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SUMMARY

This paper presents a Java implementation of the recently published MPI 3.0 nonblocking message passing
collectives in order to analyze and assess the feasibility of taking advantage of these operations in shared
memory systems using Java. Nonblocking collectives aim to exploit the overlapping between computation
and communication for collective operations to increase scalability of message passing codes, as it has been
done for nonblocking point-to-point primitives. This scalability has become crucial not only for clusters but
also for shared memory systems due to the current trend of increasing the number of cores per chip, which
is leading to the generalization of multi- and many-core processors. Message passing libraries based on
RDMA (Remote Direct Memory Access), thread-based progression or implementing pure multi-threading
shared memory support could potentially benefit from the lack of imposed synchronization by nonblocking
collectives. But, although the distributed memory scenario has been well studied, the shared memory one
has not been tackled yet. Hence, nonblocking collectives support has been included in FastMPJ, a Message
Passing in Java (MPJ) implementation, and evaluated on a representative shared memory system, obtaining
significant improvements due to overlapping and lack of implicit synchronization, and with barely any
overhead imposed over common blocking operations.
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1. INTRODUCTION

Communication may become one of the major bottlenecks in the scalability of parallel codes,

especially when increasing the number of cores involved. Message passing has tried to avoid

this overhead by overlapping communication and computation via nonblocking point-to-point

primitives. Nevertheless, regarding collective operations, only blocking primitives were supported

by the MPI standard, forcing programmers to implement their own collective communications

involving nonblocking point-to-point primitives when needed. This imposes higher costs of

development, risks of bugs and lack of efficiency as it is not possible to take advantage of the

highly optimized collective algorithms included in message passing libraries, that usually exploit

the underlying hardware. Thus, nonblocking collectives had been proposed to be part of the

MPI 2.2 standard but they were postponed until MPI 3.0. To support their inclusion, there is an

implementation of these primitives which is compatible with Open MPI called LibNBC [1] that

has shown great improvements in collective performance for InfiniBand with a large number of

processes.
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2 S. RAMOS ET AL.

Java is the main language in industry and academia and it is increasingly being adopted by

the High Performance Computing (HPC) community due to its appealing features such as multi-

thread and networking support in the core of the language, and its improvements in performance,

which makes it competitive regarding natively compiled languages like C/C++. Thus, different high

performance Java projects have emerged in the past few years [2], including several implementations

of message passing libraries like FastMPJ [3, 4], which provides high performance communications

for different devices, from InfiniBand to shared memory transfers. Since its first release, FastMPJ

has paid special attention to collective operations due to their wide use in parallel codes [5] and has

provided the user with a set of optimized multi-core aware algorithms for each operation that can

be selected at runtime regarding the number of processes and the message size.

The increase in the number of cores per processor, going towards the generalization of multi-

and many-core systems, has addressed the scalability in shared memory environments as a crucial

issue for parallel computing. In recent works, the implementation of a specific shared memory

collective library for the multi-thread communication device smdev [6] has also been explored,

and it showed great performance but highlighted the costs of synchronization among threads.

Blocking collectives impose an implicit synchronization which can be avoided by the adoption of

a nonblocking paradigm for these primitives. Thus, this paper presents a nonblocking collective

library for message passing in Java that has been developed and benchmarked to show that

both overlapping of communication and computation, and the avoidance of extra synchronization

improve performance of message passing codes on shared memory systems.

As it has been mentioned, nonblocking collectives for distributed memory architectures have

already been presented [1] in order to support their inclusion in the MPI 3.0 standard. However,

in spite of the increasing need for scalable solutions for shared memory architectures, nonblocking

collectives have not been analyzed yet in multi- and many-core systems. In this scenario, this paper

aims to provide generic support for nonblocking collectives in Message-Passing in Java but paying

special attention to assess their feasibility for shared memory architectures.

This paper is organized as follows. Section 2 introduces related work. Section 3 describes the

design, implementation and operation of the developed nonblocking collective library for multi-core

systems. Section 4 presents the performance analysis of the nonblocking collectives on a Sandy-

Bridge shared memory system. Section 5 summarizes our concluding remarks.

2. RELATED WORK

Message passing is a well-known paradigm for parallel programming which is widely used for HPC

due to its generally good scalability and performance. With the increase in the number of cores per

processor, the optimization of message passing libraries for exploiting multi-core shared memory

architectures has become a necessity since they provide higher scalability than traditional shared

memory paradigms. In fact, MPI libraries such as Open MPI [7] and MPICH2 [8, 9], and MPJ

implementations like MPJ Express [10] and FastMPJ [6], include custom communication devices

which exploit shared memory transfers. The advantage of Java over traditional languages in HPC

(C, Fortran) is that it supports multi-threading in the core of the language and shared memory

programming naturally emerges from it, whereas natively compiled languages have to rely on the

shared resources management of the operating systems. Our work takes advantage of Java multi-

threading for shared memory systems, being built upon FastMPJ shared memory support.

Moreover, when the number of communicating processes is large, synchronous communications

impose a high overhead that can be overcome by overlapping communication and computation

using asynchronous communications. The benefits of overlapping in message passing libraries have

been well studied: e.g. in [11] the authors analyze the benefits for an MPI library which supports

overlap with offloading and independent progress; a benchmark to assess the ability of hardware and

software to overlap MPI communication and computation is presented in [12], whereas a theoretical

analysis for scientific applications is shown in [13] and the benefits of overlapping in an MPI-2

application are evaluated in [14]. Thus, message passing libraries provide nonblocking point-to-

point primitives to support asynchronous communications.
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Since its inception, MPI aimed to provide asynchronous communications. In fact, the authors

of [15], while describing the MPI standard, mention that not only nonblocking point-to-point

primitives but also collective ones might be useful and should be included in subsequent versions.

Nonblocking collectives were attempted to be part of the MPI 2.2 standard but they were finally

put off since it would suppose a major change which would fit best with the recently released

MPI 3.0 [16] and thus current MPI projects are including the standard nonblocking collectives.

However, these collectives have been explored ever since, and different MPI implementations

provided their own suite of nonblocking collective operations. Some examples are Adaptive

MPI [17], that extends MPI to use virtual processors; the optimization of MPI collectives for

the MPICH2-based library used in BlueGene/L [18] and BlueGene/P [19, 20]; or the Component

Collective Messaging Interface (CCMI) [21], which is not an MPI implementation but provides a

messaging interface with nonblocking collectives. The potential benefits of nonblocking collectives

in different applications are analyzed in [22], and how noise affects MPI performance is studied

in [23] concluding that nonblocking collectives can help, and the authors demonstrate this statement

empirically through the evaluation of their own nonblocking allreduce implementation. 3D FFT

(Fast-Fourier Transform) has been stated to be able to take advantage of nonblocking collectives

in [24] and [25]. Moreover, there is also a large number of projects which intend to provide low level

nonblocking support. In [26] the authors present the implementation of a nonblocking broadcast that

takes advantage of the Mellanox ConnectX-2 InfiniBand adapters that offer a task-offload interface

(CORE-Direct), being evaluated with the High Performance Linpack (HPL) benchmark. PAMI, a

low level messaging interface is extended in [27] to support the implementation of nonblocking

collectives in Power7 IH supercomputers. KACC [28] is a new nonblocking communication facility

implemented in the OS kernel interrupt context to perform nonblocking asynchronous collective

operations without the help of an extra thread, and it is moved to the user level in uKACC [29], which

uses the Marcel thread library and the PIOMan’s scheduler from Madeleine [30, 31] to implement

nonblocking collectives. In [32] the authors discuss a possible implementation of the flexible

Group Operation Assembly Language (GOAL) framework to support nonblocking collectives.

Additionally, PGAS languages like Unified Parallel C (UPC) also support them [33].

One of the most relevant projects related to nonblocking collectives is LibNBC [1, 34], a

nonblocking collective library which is being integrated in Open MPI. In its first version, each

operation needs user interaction to progress, but micro-benchmark results show that overlapping

computation and communication in collective operations could potentially provide significant

performance improvements. The authors state the benefits that nonblocking collectives could

add to MPI and show benchmarking results of their implementation, based on avoiding implicit

synchronization and taking advantage of nonblocking features of modern network hardware. This

implementation aimed to support a strong case in favor of the inclusion of nonblocking collectives in

the MPI standard. The library was optimized for InfiniBand in [35], and the benefits and drawbacks

of including an extra thread to manage progression instead of user interaction were evaluated in [36].

This work compares a polling strategy (beneficial when there are free CPU resources) with an

interruption system using communications over InfiniBand. In [37] the authors present an analysis

of the methodology for benchmarking nonblocking collective operations using overlapping in the

latency measures, which is estimated using both time and workload measures. More recently, the

successful approach of overlapping communication with costly computation has also been applied

to I/O operations as shown in [38].

The above works on nonblocking collectives mainly focus on RDMA networks like InfiniBand,

whereas in this paper we aim to provide an analysis of the implications of using nonblocking

message passing collectives in shared memory environments.

3. NONBLOCKING COLLECTIVE LIBRARY FOR MESSAGE PASSING IN JAVA

The benefits of nonblocking collectives have been extensively studied for distributed memory

systems and communication across the network. However, although shared memory architectures

are becoming increasingly supported by message passing libraries, there is no previous assessment
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of the capabilities of the shared memory communication support to take advantage of nonblocking

collectives. With this purpose, a Java message passing nonblocking collective library has been

developed and integrated in the FastMPJ project [3, 4], and then it has been benchmarked in a Sandy-

Bridge-based shared memory scenario. In this section, before describing the nonblocking library

itself, we will address how point-to-point shared memory communications progress in FastMPJ

since it is key for the implementation of the specific algorithms for nonblocking collectives on multi-

core systems, introducing as well the blocking collective library currently included in FastMPJ.

3.1. Shared Memory Message Passing in FastMPJ

Shared memory communications in FastMPJ rely on intra-JVM (Java Virtual Machine) transfers

among threads implemented in the smdev communication device [6]. This device is based on multi-

threading, allowing the scheduling of a single JVM, thus saving memory and reducing overheads

such as those imposed by the Garbage Collector. However, threads have to simulate the behavior of

processes in order to maintain the multi-threading mechanism transparent to the user. This requires

the management of the Java Class Loader hierarchy to provide each thread with a custom class

loader, thus creating a namespace for each one in which each loaded class is different from the same

class loaded by another thread.

Communications in smdev are carried out by a shared class that contains shared queues,

supporting both blocking and nonblocking point-to-point primitives. Regarding nonblocking

primitives, each thread runs independently, and any of the two threads involved in a communication

should be able to make it progress. However, in MPJ, a message can contain either primitive types or

objects and, when transferring objects, there is a serialization/de-serialization process involved. This

process interferes with the class loader system and this forces to de-serialize the message within the

receiver thread, which will necessarily complete a communication when serialized objects are being

transferred.

A summary of the protocols used in smdev for nonblocking point-to-point communications

is presented in Figure 1. Figure 1(a) illustrates the scenario described above about transferring

objects, that is similar to the sequence for a small message of a primitive data type when the

sender initiates the communication. When a small amount of data is being transferred, it is almost

costless to make a copy in the shared storage (“shared queues”), so the sender can assume the

communication as complete immediately. After that, the receiver will find the message and will

copy it to the destination address. When sending a large message (Figure 1(b)) an extra copy will be

too expensive, so a zero-copy rendez-vous protocol is used and the sender leaves a reference to the

Sender Receiver
Shared Queues

search(id)
send_init

not_found

recv_init
search(id)

found

copy/serialize

copy/de−serialize

complete

(a) Small or serializable message,
starting with Send (Eager)

send_init search(id)

not_found

leave ref.

Sender Receiver
Shared Queues

recv_init
search(id)

found

copy

complete

complete

(b) Large message, starting with
Send (Rendez-vous)

Sender Receiver
Shared Queues

recv_init
search(id)

not_found

leave ref.

send_init

found

search(id)

copy

complete

complete

(c) Small or large message, starting
with Recv

Figure 1. Communication protocols and progression in smdev, the FastMPJ shared memory communication
device.
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source buffer. When the receiver starts, it makes the copy directly from this reference. However, the

sender cannot assume the communication as complete until this copy has been performed. Finally,

when the receiver initiates the communication (Figure 1(c)), regardless the size of the message, a

zero-copy protocol is implemented. The receiver leaves a reference to its own destination buffer,

and then the sender will perform the actual copy from the source to the destination address and

will set the communication as complete. For a serialized message, even if the receiver initiates the

communication, the sender cannot complete the transfer and the receiver is the one that de-serializes

and sets it as complete (Figure 1(a)).

Finally, another remarkable feature of smdev is the use of a pair of queues per thread instead

of global queues: one queue where a thread posts requests for pending receptions, and another

one where incoming messages are posted by threads that intend to send a message to the queue

owner. Having one pair of queues (pending messages and incoming messages) per thread reduces

contention in queue access and eases the implementation of fine-grained instead of coarse-grained

synchronization, which is the main bottleneck in other shared memory communication devices. In

fact, smdev relies on busy-waits and small localized synchronized blocks instead of class locks that

would degrade significantly the scalability on multi-core shared memory architectures.

3.2. Blocking Collective Library in FastMPJ

Collective communications have been tackled carefully since the beginning of the FastMPJ project,

including a multi-core aware collective library [5] that provides several algorithms for each

collective and it is able to select at runtime, via a configuration file, the most suitable algorithm

depending on the number of processes and the message size. Available algorithms in FastMPJ are

shown in Table I. Here blocking (b)/nonblocking (nb) refers to the use of underlying b/nb point-to-

point primitives.

Table I. Collective Algorithms in FastMPJ (BT: Binomial Tree, BTe: exotic Binomial Tree, MST: Minimum
Spanning Tree, FT: Flat Tree, FaT: Four-ary Tree, BDE: BiDirectional Exchange, BKT: BucKeT or Cyclic;

nb: NonBlocking, b: Blocking)

Operation Algorithms

Barrier BT, Gather+Bcast, BTe

Bcast MST, nbFT, bFT, FaT, Scatter(v)+Allgather(v)

Scatter(v) MST, nbFT

Gather(v) MST, nbFT, bFT

Allgather(v) nbFT, nbBDE, bBKT, nbBKT, BTe, Gather(v)+Bcast

Alltoall(v) nbFT, bFT

Reduce MST, nbFT, bFT

Allreduce nbFT, bBDE, nbBDE, BTe, Reduce+Bcast

Reduce-scatter bBDE, nbBDE, bBKT, nbBKT, Reduce+Scatter(v)

Scan nbFT, OneToOne

These collectives run on top of the point-to-point primitives of the communication devices, hence

taking advantage of underlying point-to-point optimizations. However, smdev also provides its own

collectives implementation that does not rely on point-to-point primitives but on shared structures

from the device. Having the collective operations implemented at the communication device level

enables to optimize the use of these shared structures.

The choice to make is whether to use the already existing shared queues from the device (see

Section 3.1), or to create specific shared structures for the collective operations. In both cases,

optimizations rely on minimizing explicit synchronizations, taking advantage of knowing in advance

the communication pattern. Hence, the collective operation can avoid the use of the point-to-point

protocols explained in Figure 1, implementing the one that is more suitable for the algorithm. As

an example, in a Flat Tree algorithm for the broadcast operation, the root thread relies on an atomic

variable to indicate the state of an ongoing execution of the collective operation, and directly inserts
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6 S. RAMOS ET AL.

a send request, which contains a reference to the message (thus avoiding making several copies

of the message). The rest of the threads, meanwhile, are waiting on another atomic variable to be

notified that they can safely receive the message. Once the notification is received, they lock their

own queue to find the request, and copy the message directly from the reference left by the root. In

this case, the use of busy-waits as a notification system establishes the order of operation, avoiding

the need to check and lock the queues for arrived messages until the message is actually ready to

be received; hence, unnecessary locks and searches on the shared queues are avoided. Moreover,

although the message is small, the rendez-vous protocol of Figure 1(b) is used, since each thread

will perform its own copy of the data.

The main difference among the use of the existing shared queues from the device and the use

of specific shared memory structures for collective operations is that the latter avoids interfering

with the shared queues of the device that are also used for point-to-point transfers, allowing further

optimizations in synchronizations. This reduction of interferences will be especially relevant for

nonblocking collectives, when several ongoing operations can collide. Hence, the shared memory

collectives implementation in smdev includes specific shared memory structures for collective

communications.

3.3. Nonblocking Collective Library for FastMPJ

Current collective operations in FastMPJ are blocking, so they do not allow the overlapping

of computation and communication and, furthermore, they impose implicit synchronizations. In

an environment where threads and processes are supposed to perform independent workloads,

any synchronization can potentially cause major overheads. This subsection presents a high-level

discussion about a generic implementation of nonblocking collectives without taking into account

the underlying architecture, thus being applicable both for shared and distributed memory scenarios.

Next subsection will present the specific optimizations for shared memory architectures.

An initial approach to the implementation of nonblocking collectives could be the use of a

Flat Tree-based algorithm upon nonblocking point-to-point primitives, where the root is in charge

of performing all the communications. Figure 2 compares this initial approach with its blocking

counterpart (using also nonblocking point-to-point primitives, see nbFT in Table I) for a broadcast

in an example scenario using four processes. Dotted lines indicate that the process has to wait

and it is not able to perform any other computation while the operation is not complete, whereas

continuous lines represent useful computation. Figure 2(a) represents the blocking version of the

algorithm, where the Wait operations are immediately invoked after the point-to-point primitives,

thus blocking the calling processes until the whole collective is complete. Each nonblocking

point-to-point communication generates a request (Ri) over which a Wait operation has to be

issued. In Figure 2(b), when the nonblocking collective is invoked, the point-to-point primitives

are called, and the corresponding Wait operations can be invoked later. In this scenario, the

whole nonblocking operation generates a global request (R) composed of the requests of each

underlying nonblocking point-to-point primitive (Ri). Communications are therefore performed by

an asynchronous progression mechanism while the process is able to continue its computation.

Nevertheless, this is a naive approach with dubious benefits and hardly scalable that can collapse

the progression system of the communication devices with excessive requests when the number of

processes is large or when allowing concurrent nonblocking collectives.

The approach followed in our library relies on a queue of stages per process that calls a collective

operation. The queues hold two types of stages: dependent and non-dependent. A dependent stage

represents a communication step that has to be fulfilled before the collective operation can progress

and schedule new stages. For example, in a tree-based broadcast, a process (or thread) that is not

the root, can not send the message to other processes (or threads) until it has received the data

from the root. A non-dependent stage, however, only requires to be complete when returning from

the Wait method, and thus the collective operation can progress scheduling the following stages

concurrently. Following the broadcast example, once a non-root process has received the message, it

can send the data to the rest of its descendants concurrently, without waiting for one communication

to finish before sending it to the next descendant. Hence, the use of non-dependent stages enables
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P0 P2 P3P1

R1=Isend(P1)
R2=Isend(P2)
R3=Isend(P3)

Bcast()

Recv(P0)

Recv(P0)

Recv(P0)
Bcast()

Bcast()

Bcast()

R1.Wait()

R2.Wait()

R3.Wait()

(a) Flat Tree Blocking Bcast (nbFT)

P0 P2 P3P1

R=Ibcast()

R=Ibcast()

R=Ibcast()

R=Ibcast()

R1=Isend(P1)
R2=Isend(P2)
R3=Isend(P3)

R0=Irecv(P0)

R.Wait()

R.Wait() R.Wait()

R.Wait()
R0.Wait()

R1.Wait()
R2.Wait()
R3.Wait()

R0=Irecv(P0)

R0=Irecv(P0)

R0.Wait()

R0.Wait()

(b) Flat Tree Nonblocking Bcast

Figure 2. Flat Tree-based Bcast

the scheduling of several stages that can issue nonblocking point-to-point primitives simultaneously.

With this mechanism, it is possible to implement the algorithms from Table I by splitting them in a

stage manner to take advantage of their optimized performance.

The issue that arises here is the progression of the operation. The decision to be made is if

a specific mechanism is required for these operations or if it is possible to rely on each device

to make progression happen, which is only possible if the operations are based on nonblocking

point-to-point primitives. Since nonblocking collectives are in a very early stage of adoption, the

priority is to assess the feasibility of these operations, which can be achieved relying on existing

device mechanisms. Nevertheless, if the library does not create any thread to be in charge of stage

progression, the user is responsible of being aware of it and making some calls to a testing function

(Test). This function will check the stage queue and, if there is not any dependent stage pending,

it will launch the subsequent stages. If there are neither pending stages nor subsequent ones, it will

complete the operation. The Wait method is equivalent to perform several tests until the operation

is finished.

Figure 3 compares a blocking Minimum Spanning Tree (MST) broadcast with a nonblocking

counterpart implemented with stages for an example scenario using eight processes. The MST

algorithm configures a binomial tree in which the group of processes is recursively halved. Each half

has a root process that performs the communication required. The figure assumes that the collective

operation is issued at the same time in every process and, in the nonblocking scenario, the calls to

the Test/Wait operations are also made simultaneously. This is not a realistic scenario, but the

aim of the figures is only to show the differences among both approaches. As in Figure 2, dotted

lines represent idle time spent waiting for the operation to complete and continuous lines represent

computation. Figure 3(a) represents the blocking implementation which uses blocking point-to-

point primitives since it is a blocking recursive algorithm. This recursion causes the algorithm to

be executed in three implicit steps (marked by rectangles). In Figure 3(b), the nonblocking staged

implementation of the MST algorithm is represented, using dark rectangles for dependent stages and

white ones for non-dependent stages. In this scenario, there are processes that schedule three or less

stages, depending on how many communications they have to perform. With the purpose of ease

the representation of the algorithm, we assume that a process that has already scheduled every stage

calls Wait instead of Test. In addition, when Test is called and the stage is already finished, this

stage is never tested again. It can be seen that even considering simultaneous calls, this algorithm

yields less implicit synchronization and requires less ordering than the blocking one. In fact, in the

blocking version every process will end almost at the same time whereas in the nonblocking one,

even when the calls are simultaneous, each process can finalize the collective when its stages are

complete.
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(b) MST Nonblocking Bcast

Figure 3. MST-based Bcast

3.4. Optimization of the Nonblocking Collective Library for Shared Memory

The implementation based on stages is portable to every communication device in FastMPJ, but

regarding shared memory the stage-based design can be combined with the specific implementation

of shared memory collectives mentioned at the end of Section 3.2. The operation of the nonblocking

algorithms proposed here is the same as described in Section 3.3: instead of keeping the thread

waiting when the condition to progress is not yet fulfilled, the thread checks if it has to remain in

the same stage or if it is able to advance to the next one. These checks are performed in the Test

or Wait function.

Flat Tree algorithms have shown significant performance improvements for shared memory

communications in [6], and the stage-based design can be implemented in these algorithms by

using a single stage per thread in the stage queue. Moreover, like in shared memory blocking

collectives, shared structures will only contain references to messages instead of real data, barely

involving any memory overhead. It is thus feasible to allow the scheduling of concurrent collective

operations storing references of multiple messages. This is possible through the replication on an

array of the shared structure that maintains the references to data along with the semaphores that

manage the stage progression. Hence, there is a limited number of concurrent operations bounded

by the number of replications. This number of replications is configurable to allow the user to

find a tradeoff between memory overhead and performance. The access to replicated structures

is managed by a tag, a user parameter required by point-to-point operations to identify each
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message. Collective operations based on point-to-point primitives use this parameter internally

and nonblocking collectives for shared memory can take advantage of it, since it can be used as

a sequence number. As the same array of shared structures is used for all collective operations, the

tag parameter is a sequence number regarding all collectives.

The tag modulo the number of concurrent operations is an index in the array of structures that

store the data references. If the slot of this index is free, the operation can continue and the slot will

be marked as busy with the operation tag but, if not, the operation must remain in the previous stage.

Nevertheless, since this array is shared by all threads, the index can be marked as busy by another

thread that has started the same operation that the new thread is trying to perform. However, the use

of the tag prevents this situation from causing any problem: the index is marked with the current tag,

so the new thread will realize that it is occupied by the same operation and will be able to perform

its stage.

To illustrate the implementation of the shared memory nonblocking collectives, Figures 4 and 5

show the pseudo-code for the main methods used in the nonblocking broadcast: the ibcast and

Test calls, and the internal function to advance between stages.

Figure 4 shows the pseudo-code for the ibcast and Test operations, that can be called from

the user application. Nonblocking collectives, like nonblocking point-to-point primitives, return a

request over which the Test and Wait operations can be invoked. Before returning the request, this

collective operation issues an advance call to make as much progression as possible. This advance

call will not make the thread wait if any of the conditions prevent it from progressing, but it will just

return the stage of the operation without advancing. The Test method also schedules the advance

returning immediately even if it was not able to move forward. The Wait function would perform

the same operation but blocking until the collective has been completed. However, it will launch

an exception if the operation can not progress because of lack of resources (i.e., there is no free

slot because there are more ongoing concurrent collectives than slots in the array of replicated

structures). Wait and Test only cause progression of the associated collective to avoid delaying

individual calls; hence, Wait could cause the code to deadlock if no exception is launched.

The pseudo-code of the advance method used for the broadcast is shown in Figure 5. This is

the main function that controls the progression throughout stages. It uses two condition variables

implemented as AtomicInteger type: collectives nbc and ended collective nbc.

The use of atomic types and operations to maintain the consistency of shared structures enables to

avoid synchronizations and locks. To support a fixed number of concurrent collective operations

(NUMBER OF CONCURRENT OPERATIONS), these variables are replicated in two arrays of

AtomicInteger indexed by the modulo of the operation tag. Hence, each operation will have

an assigned slot which consists of the condition variables and a shared buffer in which the root

stores the reference to the data. The collectives nbc variable controls the start and end of a

collective and it has three possible states: FREE, INIT and BUSY. In a broadcast operation, when

the root finds the collectives nbc variable in the FREE state, it sets this variable to INIT to

mark it as occupied but not yet prepared for the rest of the threads to perform the copy. Then, after

copying the reference to the message data, the root sets the condition variable to BUSY with the

operation tag to notify that the data is ready to be copied. All threads but the root will not be able

to start the communication operation until the variable is set to the operation tag by the root. The

ended collective nbc variable indicates how many threads have already performed the copy

and when the root would be able to reset and free the slot.
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publ i c s t a t i c R eques t i b c a s t ( O b j ec t buf , i n t roo t , i n t t a g ){
i n t i ndexTag = t a g % NUMBER OF CONCURRENT OPERATIONS;
i n t s t a g e = i b c a s t A d v a n c e ( indexTag , buf , roo t , t ag , INITIAL STAGE ) ;
return new I b c a s t R e q u e s t ( indexTag , buf , roo t , t ag , s t a g e ) ;

}

publ i c S t a t u s T e s t ( ) {
i f ( s t a g e == FINAL STAGE )

return COMPLETE ;
e l s e {

s t a g e = i b c a s t A d v a n c e ( indexTag , buf , roo t , t ag , s t a g e ) ;
return n u l l ;

}
}

Figure 4. Pseudo-code of the ibcast and Test methods for the shared memory nonblocking broadcast

publ i c s t a t i c i n t i b c a s t A d v a n c e ( i n t indexTag , O b j ec t buf , i n t roo t ,
i n t t ag , i n t s t a g e ){

boolean i s R o o t = ( getRank ( )= = r o o t ) ;
i f ( i s R o o t ){

i f ( ( s t a g e ==INITIAL STAGE ) | | ( s t a g e =NO SLOT ) ){
i f ( ! c o l l e c t i v e s n b c [ indexTag ] . compareAndSet (FREE , INIT ){

return NO SLOT ;
}
e l s e {

e n d e d c o l l e c t i v e n b c [ indexTag ] . s e t (START ) ;
s h a r e d b u f f e r s [ indexTag ] = buf ;
c o l l e c t i v e s n b c [ indexTag ] . s e t ( t a g ) ;
s t a g e = FIRST ROOT STAGE ;

}
}
i f ( s t a g e ==FIRST ROOT STAGE ){

i f ( ! e n d e d c o l l e c t i v e n b c [ indexTag ] . compareAndSet ( n t h r e a d s , FREE ) ){
return FIRST ROOT STAGE ;

}
e l s e {

s h a r e d b u f f e r s [ indexTag ] = n u l l ;
e n d e d c o l l e c t i v e n b c [ indexTag ] . s e t ( FREE ) ;
c o l l e c t i v e s n b c [ indexTag ] . s e t (FREE ) ;
return FINAL STAGE ;

}
}
i f ( s t a g e ==FINAL STAGE ) return FINAL STAGE ;

}
e l s e {

i f ( s t a g e ==INITIAL STAGE ){
i f ( ! c o l l e c t i v e s n b c [ indexTag ] . compareAndSet ( t ag , t a g ){

return INITIAL STAGE ;
}
e l s e {

copy ( s h a r e d b u f f e r s [ indexTag ] , buf ) ;
e n d e d c o l l e c t i v e n b c [ indexTag ] . i n c r e m e n t ( ) ;
return FINAL STAGE ;

}
}
i f ( s t a g e ==FINAL STAGE ) return FINAL STAGE ;

}
}

Figure 5. Pseudo-code of the ibcastAdvance method for the shared memory nonblocking broadcast
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4. PERFORMANCE EVALUATION

The performance evaluation of the shared memory nonblocking collectives has been carried out

on a representative 16-core shared memory testbed next described. The benchmarking consists

of a micro-benchmark which compares the blocking and nonblocking versions of two collective

operations (broadcast and scatter), and a production application which combines I/O operations

with nonblocking collectives.

The goal of this evaluation is to analyze the actual benefits of the overlapping provided

by nonblocking collectives in a shared memory environment, both at the microbenchmark and

application levels.

4.1. Experimental Configuration

The nonblocking collective library has been evaluated on an Intel-based shared memory system

based on the Sandy-Bridge-E architecture with 2 Intel Xeon E5-2670 octa-core processors at 2.6

GHz (a total of 16 cores in the system, 32 with HyperThreading) and 64 GBytes of RAM. Each

core has a 32-KByte L1 and a 256-KByte L2 cache and the eight cores in each processor share a 20-

MByte Intel Smart L3 Cache. Although the system had the HyperThreading enabled, the results are

shown for 16 threads since the use of the 32 available threads does not provide any benefit in terms

of performance. The OS is Linux CentOs with kernel v2.6.35, OpenJDK JVM v1.6.0 20 (IcedTea6

v1.9.8) and FastMPJ v1.0 internal release.

4.2. Micro-benchmarking of MPJ Collectives

Figures 7-11 show the performance results for broadcast (Figures 7-9) and scatter (Figures 10

and 11) of a comparative benchmark among: (1) a blocking algorithm (labeled as “block” in the

figures), (2) a nonblocking algorithm without overlapping computation, i.e. with an immediate call

to Wait after calling the collective (labeled as “nbc”), used to assess the overhead introduced by the

nonblocking operation; and (3) the nonblocking algorithm overlapping the communication with a

synthetic workload (“nbc+overlap”). Note that in the figures “nbc” and “nbc+overlap” are always

the same for each collective in order to compare the performance of each nonblocking collective

with several blocking counterparts.

The benchmarks are based on the test published for LibNBC [1] and the performance evaluation

methodology has been carefully designed following the recommendations addressed in [39] to avoid

bias caused by side effects of the use of the JVM. Figure 6 shows the pseudo-code of the core of

each benchmark to point out the differences. The required duration for the synthetic workload in

Figure 6(c) is previously calculated by estimating the time that it takes to perform one iteration of

the “nbc” version (i.e. the time to perform the nonblocking operation together with its corresponding

Wait, as shown in Figure 6(b)). Moreover, the number of calls made to the Test method within

the workload depends on its estimated duration.

for ( i =0; i<n i t e r a t i o n s ; i ++){
C o l l e c t i v e ( ) ;

}

(a) “block”

for ( i =0; i<n i t e r a t i o n s ; i ++){
I c o l l e c t i v e ( ) ;
Wait ( ) ;

}

(b) “nbc”

for ( i =0; i<n i t e r a t i o n s ; i ++){
I c o l l e c t i v e ( ) ;
s y n t h e t i c w o r k l o a d ( ) ;
Wait ( ) ;

}

(c) “nbc+overlap”

Figure 6. Pseudo-code of the micro-benchmarks
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The latency is measured for the collective, Test and Wait calls, which make up the effective

communication, discarding the execution time of the synthetic workload. The reason for doing

this is to allow the analysis of the effective reduction in communication time, caused by the non-

synchronized behavior of threads and the avoidance of interference among them. For example, for

the broadcast, descendants will not check continuously the slot for message arrival, but will advance

some computation, giving time to the root for completing the sending before they check again. Note

that the evaluation of the effect of computation overlap on the global cost of communication and

computation will be addressed in the next subsection with an MPJ application.

For the broadcast, the comparison between the shared memory nonblocking implementation

(described in Section 3.4) and three blocking implementations (see Section 3.2) is shown: the

blocking broadcast for shared memory (Figure 7), the MST algorithm (Figure 8), and the Flat

Tree (nbFT) algorithm (Figure 9). Besides the specific shared memory algorithm, on which

the nonblocking implementation is based, the nbFT algorithm has been selected as it is the

point-to-point-based counterpart of the shared memory algorithm. MST has also been included

for comparison purposes. As mentioned at the end of Section 3.2, the specific shared memory

implementation uses the specific structures of the shared memory communication device of FastMPJ

(smdev) directly, like the nonblocking implementation, whereas nbFT and MST are based on point-

to-point primitives on top of smdev.

Regarding Figure 7, as expected, there is almost no overhead imposed on nonblocking collectives

when compared to the shared memory blocking counterpart. Moreover, it can be observed that the

overlapping with a computational workload reduces the time spent in the actual communication.

This is because of the lack of imposed synchronization, thus when a thread calls the Wait function,

it is more probable that other threads have already finished and they will not have to wait to perform

their own operations. The differences increase from 4 MBytes on, since messages do not fit in the

L3 cache (taking into account that there is a 20-MByte L3 cache shared among 8 cores), thus taking

more advantage of the overlapping.

The results of the comparison with the MST algorithm in Figure 8 show that the nbc version

overcomes MST, and thus the shared memory blocking implementation also overcomes MST in

the same way, according to the results of Figure 7. MST introduces extra synchronizations as it

is a recursive algorithm with blocking communications in each stage. The nbc+overlap version

outperforms again the blocking version (MST). Finally, Figure 9 shows that, although the nbFT

algorithm has a higher start-up latency than the algorithms based on shared memory transfers, it
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Figure 7. Shared Memory Broadcast: Blocking vs. Nonblocking
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Figure 8. MST Broadcast vs. Shared Memory Nonblocking Broadcast
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Figure 9. nbFT Broadcast vs. Shared Memory Nonblocking Broadcast

provides more scalability (in terms of message size) since it avoids contention in the access to

the shared structures. Nevertheless, nbc+overlap achieves better performance than nbFT, mainly

providing less start-up latency for small messages.

Regarding the scatter, the blocking versions selected were the shared memory (Figure 10)

and the nbFT (Figure 11) algorithms. MST was discarded due to its poor performance. Results

are quite similar to the ones observed for broadcast. Again, the nonblocking collective barely

imposes any overhead over the shared memory blocking implementation and, when compared to

the nbFT algorithm, it overcomes the scalability issues that contention causes on the shared memory

algorithm, also reducing the latency obtained with nbFT, as it happened for the broadcast operation.
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Figure 10. Shared Memory Scatter: Blocking vs. Nonblocking
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Figure 11. nbFT Scatter vs. Shared Memory Nonblocking Scatter

4.3. MPJ Application Performance Analysis

The application used to assess the performance of the implemented nonblocking collectives has

been selected as it overlaps collective communications with computation and I/O operations. MPI

includes the MPI-I/O library to deal with input/output operations and the feasibility of the use of I/O

nonblocking collectives has been studied in [38]. In MPJ there are no MPJ-I/O libraries available,

so parallel codes have to deal directly with the standard Java I/O libraries, generally imposing a

large overhead which makes them suitable for overlapping. Although it is possible to use an extra

thread to perform the I/O operations, this mechanism is far more complicated to manage than the

overlapping of nonblocking collectives and I/O operations for MPJ.

The original application reads a group of zip files which represent two years of financial data

from the Spanish Market of Financial Futures, including strings of information for options and

futures over the IBEX-35 (Spanish exchange index), shares and the National Spanish Bond. The
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application has to extract and read each file and process the lines. Each line is processed at the

moment that it is read and available (using the readLine method). For the processing of each line

and to evaluate the effect of the overlapping, a synthetic workload that is measured in terms of the

number of operations over each line has been created. Figures 12 and 13 show the pseudo-code of

the parallelization using blocking and nonblocking scatters, respectively. The parallelization with

MPJ uses the Java readChar method (within the readLines method in the pseudo-codes) to

read groups of chars which make up a buffer scattered among all threads. Only one thread extracts

one zip file at a time and reads groups of chars until the buffer is complete. After that, it performs

a scatter and each thread runs the workload over each line received (processLines method).

Since a whole buffer of chars is scattered, the application has also to deal with the possibility that

a line could be broken between two threads and it is solved by overlapping the scattered fragments.

This imposes a certain overhead compared to the sequential version, but it is more efficient for the

parallelization in that there is no need for serialization nor conversion of strings to arrays of chars

to build the sending buffer. Finally, every thread (including the one in charge of the I/O operations)

performs the operations over the received lines (processLines). The performance measure does

not take into account the return of the results to the thread in charge of I/O operations (i.e the

MPI.Reduce operation) because the goal is to measure the effect of using a nonblocking scatter

that allows the overlapping of communications with read operations and computation.

I n i t P a r a m e t e r s ( ) ;
i f ( myRank ==0){

whi le ( t rue ) {
r e a d = r e a d L i n e s ( f i l e , index , Data ) ;
whi le ( r e a d ) {

i ndex ++;
i f ( i ndex = Send S i ze ) {

MPI . S c a t t e r ( Data , myData ) ;
p r o c e s s L i n e s ( myData ) ;
i ndex =0;

}
r e a d = r e a d L i n e s ( f i l e , index , Data ) ;

}
i f ( ! openN ex t o rC l ose ( l i s t o f f i l e s , f i l e ) )

break ;
}
i f ( index<Send S i ze ) { / / S c a t t e r needed f o r s e n d i n g t h e l a s t l i n e s

F i l l B u f f e r ( Data ) ; / / com p l e t e t h e b u f f e r up t o S e n d S i z e t o

s c a t t e r i t

MPI . S c a t t e r ( Data ) ;
p r o c e s s L i n e s ( myData ) ;

}
MPI . S c a t t e r ( F i n a l B u f f e r , myData ) ; / / n o t i f y f i n a l i z a t i o n by s c a t t e r i n g a

s p e c i a l b u f f e r

}
e l s e {

f i n i s h e d = f a l s e ;
whi le ( ! f i n i s h e d ) {

MPI . S c a t t e r ( Data , myData ) ;
i f ( myData== F i n a l D a t a )

f i n i s h e d = t rue ;
e l s e

p r o c e s s L i n e s ( myData ) ;
}

}
MPI . Reduce ( P r o c e s s e d D a t a ) ;

Figure 12. Pseudo-code of the MPJ benchmark using blocking collectives
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Regarding the nonblocking version, the user can define the number of concurrent

nonblocking scatters of the benchmark (MaxConcurrent) independently of the

NUMBER OF CONCURRENT OPERATIONS parameter provided by the library. However, for

a correct execution, MaxConcurrent must be lower or equal to the library parameter. The

thread in charge of I/O operations performs an Iscatter each time it has a buffer ready,

without waiting for previous Iscatters to be complete. Given that the number of concurrent

Iscatters is limited by the application (MaxConcurrent parameter), there might be no slot

for a new concurrent operation. Thus, the getNextBuffer method will provide a free slot and,

if there is none, it will iterate over existing requests making calls to Test in order to make pending

communications progress and get a free slot. Finally, this thread will ensure that all communications

are complete by calling the test all requests method, that iterates over the requests until all

of them are complete.

The operation in the rest of the threads is quite different. While the thread in charge of I/O

operations can keep reading and processing lines without waiting for communications to be

complete, the rest of the threads need to receive the buffer before processing the lines. Since they

can also trigger up to MaxConcurrent communication operations, progression has to be managed

carefully, because, as soon as they find a communication that is complete, they have to launch the

processing of the lines. These threads use three methods in charge of progression:

• test all and process: it is called after MaxConcurrent iterations to check all

requests once, processing the data when a complete request is found. It also checks if the

buffer received is the final one.

• getNextBuffer: gets the next free slot. When there is none, besides calling the Test

method (as done for the thread in charge of I/O operations), it also triggers the processing

of data when if finds a complete request. As in the previous method, it checks if the buffer

received is the final one.

• test all and process final: it is equivalent to test all and process but, like

test all requests, it iterates over the requests until all of them are complete.

Figure 14 shows the performance of the parallel application using 16 cores on the Xeon E5

testbed and different workloads. For the parallelization with blocking collectives (“block”), the

Flat Tree (nbFT) algorithm was chosen since, although the shared memory algorithm shows better

performance for small and medium size messages, nbFT is better for large messages, which are

extensively used in this application. The nonblocking version (“nbc”) allows a defined number of

concurrent nonblocking scatters for both the sender and the receivers (see 4, 8 and 16 in the legend

of the figure). The results are shown in terms of execution time varying the workload according

to the number of operations per line. A buffer size of 512 KBytes is received by each thread, thus

having an 8-MByte scattered message. The buffer size was selected to take advantage of memory

locality and L3 cache size.

It can be observed that, while the overhead when there is no computation (i.e. 0 operations

per line) is negligible, the use of nonblocking collectives achieves performance gains up to 30%

when the number of operations (and thus the workload) increases. This is due to the overhead

imposed by the implicit synchronization of the blocking collectives as opossed to the overlapping

of communication and computation in the nonblocking implementation, especially when increasing

the number of concurrent nonblocking collectives.

The results of this benchmark show that the use of nonblocking collectives in shared memory

architectures is beneficial for communication-intensive codes that also involve large amounts of

computation assigned to threads in an unbalanced way. Thus, when having a costly I/O operation

and significant workloads in each thread, introducing nonblocking collectives can provide important

performance benefits.
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MaxConcurrent =16;
I n i t P a r a m e t e r s ( ) ;
I n i t B u f f e r s ( ) ;
i f ( myRank ==0){

whi le ( t rue ) {
r e a d = r e a d L i n e s ( f i l e , index , Data ) ;
whi le ( r e a d ) {

i ndex ++;
i f ( i ndex = Send S i ze ) {

r e q u e s t [ i n d e x b u f f e r ]=MPI . I s c a t t e r ( Data , myData ) ;
p r o c e s s L i n e s ( myData ) ;
i ndex =0;
i n d e x b u f f e r = g e t N e x t B u f f e r ( ) ; / / i f t h e r e are no f r e e

b u f f e r s , i t pe r f o rm s t e s t s t o f o r c e o p e r a t i o n s t o

p r o g r e s s

}
r e a d = r e a d L i n e s ( f i l e , index , Data ) ;

}
i f ( ! openN ex t o rC l ose ( l i s t o f f i l e s , f i l e ) )

break ;
}
i f ( index<Send S i ze ) { / / I s c a t t e r needed f o r s e n d i n g t h e l a s t l i n e s

F i l l B u f f e r ( i n d e x b u f f e r , Data ) ; / / com p l e t e t h e b u f f e r up t o

S e n d S i z e t o s c a t t e r i t

r e q u e s t [ i n d e x b u f f e r ]=MPI . I s c a t t e r ( Data , myData ) ;
p r o c e s s L i n e s ( myData ) ;

}
i n d e x b u f f e r = g e t N e x t B u f f e r ( ) ;
r e q u e s t [ i n d e x b u f f e r ]=MPI . I s c a t t e r ( F i n a l B u f f e r , myData ) ; / / n o t i f y

f i n a l i z a t i o n by s c a t t e r i n g a s p e c i a l b u f f e r

t e s t a l l r e q u e s t s ( r e q u e s t ) ; / / c a l l s t o MPI . T e s t u n t i l a l l r e q u e s t s are

com pl e t e

}
e l s e {

f i n i s h e d = f a l s e ;
whi le ( ! f i n i s h e d ) {

i f ( i s T e s t T i m e== MaxConcurrent ) {
t e s t a l l a n d p r o c e s s ( r e q u e s t , f i n i s h e d ) ; / / a f t e r

MaxConcurrent i t e r a t i o n s , i t pe r f o rm s t e s t s over

each r e q u e s t , p r o c e s s i n g l i n e s i f a r e q u e s t i s

com p l e t e
i s T e s t T i m e =0;

}
i f ( f i n i s h e d ) break ;
i n d e x b u f f e r = g e t N e x t B u f f e r ( ) ; / / i f t h e r e are no f r e e b u f f e r s , i t

pe r f o rm s t e s t s t o f o r c e o p e r a t i o n s t o p r o g r e s s . In t h i s

case , i t a l s o p r o c e s s e s l i n e s i f a r e q u e s t i s com p l e t e

i f ( f i n i s h e d ) break ;
r e q u e s t [ i n d e x b u f f e r ]=MPI . I s c a t t e r ( Data , myData ) ;
i s T e s t T i m e ++;

}
f i n i s h e d = f a l s e ;
whi le ( ! f i n i s h e d ) {

t e s t a l l a n d p r o c e s s f i n a l ( r e q u e s t , f i n i s h e d ) ;
}

}
MPI . Reduce ( P r o c e s s e d D a t a ) ;

Figure 13. Pseudo-code of the MPJ benchmark using nonblocking collectives and concurrent Iscatters
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Figure 14. Performance comparison of an I/O-intensive MPJ application using Blocking (“block”) and
Nonblocking (“nbc”) collectives

5. CONCLUSIONS

This paper has presented the development and analysis of the feasibility of the MPI 3.0 nonblocking

collectives for message passing in Java focused on shared memory architectures. The performance

evaluation on a representative multi-core shared memory system and the analysis of the micro-

benchmarking performance results have shown that: (1) no additional overhead is imposed by using

these nonblocking collectives, and (2) performance improvements are obtained when overlapping

communication and computation using the nonblocking collectives in a shared memory architecture.

As representative results, with the proposed nonblocking collectives there is a performance gain up

to 50% for broadcast and 66% for scatter in comparison with shared memory blocking counterparts.

Regarding blocking Flat Tree algorithms, which improve performance for large messages penalizing

small ones, the start-up latency is reduced around 50% for both broadcast and scatter. Moreover, the

nonblocking broadcast and scatter also obtain significant performance gains for large messages.

The impact on a real I/O-intensive MPJ application has been analyzed using a synthetic workload

to assess the performance improvements regarding concurrent collective operations and workload

overlapping. Performance results confirmed that shared memory nonblocking collectives are able

to exploit the avoidance of implicit synchronization, as well as the overlapping of computation and

communication. For instance, around a 30% reduction in execution time was obtained when using

16 concurrent collectives.

These results demonstrate the benefits of using nonblocking collectives in shared memory

environments with multithreaded shared memory transfers, which is crucial when the trend

is to increase the number of cores per processor, showing that nonblocking collectives allow

communication-intensive MPJ applications to reduce significantly their overhead, thus improving

the scalability of the communications.
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