI C point-to-point primitives (see Tables 1-2), asymptotic bandwidths are 

188MB/s for MPICH-GM Send, and 257MB/s for ScaMPI Send. In this case, the PCI bus is 

the main performance bottleneck as it limits the bandwidth to 264MB/s on the Myrinet 

cluster and to 528MB/s on the SCI cluster.  Experimentally measured MPI C point-to-point 
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startups, 9µs on Myrinet and 4µs on SCI, are very close to their theoretical values,  7µs and 

1.46µs, respectively. The different computational power of the nodes has a minor influence  

on these values. 

Regarding the message-passing libraries, on the one hand, mpiJava obtains results quite 

similar to the underlying native message-passing library. On the other hand, MPJ/Ibis 

shows startups of 65µs on Myrinet and of 49µs on SCI, and values of  slightly higher 

(around 10%) than the native library values.  This overhead, quite far from the theoretical 

values of the high-speed interconnects, especially for , must be attributed to the messaging-

protocol (around 40µs overhead for ). The underlying communication library, TCPIbis 

Sockets, shows  = 22µs on Myrinet, and  = 11µs on SCI, thanks to the use of high 

performance sockets libraries (Sockets-GM and SCI Sockets). Using IP emulation libraries 

TCPIbis obtains  = 196µs on Myrinet and  = 131µs on SCI. The benefits of using the 

emerging high performance sockets libraries instead of IP emulations are clear on MPJ/Ibis. 

Using message-passing libraries based on RMI, such as CCJ [19] and JMPI [20], these 

benefits are relatively much less important as the protocol overheads are much higher (from 

0.5ms to 4ms) [13]. 

 

5.2  Collective Communications  

 

Measured and estimated bandwidths for some collective primitives are depicted in the graphs  

of Figures 3 and 4. The results were obtained using the maximum number of available 

processors for each cluster configuration (16 for Myrinet and SCI-dual, 8 for SCI-single and 

32 for SCI-dual w/HT). Note that bandwidths are not aggregated, as they are computed 

simply by dividing  by . In many cases, the estimated values (filled symbols) are 

hidden by the measured values (empty symbols), which means a good modeling. As expected, 

the bandwidth of the mpiJava routines and the underlying MPI C implementations are very 

similar (mpiJava calls to native MPI have low overhead), and pure Java primitives show 

lower performance. In fact, MPJ/Ibis  is slightly higher than the native library value, and 

therefore, the derived performance metric,  presents slightly lower value.  

A gap between short message performance between Myrinet and SCI can be observed. 

For instance, the 4KB MPI C Broadcast bandwidth is 3.3 times higher on SCI-single than on 

Myrinet (see Figures 3(a) and 3(c)). Similarly, the 4KB MPI C Reduce bandwidth is 2.8 

times higher on SCI-single (see Figures 3(b) and 3(d)).  A higher  on Myrinet is the main 

cause of this lower performance. Regarding the different system configurations, it can  be 

observed that the highest bandwidths are obtained by SCI-single (see Figures 3(c), 3(d), 4(c) 

and 4(d)), followed by SCI-dual, and finally, by Myrinet and SCI-dual w/HT, which obtain 

similar results. MPJ/Ibis shows lower performance for Alltoall,  especially for short and 

medium messages (see Figures 4(b), 4(d), 4(f) and 4(h), and the metric  in Tables 1–4). 

 

5.3  Model-based Performance Optimization 

 

Message-passing performance models have been used to identify inefficient communication  
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Figure 3:  Measured and estimated bandwidths for Broadcast and Reduce 



 16 

     
 

     
 

     
 

     
 

Figure 4:  Measured and estimated bandwidths for Scatter and Alltoall 
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primitives. From this process, it has been detected that ScaMPI and MPJ/Ibis Scan show non -

optimal  complexities. Other implementations, e.g. MPJ/Ibis Allreduce, just show bad 

performance. To reduce the inefficiency, a primitive can be replaced by a more efficient 

equivalent combination of primitives. Examples of equivalences existing in message-passing 

libraries are: Broadcast=Scatter+Allgather (Van der Geijn algorithm [21]), Allgather=Gather 

+Broadcast, Reduce-scatter=Reduce+Scatterv and Allreduce=Reduce+ Broadcast. The 

conditions for carrying out the replacement are actually obtained from the models: 

, where is equivalent 

to . These conditions are the parameter values of  and  for 

which this inequality is satisfied.  

For illustrative purposes, some examples of latency reduction using this technique are 

presented in Table 5. Several conditions to replace communication primitives are shown, 

together with some examples that meet these conditions. The obtained latency reductions for 

these examples are shown in the last column. mpiJava examples have been omitted as this 

library performs similarly to the underlying native library.  The Reduce-scatter primitive has 

also been omitted as it is implemented in MPICH, ScaMPI and MPJ/Ibis using a Reduce 

followed by a Scatterv. The equivalent combination of primitives: (1) can present lower 

startups than the original primitive (e.g. Allgather in Table 5), or (2) can show lower transfer 

times than the original primitive (e.g. Broadcast in Table 5), or (3) can present both 

situations (e.g. Allreduce in Table 5); in this case the substitution conditions are always met. 

 

Table 5:  Parameter values for latency (T) reduction through primitive substitution 
 

 

 
Library Testbed Parameter values {(n, p)} Example (n,p) T 

      

B
ro

a
d

ca
st

 

MPICH-GM Myrinet {(n>64KB,p=8),(n>78KB,p=16)} n=256KB, p=16 ↓20% 

ScaMPI 
SCI-single {(n>103KB,p=8)} n=256KB, p=8 ↓18% 

SCI-dual {(n>128KB,p=16)} n=256KB, p=16 ↓13% 

MPJ/Ibis 

Myrinet {(n>273KB,p=8),(n>994KB,p=16)} n=512KB, p=8 ↓43% 

SCI-single {(n>462KB,p=4),(n>202KB,p=8)} n=1MB, p=8 ↓53% 

SCI-dual {(n>1173KB,p=16)} n=2MB, p=16 ↓  9% 

      

A
ll

g
a
th

er
 

MPICH-GM Myrinet {(n<256B,p=8),(n<2KB,p=16)} n=256B, p=16 ↓20% 

ScaMPI SCI-single {(n<128B,p=4),(n<256B,p=8)} n=128B, p=8 ↓43% 

MPJ/Ibis 

Myrinet {(n<25KB,p=8),(n<40KB,p=16)} n=1KB, p=8 ↓42% 

SCI-single {(n<2KB,p=4),(n<7KB,p=8)} n=1KB, p=8 ↓35% 

SCI-dual {(n>17KB,p=8),(n>45KB,p=16)} n=1KB, p=16 ↓50% 

SCI-w/HT {(n>66KB,p=8),(n>109KB,p=16)} n=1KB, p=16 ↓61% 

      

A
ll

re
d

u
ce

 

MPJ/Ibis 

Myrinet Replace always 
n=1KB, p=8 ↓39% 

n=256KB, p=8 ↓18% 

SCI-single Replace always 
n=1KB, p=8 ↓50% 

n=256KB, p=8 ↓24% 

SCI-dual Replace always 
n=1KB, p=16 ↓44% 

n=256KB, p=16 ↓41% 

SCI-w/HT Replace always 
n=1KB, p=16 ↓52% 

n=256KB, p=16 ↓65% 

 

This model-based performance optimization can be easily automatized.  By determining 

cross-over points between communication primitives and their equivalent combinations, the 
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message-passing library can replace at runtime inefficient primitives by their equivalents. 

Related projects on automatic collective communication optimization [22, 23] use the P -

LogP model, that operates in a lower level.  Nevertheless, these papers present only Broadcast 

and Scatter optimizations, due to the complexity of their approximations. In fact, in order to 

determine the best communication pattern, the optimization procedure consists of finding out 

the best algorithm for each message size, and the best segment size to fragment the message. 

This procedure must be repeated for each number of processors taken into account, although  

it can be speeded up with the aid of the P-LogP model. The originality of our higher-level 

approach relies on its generality, as it works straightforwardly for every collective primitive, 

and on its simplicity, as the optimization procedure requires less phases than the related 

approaches. 

 

6 Application-level Kernel Benchmarking 

 

An application-level kernel benchmarking has been carried out in order to analyze the impact 

of message-passing overhead on the overall application performance.  This benchmarking has 

also served to analyze the influence of message-passing overhead on multiple processor 

nodes (see Section 7). Both analyses are consistent with the predictions obtained from the 

models. This process has been carried out on the SCI cluster, and the selected benchmarks 

have been the MPJ application-level kernels from the Java Grande Forum (JGF) Benchmark 

Suite [24] and their corresponding MPI C versions. The kernels are, from higher to lower 

computation/communication ratio: Series, Crypt, SOR, Sparse and LUFact. For each of them 

there are three predetermined problem sizes:  small (A), medium (B) and large (C). This 

benchmark suite is the only one that includes MPJ kernels, although there have been some 

attempts to develop MPJ NAS Parallel Benchmarks [25].  

Figure 5 shows the speedups obtained from running LUFact and Series kernels using 

ScaMPI, mpiJava, MPJ/Ibis and MPJ Express on the SCI cluster. These kernels have been 

selected as representatives of communication intensive applications (LUFact) and 

computation intensive applications (Series). Labels in the x-axis represent the kernel problem 

size (A, B, C) and the number of processes per node (1, 2 and 4; using SCI-single, SCI-dual 

and SCI-dual w/HT configurations, respectively).  Regarding the speedup results, ScaMPI 

shows generally the best scalability; mpiJava presents slightly lower performance than 

ScaMPI; and MPJ/Ibis and MPJ Express results are slightly lower than mpiJava results.  

LUFact shows modest parallel efficiencies,  and even slowdowns for size A, especially for 

A4, and also for size B with MPJ Express. Series as a whole presents higher parallel 

efficiencies (between 48% and 99%). Nevertheless, these efficiencies fall in two groups, 

modest parallel efficiencies for size C or using SCI-dual w/HT (labels C1, C2, A4, B4 and 

C4), and higher values for the remaining cases.  Regarding the “pure” Java libraries, MPJ 

Express Series shows better performance than MPJ/Ibis Series, whereas MPJ/Ibis performs 

better for LUFact. These differences can be explained by the fact that MPJ/Ibis uses TCPIbis 

Sockets as communication technology, which has lower  but higher  than Java NIO 

Sockets, base of MPJ Express. Thus, MPJ/Ibis performs better for applications with short  
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Figure 5:  Speedups of selected Java Grande application -level kernels 
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message communication patterns, whereas MPJ Express shows better performance for 

medium and long message communication patterns.  

Although Sparse, Crypt and SOR experimental results have also been analyzed, they 

have been omitted for conciseness and only the main conclusions are presented.  Thus, on the 

one hand, Sparse results are slightly lower than LUFact speedups.  On the other hand, Crypt 

and SOR results are similar to Series results, but showing lower speedups, especially  for 

SOR. 

From this benchmarking process, it has been observed that MPJ/Ibis and MPJ Ex press 

show parallel efficiencies comparable with native libraries performance. Only small, 

communication intensive applications show clearly poorer scalability.  

 

7 Performance Analysis on Multiple Processor Nodes  

 

The kernel benchmarking has also served to analyze the influence of message-passing 

overhead on multiple processor nodes, more specifically on dual nodes  with and without 

Hyper-Threading. This analysis has been carried out on the SCI cluster using single, dual 

and dual w/HT configurations. ScaMPI and MPJ/Ibis have been selected as representative 

libraries of native and Java message-passing libraries, respectively.  

 

7.1  Performance Analysis on Dual Processor Nodes  

 

According to the graphs of Figure 5, LUFact speedups are higher using 1 process per node 

than using 2 processes (A1 speedups > A2 speedups, B1 > B2 , C1 > C2 ), whereas Series 

speedups remain similar. In order to quantify the influence of using 2 processes per node 

instead of 1 process per node a metric has been derived.  This metric consists of the ratio 

 for  processes, where  nodes are used on SCI-single and  

nodes on SCI-dual. A ratio higher than 1 means that the kernel benefits from running  

processes on SCI-dual, instead of running on SCI-single. From Table 6 it can be observed 

that LUFact, Sparse and SOR, communication intensive kernels, do not benefit from using  2 

processes per node, whereas Series and Crypt, computation intensive kernels, can slightly 

benefit from this. The reason is that with 2 processes per node each process has available 

approximately half of the resources of the node, instead of the resources of the whole node 

(as it happens with 1 process per node). As communication intensive kernels need more 

resources for communications than computation intensive kernels (the message-passing 

libraries use additional buffers and threads when communicating), the performance benefits 

of intra-node communication do not make up for the reduction of available resources fo r 

inter-node communication. 

Once running  processes on  nodes instead of on  nodes seems to be little 

beneficial, another interesting comparison is running the kernel on  nodes assigning 1 

process per node against running the kernel on  nodes with 2 processes per node. The 

associated metric is the ratio . A ratio higher than 1 means 

that the kernel benefits from running 2 processes per node instead of running only 1 for a  
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Table 6:  Ratio  
 

  Small Size (A) Medium Size (B) Large Size (C) 

  p = 4 p = 8 p = 4 p = 8 p = 4 p = 8 

        
S

ca
M

P
I 

LUFact 0.93 1.01 0.69 0.82 0.56 0.64 

Series 0.95 0.88 0.99 1.01 1.00 0.99 

SOR 0.70 0.77 0.63 0.70 0.59 0.68 

Sparse 0.56 0.51 0.47 0.53 0.46 0.50 

Crypt 1.02 1.01 1.01 1.00 1.00 0.98 

        

M
P

J
/I

b
is

 

LUFact 0.86 0.91 0.88 0.92 0.68 0.79 

Series 1.22 1.27 1.00 0.99 1.00 1.00 

SOR 0.90 1.03 0.85 1.04 0.76 0.91 

Sparse 0.89 0.81 0.94 0.83 0.86 0.79 

Crypt 0.98 1.00 1.02 1.02 1.00 1.04 

 

 

Table 7:  Ratio  
 

  Small Size (A) Medium Size (B) Large Size (C) 

  4 nodes 8 nodes 4 nodes 8 nodes 4 nodes 8 nodes 

        

S
ca

M
P

I 

LUFact 0.92 0.88 1.03 0.99 0.97 0.97 

Series 1.67 0.95 1.99 1.96 1.95 1.92 

SOR 1.02 1.02 0.99 0.99 0.98 0.98 

Sparse 0.62 0.65 0.71 0.68 0.72 0.69 

Crypt 1.66 1.34 1.78 1.62 1.78 1.72 

        

M
P

J
/I

b
is

 

LUFact 0.70 0.75 0.93 0.74 1.08 0.95 

Series 1.58 1.25 1.95 1.82 1.97 1.96 

SOR 1.01 0.82 1.10 0.94 1.08 0.96 

Sparse 0.58 0.61 0.63 0.64 0.67 0.64 

Crypt 1.65 1.44 1.87 1.76 1.89 1.84 

 

 

Table 8:  Ratio  
 

  Small Size (A) Medium Size (B) Large Size (C) 

  4 nodes 8 nodes 4 nodes 8 nodes 4 nodes 8 nodes 

        

S
ca

M
P

I 

LUFact 0.61 0.39 0.78 0.55 0.88 0.72 

Series 1.30 1.23 1.24 1.24 1.36 1.24 

SOR 0.80 0.46 0.87 0.64 0.89 0.52 

Sparse 0.54 0.53 0.74 0.63 0.88 0.65 

Crypt 0.94 0.72 1.22 0.90 1.24 0.95 

        

M
P

J
/I

b
is

 

LUFact 0.46 0.49 0.60 0.48 0.70 0.69 

Series 1.27 1.18 1.30 1.29 1.29 1.30 

SOR 0.70 0.49 0.70 0.61 0.75 0.62 

Sparse 0.44 0.39 0.44 0.39 0.49 0.43 

Crypt 1.14 1.07 1.22 1.18 1.27 1.22 
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fixed number of nodes . From the discussion in Subsection 4.2, both  and  are higher 

on SCI-dual than on SCI-single. Moreover, the communication overhead is higher for 

 processes instead of for  processes. Thus, clearly the communication cost is higher 

for  than for . Nevertheless, the workload for each of the 

 processes on SCI-dual is approximately half of the workload for each of the  

processes on SCI-single. Therefore, ratios slightly below 2 can be predicted for computation 

intensive kernels (Series and Crypt), whereas more modest ratios, even significant 

slowdowns, can be predicted for communication intensive kernels (LUFact, Sparse and 

SOR). Table 7 presents the obtained ratios, that are in tune with these predictions.  

 

7.2  Performance Analysis on Hyperthreaded Dual Processor Nodes  

 

The influence of enabling the Hyper-Threading has not been taken into account in the 

previous analyses. This influence can be characterized by the ratio of latency from running 

the kernels on  SCI-dual nodes against the runtime on  SCI-dual w/HT nodes. Thus, 

the metric is , where the number of processes is 

 on SCI-dual and  on SCI-dual w/HT. A ratio higher than 1 means that the 

kernel benefits from enabling Hyper-Threading, for a fixed number of nodes . From 

Subsection 4.2, it can be predicted that both  and  are higher on SCI-dual w/HT than on 

SCI-dual. From Subsection 4.1 it can be obtained that the computational performance 

should be slightly higher. Table 8 shows the obtained ratios, that are in tune with these 

predictions. Thus, computation intensive kernels (Series and Crypt) benefit from e nabling 

Hyper-Threading (up to a 36% performance increase), whereas communication intensive 

kernels (LUFact, Sparse and SOR) reduce their performance, especially on 8 nodes.  

It has been observed that representative message-passing implementations do not 

benefit from systems with multiple processor nodes.  A solution could be the use of 

multithreading instead of interprocess communication for handling intra-node 

communications. The development of shared memory communication protocols for intra-

node communications and their combination with current inter-node protocols would 

achieve higher performance. Nevertheless, the message-passing library must implement 

thread-safe communication mechanisms. This issue is of special importance in multi-core 

systems. Several related projects, e.g. USFMPI [26] and pCoR [27], propose to integrate 

multithreading and message-passing communications. 

 

8 Conclusions  

 

The characterization of the message-passing communication overhead on high-speed 

clusters is extremely important.  Message-passing performance is critical for the overall 

system scalability and performance. Representative native MPI (MPICH-GM, ScaMPI and 

SCI-MPICH) and Java message-passing libraries (mpiJava, MPJ/Ibis and MPJ Express) 

have been selected for performance modeling and evaluation. For this purpose, a more 

accurate message-passing communication model, together with a message-passing micro-
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benchmark suite to derive these models, have been proposed.  The predictions obtained by 

this model have been validated against experimental results obtaining better estimates than 

preceding models. The estimates have shown only a 7% average absolute relative error. 

Moreover, performance metrics derived from the models have been used to evaluate 

message-passing primitives implementations and their performance on high-speed clusters. 

These models have also served to identify inefficient communication primitives. To solve 

these inefficiencies, some primitives can be replaced by a more efficient equivalent 

combination of primitives. This process has obtained important latency reductions and can 

be easily automatized. 

From the analysis of message-passing performance, it can be concluded that native 

libraries and mpiJava benefit from the low startup and high bandwidth of the high-speed 

interconnects. Nevertheless, these libraries are not portable. MPJ/Ibis and MPJ Express 

overcome this issue, but this involves an important added overhead.  

Besides the message-passing performance analysis on high-speed interconnects, it has 

been carried out a kernel benchmarking. This process has been performed in order to 

analyze the influence of message-passing overhead and the use of multiple processor nodes 

on the overall application performance. The main conclusion is that message-passing 

implementations, especially “pure” Java libraries, do not take much advantage of these 

systems. 

Finally, this work intends to provide parallel programmers and library developers with 

guidelines for efficiently exploiting high-speed cluster interconnects and multiple processor 

nodes. The design of low-level communication middleware that increases Java performance  

on high-speed clusters, where far less research has been done, is the goal of our current 

work. 
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