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Abstract

This work presents a parallel version of a complex numerical algorithm for solving an el-
astohydrodynamic piezoviscous lubrication problem studied in tribology. The numerical al-
gorithm combines regula falsi, fixed point techniques, finite elements and duality methods. The
execution of the sequential program on a workstation requires significant CPU time and
memory resources. Thus, in order to reduce the computational cost, we have applied parall-
elization techniques to the most costly parts of the original source code. Some blocks of the
sequential code were also redesigned for the execution on a multicomputer. In this paper, our
parallel version is described in detail, execution times that show its efficiency in terms of
speedups are presented, and new numerical results that establish the convergence of the al-
gorithm for higher imposed load values when using finer meshes are depicted. As a whole, this
paper tries to illustrate the difficulties involved in parallelizing and optimizing complex nu-
merical algorithms based on finite elements. © 2001 Elsevier Science B.V. All rights reserved.

Keywords.: Elastohydrodynamic lubrication; High-performance computing; Finite elements; Parallel
numerical algorithm

1. Introduction

In many types of contact occurring in industrial devices the forces are transmitted
through thin fluid films that prevent damage to the lubricated surfaces. Elastohy-
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drodynamic lubrication is the part of tribology that deals with the lubrication of
elastic surfaces. Thus, the elastohydrodynamic mathematical models are concerned
with equations governing the elastic behaviour of the solids and the hydrodynamic
displacement of the lubricant. A large number of surfaces appearing in industrial
applications can be represented by means of an equivalent ball-bearing contact
(Fig. 1). In this geometry, the surfaces consist of a sphere and a plane [16]. Much
research has been devoted to the mathematical modelling of this physical situation
for thin film flows and point contacts. Thus, for example, in [16] a formulation of the
elastohydrodynamic point contact problem is posed; in [6] many elastohydrody-
namic models can be found; and Reynolds’ equation for the lubricant pressure as
limit of Stokes’ equation in the hydrodynamic case is rigorously justified in [3]. The
model for the ball-bearing contact mainly involves Reynolds’ equation for the lu-
bricant pressure and the Hertzian contact law for the elastic deformation of the
sphere. Additional aspects to be taken into account are the external load imposed on
the device, the pressure—viscosity relation and the presence of air bubbles (cavitation)
in the fluid. The inclusion of these new aspects provides very interesting mathe-
matical problems, which are posed in terms of highly coupled nonlinear partial
differential equations already studied in the literature (see [7,11,12,17], for example).

In order to simulate the real behaviour of industrial devices, mathematical
analysis is an important previous step when designing robust numerical algorithms
that are principally based on the finite element method. When cavitation is modelled
by means of a variational inequality, different numerical simulation approaches to
elastohydrodynamic point contacts have been developed: in [24] a finite difference
strategy is chosen, in [27] adaptive finite elements based on error equidistribution are
applied to a penalty method for the variational inequality and in [22] a multigrid
solver is performed.

More recently, in view of performing a more realistic simulation of cavitation
phenomena, Elrod-Adams’ model has been introduced in [4]. The numerical solu-
tion of the elastohydrodynamic coupled problems associated with this new model is
the main goal of several works, such as [8,9]. More precisely, in [12], a complex
numerical algorithm is proposed in order to solve the elastohydrodynamic point
contact model which corresponds to a piezoviscous fluid when Elrod—Adams’ model

r
+N
Qo
To T
z
-N
(a) (b) -M: r +M2

Fig. 1. Ball-bearing contact: (a) ball-bearing geometry; (b) two-dimensional domain of the problem ().
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is considered, and a given imposed load is applied to the ball-bearing device. As a
result of the application of this algorithm to a real data set, the values of the pressure
distribution, the gap profile of the contact and the cavitation region can be com-
puted.

In order to obtain a more accurate approach to the different real magnitudes of
the problem, it is interesting to handle finer finite element meshes. This mesh re-
finement involves a great increase in the storage cost and the execution time of the
original sequential code. Therefore, the use of high-performance computing tech-
niques is required in order to reduce the impact of this computational cost problem.

In a previous work [1], the authors developed an algorithm for the Fujitsu VP2400
vector processor. The percentage of vectorization of the source code was approxi-
mately 94%, but such high percentage could not be translated in terms of vector unit
execution time. The vector processor execution time was not good enough because
the most time-consuming computations could not be vectorized as they handle
sparse data structures which involve complex subscripted subscripts.

The aim of the present work is not only to reduce execution time but also to test
in practice the convergence of the finite element space discretization for several
increasing values of the imposed load. For the example finite element meshes,
mesh4 and meshS (see Table 2 in Section 3), the total execution time of the vector
version was approximately 43.5 and 88.5 h, respectively. The high number of
program executions required to tune the physical and numerical parameters to
achieve realistic results, justifies the importance of a reduction in execution time.
As a result, we concluded that the computational cost of the vector version was
still too high. It was precisely this fact that motivated us to develop a parallel
version of the algorithm.

In this paper, parallelization techniques are applied to the most costly parts of the
original source code. Some blocks of the sequential code were also redesigned for the
execution on a distributed-memory multiprocessor. In Section 2, the mathematical
model for describing the industrial problem in tribology is outlined. In Section 3, the
numerical algorithm for computing an approximate solution of the mathematical
model is presented. In Section 4, the implementation of a parallel version of the
algorithm is explained in detail. In Section 5, some execution time measurements
obtained for the target machine Fujitsu AP3000 multicomputer, as well as speedup
diagrams that illustrate the efficiency of our parallel algorithm, are shown. New
numerical solutions of the elastohydrodynamic lubrication problem are also pre-
sented. Finally, in Section 6, the conclusions of the work are discussed.

2. The model problem

The mathematical model corresponds to the displacement of the fluid between a
rigid plane and an elastic and loaded sphere. The equations are posed over a two-
dimensional domain (Fig. 1(b)) which represents the mean plane of contact between
the two surfaces in the ball-bearing geometry (Fig. 1(a)). In the following formula-
tion, the goal is to determine the pressure p and the saturation 6 of the lubricant
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(introduced by the Elrod—Adams cavitation model), the gap /& between the ball and
the plane, and the minimum reference gap 4o. Thus, the set of equations of the model
is given by:

o[ _ op o[/ _ op 0 .
Y [ abpy3 9P — e P32 ) = 125y — =1in Q" 1
Gx(e h 6x>+6y<e h 6y> svaxh, p>0, 0 in Q" (1)
%(eh):o, p=0, 0<0<1 in Q, (2)
e’ﬁph32—lj = 12sv(1 — 0)h cos(ii,7), p=0on X, (3)
n
2 2
h = h(x,y,p) = ho +x—2;y + iE / plw) dtdu, (4)
"o\ o — i + (v —u)
0= 90 on Fo, (5)
p=0onT, (6)
w = /Q p(x,y)dxdy, (7

where the unknown vector is (p, 0,4, hy) and the two-dimensional domain €, the
lubricated region Q, the cavitated region Q, the free boundary X, the supply
boundary I'y and the boundary at atmospheric pressure I’ appearing in the above
equations are, respectively (see Fig. 1(b)),

Q= (—M,,M,) x (-N,N) X =0Q"NQ,
Q+ = {(x,y) € ‘Q/p(xay) > 0} FO = {(x,y) € aQ/X = _Ml}a
Qo ={(x,y) € 2/p(x,y) =0} I'=0Q\T,

where M;, M, and N are positive constants. The input data (see Table 1) are the
velocity field (s, 0), the piezoviscosity coeflicients vy and f3, the unit vector # normal

Table 1

Input data of the numerical algorithm
Symbol Physical parameter
(s,0) Velocity field
Vo Piezoviscosity coefficient
B Piezoviscosity coefficient
i Normal unit vector
7 X-axis unit vector
E Young equivalent modulus
R Sphere radius
w Imposed load
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to X pointing to €, the unit vector in the x-direction 7, the Young equivalent
modulus E, the sphere radius R, and the load @ imposed on the device in a normal to
the plane direction. Egs. (1)—(3) model the lubricant pressure behaviour, assuming
the Barus pressure—viscosity relation (see [5, Chapter 2] for details about Barus law).
Eq. (4) establishes the relation between the gap and the lubricant pressure. Eq. (7)
balances the hydrodynamic and the external loads. For further explanation about
physical motivation and mathematical modelling [8,12] may be consulted.

3. Numerical algorithm

A complex numerical algorithm for approximating the solution of the previous set
of equations without load constraint is proposed in [8]. The inclusion of the nonlocal
constraint (Eq. (7)) on the pressure gives rise to an additional external loop that
balances the imposed load (see [12] for further details). The resultant numerical al-
gorithm (depicted in Fig. 2) combines regula falsi, fixed point techniques, finite el-
ements and duality methods [10]. The algorithm consists of four nested loops
referred to as load, gap, characteristic and multiplier loops, respectively. Each loop
performs different computations which we have denoted as Blocks. For an initial
value of the gap parameter /g, the load loop is executed (this loop corresponds to the
numerical solution of Egs. (1)-(6)). Next, the gap loop initializes / to the value of a
rigid sphere (i.e., for p = 0 in Eq. (4)) and performs the first computations (Blocks
1-3) in order to solve the hydrodynamic problem (Egs. (1)—(3)) with the boundary
conditions given by Egs. (5) and (6) in the two innermost loops, namely, the char-
acteristic and multiplier loops. In these loops the pressure p and the saturation 6 are
computed by means of a transport-diffusion algorithm and a duality method based
on maximal monotone operators, and a linear Lagrange finite element discretization
of linearized partial differential equations. The characteristic iteration comes from
the adaptation of the transport-diffusion technique for a steady state problem (Block
4), while the multiplier iteration (Blocks 5-8) is closely related to the duality method
and to the saturation variable. Once both innermost loops converge in pressure and
concentration (Blocks 9-10), the gap is updated according to Eq. (4) in Block 11.
This process is repeated in the gap loop until the convergence in & (Block 12) is
achieved. Finally, the hydrodynamic load generated by the pressure of the fluid is
computed in Block 13 by means of numerical integration in Eq. (7). If the computed
integral is close to the imposed load (Block 14), the algorithm finishes. Otherwise, a
new value /%, is determined by a regula falsi or bisection technique and a new iter-
ation in the load loop of the algorithm is performed.

From a computational point of view, the algorithm gives rise to a great amount
of sparse and dense computations: the sparse ones come from the numerical so-
lution of the linear systems associated with the finite element discretization of the
problem; dense computations mainly appear in relation with the numerical inte-
gration procedures required in Egs. (4) and (7). In particular, the costly process
associated with Eq. (4) requires integration over the whole domain for each finite
element node.
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‘Block 14 ‘ ‘ Test convergence in load ‘
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Fig. 2. Flowchart of the original sequential algorithm. The parameters Nmult, Ncrts, Ngap and Nload
represent the maximum number of iterations for multiplier, characteristic, gap and load loops, respec-
tively. When label END is reached, the numerical algorithm converges, while label EXTT indicates that it

has not converged.

The number of iterations (ni) corresponding to load, gap, characteristic and
multiplier loops is shown in Table 2 for an example test. In order to discretize the
domain of the problem, four different uniform triangular finite element meshes were
considered, namely, meshl, mesh3, mesh4 and mesh5. The following parameters are
specified for each mesh: number of finite elements (nfe), number of nodes (n),
number of nodes on the supply boundary I'y (nv), number of nonzero entries in the
system matrix C (nz¢), and number of nonzero entries in the lower triangular matrix
L resulting from the Cholesky factorization of C (nz;).
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Table 2
Number of iterations of each loop for an example test

Number of iterations (i)

Meshl Mesh3 Mesh4 Mesh5
Loop nfe =768 nfe =9,600 nfe = 38,400 nfe = 76,800
n =429 n=4,961 n=19,521 n = 38,961
nv=13 nv =41 nv =81 nv = 81
nze = 2,053 nze = 24,481 nze = 96,961 nze = 193,681
nz; = 4,347 nz; = 84,412 nz; = 415,645 nz; = 872,233
Load 7 5 4 3
Gap 46 76 57 37
Characteristic 1,964 10,723 14,166 14,596
Multiplier 78,359 1,119,516 1,640,221 1,647,011

4. Parallelization process

The program is composed of four nested loops that are associated with different
iterative algorithms. As the results computed in one iteration are used in the fol-
lowing iteration, and the total number of iterations is unknown a priori (because it
depends on several convergence stopping criteria), we have centred in parallelizing
the blocks shown in Fig. 2. Each block mainly involves the execution of a loop.
Therefore, in this work we exploit loop-level parallelism where the iterations of a
loop (associated with finite elements or with mesh nodes) are distributed among the
processors.

We have experimentally observed that about 99% of the execution time of the
sequential algorithm is concentrated on the multiplier loop (Fig. 2, Blocks 5-8) and
on the updating of the gap (Fig. 2, Block 11). The parallelization of the multiplier
loop is described in Section 4.1 except for the solution of the linear system which is
described in Section 4.3, as it is especially important. The parallelization of the
updating of the gap is explained in Section 4.4. The execution time of the charac-
teristic loop (Fig. 2, Blocks 4 and 9-10) is negligible, but it has been parallelized in
Section 4.2 as it improves the efficiency of the parallel algorithm in a significant
manner.

4.1. Multiplier loop

The main tasks performed in this loop consist of the update of the right-hand side
(from now on, rhs) of the linear system Cp = b and the solution of this system. From
the finite element method viewpoint, the rhs b is constructed by computing an ele-
ment rhs for each finite element and combining all these elements rhs through an
assembly process [23]. This process (also applied to matrix C in an outer loop) is
usually implemented as an irregular reduction, also called histogram reduction [20].
Nevertheless, there exists another implementation that is more suitable for our
parallel algorithm. Both alternatives are described and compared in Section 4.1.1,
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where they are referred to as finite element construction method (FECM) and node

construction method (NCM), respectively.

The computation of the rhs b is decomposed into three stages:

1. Calculation of the fixed component in the characteristic loop as b, = f;(h) (Fig. 2,
Block 3); where f] is a function of the height / at which the points of the sphere
are placed with respect to the plane of reference in the ball-bearing geometry.

2. Computation of b,, the fixed component of 5 in the multiplier loop:
b, = by + f>(0) (Fig. 2, Block 4), where f, is a function dependent on the satura-
tion of the lubricant fluid 6.

3. Updating in each iteration of the multiplier loop as b = b, + f3(«) (Fig. 2, Block
5), f3 being a function of the multiplier o introduced by the duality method.
The parallelization process corresponding to the computation of the final rhs b is

explained in Section 4.1.1. In order to calculate b the value of « has to be obtained.

Thus, parallel algorithms for the blocks Compute multiplier (Fig. 2, Block 7) and Test

convergence in multipliers (Fig. 2, Block 8) are presented in Section 4.1.2. The parallel

construction of b, is described in Section 4.2. The computation of b, was not par-
allelized as its computational cost is negligible compared with the execution time of
the whole program.

4.1.1. Computation of the final right-hand side

First, we introduce some notations to describe the parallelization process for
computing b (Fig. 2, Block 5). Our goal is to solve an elastohydrodynamic lubri-
cation problem in the two-dimensional domain Q shown in Fig. 1(b). In order to
perform this task, we discretize Q by using a set @ of nfe triangular finite elements ¢,,
k=1,... nfe. Besides, we define:

Op, = {¢; € @/, is assigned to processor P}, j=0,...,p—1, (8)

where p is the number of processors. We also define the whole set Q of nodes and the
set Qmpj of nodes associated with ®p, as follows:

o= @m= U % 9)
pred bredp;
where
Q,, = {nodes of the finite element ¢, }. (10)

Finally, we denote the set of nodes assigned to each processor as:
QP]. = {(x,-,y[) € Q/(x;,y;) is assigned to processor Pj}, j=0,...,p—1
(11)

Let b(i) be the component associated with the node (x;,3;). Vector b can be
constructed in two equivalent ways: either by traversing the set of finite elements @
(FECM) or by traversing the set of nodes of the mesh Q (NCM). Both methods
compute the value associated with a node (i.e., an element of ») by adding the partial
contributions of all finite elements (denoted as Contrib(¢y, (x;,3:))), the difference
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being the way in which those contributions are summed up. We will go on to explain
why the first method cannot be parallelized efficiently, which has led us to change the
sequential algorithm and implement the second method in our parallel version.

Finite Element Construction Method (FECM). This technique computes the value
of vector b as follows:

Vo € @, V(xi,3) €Qy, bli) = Zcontrib(¢ka (i, 31))- (12)

Fig. 3(a) shows a pseudocode in which Eq. (12) is implemented as an irregular re-
duction. Each iteration k of the outer loop is associated with a finite element ¢,, being
nfe the total number of finite elements (see Table 2). Each iteration v of the inner loop
corresponds to a finite element vertex (i.e., an element of the set of nodes Q¢k) being
NV (k) the number of vertices of element k (i.e., the cardinality of Q(/,k) Vector b is
referenced via array f that, given a vertex v of a finite element k, stores the corre-
sponding mesh node number. Array CONTRIB(k,v), which represents the contribu-
tion of the vertex v of the finite element k, is directly accessed via the loop indices.

This algorithm can be parallelized by assigning a subset of finite elements (i.c., a
subset of outer loop iterations) to each processor. Nevertheless, this method has an
important drawback when attempting to parallelize it efficiently. Let P, and P, be
two processors that have been assigned the sets of finite elements ®p and ®p,, re-
spectively. The construction of the mesh determines any node to be shared by at least
two finite elements, which involves an overlap between the two sets Q¢P and st,,
(9451,l N Qq)P # (). Thus, for all nodes in the boundary Q@P N QQ)P , it is necessary to
perform some communications between P; and P, to compute the value of the global
sum. Communication overhead is minimized (but never removed) when finite ele-
ments are assigned according to a block distribution. This is due to the fact that, as
the mesh node numbering algorithm assures that finite element vertex numbers are as
close as possible, this distribution supplies the smallest boundaries. As a conclusion,
the communication overhead inherent in FECM is too costly for our tribology al-
gorithm to be parallelized efficiently, but this drawback can be overridden by using
NCM.

Node Construction Method (NCM). Vector b is computed according to the fol-
lowing expression:

V(X,-,y,-) € Q’ v¢k € (p/(xivyi) € Qd)ka b(l) = Z Contrib(¢k7 (xivyi)) (13)

Fig. 3(b) shows a pseudocode for Eq. (13). Each iteration i of the outer loop is
associated with a mesh node (x;,):), being n the total number of mesh nodes (see

do k =1,nfe doi=1,n
dowv=1,NV(k) do fe=1,NFE()
= f(v,k) k = FE(i, fe)
b(i) = b(i) + CONTRIB(k,v) v = f'(k,7)
enddo b(i) = b(i) + CONTRIB(k,v)
n enddo
enddo (@) enddo (b)

Fig. 3. Pseudocodes of the two different approaches for performing the assembly process: (a) finite ele-
ment construction method; (b) node construction.
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Table 2). Each iteration fe of the inner loop corresponds to a finite element that
makes a partial contribution to the mesh node number i (i.e., an element of the set of
nodes Q, ), being NFE(i) the number of finite elements for a given mesh node i.
Note that vector b is now directly referenced via the outer loop index i. Nevertheless,
array CONTRIB is accessed by means of array FE, which stores the finite elements
associated with the mesh node i, and array f’, which contains the local vertex
number in the finite element k for the global node i.

In this case, it is the set of nodes @ (i.e., outer loop iterations) that is distributed.
This approach removes any dependence among the computations assigned to dif-
ferent processors. In FECM, dependences arise because array b is accessed indirectly.
In NCM, the irregular reduction is removed and the array b is referenced directly via
a loop index. Note that some vectors, different from b, are now accessed indirectly.
These vectors are computed in our tribology algorithm either once at the beginning
of the program or, at most, at the beginning of load or gap loops. Consequently,
communication overhead is moved from the most costly to the less costly parts of the
global algorithm. This property makes the efficiency of the parallelization process
independent of the mesh node distribution; thus, the most appropriate distribution
scheme can be chosen for the other stages of the algorithm. Specifically, we have used
the block distribution described in Section 4.1.2.

4.1.2. Computation of the multiplier

The duality method introduces a vector of multipliers, ¢, in the algorithm (Fig. 2,
Block 7). In each iteration of the multiplier loop, o is computed for each node of the
mesh as follows:

V(xhyi) € ‘Q
IF (x;,y,) € I' THEN

o (i) = g (" (left(i)), h(left(i)))
ELSE

(i) = g2 (VD). pli))
ENDIF

where I', = {(x;,31) € Q/x; = +M,} represents the set of nodes located at the right-
hand boundary (see Fig. 1(b)); «) and «"~! denote the value of « for iterations r and
(r — 1) of the multiplier loop; g, and g, are functions for calculating the multiplier
for a given node (x;,;), and Jeft is another function for identifying the left-adjacent
node of (x;, ;). Taking into account that the nodes of the mesh are numbered up and
down, left and right, we can formally define left as follows:

lefi(i) = {ﬁ ift (x;,07) € I, (15)

i —nv, otherwise,

where nv = Card(I';) represents the number of nodes that are located at the left-hand
boundary of the domain (see Fig. 1(b)).



M. Arenaz et al. | Parallel Computing 27 (2001) 1743-1765 1753

The pseudocode in Eq. (14) is cross-iteration independent except for the com-
putations corresponding to those nodes belonging to I';. In this case, a drawback
arises if the computations corresponding to the node (x;,);) and to its left-adjacent
node (X./(:), Vies(s)) are assigned to different processors P; and Py, respectively. The
problem lies in the fact that P, computes the correct value of (i) only if Pz ;) has
already computed «(/ef#(i)). In other words, there is a true dependence between the
iterations i and lef#(i). This problem can be solved if the communications for coping
with the dependence are performed, but this solution is inefficient as processor P,
must wait for Py to finish its computations. Nevertheless, this communication
overhead can be avoided by implementing a distribution of vectors o and b so that all
nodes included in I'; and their left-adjacent nodes are assigned to the same processor.
This requirement can be expressed as a constraint on the distribution. Thus, we have
implemented the following block distribution:

{(xn,m 1 Ve * ./'+1)7 R (xnim‘ (1) Vatine * (/’+1))} for Pjv J=0,1,...,p=2,
{('xnim: * (p=1)+15 Vajme * (p—l)+1)ﬂ KRR (xnvyn)} for Pp—lv
(16)

where n;,, = [ﬂ, subject to:
V(xi, ) €Iy, 3P/(x,3) € QPj and (xle_/’t(z‘)d’lq/‘r(i)) € QP/- (17)

The stage Test convergence in multipliers (Fig. 2, Block 8) is associated with the
computation of o. At this stage, local convergence tests are performed in parallel and
the global result is calculated by a logical AND scalar reduction.

4.2. Characteristic loop

As explained in Section 4.1.2, the fixed rhs b, in the multiplier loop (Fig. 2, Block
4) is computed by function f,. This function is decomposed in two steps:

(1) The part of the vector f>(6) due to the characteristic method is first computed.
FECM was used in the sequential code, but in our parallel version, as in the com-
putation of b, we have implemented NCM with the distribution described by Eq. (16)
subject to Egs. (17) and (18) (the latter explained below).

(2) The part of the vector f>(6) fixed for a lubrication problem (Neumann con-
dition) is then created by FECM. In this case, only those nodes of the mesh located
at the supply boundary I'y are involved (see Fig. 1(b)). As in the computation of «,
we have removed the communication overhead by imposing the following constraint
on the data distribution:

V(Xnyz‘) € I, H'P_,-/(x,«,y,-) € QPN (18)

so that all nodes in I'y are assigned to the same processor.
The concentration 6 of the fluid (Fig. 2, Block 9) is obtained according to the
following pseudocode:
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Y(xi,3) € Q

IF (x,, %) € I'y THEN
0(i) = 0,

ELSE IF (v,,y) € I' THEN (19)
0(i) = a(i)

ELSE
0(i) = o) + e pli)

ENDIF

Thus, for each node (x;,);), this computation depends on p, o and 6, (the given
concentration at I'y). The constant u is a parameter of the algorithm. Once the
multiplier loop converges, vectors p and « are distributed among the processors
according to Eqgs. (16)—(18). As the pseudocode presented in Eq. (19) is cross-iter-
ation independent, its computations are distributed in the same manner to avoid
data redistributions.

The stopping test in pressure and concentration (Fig. 2, Block 10) is performed
according to the following expressions:

St —pt)’ (0~ 0"y
test, = . testy =

Sl NI

where fest, and festy pick up the values of the pressure and the concentration to
determine the convergence. It should be noted that fest, depends on p” and p—"
and festy on 0 and 0"V, These vectors are distributed among the processors (see
Egs. (16)—(18)). Therefore, at this stage, local sum operations are performed in
parallel and the global result is calculated by SUM scalar reduction operations.

Although the execution time of the characteristic loop is negligible, its parall-
elization improves the efficiency of the parallel algorithm (specifically, the multi-
plier loop) in a significant manner. This improvement can be quantified in terms of
the number of scatter or gather operations on vectors of size n;,. = [%] and scalar
reduction operations. Let us take for this purpose the example test presented in
Table 2 for mesh4. The parallelization of Block 4 allows us to perform one scatter
operation (for by) per iteration in the gap loop (i.e., 57 scatters), while the se-
quential execution would require one scatter (for b,) per iteration in the charac-
teristic loop (i.e., 14,166 scatters). The parallel execution of Blocks 9—10 needs one
gather operation (for p) and two SUM reductions per iteration in gap and char-
acteristic loops, respectively (i.e., 57 gathers 4+ 2x 14,166 scalar reductions); on the
other hand, their sequential execution would require two gathers (for p and «) per
iteration in the characteristic loop (i.e., 2 x 14,166 gathers, much more costly than
the scalar reductions). Fig. 4 summarizes the parallelization process of the se-
quential algorithm depicted in Fig. 2.

The minimization of communication overhead and the choice of appropriate
communication primitives is critical to achieve good performance in our parallel

(20)
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Fig. 4. Flowchart of the parallel algorithm for two processors (P, and P).

application. In [26], we evaluated and modelled the performance of the basic mes-
sage-passing primitives (MPI, PVM and APIib libraries) provided by the AP3000
multicomputer, our target machine. Communication overheads were estimated using
accurate models. More detailed results about the characterization of MPI collective



1756 M. Arenaz et al. | Parallel Computing 27 (2001) 1743-1765

primitives were presented in [25] and taken into account in the design of this ap-
plication.

4.3. Computation of the pressure

The approximation to the pressure of the lubricant fluid is computed by solving
the linear system Cp = b per multiplier iteration. The block Compute finite element
matrix C (Fig. 2, Block 1) is devoted to matrix C construction. In the sequential code,
FECM is used. As in the computation of b, the calculation of C could be parallelized
by implementing NCM. Nevertheless, it is not worthwhile in our tribology algorithm
for two reasons: first, the computational cost of this block is negligible and, second,
its parallelization does not contribute to improve the performance of the program in
a significant manner.

Matrix C is symmetric and positive definite. The order n of the matrix and the
small number of nonzero entries (consult nz¢ in Table 2), made compressed storages
the most suitable in terms of computational and storage cost. We have used a
Compressed Row Storage (CRS) format [2, Chapter 4]. Symmetric positive definite
systems are usually solved via the Conjugate Gradient (iterative method) or via the
Cholesky Factorization (direct method), the most adequate method being determined
by the nature of the specific problem. Sparse Conjugate Gradient method basically
needs two vector inner products and a sparse matrix-vector product per iteration. On
the other hand, an appropriate preconditioner, as well as a suitable stopping crite-
rion, must be added in order to increase the convergence rate. The sparse conjugate
gradient is relatively simple to parallelize [15]. Nevertheless, we have found that, for
our problem, its execution time is much higher than the parallel sparse Cholesky
Factorization approach described next. It should be noted that the multiplier loop
mainly updates b and solves a new system per iteration.

Cholesky Factorization decomposes C = LLT, L being a lower triangular matrix.
The sparse Cholesky approach consists of four well-known stages: reordering
C' = IICH", to reduce fill-in during the factorization stage; symbolic factorization,
to establish the nonzero pattern of L; numerical factorization, to compute the
nonzero entries of L; and solution of triangular systems (forward and backward
substitutions), to obtain the solution vector p. The permutation (IT) of vectors b and
p due to the reordering phase is included in this last stage. The partition of the solver
in several independent stages fits into our tribology problem very well as it makes
possible to reduce computations. The pattern of C is constant during the execution
of the whole program, so the stages Reordering (Fig. 4, Block 2) and Symbolic fac-
torization (Fig. 4, Block 3) are computed only once at the beginning of the algorithm
(the number of nonzeros in L is shown in Table 2). As the entries of L change once
per iteration in the gap loop, Numerical factorization (Fig. 4, Block 5) is done at the
beginning of this loop. Finally, the Solve triangular systems stage (Fig. 4, Block 9) is
computed once per iteration in the multiplier loop in order to determine the solution
vector p.

The Numerical factorization is the most time-consuming stage of a sparse
Cholesky solver. Nevertheless, in our program it is the block Solve triangular systems
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that is the most time-consuming. This is because the latter is executed once per it-
eration in the multiplier loop, while the former is calculated at the beginning of the
gap loop. In the example test of Table 2, the number of numerical factorizations and
triangular system solvings for mesh4 is 57 and 1,640,221, respectively.

From the parallel point of view, the performance of the solver could be increased
if multiple right-hand side vectors were computed and, therefore, multiple linear
systems were solved simultaneously. Unfortunately, in our program, a new vector b
is calculated per multiplier loop iteration. Hence, only one linear system can be
solved at the same time.

In the parallel program, a serial multilevel graph partitioning algorithm was used
to carry out the fill-reducing reordering. Furthermore, this algorithm constructs the
elimination tree associated with the sparse matrix C and distributes the data among
the processors so that the remaining stages of the solver can be performed with
minimum data movement. The symbolic factorization step uses an elimination tree
guided algorithm to generate the data structures suitable for the numerical factor-
ization. Parallelism is achieved by assigning portions of the elimination tree to the
processors according to a load-balanced subtree-to-submesh assignment strategy.
The numerical factorization uses an elimination tree guided recursive formulation of
the multifrontal algorithm described in [21]. This algorithm is parallelized using the
same subtree-to-submesh mapping used in the symbolic factorization. The final step
in the process is to solve the triangular systems. Here, standard triangular systems
solution algorithms were used for computing vector p in parallel. More information
about the stages we have just described can be found in [13,14] where a parallel
sparse Cholesky solver is proposed.

4.4. Updating of the gap

This stage computes the gap & between the sphere and the plane in the ball-
bearing geometry (Fig. 2, Block 11). For each node, # is calculated according to Eq.
(4). It should be noted that this algorithm is cross-iteration independent, which al-
lows us to distribute computations in the most suitable manner in order to achieve
load balancing. Data redistributions are avoided by distributing the nodes according
to Egs. (16)—(18). Eq. (4) shows that / involves numerical integration over the whole
domain. As the integral depends on p, each processor needs the whole vector p. This
problem is solved by means of an allgather operation on the array p after the con-
vergence test in pressure and concentration.

Finally, it is not worth parallelizing the Test convergence in gap stage (Fig. 2,
Block 12). For this reason, vector / is gathered at the end of this block.

5. Experimental results on the Fujitsu AP3000
The parallel program was tested on a Fujitsu AP3000 distributed-memory

multiprocessor. The AP3000 consists of UltraSPARC-II microprocessors at
300 Mhz interconnected in a two-dimensional torus topology through a high-speed
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communication network (AP-net). A detailed description of the AP3000 architecture
can be found in [19]. The original Fortran77 algorithm was parallelized using the
MPI library in order to make the application portable. The programming paradigm
was Single Program Multiple Data (SPMD).

5.1. Performance results

In order to perform our tests, we have used several meshes, namely, meshl, mesh3,
mesh4 and mesh5 (see mesh parameters in Table 2). Tables 3 and 4 show experi-
mental results for mesh4 and mesh5, respectively, when using up to an eight-pro-
cessor array (the maximum number of processors available on our AP3000
configuration). Experimental results obtained for the coarser meshes, meshl and
mesh3, have revealed that it is not worth executing them on a multiprocessor. The
information presented in Tables 3 and 4 includes ¢, the average execution time per
loop iteration; #t = ti x ni, the estimated total execution time of all iterations of the
corresponding loop, ni being the number of iterations per loop (consult i values in
Table 2); %pt, the percentage of the estimated total program time p¢ that ¢ repre-
sents; and sp, the resultant speedup. Note that, for 1, 2 and 4 processors, the total

Table 3
Execution times and speedups for mesh4 (ti: time per iteration, ¢f: total time, pt: program time,
Yopt = (1t/pt) x 100, sp: speedup)

Mesh4 Number of processors
1 2 4 8

Load loop ti 0.013 s 0.013 s 0.013 s 0.013 s

tt 0.052 s 0.052 s 0.052 s 0.052 s

Yopt 0.11E-3 0.19E-3 0.35E-3 0.58E-3

sp 1.00 1.00 1.00 1.00
Gap loop ti 9 m:0l s 4 m:Sls 2 m:29 s 1m:17s

tt 8 h:33 m:57 s 4 h:36 m:27 s 2 h:21 m:33 s 1 h:13 m:09 s

Yopt 6.41 6.04 5.79 4.88

sp 1.00 1.86 3.63 7.03
Characteristic ti 0.043 s 0.029 s 0.018 s 0.013 s
loop 113 10 m:09 s 6 m:51 s 4m:15s 3 m:04 s

Yopt 0.13 0.15 0.17 0.20

sp 1.00 1.48 2.39 3.31
Multiplier loop i 0.274 s 0.157 s 0.084 s 0.052 s

tt 124 h:50 m:20 s~ 71 h:31 m:55 s 38 h:16 m:19 s 23 h:4l m:31 s

Yopt 93.44 93.79 94.01 94.87

sp 1.00 1.74 3.26 5.27
Remainder 1t 1 m:23s 55s 46 s 41s

Yopt 0.02 0.02 0.03 0.05

sp 1.00 1.51 1.80 2.02
Program pt 133 h:35m:49 s 76 h:16 m:08 s 40 h:42 m:53 s 24 h:58 m:25 s
summary sp 1.00 1.75 3.28 5.35




Table 4

M. Arenaz et al. | Parallel Computing 27 (2001) 1743-1765

1759

Execution times and speedups for meshS (ti: time per iteration, fz: total time, pz: program time,
Yopt = (tt/pt) x 100, sp: speedup)

Mesh5 Number of processors
1 2 4 8

Load loop ti 0.029 s 0.029 s 0.029 s 0.029 s

1t 0.087 s 0.087 s 0.087 s 0.087 s

Yopt 0.09E-4 0.15E-4 0.28E-4 047E-4

sp 1.00 1.00 1.00 1.00
Gap loop ti 37 m:24 s 20 m:03 s 10 m:11 s Sm:10s

tt 23 h:03 m:48 s 12 h:21 m:51 s 6 h:16 m:i47 s 3 h:1l m:10 s

Yopt 8.23 7.77 7.37 6.26

sp 1.00 1.86 3.67 7.24
Characteristic ti 0.091 s 0.056 s 0.035 s 0.025 s
loop tt 22 m:08 s 13 m:37 s 8§ m:30 s 6 m:04 s

Yopt 0.13 0.14 0.17 0.20

sp 1.00 1.62 2.60 3.65
Multiplier ti 0.561 s 0.320 s 0.172 s 0.104 s
loop tt 256 h:39 m:33 s 146 h:24 m:03 s 78 h:4l m:25 s 47 h:34 m:49 s

Yopt 91.61 92.05 92.41 93.46

sp 1.00 1.75 3.26 5.39
Remainder tt S5mi4ls 3m4d4s 2 mi46 s 2m:2ls

Yopt 0.03 0.04 0.05 0.08

sp 1.00 1.52 2.05 2.42
Program pt 280 h:11 m:10s 159 h:03 m:15s 85 h:09 m:28 s 50 h:54 m:24 s
summary sp 1.00 1.76 3.29 5.50

execution times #¢ and pt have been estimated on the basis of #i. Reliable values of #i
were obtained by averaging a high enough number of iterations of each loop. Exe-
cution times were calculated this way because they exceeded the CPU time limit
available in the job queues of our target machine.

The results in the tables are detached for each one of the loops described in Fig. 4.
Each loop includes its corresponding computations, excluding the work of their
inner loops. Thus, the load loop includes the computations of Blocks 16-17; the gap
loop contains Blocks 4-6 and 14-15; the results of the characteristic loop are for
Blocks 7 and 12-13; and, finally, the multiplier loop includes Blocks 8-11. The Re-
mainder row represents additional computations that are performed before entering
and after exiting the load loop for initialization and output purposes, respectively.
As explained in Section 4.3, stages Compute pattern of matrix C, Reordering and
Symbolic factorization (Blocks 1-3) are also included here.

The parameter %opt clearly indicates the critical stages of the algorithm. According
to these tables, they are the computations associated with the multiplier loop and, to
a lesser degree, with the gap loop. All of these computations represent, jointly, more
than 99% of the whole execution time of the program. Note that this percentage is
almost constant with regard to the size of the mesh and the number of processors.
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On the one hand, the multiplier loop is the most time-consuming part of the al-
gorithm. This is due to the fact that, although the average execution time per iter-
ation ti is very low, the number of iterations ni is much higher than in the other
loops. For instance, for the finer meshes mesh3, mesh4 and mesh5, it can be observed
in Table 2 that ni of the multiplier loop is approximately two orders of magnitude
greater than ni of the characteristic loop. On the other hand, the gap loop (specifi-
cally, the Update gap block) is the next most costly part. In contrast to the previous
case, the execution time per iteration is the highest by far, but the number of iter-
ations is extremely low.

We have also measured how the execution time of the multiplier loop is distrib-
uted when using mesh4 on up to eight processors. We have checked that the Solve
triangular systems block is the most time-consuming, since it takes up a percentage in
the interval 79-87% (the percentage increases with the number of processors). The
Compute final right-hand side block takes up between 6% and 13% (the percentage
decreases as the number of processors rises). Finally, the remaining functional blocks
(Compute multiplier and Test convergence in multipliers) take up the rest of the time,
about 7%.

It should be noted that, for a fixed mesh size, as the number of processors rises,
the value of Y%pr for the gap loop diminishes, while %pt of the multiplier loop in-
creases. As the speedups demonstrate, this effect can be explained by the fact that the
parallelization of the gap loop is more efficient than that of the multiplier loop,
which redounds in a faster reduction of the execution time of the gap loop than the
one corresponding to the multiplier loop. Also, for a fixed number of processors,
the increase in the mesh size has two different effects: the weight of the gap loop on
the global execution time is slightly greater, while the weight of the multiplier loop is
reduced in the same ratio. We have also checked this for meshl and mesh3. This is
because, for each node, the gap is computed as an integral over the whole problem
domain. Thus, the mesh refinement increases the computational cost of this stage to
a large extent. Nevertheless, in the multiplier loop, computations are distributed by
assigning a subset of mesh nodes to each processor.

In Fig. 5, speedups for mesh5 are depicted. The most efficient stage is the gap loop.
However, as the multiplier loop is by far the most costly part of the algorithm, its
speedup determines the whole program speedup. It is not important to obtain good
speedups for the characteristic loop because its %pr is negligible. As a matter of
interest, note that the execution times measured for the parallel program on an eight-
processor array are lower than those obtained with the vectorized algorithm de-
scribed in [1]. The ratio vector-time/parallel-time was approximately 1.75 and 1.73
for mesh4 and meshS5, respectively. Therefore, the goal of reducing the execution time
of the vectorized version was achieved successfully.

Scalability discussion. An algorithm is scalable on a parallel architecture if the
efficiency can be kept fixed as the number of processors is increased, provided that
the problem size is also increased. We use the isoefficiency metric [18] to characterize
the scalability of our algorithm. This metric determines the rate at which the problem
size must increase with respect to the number of processors to keep the efficiency
fixed.



M. Arenaz et al. | Parallel Computing 27 (2001) 1743-1765 1761

5 T 7 1 1 7
G— ©OIdeal | | | - - P
\ LA
X % Characteristic loop e
_ _ . [ |~
6 — [:z----{2 Multiplier loop T T T T T
*%—% Program | -~ 7 | %

Number of processors

Fig. 5. Speedups for meshS.

As the efficiency of our application is determined by that of the multiplier loop,
the isoefficiency of the program can be reduced to that of the multiplier loop. We
have also seen that this loop is dominated by the Solve triangular systems block. In
the other blocks (Compute final right-hand side, Compute multiplier and Test con-
vergence in multipliers) we balanced the computational load according to the dis-
tribution given by Egs. (16)-(18) and we removed all communication overhead
except a scalar reduction, whose cost per iteration is negligible (90 log, p — 15 us
following our model [26]). Therefore, as these blocks represent a small percentage of
the loop execution time, they hardly influence the global scalability (this influence
would be positive in any case). As a conclusion, the isoefficiency of our program can
be approximated by the isoefficiency of the sparse forward and backward triangular
solvers discussed in Section 4.3.

In [14], it is shown that this kind of parallel sparse triangular solver is
scalable for system matrices C generated in two- and three-dimensional finite
difference and finite element methods (in which frame our tribology problem is
numerically solved). Moreover, the isoefficiency of that solver is ©(p?) and it is
asymptotically as scalable as its dense counterpart. The isoefficiency ©(p?) means
that when the number of processors is increased from p to p’, the problem size
must be increased in a factor of (p’)z/ p?> to get the same efficiency as on p
processors. The problem size in our tribology algorithm is determined by the
dimension n of the system matrix, being n the number of mesh nodes. It is easy
to derive that we should increase the problem size in a factor ~4 to keep the
efficiency fixed when p is doubled. Thus, reasonable speedups could be obtained
on configurations larger than our eight-processor array using meshes of appro-
priate size.
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5.2. Numerical results

The motivation of this work was not only to reduce computing time in a complex
numerical algorithm by means of high performance computing techniques, but also
to obtain more accurate approximations to the real magnitudes which constitute the
solution of the mathematical model when higher imposed load values are used. In
this work, numerical results for the finer finite elements meshes mesh4 and mesh5
(with 38,400 and 76,800 triangular elements, respectively) with imposed load o =3
and w = 5 are presented. The parallel program allowed us to obtain new results (for
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Fig. 6. Pressure and gap approximation profiles.
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w = 5) and it is currently being used to validate the convergence of the numerical
algorithm with even higher imposed load values.

In Figs. 6(a)-(d) the pressure and the gap approximation profiles for mesh4 and
mesh5 are presented in an appropriate scale. More precisely, Figs. 6(a) and (b) show
the pressure profiles (represented by hill-like curves) and the gap profiles (parabola-
like curves with minimum) for mesh4 and mesh5, respectively. The load imposed on
the device takes the value w = 3 in both figures. Analogous results are presented for
o = 5 in Figs. 6(c) and (d). The results illustrate the behaviour of the pressure and
the gap when the load imposed on the device is increased from w =3 to w = 5. In
particular, for w = 3 the pressure has only one maximum near the contact point,
while for w = 5 it has two maxima (one at the entry and another at the exit of the
device). This is due to the fact that the increment of the load augments the defor-
mations in the sphere, which deadens the increase in the pressure in turn. This
phenomenon is typical in elastohydrodynamic problems. A rigid sphere would not
become deformed, therefore the pressure would increase everywhere when increasing
the applied load.

Although the theoretical convergence of this complex algorithm is an interesting
and difficult open problem, the measure of numerical flux supports the flux con-
servation of the numerical method. More precisely, the numerical flux conservation
level is about 93% for mesh3, and it is about 96% for mesh4 and mesh5.

6. Conclusions

In this work, we have described the parallelization of a numerical code for solving
an elastohydrodynamic piezoviscous lubrication problem. The most time-consuming
parts are multiplier loop, where the pressure of the fluid is calculated, and the
computation of the gap (block included in gap loop) between the sphere and the
plane in the ball-bearing geometry.

In our tribology algorithm, the computation of the pressure involves solving a
sparse linear equation system in which the calculation of the rhs is decomposed into
three stages. The FECM was used at these stages in the original sequential code. We
showed that the direct parallelization of the irregular reduction associated with
FECM has an inherent communication overhead that would significantly decrease
the efficiency of our parallel program. An important contribution of our work was to
redesign some rhs computation stages and implement the NCM, which moves
communication overhead to the less costly parts of the program, i.e., the beginning
or the outermost loops (load or gap). This property allowed us to distribute the
computation of the rhs so that no data redistributions were needed before and after
the execution of the parallel sparse Cholesky solver. A block data distribution
subject to two constraints (Egs. (16)—(18)) was used for this purpose. In practice,
when the finer finite element meshes are used, it is clear that a standard block dis-
tribution always fulfills the constraints. As we are interested precisely in fine meshes,
the data distribution could be simplified.
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Taking into account the nature of the problem, the speedups obtained are very
reasonable. Moreover, the execution times could be reduced even more by using
BLAS routines specifically tuned for the target multicomputer. The results presented
in this work were obtained by executing a general purpose BLAS implementation.
The scalability of our parallel algorithm is determined by that of the parallel sparse
forward and backward triangular system solvers. In terms of the isoefficiency, this
solver is asymptotically as scalable as its dense counterpart. It should be noted that,
although characteristic loop has a negligible execution time, its parallelization im-
proved significantly the efficiency of the multiplier loop and, hence, the efficiency of
the whole parallel program.

From the numerical point of view, the practical convergence validation of a new
algorithm was performed. The accuracy of the approximation to the solution was
increased with the introduction of finer finite element grids, which confirmed the
expected results for the numerical algorithm. Moreover, the convergence of the al-
gorithm when increasing the external imposed load was tested.

Currently, this parallel application is being used at the Department of Mathe-
matics of the University of A Coruna for research purposes. The aim is to establish
the practical convergence of the algorithm when varying some relevant input pa-
rameters (mainly, the mesh size and the load imposed on the device).
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