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ABSTRACT
Long non-coding RNA sequences (lncRNAs) have completely chan-
ged how scientists approach genetics. While some believe that
many lncRNAs are results of spurious transcriptions, recent evi-
dence suggests that there exist thousands of them and that they
have functions and regulate key biological processes. For the ex-
perimental characterization of lncRNAs, many tools that try to
predict their interactions with other RNAs have been developed.
Some of the fastest and more accurate tools, however, require a slow
database construction step prior to the identification of interaction
partners for each lncRNA. This paper presents a novel and efficient
parallel database construction procedure. Benchmarking results
on a 16-node multicore cluster show that our parallel algorithm
can build databases up to 318 times faster than other tools in the
market using just 256 CPU cores. All the code developed in this
work is available to download at GitHub under the MIT License
(https://github.com/UDC-GAC/pRIblast).
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1 INTRODUCTION
Long non-coding RNAs (lncRNAs) are classically defined as tran-
scripts longer than 200 nucleotides without any protein-coding
capacity. lncRNAs play integral roles in several biological processes.
Indeed, lncRNA dysfunction is associated with many severe dis-
eases, such as Parkinson’s [5] and several types of cancer [4, 12].
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The functional characterization of lncRNAs is key in order to
trace the genetic origin of such diseases. Because lncRNAs work by
being assembled with other proteins or RNAs [7], the computational
identification of RNA interacting partners for each lncRNA has
proved to be a powerful approach for inferring their functions [10,
13]. Furthermore, according to a recent review [3], tools combining
information from local alignments and RNA secondary structure,
such as RIblast [6] or ASSA [2], obtain the most accurate lncRNA–
RNA interacting pairs. Nevertheless, as these algorithms implement
the most sophisticated prediction models, their computational costs
grow exponentially and prevent their application to large-scale
RNA datasets.

To overcome this obstacle, we developed pRIblast [1], which is a
parallel and highly efficient tool for the comprehensive prediction of
lncRNA–RNA interactions on multicore clusters. pRIblast is based
on RIblast [6], a highly accurate and widely used tool developed
for such purpose [9, 11]. That is, by definition, pRIblast and RIblast
are exact algorithms and they obtain the same level of prediction
accuracy. However, pRIblast dramatically accelerates the prediction
procedure and completes the lncRNA–RNA analyses up to 128
times faster on a 256-core cluster (i.e., pRIblast can complete a
three-month-long analysis in just a few hours). Moreover, pRIblast
can process huge datasets that would run out of memory with
the former application. Still, pRIblast requires the same database
construction step as RIblast prior to the lncRNA–RNA interaction
prediction per se. So, the construction of such database has now
become a bottleneck. Although it is possible to run the lncRNA–
RNA search step in parallel and benefit from lower prediction times,
the prediction process is now stuck with a sequential and costly
process of building an RNA database for later use in the lncRNA–
RNA pair search step.

As a consequence, this work presents a parallel algorithm for the
construction of RNA databases to be used alongside pRIblast to pre-
dict extensive lncRNA–RNA interactions at unrivalled speeds. The
new algorithm uses de facto standardHigh-Performance Computing
technologies to exploit cluster and supercomputing architectures:
Message Passing Interface (MPI) and OpenMP. As it will be shown
in Section 3, our novel approach is able to achieve superlinear
speedups (318x) when running over a real and representative RNA
dataset on a 16-node multicore cluster (256 CPU cores in total).

2 PARALLEL IMPLEMENTATION
In order to construct a database, pRIblast starts by calculating ap-
proximate accessible energies for each sequence in the target RNA
dataset. These energies are later used in the RNA interaction search
step to find promising lncRNA–RNA pairs. Second, the target RNA
sequences are reversed and concatenated (i.e., encoded). Third, the
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encoded sequences are used to build a suffix array and search re-
sults of short substrings are exhaustively precalculated (again, these
results, alongside the encoded sequences and the suffix array, are
later used to find RNA interactions). And fourth, the approximate
energies, the encoded sequences, the suffix array, and the search
results are stored in a set of binary and text files that comprise the
resulting database.

The calculation of the accessible energies and the encoding of the
RNA sequences, which are the most computationally demanding
steps behind the construction of the RNA databases in pRIblast
(they account for more than 99.5% of the runtime), are independent
procedures and may be run in parallel. The construction of the
suffix array and subsequent search of short substrings, however, is
a strictly sequential process that cannot be parallelized. Therefore,
we proposed the following MPI + OpenMP algorithm to build RNA
databases in parallel:

(1) The set of RNA sequences is distributed among several MPI
processes.

(2) Every MPI process spawns OpenMP threads and runs the
calculation of the accessible energies and the encoding pro-
cedure in parallel.

(3) Once all the sequences have been encoded and their energies
have been calculated, one process gathers all the encoded
data and computes the suffix array and search of short sub-
strings.

(4) All processes save the results they computed to construct
the resulting RNA database.

We developed three distinct data decomposition approaches to
assign sequences to MPI processes: the pure block procedure, the
heap decomposition, and the dynamic distribution of sequences.
The pure block procedure assigns sequences to processes divid-
ing the input dataset into chunks with the same number of RNAs.
However, because input sequences are different in length and the
computational complexity of the encoding and energy procedures
are functions of the length of the sequences, this procedure fails to
balance the workload among the processes (i.e., one process may
receive 10 sequences that sum 100 units of work, while another one
may receive 10 sequences totalling only 20 units of work). To over-
come this scenario, we developed the heap decomposition, which
takes into account the fact that larger RNAs imply more computa-
tion to evenly distribute the sequences with the same length among
all the MPI processes. Hence, making it so that all processes will
ideally compute the same units of work. Figure 1 exemplifies this
scenario, showing how the heap distribution evenly balances the
workload when two processes (𝑃0 and 𝑃1) are used to compute a set
of sequences 𝐿 (each element represents the length of a sequence)
and we assume one unit of work 𝑡 per character in the sequences.
Furthermore, we developed one last scattering approach: the dy-
namic distribution of sequences. It assigns sequences to processes
at runtime to minimize the penalty in execution time that arises
when two sequences equal in length produce different amounts of
work.

Once sequences have been distributed among the MPI processes,
each one spawns OpenMP threads and runs the encoding and en-
ergy procedures in parallel. To optimize the execution time of the
threads, we developed the sorting heuristic. It sorts the sequences
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Figure 1: Comparison between the heap distribution of se-
quences (left) and the pure block decomposition

assigned to each process in descending order of their length (i.e.,
longer sequences first), so that some threads can process the RNAs
that are expected to account for most of workload first, while oth-
ers can process a large number of smaller RNAs. Figure 2 shows
how the sorting heuristic achieves better performance when two
threads (𝑇0 and 𝑇1) process a chunk of sequences 𝐿 (again, 𝐿 shows
the length of the sequences and we assume that work is propor-
tional to the length of the RNAs). In a real scenario, the heuristic
alone improved significantly the processing of the largest dataset
featured in Section 3 (Homo), increasing the speedup in about 100
points (from 61.19 to 167.48) using 256 cores.

After accessible energies are calculated and sequences are en-
coded, one process gathers all the encoded data, creates the suffix
array and computes the exhaustive search of short substrings. These
steps are strictly sequential, and because we want to avoid losing
performance waiting for this process to finish computing, we de-
veloped an efficient I/O procedure that overlaps computation with
disk operations. This procedure works as follows: (1) the process
that gathered all the encoded data builds the suffix array and com-
putes the search of short substrings, and then saves all these data to
disk; (2) meanwhile, the rest of the processes save their computed
energies and encoded sequences one by one into two output files
in a pipelined fashion; and (3) once the process responsible for
constructing the suffix array finishes its operations, it will save its
energies and encoded sequences right away, without stalling its
execution, because all other processes will have already finished
writing their data. Put in other words, we developed a zero-cost I/O
approach, where while one process computes a strictly sequential
procedure, all other processes save their results to disk, avoiding
stalling execution and therefore not hurting performance.
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Figure 2: Example to illustrate that the sorting heuristic (left)
achieves optimal runtimes

Table 1: Characteristics of the datasets used to evaluate the
performance of the parallel database construction algorithm

Dataset RNAs Input size Sequential time Output size
Ursus 3,899 2.0MiB 837s 17.0MiB
Droso 3,963 4.0MiB 2,497s 39.4MiB
Anas 15,061 18.0MiB 11,682s 195.0MiB
Homo 58,028 76.0MiB 58,562s 839.4MiB

3 RESULTS
To assess the performance of our parallel database construction
algorithm, an extensive benchmarking was performed using four
real and representative RNA datasets available to download at the
Ensembl genome browser [8]. This section presents a performance
comparison between the original RNA database construction pro-
cedure included in RIblast and our novel parallel algorithm using a
16-node multicore cluster with 256 CPU cores.

Each node in the cluster has two octa-core Intel Xeon E5-2660
Sandy Bridge-EP processors (a total of 16 cores per node with sup-
port for HyperThreading) and 64GiB of main memory (DDR3 @
1600MHz). The nodes are interconnected through a low-latency
(1-2𝜇s) and high-bandwidth (56Gbps) InfiniBand FDR network. Re-
garding the software stack, the GNU Compiler Collection (GCC)
v8.3.0 (OpenMP specification 4.5) and OpenMPI v3.1.4 (MPI-3 stan-
dard) were the tools used to compile and execute the benchmarks.

Table 1 outlines the characteristics of the RNA datasets: number
of RNA sequences, input file size, runtime of the sequential database
construction algorithm, and output database size. The datasets were
carefully selected from different species, and it is worth to remark
that:

Table 2: Runtimes of the novel parallel database construction
algorithmusing the 16 nodes of the cluster (256 cores) and the
best configuration of data distribution, number of threads,
and use of HyperThreading (HT)

Dataset Parallel time Speedup∗ Data distribution HT
Ursus 5.0s 167.4 (182.6) Heap (1p16t) No
Droso 30.4s 82.1 (86.1) Heap (1p16t) No
Anas 36.7s 318.3 (256.0) Dynamic (16p1t) Yes
Homo 317.5s 184.4 (197.5) Heap (1p16t) No
∗ Maximum theoretical speedup in parentheses

• Two input files with a similar number of sequences (Ursus
and Droso) produce different amounts of workload.

• All datasets, except for Anas, are limited in scalability be-
cause they contain a sequence so large in comparison to the
others that it dominates the parallel runtime and limits the
maximum speedup achievable.

These characteristics allowed us to evaluate comprehensively the
scalability of the novel parallel algorithm on scenarios that force it
to efficiently distribute the workload.

3.1 Methodology
Each dataset was run using 1, 2, 4, 8, and 16 nodes, accounting
for 16, 32, 64, 128, and 256 CPU cores, respectively. In addition,
the time spent computing every sequence of each dataset was also
measured, meaning that it was possible to compare the behavior
of our parallel algorithm to that of a theoretical best (i.e., using an
ideal data distribution scheme that works as a perfect scheduler).

Two different configurations of threads per process were also
tested for each node setup. These configurations are: 1p16t (i.e., 1
process per node spawning 16 threads each), and 16p1t. This al-
lowed us to conclude: (1) which arrangement of threads per process
better suits each data decomposition algorithm, and (2) whether
the sorting heuristic makes a difference at the time of computing
real datasets.

Finally, it was also tested if the use of HyperThreading yielded
any improvement in execution time for any of the configurations
described above. HyperThreading allows to schedule several threads
into one single CPU core to minimize stall cycles, and thus improve
utilization and performance. So, 240 experiments were conducted
in total and they were repeated three times to take the median value
as the final execution time.

3.2 Experimental results
The experimental results for 16 nodes are summarized in Table 2,
which points out the important improvements in execution time
when all the cores of the cluster are used to run our parallel database
construction algorithm. The times shown correspond to the ones
using the best configuration of data distribution scheme, number
of threads per process, and use of HyperThreading.

The main conclusions obtained from all the results are:
• The workload is not evenly balanced among the sequences
of the datasets (except for Anas), so the scalability of the
algorithm is bounded by the execution time of one single
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sequence (the longest one) for Ursus, Droso, and Homo.
Therefore, because there exists a hard limit to the maximum
speedup imposed by these datasets, the important bit is to
efficiently use the resources available to achieve the best pos-
sible speedup using the minimum hardware. In this sense,
the more sophisticated data decomposition approaches de-
veloped in this work (i.e., heap-based and dynamic) obtain
the best results and are always on par with the theoretical
best.

• The heap-based approach and the dynamic decomposition
optimally distribute the workload and obtain the best speed-
ups. Indeed, they achieved superlinear speedups for Anas due
to the use of the HyperThreading. In contrast, the workload
distribution performed by the pure block approach is not
efficient, and so it ended being up to two times slower than
the other approaches when processing the Ursus dataset
(note that it does not show up in Table 2).

• We assert the importance of the sorting heuristic at the time
of optimizing the performance of the three distributions.
This is specially true for the pure block distribution, where
the use of the heuristic significantly impacts the speedup.
For instance, processing the Homo dataset differs in about
100 points of speedup for 256 cores (600 seconds in execution
time) between using the heuristic or not.

• HyperThreading improves performance in all the scenar-
ios where the execution time is not bounded by one sole
sequence. In fact, in these scenarios, the executions with
HyperThreading enabled the heap and dynamic distribu-
tions to outperform the theoretical best speedup. However,
if scalability is bounded, HyperThreading may slightly hurt
performance.

Furthermore, this extensive benchmarking allowed us to con-
clude when and how to use each distribution scheme:

• The pure block distribution serves no purpose in comparison
to the heap and dynamic decompositions. Its usage should
be limited to benchmarking.

• The heap and dynamic distributions obtain similar results,
and their usage should depend on the hardware available to
execute the parallel database construction algorithm. So, use
the heap distribution if the number of cores per computing
node is high to fully exploit the sorting heuristic by spawning
one process per node and as many threads as possible. If
nodes have not that many cores, use the dynamic distribution
instead.

• The use of HyperThreading, in general, is always beneficial,
specially if the number of resources is low.

4 CONCLUSIONS
As recent studies have shown that lncRNAs play a key role in
severe diseases such as Parkinson’s or cancer, the computational
identification of lncRNA–RNA interacting pairs has become a hot
research topic. As a matter of fact, many applications have been
developed with this very purpose. However, some of the fastest and
more accurate tools in the market (i.e., pRIblast and RIblast) require
a slow database construction step before being able to predict any
interaction.

In order to solve this issue, this work presented a novel parallel
approach to build RNA databases for the subsequent prediction
of lncRNA–RNA interacting pairs. The new algorithm can exploit
supercomputing and multicore cluster architectures, and so if it is
used in conjunction with pRIblast, they comprise a comprehensive
parallel pipeline to predict lncRNA–RNA interacting pairs at unri-
valled speeds. Indeed, the results presented in this paper show that
it is now possible to build RNA databases up to 318 times faster
than with state-of-the-art tools.

All the code developed in this work has been merged into the
pRIblast tool and released under the MIT License at GitHub (https:
//github.com/UDC-GAC/pRIblast).
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