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Abstract
Complete comprehension of loop codes is desirable for a vari-
ety of program optimizations. Compilers perform static code
analyses and transformations, such as loop tiling or memory
partitioning, by constructing and manipulating formal rep-
resentations of the source code. Runtime systems observe
and characterize application behavior to drive resource man-
agement and allocation, including dependence detection and
parallelization, or scheduling. However, the source codes of
target applications are not always available to the compiler or
runtime system in an analyzable form. It becomes necessary
to find alternate ways to model application behavior.

This paper presents a novel mathematical framework to re-
build loops from their memory access traces. An exploration
engine traverses a tree-like solution space, driven by the ac-
cess strides in the trace. It is guaranteed that the engine will
find the minimal affine nest capable of reproducing the ob-
served sequence of accesses by exploring this space in a brute
force fashion, but most real traces will not be tractable in this
way. Methods for an efficient solution space traversal based
on mathematical properties of the equation systems which
model the solution space are proposed. The experimental
evaluation shows that these strategies achieve efficient loop
reconstruction, processing hundreds of gigabytes of trace data
in minutes. The proposed approach is capable of correctly
and minimally reconstructing 100% of the static control parts
in PolyBench/C applications. As a side effect, the trace re-
construction process can be used to efficiently compress trace
files. The proposed tool can also be used for dynamic ac-
cess characterization, predicting over 99% of future memory
accesses.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers; D.4.8 [Operat. Sys-
tems]: Performance—Modeling and prediction

Keywords Trace analysis, polyhedral optimization, pro-
gram behavior modeling

1. Introduction
Affine codes represent an important class of applications in
many computing domains, such as supercomputing, embed-
ded systems, or multimedia applications. For the most part,
these codes execute large regular loops, with static control
parts that depend only on the loop index variables and loop
independent constants through affine bounds and subscripts,
and access and operate on large arrays of data. This is the
type of codes that is usually modeled and optimized using
the polyhedral approach [4, 7, 14, 17].

Many static and dynamic optimization techniques rely on
the knowledge of the application code to work. Unfortunately,
the source code is not always available to the optimizer. In em-
bedded systems for example it is common to find intellectual
property (IP) cores with well defined high level functionality,
but whose internals are opaque to the system designer and
programmer. Even when source code is available, it may not
be amenable to static analysis and optimization. Program-
mers may use complex data and control structures, including
code obfuscation techniques [18], that mask the underlying
application logic and prevent static analysis and optimization.

This paper presents an exploratory approach for automat-
ically reconstructing affine references from a trace of their
memory accesses. The exploration engine traverses a tree-
like space, in which level k contains all possible loops with
trip count equal to k, from a 1-level nest iterating from 0 to
(k− 1), to a k-level nest with a single iteration per level. The
system is based on the observation that access strides must
be constructed as linear combinations of loop index variables,
and only adds a new loop level when no other solution is fea-
sible. The basic approach explores the entire solution space
in a brute force fashion. On top of it, an exploration engine
based on the mathematical properties of affine loops guides
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the process to efficiently reconstruct the code. Since the en-
gine will eventually traverse the entire space, this process is
guaranteed to find the minimal canonical affine loop nest that
generates the exact input memory trace, given enough time.
The proposed approach builds a minimal equivalent form
using an n-level loop. The generated sequence of references
is the same as the original one, but the number of loop levels
is not guaranteed to be the same as in the original code. The
main contributions of this work are:

• A mathematical framework for the extraction of an affine
representation of a given memory trace (Sec. 3), without
user intervention or access to source codes or application
binaries. Strategies for traversing the solution space to-
wards a minimal representation are provided, including
a mechanism that can be used for dynamic prediction of
future accesses during runtime.
• A detailed experimental evaluation of the proposed ideas

on sequential codes (Sec. 4). Our results show that: (i)
the framework can be used to reconstruct large, complex
traces, in acceptable time; and (ii) the prediction mech-
anism anticipates over 99% of the accesses of a linear
memory reference.

Besides efficient trace compression, the framework can be
potentially applied to guide all sorts of static and dynamic
analyses and optimizations in the absence of source and/or
binary codes, or when working with codes that are not
amenable to static analysis for any reason. Examples of
applications are hardware and software prefetching, data
placement for locality optimizations, dependence analysis for
automatic parallelization, and optimal design of embedded
memory systems for locality. These applications are discussed
in depth in Sec. 5, along with the related work.

2. Problem Formulation
A program memory trace contains all the memory addresses
issued by its entire execution, including multiple loop nests
and non-loop sections. In this paper it is assumed that each
entry in the trace is labeled using an identifier of the instruc-
tion issuing the access, e.g., its memory address as done by
Intel’s Pin Tool [19]. The address stream generated by each
instruction is analyzed separately. A mechanism to detect and
extract loop sections in the trace [16, 21] may be used if a
single instruction may appear in different loop scopes. The
algorithm focuses on the individual reconstruction of each
reference. These types of loops can be written as:

DO i1 = 0, u1(
−→ı )

...

DO in = 0, un(
−→ı )

V [f1(
−→ı )] . . . [fm(−→ı )]

where {uj , 0 < j ≤ n} are affine functions; {fd(i1, . . . , in),
0 < d ≤ m} is the set of affine functions that converts a
given point in the iteration space of the nest to a point in the

data space of V ; and−→ı k = {ik1 , . . . , ikn}T is a column vector
which encodes the state of each iteration variable for the kth

execution of V . The complete access V [f1(
−→ı )] . . . [fm(−→ı )]

is abbreviated by V (−→ı ). Iteration bounds are assumed to be
inclusive. Note that this type of loops can be represented as
a single Z–polyhedron [9] with dimension n and 2n faces.
Since fj is affine, the access can be rewritten as:

V [f1(
−→ı )] . . . [fm(−→ı )] = V [c0 + i1c1 + . . .+ incn] (1)

where V is the base address of the array, c0 is a constant
stride, and each {cj , 0 < j ≤ n} is the coefficient of the
loop index ij , and must account for the dimensionality of
the original array1. This is the canonical form into which the
method proposed in this paper reconstructs the loop. Note
that any sequence of N numbers can be generated using an
affine loop which has at most N − 1 levels, and thus the
algorithm may reconstruct small non-affine loops using affine
ones of increased depth.

During the execution of the loop nest, the access to V
will orderly issue the addresses corresponding to V (−→ı 1),
V (−→ı 2), etc. These addresses will be registered in the trace
file together with the instruction issuing them and the size of
the accessed data. Consider two consecutive accesses, V (−→ı k)
and V (−→ı k+1), and assume that the loop index values in −→ı k

and the upper bounds functions, u1(−→ı ), . . . , un(−→ı ), are
known. The values in −→ı k+1 can be calculated as follows:

1. An index ij resets to 0 iff all of the following hold:
• All inner indices are resetting.
• Either ij has reached its maximum iteration count, or

some inner index has a negative value for its maximum
iteration count when ij increases by one.

2. An ij increases by one iff all of the following hold:
• All inner indices are resetting.
• ij has not reached its maximum iteration count, and

all inner indices have non-negative values for their
maximum iteration count when ij increases by one.

3. In any other case, ij will not change.

These conditions are intuitive and a direct consequence of
loop semantics and application control flow.

Definition 2.1. A set of indices built complying with these
conditions will be referred to as a set of sequential indices.

Consequently, the instantaneous variation of loop index ij
between iterations k and (k+1), δkj = (ik+1

j − ikj ), can only
take one of three possible values:

1. ij does not change⇒ δkj = 0

1 For instance, an access A[2 ∗ i][j] to an array A[N ][M ] can be rewritten
as A[(2 ∗M) ∗ i + j], where ci = 2M accounts for both the constant
multiplying i in the original access (2), and the size of the fastest changing
dimension (M ).
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2. ij is increased by one⇒ δkj = 1

3. ij is reset to 0⇒ δkj = −ikj
In the following, vector notation will be used for δ:

(−→ı k+1 −−→ı k) =

 ik+1
1 − ik1

...
ik+1
n − ikn

 =

 δk1
...
δkn

 =
−→
δ k

Lemma 2.2. The stride between two consecutive accesses
σk = V (−→ı k+1) − V (−→ı k) is a linear combination of the
coefficients of the loop indices.

Proof. Using Eq. (1), σk can be rewritten as:

σk = V + (c0+ c1i
k+1
1 + . . .+ cni

k+1
n ) −

V + (c0+ c1i
k
1 + . . .+ cni

k
n) =

= c1δ
k
1 + . . .+ cnδ

k
n = −→c

−→
δ k

3. Reconstruction Algorithm
The proposed algorithm is essentially a guided exploration
of the potential solution space, driven by the first-order
differences of the addresses accessed by a given instruction,
i.e., the access strides. Each node in this tree-like space
represents a point in the iteration space of the loop. Its root is
a trivial loop that generates the first two accesses in the trace.
The children of a node in the tree are the indices that can
immediately follow the parent in the iteration space. Starting
from the root, an exploration engine begins incorporating one
access to the reconstructed loop in each step, descending one
level into the tree, until it finds a solution for the entire trace
or determines that no affine loop is capable of generating
the observed sequence of accesses. Each step of the process
is conceptually depicted in Fig. 1. The algorithm builds the
minimal nest capable of generating the observed access trace2.
This section models the problem, and develops exploration
strategies to efficiently traverse the solution space taking into
account its mathematical characteristics.

Let A = {a1, . . . , aN} =
{
V (−→ı 1), . . . , V (−→ı N )

}
be

the sequence of addresses generated by a single instruc-
tion in a single loop scope, extracted from the execution
trace. The reconstruction algorithm iteratively constructs a
solution SNn = {−→c , IN ,U,−→w }, which generates the trace
{a1, . . . , aN} using n nested loops. The components of this
solution are defined as follows:

• Vector −→c ∈ Zn of coefficients of loop indices.
• Matrix IN = [−→ı 1| . . . |−→ı N ] ∈ Zn×N of iteration indices.

2 For example, a 2-level loop with indices i and j might iterate sequentially
over the elements in array A[N ][M ] if the upper bounds are defined as
ui = N , uj = M and the access is V [i ∗M + j]. This can be rewritten as
a 1-level loop with index i, using ui = N ∗M and access V [i].

Figure 1. Solution space. For each reconstructed index −→ı k,
there are (2n+ 1) possible values for −→ı k+1. The n alterna-
tives on the left side are obtained using an operation +(j,−→ı )
that increases index ij by one, and resets to zero all inner
indices. The (n+ 1) alternatives on the right are obtained by
applying an operation f(j,−→ı ), which inserts a new loop
at nesting level (j + 1). For instance, if −→ı k = [3, 5, 7],
there are 7 alternatives for −→ı k+1: +(1,−→ı k) = [4, 0, 0],
+(2,−→ı k) = [3,6, 0], +(3,−→ı k) = [3, 5,8], f(0,−→ı k) =
[1, 0, 0, 0], f(1,−→ı k) = [3,1, 0, 0], f(2,−→ı k) = [3, 5,1, 0],
and f(3,−→ı k) = [3, 5, 7,1].

• Matrix U ∈ Zn×n, and vector −→w ∈ Zn, the bounds
matrix and bounds vector, respectively.

The iteration domain IN is an integer polyhedron contain-
ing the iteration indices −→ı such that:

U−→ı +−→w ≥ −→0 T (2)

where U is a lower triangular matrix, since no index ij can
depend on the index of an inner loop. Its main diagonal is
equal to

−→−1 ∈ Zn. Its jth row, U(j,:), contains the coefficients
of each loop index in the affine bounds function uj(−→ı ), while
wj contains its independent term. To be a valid solution, SNn
has to meet the following requirements:

1. Each consecutive pair of indices −→ı k and −→ı k+1 must
be sequential ∀k ∈ [1, N) as per Definition 2.1. This
condition, which preserves address order, is stronger than
simply requiring that the iteration indices stay inside the
integer polyhedron delimited by the loop bounds, which
can be written by extending Eq. (2) as:

UIN +−→w11×N ≥ 0n×N (3)

2. The observed strides are coherent with the reconstructed
ones. Using Lemma 2.2 this can be expressed as:

−→c (−→ı k+1 −−→ı k) = −→c
−→
δ k = σk,∀k ∈ [1, N)
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1 #define N 32
2 double p[N], A[N][N];
3 for(i = 0; i < N; ++i) {
4 x = A[i][i];
5 for(j = 0; j <= i - 1; ++j)
6 x = x - A[i][j] * A[i][j];
7 p[i] = 1.0 / sqrt(x);
8 for(j = i + 1; j < N; ++j) {
9 x = A[i][j];

10 for(k = 0; k <= i - 1; ++k)
11 x = x - A[j][k] * A[i][k];
12 A[j][i] = x * p[i];
13 }
14 }

Figure 2. Source code of the cholesky application.

1 0x1e2d140
2 0x1e2d140
...

30 0x1e2d140
31 0x1e2d240
32 0x1e2d248
33 0x1e2d240
34 0x1e2d248

...

88 0x1e2d248
89 0x1e2d340
90 0x1e2d348
91 0x1e2d350
92 0x1e2d340
93 0x1e2d348
94 0x1e2d350

...

Figure 3. Excerpt of the memory trace generated by the
access A[i][k] (line 11 of Fig. 2).

The algorithm proceeds iteratively, constructing partial
solutions for incrementally larger parts of the trace A. The
first partial solution is built as:

S21 =
{−→c =

[
σ1
]
, I2 = [0, 1] ,U = [−1] ,−→w = [1]

}
(4)

or, equivalently:

DO i1 = 0, 1

a1 + i1σ
1

Consider the source code of the cholesky application from
the PolyBench/C 3.2 suite [23] in Fig. 2. For the sake of
clarity, in this example we will only focus on the analysis of
the access A[i][k] in line 11. An excerpt of its memory
trace is shown in Fig. 3. The first partial solution, which
reconstructs the subtrace {a1 = 0x1e2d140, a2 = a1}, is
found to be:

S21 =
{−→c = [0] , I2 = [0, 1] ,U = [−1] ,−→w = [1]

}
Starting from this first partial solution the exploration engine
can begin working, gradually increasing its size, until it
reaches a solution for the entire trace A. Upon processing
access ak+1, the algorithm first calculates the observed access

stride, σk = ak+1 − ak, and builds a diophantine linear
equation system based on Lemma 2.2 to discover the potential
indices −→ı k+1 which generate an access stride that is equal
to the observed one:

−→c (−→ı k+1 −−→ı k) = σk ⇒ (−→c T−→c )
−→
δ k = −→c Tσk (5)

where (−→c T−→c ) ∈ Zn×n is the system matrix, and
−→
δ k ∈ Zn

is the solution. There are two possible situations when solving
this system:

1. The system has one or more integer solutions. In this case,
for each solution

−→
δ k, the new index −→ı k+1 = −→ı k +

−→
δ k,

which must be sequential to−→ı k, is calculated, and Ik+1 =[
Ik|−→ı k+1

]
. U, −→w , and −→c remain unchanged. Each of

these solutions must be explored independently.

2. The system has no solution generating an index sequential
to −→ı k, in which case there are three courses of action:

(a) Increase the dimensionality of the solution (Sec. 3.2).

(b) Modify the boundary conditions U and −→w (Sec. 3.4).

(c) Discard this branch.

3.1 Solving the Linear Diophantine System
Although the system in Eq. (5) has infinite solutions in the
general case, only a few are valid in the context of the affine
loop reconstruction, which makes it possible to develop very
efficient ad-hoc solution strategies.

Lemma 3.1. There are at most n valid solutions to the system
in Eq. (5). These correspond to indices:

{+(l,−→ı k) =
[
ik1 . . . ikl−1 ikl + 1 0 . . . 0

]
, 0 < l ≤ n}

Proof. If index −→ı k+1 must be sequential to index −→ı k as per
Definition 2.1, then there is a single degree of freedom for−→
δ k: the position δkl that is equal to 1.

[ δk1 . . . δkl−1 δkl δkl+1 . . . δkn ]
T
=

= [ 0 . . . 0 1 −ikl+1 . . . −ikn ]
T

Positions {ij , 0 < j < l} will not change between iterations
k and (k+ 1), and therefore δkj = 0; while positions {ij , l <
j ≤ n} will be reset to 0, and therefore δkj = −ikj .

Taking this result into account, it is possible to find all
valid solutions of the system in linear time, O(n), by simply
testing the n valid candidates +(l,−→ı k), calculating their
associated strides σ̂k

l = −→c
−→
δ k

l , and accepting those solutions
with a stride equal to the observed one, σ̂k

l = σk. These are
particular solutions of the subtrace {a1, . . . , ak+1}, which
will be explored to construct a solution for the entire trace.

Following the cholesky example, the next access in
the trace to be processed is a3 = 0x1e2d140. The engine
computes the access stride as σ2 = a3 − a2 = 0. At this
point, a 1-level loop has been constructed and the engine
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checks whether
−→
i 3 = +(1,

−→
i 2) = [2] produces an stride

that matches the observed one. The equality σ̂2
1 = −→c

−→
δ 2

1 =
[0] [1] = σ2 holds, and the solution is accepted. The matrix of
reconstructed indices is updated, and the algorithm continues
processing the trace and updating I in the same way until
it builds S301 , with I30 =

[
0 1 . . . 29

]
. At this point,

the observed stride changes to:

σ30 = a31 − a30 = 0x1e2d240− 0x1e2d140 = 256

The constructed loop with −→c = [0] cannot produce a
stride different from 0. As such, the subtrace {a1, . . . , a31}
cannot be generated with an affine access enclosed in a 1-
level loop and the dimensionality of the current solution S301
must be increased to build S312 .

3.2 Increasing Solution Dimensionality
Let Skn = {−→c , Ik,U,−→w } be a partial solution for the
subtrace {a1, . . . , ak}. If no valid index {+(l,−→ı k), 0 <
l ≤ n} provides σ̂k

l = σk, it may be because a loop
index which had not appeared before is increasing in access
(k + 1). This can cause σk to be unrepresentable either as a
linear combination of the loop coefficients −→c , or as an index
sequential to −→ı k. It is possible to generate a valid partial
solution Sk+1

n+1 from Skn by enlarging the dimensionality of the
current solution components. There are (n+1) such potential
solutions, corresponding to the indices {f(p,−→ı k), 0 ≤ p ≤
n}. For each insertion position p of the newly discovered
loop, the set of indices Ik+1 ∈ Z(n+1)×(k+1), is built as:

Ik+1 =

 Ik(1:p,:) −→ı k+1
01×k

Ik(p+1:n,:)


where a 0 in position p has been added to each index in Ik,
and a new column −→ı k+1 = f(p,−→ı k) has been added to the
matrix. The coefficient c′p associated with the new loop index
can be derived from Eq. (5):

−→c
−→
δ k =

[
. . . cp c′p cp+1 . . .

]


...
0
1
−ikp

...

 = σk ⇒

c′p = σk +

n∑
r=p+1

ikrcr

U and −→w are updated as described in Sec. 3.4 to reflect
any new information available. If no solution is found for the
boundary conditions, then this branch is discarded. Note that
there must be a practical limit to the maximum acceptable
solution size, as in the general case any trace {a1, . . . , aN}
can be generated using at most N − 1 affine nested loops. To

ensure that a minimal solution, in terms of the dimensionality
of the generated Z–polyhedron, is found, the solution space
should be traversed in a breadth-first fashion.

Revisiting the cholesky example, there are two possible
insertion points for the new loop in S312 . As the most common
situation is that newly discovered loops are outer than the
previously known ones, it explores p = 0 first. The new loop
coefficient vector and index matrix are calculated as:

c′0 = σ30 + i301 c1 = 256 + 0 · 29⇒ −→c =
[
256 0

]
I31 =

[
0 . . . 0 1
0 . . . 29 0

]
The traversal of the solution space continues. The next
observed stride is σ31 = a32 − a31 = 8. No increase of
the currently found loop indices produces such stride:{

σ̂31
1 = −→c

−→
δ 31

1 =
[
256 0

] [
1 0

]T
= 256

σ̂31
2 = −→c

−→
δ 31

2 =
[
256 0

] [
0 1

]T
= 0

Hence, the solution must grow to S323 . Now there are three
different insertion points. The first two yield the following
coefficient vectors:{

p = 0⇒ −→c =
[
264 256 0

]
p = 1⇒ −→c =

[
256 8 0

]
As soon as the first points are explored in these branches, the
engine will find that this partial solution does not match the
remainder of the trace either. For the sake of simplicity, let us
assume that the engine has been configured to explore up to
3-level loops before discarding a branch, and thus it will not
try to build S334 . Rather, it will continue the exploration on
the third possible insertion point:

p = 2⇒ −→c =
[
256 0 8

]
At this point the engine has correctly recognized the coeffi-
cients of the three levels of the original nest. It generates the
new index matrix:

I32 =

[
I(1:2,:) −→ı 32

0 . . . 0

]
=

 0 . . . 0 1 1
0 . . . 29 0 0
0 . . . 0 0 1


For the sake of simplicity, this section does not discuss the

calculations associated to loop bounds. These will be detailed
in Sec. 3.4.

3.3 Branch Priority
The approach proposed above is capable of efficiently finding
the relevant solutions of the linear diophantine system for
each address of the trace, but can still produce a large
number of potential solutions that will be discarded when
processing the remaining addresses in the trace. In the general
case, the time for exploring the entire solution space of a
trace containing N addresses generated by n loops would
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be O(nN ). Consequently, exploring all branches with no
particular order could take a very long time. To guide the
traversal of the solution space, consider the column vector
−→γ k ∈ Zn defined as:

−→γ k = U−→ı k +−→w (6)

Lemma 3.2. Each element γkj ∈
−→γ k indicates how many

more iterations of index ij are left before it resets under
bounds U, −→w .

Proof. γkj is equal to the value of the upper bound of the loop
in ij minus the current value of ij :

γkj = U(j,:)
−→ı k + wj︸ ︷︷ ︸

wj+uj,1i1+...+uj,(j−1)i(j−1)−ij

= uj(
−→ı )− ij

By construction of the canonical loop form, the step of all
loops is 1. Therefore, γkj is equal to the number of iterations
of loop ij before ij > uj(

−→ı ).

This result suggests that, assuming that U and −→w are
accurate, the most plausible value for the next index is
−→ı k+1 = +(l,−→ı k), where l is the position of the innermost
positive element of −→γ k. The correctness of this prediction
can be assessed by comparing the predicted stride σ̂k

l with
the observed σk. Note that using−→γ k as described above guar-
antees consistency with the boundary conditions in Eq. (2),
which further improves the efficiency of the approach by
saving calculations.

3.4 Calculating Loop Bounds
So far the calculation of the boundary conditions, U and −→w ,
has been overlooked. As before, assume that the algorithm
has already identified a partial solution Skn = {−→c , Ik,U,−→w }.
Upon processing access ak+1 the algorithm will try to explore
the branch which increments the index il corresponding
to the innermost positive element of −→γ k, as described in
Sec. 3.3. However, it might happen that the calculated stride
for the selected branch does not match the observed stride,
i.e., σ̂k

l 6= σk. A different candidate index il′ will have to be
generated as described in Sec. 3.1, but the resulting +(l′,−→ı k)
will not be sequential to −→ı k under the current bounds U and
−→w . In this scenario it is necessary to generate new bounds U′

and −→w ′. These can be found by solving the system in Eq. (3):

U′Ik+1 +−→w ′11×(k+1) ≥ 0n×(k+1) (7)

If the system is inconsistent, then the generated iteration
space is not a polytope, and the solution is not valid. If the
system has solutions, then it will be overdetermined in the
general case. Matrix U′ and vector −→w ′ are only partially
unknown: the only rows that may vary with respect to U and
−→w are those corresponding to loop indices {ij , l ≤ j ≤ n},
since the outer variables cannot be affected by the inner,
unscoped ones. As such, their first (l − 1) rows are known.

First, −→w ′ is calculated. The first (l − 1) positions are
already known and are the same as those in −→w . To calculate
the remaining positions {w′j , l ≤ j ≤ n}, consider the set of
(n− l + 1) reduced systems:

U′(j,:)
−→ı + w′j = u′j(

−→ı ) = 0 (8)

where U′(j,:) and w′j are unknowns, and −→ı ∈ Ik+1 may be
any vector such that u′j(

−→ı ) = 0.

Lemma 3.3. In order to solve Eq (8), it is always possible
to choose an index −→z ∈ Ik+1 of the form:

−→z = [0, . . . , 0, zj , . . . , zn]
T

Replacing it in the previous equation and taking into account
that U′ is a lower triangular matrix with main diagonal
equal to

−→−1 ∈ Zn, Eq. (8) is reduced to w′j = zj . The only

candidate vector which fulfills u′j(
−→z ) = 0 is

−→
Z such that its

Zj value is maximum, i.e., (@−→z , zj > Zj).

Proof. At least one candidate vector,
−→
0 ∈ Zn, is guaranteed

to exist, by construction of the canonical loop form. If a −→z is
chosen such that w′j = zj < Zj , Eq. (3) would not hold, at
least, for index

−→
Z :

u′j(
−→
Z ) = U′(j,:)

−→
Z + w′j = −Zj + zj < 0

Intuitively, we are operating on the integer polyhedron Ik,
selecting the vertex point such that its value along dimension
j is maximum. Applying Lemma 3.3 to the cholesky
example, the bounds vector is calculated as:

−→w ′ =
[
1 29 0

]T
Once −→w ′ is calculated, the unknown rows U′(l:n,:) can be
calculated by reducing the original system in Eq. (7) to
(n− l + 1) equation systems of the form:

U′(j,:)i+ w′j1
1×(j−1) = 01×(j−1) (9)

where i ∈ Zn×(j−1) is a matrix of columns extracted from
Ik+1 such that

(
∀−→ı ∈ i, u′j(

−→ı ) = 0
)
. i must contain (j− 1)

columns as there are (j − 1) unknowns in U′(j,:). As in
the calculation of w′j , each column in i has to be chosen
such that its ij value is maximum for a specific combination
of its indices (i1, . . . , ij−1). Intuitively, we are building the
constraint uj(−→ı ) ≥ 0 from selected points which belong
to its associated face in polyhedron Ik. Applying Eq. (9) to
index i3 in the cholesky example:

U′(3,:)i+ w′31
1×2 = 01×2 ⇒

[
u3,1 u3,2 −1

]  0 1
1 0
0 1

+[ 0 0
]
=
[
0 0

]
⇒
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(a) Discovery of index i3 and associ-
ated bounds when processing a31.

(b) Recalculation of i2 bounds when
processing access a88.

Figure 4. Evolution of predicted polyhedron faces through
the reconstruction process of access A[i][k] in
cholesky. Faces associated to the row of U being recal-
culated are shaded. Edges of the previously predicted poly-
hedron are dashed. Iteration points already discovered are
hollow. Points used to buid matrix i during the calculation of
the face are marked in black.

[
u3,2 (u3,1 − 1)

]
=
[
0 0

]
⇒
{
u3,1 = 1
u3,2 = 0

So the calculated U′ is:

U′ =

 −1 0 0
0 −1 0
1 0 −1


The calculated bounds are shown in Fig. 4(a). Continuing
the example, −→γ 32 = [0, 29, 0]

T , and the engine predicts
−→ı 33 = [1,1, 0]

T which generates a stride that matches
the observed one. −→γ 33 = [0, 28, 1]

T and the engine pre-
dicts −→ı 34 = [1, 1,1]

T which also generates a stride that
matches the observed one. This process continues, alternately
incorporating iterations of i2 and iterations of i3, until the
engine incorporates access a88 to the solution, with index
−→ı 88 = [1, 28,1]

T . At this point, −→γ 88 = [0, 1, 0]
T , and the

engine predicts an iteration of i2, with σ̂88
2 = −8. However,

σ88 = a89 − a88 = 248. The engine defaults to the brute
force mode, calculating the strides for each of the currently
known indices (see Sec. 3.1):{
σ̂88
1 = −→c

−→
δ 88

1 =
[
256 0 8

] [
1 −28 −1

]T
= 248

σ̂88
3 = −→c

−→
δ 88

3 =
[
256 0 8

] [
0 0 1

]T
= 8

The engine explores the branch with −→ı 89 = [2, 0, 0], and the
loop bounds have to be updated:

−→w ′ =
[
2 29 0

]
The first and third rows of U′ do not change. For the second,
the following system is solved:

U′(2,:)i+ w′21
1×1 = 01×1 ⇒

[
u2,1 −1 0

]  1
28
1

+ [29] = [0]⇒ u2,1 = −1

and the new bounds matrix:

U′ =

 −1 0 0
−1 −1 0
1 0 −1


This calculation is illustrated in Fig. 4(b). The engine has
now collected all the information that it needs to solve the
problem. From this point on, the engine will keep incorporat-
ing elements in the trace to the solution, with −→γ accurately
predicting all remaining iterations, until it reaches the end of
the trace having reconstructed the following terms:

−→c =
[
256 0 8

]
U =

 −1 0 0
−1 −1 0
1 0 −1


−→w =

[
29 29 0

]



DO i1 = 0, 29

DO i2 = 0, 29− i1
DO i3 = 0, i1
a1 + 256i1 + 8i3

Note that this reconstruction method does not regenerate
the constant term c0 in Eq. (1), and assumes the base address
of the access to be V ′ = a1. This is not a problem for any
practical application of the extracted loop information, as
the set of accessed points is identical to that of the original,
potentially non-canonical loop.

3.5 Algorithm
Algorithm 1 presents the pseudocode of the Extract()
function which implements the proposed approach. The re-
cursive solution is not practical for a real implementation, but
clearly illustrates the idea. The computations to calculate the
new loop insertions described in Sec. 3.2 are encapsulated in
a Grow() function, shown as Algorithm 2. The reconstruc-
tion starts by calling Extract() with the initial S21 defined
in Eq. (4). In the worst case, when no access is correctly pre-
dicted using −→γ , the algorithm uses the brute force approach
(O(nN )). In the best case every access is correctly predicted
(O(N)).

4. Experimental Results
The proposed algorithm has been implemented in Python
and used to extract codes for different affine kernels. This
section analyzes the behavior of the reconstruction algorithm
in order to assess the feasibility of the proposed approach.
The reconstruction algorithm was run with traces generated
by the PolyBench/C 3.2 suite [23]. It includes 30 applications
from domains such as linear algebra, stencil codes, and data
mining. The target was the traces generated by the static
control parts of these applications (enclosed within scop
pragmas). These were split into the subtraces generated by
their different instructions and stored in memory before being
processed. The “standard” problem size was used, generating
traces ranging from 6 million references for jacobi-1D
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Algorithm 1: Pseudocode of Extract()
Input: the execution trace, A, and a partial solution

S = {−→c , I,U,−→w }
Output: a global solution or None if no solution found

1 k = #columns of I;
2 while k < len(A)− 1 do
3 σ = ak+1 − ak;

// Try to use −→γ (Sec. 3.3)

4 calculate −→γ = U−→ı k +−→w ;

5 calculate predicted stride σ̂l =
−→c
−→
δ l;

6 if σ̂l = σ then
7 I = [I|+ (l,−→ı k)];
8 k = k+1;
9 continue;

10 end
// Brute force approach (Sec. 3.1)

11 for l=n down to 1 do
12 calculate σ̂l =

−→c
−→
δ l;

13 if σ̂l = σ then
14 I′ = [I|+ (l,−→ı k)];
15 {U′,−→w ′} = update bounds; // Sec. 3.4

16 if {−→c , I′,U′,−→w ′} is linear then
17 S ′ = Extract({−→c , I′,U′,−→w ′},A);
18 if S ′ 6= None then return S ′;
19 end
20 end
21 end

// Add loop (Sec. 3.2)

22 for p=0 to n do
23 S ′ = Extract(Grow(S, p),A);
24 if S ′ 6= None then return S ′;
25 end
26 return None;
27 end
28 return S;

(150 MB in disk) to 12.9 billion references for 3mm (270
GB). The number of references in each kernel varies between
3 for trmm and 92 for fdtd-apml. Each execution was
performed on an Intel Xeon E5-2660 Sandy Bridge 2.20 Ghz
node, with 64 GB of RAM.

Fig. 5 shows trace sizes and processing times. These
largely depend on the number of reconstructed loops, as well
as on the iteration pattern. For instance, the most efficient
reconstruction is achieved for jacobi-1D, a stencil compu-
tation which only accesses small 1-dimensional arrays. Two
loops generate all traces, but the outer one iterates only once
per each 10.000 iterations of the inner one. As a result, the
reconstruction process can be largely streamlined: the trace
contains blocks of 10.000 elements separated by the same
stride, which can be recognized in a single step using −→γ as
a predictor. Its 6 million accesses are sequentially processed
in 0.2 seconds. On the opposite end, dynprog, which emits

Algorithm 2: Pseudocode of Grow() (Sec. 3.2)
Input: the partial solution S = {−→c , I,U,−→w }, and the

insertion point x
Output: modified partial solution with a new loop in position

x, or None if the insertion point generates a
nonlinear solution

// Insert a new row and column in U

1 U =

 U(1:x,1:x) 0x×1 U(1:x,x+1:n)

0 . . . 0 −1 0 . . . 0

U(x+1:n,1:x) 0(n−x)×1 U(x+1:n,x+1:n)

;

// Insert a new element in −→w
2 −→w =

[−→w (1:x)|0|−→w (x+1:n)

]
;

// Insert new index into I

3 I =

 I(1:x,:)
0 . . . 0 f(x,−→ı k)

I(x+1:n,:)

;

4 {U′,−→w ′} = update bounds; // Sec. 3.4

5 −→c = [−→c (1:x)|cx|−→c (x+1:n)];
6 if {−→c , I,U,−→w } is not linear then return None;
7 return {−→c , I,U,−→w };

Reconstruction times (s)
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Figure 5. Reconstruction times (upper axis) and trace sizes
(lower axis) for the PolyBench/C benchmarks, ordered by
trace size. Axes are logarithmic. Since the subtraces of a
kernel are independent they can be reconstructed in parallel,
achieving an average speedup of 5.6x.
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Trace % Trace % Trace %
3mm 0.02 lu 0.11 seidel 0.00
2mm 0.04 adi 0.01 jac-2D 0.00
syr2k 0.02 doit. 0.58 gesum. 25.01
syrk 0.05 dynp. 0.00 atax 25.00

gemm 0.05 fdtd-a. 24.21 bicg 25.00
floyd 0.00 lud. 0.66 mvt 12.50

symm 0.13 fdtd-2d 0.01 reg_d. 2.07
corr. 0.67 grams. 0.58 durbin 100

covar. 0.37 chol. 0.58 trisolv 100
trmm 0.00 gemv. 21.43 jac-1D 100

Table 1. Percentage of trace reconstructed after 48h without
−→γ prediction.

858 million references, is the one processed at the slowest
rate. It features a 4-level loop nest where the largest block
of single-strided accesses contains only 48 references. As
such, the number of decision steps taken by the algorithm is
much larger. While in the slowest case the engine is capable
of processing 170.000 references per second, in the fastest
one this figure goes up to 33 million (194x faster).

A second set of experiments was run deactivating −→γ
prediction. In this case, the engine must explore all potentially
correct branches as indicated in Sec. 3.1. All subtraces were
processed in parallel. The recognition was run for 48 hours,
at which point the unreconstructed subtraces were considered
intractable for practical purposes. Table 1 summarizes the
results. For most codes only the smallest subtraces were
recognized, accounting for less than 1% of the total trace.
fdtd-apml, gemver, gesummv, atax, bicg, and mvt
contain large single-strided subtraces, which are recognized
as a single block. durbin and trisolv have subtraces of 8
million references, each of which is reconstructed in 47 hours.
jacobi-1D has subtraces of only 1 million references.

The usability of the engine as an online predictor was
also evaluated. Table 2 shows the percentage of predicted
accesses. The engine is made to predict the next access
in the trace. When the prediction matches the address, it
is counted as a hit. If the prediction is a mismatch, it is
counted as a miss, the solution is modified to adapt to the new
observation and a new prediction is made for the next access.
For most applications, −→γ predicted above 95% of the issued
references. Exceptions are, again, fdtd-apml, gemver,
gesummv, atax, bicg, and mvt. Note how their numbers
are almost complementary to those in Table 1. The reason
is that most unpredicted accesses were issued by single-
strided references. These are not handled by−→γ since it cannot
operate before −→w is calculated, and this will never happen
for 1-level loops, which generate the types of traces that are
tractable by the algorithm without −→γ guidance. However,
since these loops are single-strided, the engine is capable of
correctly predicting which addresses will be issued in the
future by simply assuming that the only known loop will

Trace % Trace % Trace %
3mm 99.93 lu 99.99 seidel 99.97
2mm 99.91 adi 97.42 jac-2D 99.97
syr2k 99.88 doit. 99.88 gesum. 74.93
syrk 99.85 dynp. 99.85 atax 74.94

gemm 99.90 fdtd-a. 75.70 bicg 74.94
floyd 99.90 lud. 99.99 mvt 87.43

symm 99.90 fdtd-2d 97.14 reg_d. 99.79
corr. 99.72 grams. 99.72 durbin 99.88

covar. 99.90 chol. 99.99 trisolv 99.89
trmm 99.99 gemv. 78.51 jac-1D 98.00

Table 2. Percentage of trace accesses predicted by −→γ .

iterate. As such, the combined prediction rate is above 99%
for all the codes we tested.

Regarding memory requirements, the exploration engine
needs to store, at least, −→c , −→w , U, and selected indices
of I3. In addition to these, some memory is consumed
by backtracking points used to efficiently implement the
recursion in Algorithm 1. The total memory requirements for
subtraces in our experimental set-up vary between 48 bytes
and 44 KB.

5. Related Work and Applications
Not many works, to the best of the authors’ knowledge, have
explored the reconstruction of loop codes from their memory
access traces. Most of them have done it as a means to pursue
a particular optimization. This section organizes related work
according to their ultimate goal, also discussing the potential
applications of the exploration engine proposed in this paper.

Clauss et al. [6] characterized program behavior using
polynomial piecewise periodic and linear interpolations sepa-
rated into adjacent program phases to reduce function com-
plexity. The model can be recursively applied, interpreting
coefficients of the periodic interpolation as traces in them-
selves. Ketterlin and Clauss [15] proposed a method for trace
prediction and compression based on representing memory
traces as sequences of nested loops with affine bounds and
subscripts. It uses a stack of terms. When a new term is
pushed, it searches for triplets of terms that can be rewritten
as a loop. This approach is capable of affinely representing
entire traces, generating imperfectly nested loops without
the need for pre- or post-processing steps. A bound must
be imposed on maximal instruction interleaving in order for
the approach to be practical. In contrast, in our approach
it is necessary to analyze the trace first, extracting the in-
dividual memory references and their loop scopes. These
isolated memory address streams are the input to the algo-
rithm presented in Sec. 3. In terms of optimality, our approach
is guaranteed to find the minimal solution for each stream,

3 The only indices that need to be stored during the reconstruction process
are those {−→ı ∈ I, ∃j, 0 < j ≤ n, uj(

−→ı ) = 0}, i.e., points on a face
of the iteration polyhedron. These are used for calculating −→w and U (see
Sec. 3.4).
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should it exist, while the approach by Ketterlin and Clauss,
which merges triplets in a greedy way and never backtracks,
may find non-minimal solutions. For instance, it compresses
the cholesky example used throughout the paper using 11
different 1- to 4-level loops, containing 12 imperfectly nested
references. For N = 128, our proposed approach still recon-
structs a single 3-level loop with the same structure as for
the smaller trace, while the approach by Ketterlin and Clauss
employs 11 loops of up to 6 levels.

One potential use of the exploration engine is cache
prefetching. In order to improve on the one block lookahead
scheme [24], Baer and Chen [2] use a prediction table and
lookahead program counter to preload regular accesses which
correctly predict the stride of the innermost loop. Iacobovici
et al. [11] propose a prefetcher capable of supporting up to
four distinct strides. In contrast, our approach is capable of
supporting an unlimited amount of strides, as well as variable
trip counts. However, hardware prefetching using our loop
reconstruction mechanism requires memory space to store
at least the values of U and −→w for each loop, as well as
−→c for each access instruction. The required space depends
on the maximum nesting level supported. Other prefetchers
integrated in the memory controller [25] could also benefit
from a hardware implementation of our recognition engine
to improve prediction accuracy.

To reduce remote memory accesses in NUMA architec-
tures, good data placement is essential. kMAF [8] improves
data locality by dynamically analyzing page faults of run-
ning applications and migrating threads and memory pages
consequently. It is engineered into the virtual memory imple-
mentation of the operating system. Piccoli et al. [22] propose
a combination of static and dynamic techniques for migrating
memory pages predicted to be frequently reused. A compiler
infers affine expressions for array sizes and the reuse of each
memory access enclosed in loops, and inserts checks to as-
sess the profitability of potential page migrations at runtime.
Our proposal can also provide the essential information for
data placement in NUMA architectures, either statically after
trace-based reconstruction and reconstructed code analysis,
or dynamically as a software-based prediction mechanism.

Trace-based code reconstruction is also useful for auto-
matic parallelization. Holewinski et al. [10] use dynamic
data dependence graphs derived from sequential execution
traces to identify vectorization opportunities. Jimborean et al.
[13] propose a dynamic mechanism for detecting data de-
pendences using interpolated linear functions to approximate
observed memory accesses to guide speculative paralleliza-
tion. Mendis et al. [20] employ the binary and data collected
from several executions of an application to rewrite computa-
tional kernels into a DSL by building a forest of expressions
and translating it into an optimized version. Similar systems
can be constructed using the proposed exploration engine, ca-
pable of analyzing dependences without the need for compiler
support.

Prior research investigated the problem of designing ad-
hoc memory hierarchies for embedded applications. Catthoor
et al. [5] proposed a compiler-based methodology to derive
optimal memory regions and associated data allocation. An-
giolini et al. [1] use a trace-based method that analyzes the
access histogram to determine which memory regions to
allocate to scratchpad memory [3]. Issenin and Dutt [12] in-
strument source code to generate annotated memory traces
including loop entry and exit points, and use this informa-
tion to generate affine representations of amenable loops and
optimize SPM allocation. Our trace-based reconstruction ap-
proach can be employed to apply affine techniques for custom
memory hierarchy design for applications for which affine
analysis of the source code is not feasible. This is of particular
interest for IP cores, commonly included in embedded de-
vices. It can also be employed to drive scratchpad allocation
managers.

6. Concluding Remarks
This work has explored the affine reconstruction of loop codes
from their memory traces, focusing on one instruction at a
time. Large traces are processed in a matter of minutes with-
out user intervention or access to source or binary codes. The
proposed methodology has applications such as trace com-
pression/storage/communication, dynamic parallelization, or
memory placement and memory hierarchy design. The prob-
lem has been formulated as the exploration of a tree-like
solution space, in which each node represents a point in the
iteration space of the loop. The mathematical relationship
amongst the nodes has been established, and the system of
equations that governs the trace-based reconstruction of the
code has been defined. Afterwards, methods for efficient
traversal of this solution space have been proposed. The ex-
perimental evaluation has shown good performance and accu-
racy in the reconstruction of affine codes. Furthermore, it has
been shown that the problem is not trivially tractable without
the proposed optimizations.
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