
Doctoral Thesis

Evaluation and Optimization of Big
Data Processing on High

Performance Computing Systems

Jorge Veiga Fachal

2018

Evaluation and Optimization of Big
Data Processing on High

Performance Computing Systems

Jorge Veiga Fachal
Doctoral Thesis

October 2018

PhD Advisors:

Roberto Rey Expósito
Juan Touriño Domínguez

PhD Program in Information Technology Research

Dr. Roberto Rey Expósito
Profesor Ayudante Doctor
Dpto. de Ingeniería de
Computadores
Universidade da Coruña

Dr. Juan Touriño Domínguez
Catedrático de Universidad

Dpto. de Ingeniería de
Computadores

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Evaluation and Optimization of Big Data Processing on
High Performance Computing Systems” ha sido realizada por D. Jorge Veiga Fachal
bajo nuestra dirección en el Departamento de Ingeniería de Computadores de la
Universidade da Coruña, y concluye la Tesis Doctoral que presenta para optar al
grado de Doctor en Ingeniería Informática con la Mención de Doctor Internacional.

En A Coruña, a 5 de Octubre de 2018

Fdo.: Roberto Rey Expósito
Director de la Tesis Doctoral

Fdo.: Juan Touriño Domínguez
Director de la Tesis Doctoral

Fdo.: Jorge Veiga Fachal
Autor de la Tesis Doctoral

A todos los que me habéis ayudado a realizar esta tesis,
y a los que no, pues mira, también

Acknowledgments

I want to thank my advisors Juan and Roberto for giving me the opportunity to
develop this Thesis and for their valuable guidance; I believe working with them has
been a truly enriching experience. I also thank all the members of the GAC that
contributed to this work in some way, especially Xoan for helping me to take my
first steps into the research world. Moreover, thanks to my lab colleagues for the
wonderful work environment and for all the coffee breaks and dinners that we shared.

I want to say thanks to my family; to my parents for encouraging me to aim high,
to my siblings Mar and Carlos for their support and to my beloved partner Ian for
his company through all these years. I am very grateful to all my friends that lent
me a hand when I needed it, especially Nuria, Manu and Laura for all the times
they made me forget the work for a while.

I would like to thank Dr. Bruno Raffin and his group for hosting me during my
three-month research visit to the Inria Grenoble Rhône-Alpes reseach center, and
for providing access to the Grid’5000 computing platform. I really appreciated the
comments on my work and the welcoming environment that I found there.

Finally, I want to acknowledge the following funders of this work: the Computer
Architecture Group, the Department of Computer Engineering, and the Univer-
sity of A Coruña for the human and material support; the NESUS network under
the COST Action IC1305; the Galician Government (refs. GRC2013/055, ED431C
2017/04, R2014/041, ED431D R2016/045 and predoctoral grant ED 481A-2015/189);
and the Spanish Government (refs. TIN2013-42148-P, TIN2016-75845-P, FPU grant
FPU14/02805 and mobility grant EST16/00076).

Jorge Veiga Fachal

vii

A person has the right,
and I think the responsibility,
to develop all of their talents.

Jessye Norman

Resumo

Hoxe en día, moitas organizacións empregan tecnoloxías Big Data para extraer
información de grandes volumes de datos. A medida que o tamaño destes volu-
mes crece, satisfacer as demandas de rendemento das aplicacións de procesamento
de datos masivos faise máis difícil. Esta Tese céntrase en avaliar e optimizar estas
aplicacións, presentando dúas novas ferramentas chamadas BDEv e Flame-MR. Por
unha banda, BDEv analiza o comportamento de frameworks de procesamento Big
Data como Hadoop, Spark e Flink, moi populares na actualidade. BDEv xestiona
a súa configuración e despregamento, xerando os conxuntos de datos de entrada
e executando cargas de traballo previamente elixidas polo usuario. Durante cada
execución, BDEv extrae diversas métricas de avaliación que inclúen rendemento,
uso de recursos, eficiencia enerxética e comportamento a nivel de microarquitectura.
Doutra banda, Flame-MR permite optimizar o rendemento de aplicacións Hadoop
MapReduce. En xeral, o seu deseño baséase nunha arquitectura dirixida por eventos
capaz de mellorar a eficiencia dos recursos do sistema mediante o solapamento da
computación coas comunicacións. Ademais de reducir o número de copias en memo-
ria que presenta Hadoop, emprega algoritmos eficientes para ordenar e mesturar os
datos. Flame-MR substitúe o motor de procesamento de datos MapReduce de xeito
totalmente transparente, polo que non é necesario modificar o código de aplicacións
xa existentes. A mellora de rendemento de Flame-MR foi avaliada de maneira ex-
haustiva en sistemas clúster e cloud, executando tanto benchmarks estándar coma
aplicacións pertencentes a casos de uso reais. Os resultados amosan unha redución
de entre un 40% e un 90% do tempo de execución das aplicacións. Esta Tese pro-
porciona aos usuarios e desenvolvedores de Big Data dúas potentes ferramentas
para analizar e comprender o comportamento de frameworks de procesamento de
datos e reducir o tempo de execución das aplicacións sen necesidade de contar con
coñecemento experto para elo.

xi

Resumen

Hoy en día, muchas organizaciones utilizan tecnologías Big Data para extraer
información de grandes volúmenes de datos. A medida que el tamaño de estos vo-
lúmenes crece, satisfacer las demandas de rendimiento de las aplicaciones de proce-
samiento de datos masivos se vuelve más difícil. Esta Tesis se centra en evaluar y
optimizar estas aplicaciones, presentando dos nuevas herramientas llamadas BDEv
y Flame-MR. Por un lado, BDEv analiza el comportamiento de frameworks de pro-
cesamiento Big Data como Hadoop, Spark y Flink, muy populares en la actualidad.
BDEv gestiona su configuración y despliegue, generando los conjuntos de datos de
entrada y ejecutando cargas de trabajo previamente elegidas por el usuario. Durante
cada ejecución, BDEv extrae diversas métricas de evaluación que incluyen rendimien-
to, uso de recursos, eficiencia energética y comportamiento a nivel de microarqui-
tectura. Por otro lado, Flame-MR permite optimizar el rendimiento de aplicaciones
Hadoop MapReduce. En general, su diseño se basa en una arquitectura dirigida por
eventos capaz de mejorar la eficiencia de los recursos del sistema mediante el sola-
pamiento de la computación con las comunicaciones. Además de reducir el número
de copias en memoria que presenta Hadoop, utiliza algoritmos eficientes para orde-
nar y mezclar los datos. Flame-MR reemplaza el motor de procesamiento de datos
MapReduce de manera totalmente transparente, por lo que no se necesita modificar
el código de aplicaciones ya existentes. La mejora de rendimiento de Flame-MR ha
sido evaluada de manera exhaustiva en sistemas clúster y cloud, ejecutando tanto
benchmarks estándar como aplicaciones pertenecientes a casos de uso reales. Los
resultados muestran una reducción de entre un 40% y un 90% del tiempo de ejecu-
ción de las aplicaciones. Esta Tesis proporciona a los usuarios y desarrolladores de
Big Data dos potentes herramientas para analizar y comprender el comportamiento
de frameworks de procesamiento de datos y reducir el tiempo de ejecución de las
aplicaciones sin necesidad de contar con conocimiento experto para ello.

xiii

Abstract

Nowadays, Big Data technologies are used by many organizations to extract
valuable information from large-scale datasets. As the size of these datasets in-
creases, meeting the huge performance requirements of data processing applications
becomes more challenging. This Thesis focuses on evaluating and optimizing these
applications by proposing two new tools, namely BDEv and Flame-MR. On the one
hand, BDEv allows to thoroughly assess the behavior of widespread Big Data pro-
cessing frameworks such as Hadoop, Spark and Flink. It manages the configuration
and deployment of the frameworks, generating the input datasets and launching the
workloads specified by the user. During each workload, it automatically extracts
several evaluation metrics that include performance, resource utilization, energy ef-
ficiency and microarchitectural behavior. On the other hand, Flame-MR optimizes
the performance of existing Hadoop MapReduce applications. Its overall design is
based on an event-driven architecture that improves the efficiency of the system
resources by pipelining data movements and computation. Moreover, it avoids re-
dundant memory copies present in Hadoop, while also using efficient sort and merge
algorithms for data processing. Flame-MR replaces the underlying MapReduce data
processing engine in a transparent way and thus the source code of existing applica-
tions does not require to be modified. The performance benefits provided by Flame-
MR have been thoroughly evaluated on cluster and cloud systems by using both
standard benchmarks and real-world applications, showing reductions in execution
time that range from 40% to 90%. This Thesis provides Big Data users with power-
ful tools to analyze and understand the behavior of data processing frameworks and
reduce the execution time of the applications without requiring expert knowledge.

xv

Preface

The use of Big Data technologies for large-scale data processing is widely sprea-
ding, transforming the way we extract valuable information from large amounts of
data. As the size of the input datasets increases, their analysis becomes a challenging
task for current computing systems. This situation puts a lot of strain onto the
performance and scalability of current data processing frameworks, which in turn
demands for new ways of evaluating and optimizing them. The present Thesis,
“Evaluation and Optimization of Big Data Processing on High Performance Com-
puting Systems”, addresses these issues by designing and implementing new tools
that can help developers and users to identify and alleviate existing performance
bottlenecks.

Objectives and Work Methodology

The main objectives of this Thesis are listed below, including some key sub-goals
that must be met.

1. Development of an automatic tool to evaluate Big Data frameworks.

• Automatic configuration and deployment of frameworks.

• Support for several benchmarks with different characterizations.

• Multi-metric evaluation.

• Easy collection of results (e.g. automatic graph generation).

xvii

xviii Preface

2. Design and implementation of a new MapReduce framework for in-memory
data processing.

• Transparent replacement of Hadoop’s architecture.

• Leveraging of system resources (e.g. CPU, memory).

• Efficient data pipelining.

• Application compatibility.

3. Thorough performance evaluation of the new framework.

• Evaluation in cloud and High Performance Computing (HPC) systems.

• Execution of standard benchmarks and real-world applications.

• In-depth analysis and characterization of the workloads.

These objectives have been addressed by using a classic work methodology in
research and engineering: analysis, design, implementation and evaluation. This
methodology has been applied to the first and second objectives, which correspond
with the development cycles of the Thesis. To address the first objective, the cur-
rent state of the art regarding the assessment of data processing frameworks was
reviewed, identifying the most common issues encountered when conducting expe-
rimental evaluations in Big Data systems. The results from this analysis were used
as a basis for the design of the MapReduce Evaluator (MREv) tool, which later
evolved into a more comprehensive tool: Big Data Evaluator (BDEv). Once the im-
plementation of BDEv was complete, it was appropriately tested by using multiple
frameworks, workloads and systems.

In order to achieve the second objective, a new framework named Flame-MR was
developed. Its performance targets were first identified by analyzing the behavior
of Hadoop, using the results obtained by BDEv during the first part of the The-
sis. Next, Flame-MR was designed in a modular way, implementing and testing the
software components using an iterative approach. When the initial functional ver-
sion of the framework was complete, several memory management techniques were
developed for further performance. The final version of Flame-MR was evaluated in
HPC and cloud systems to achieve the third objective of the Thesis, executing both
standard benchmarks and real-world applications.

Preface xix

Funding and Technical Means

The means that were used to carry out this Thesis have been the following:

• Working material, human and financial support primarily by the Computer
Architecture Group of the University of A Coruña, along with Research Fel-
lowships funded by the Ministry of Education, Culture and Sport of Spain
(FPU program, ref. FPU14/02805) and by the Galician Government (Xunta
de Galicia, ref. ED 481A-2015/189).

• Access to bibliographical material through the library of the University of A
Coruña.

• Additional funding through the following research projects:

◦ European funding: “Network For Sustainable Ultrascale Computing” (NE-
SUS COST Action ref. IC1305).

◦ State funding by the Ministry of Economy and Competitiveness of Spain
through the project “New Challenges in High Performance Computing:
from Architectures to Applications” (refs. TIN2013-42148-P and TIN2016-
75845-P).

◦ Regional funding by the Galician Government (Xunta de Galicia) under
the Consolidation Program of Competitive Research Groups (Computer
Architecture Group, refs. GRC2013/055 and ED431C 2017/04) and Net-
work of Cloud and Big Data Technologies for HPC (refs. R2014/041 and
ED431D R2016/045).

◦ Private funding: project “Spark-based Duplicate Reads Removal Tool for
Sequencing Studies” funded by the “Microsoft Azure for Research” pro-
gram (ref. MS-AZR-0036P), and project “High-Performance Computing
and Communications in AWS” funded by a research grant of Amazon
Web Services (AWS) LLC.

• Access to clusters, supercomputers and cloud computing platforms:

◦ Pluton cluster (Computer Architecture Group, University of A Coruña,
Spain). 16 nodes with 2 octa-core Intel Xeon Sandy Bridge-EP proces-

xx Preface

sors, 64 GB of memory and 1 HDD disk of 1 TB, interconnected via
Gigabit Ethernet and InfiniBand FDR.

◦ Grid’5000 infrastructure (Inria, CNRS, RENATER and several French
Universities). For the experiments of the Thesis, 33 nodes have been
used, each of them with 2 Intel Xeon octa-core Haswell-EP processors,
128 GB of memory and 2 HDD disks of 558 GB, inteconnected via 4 ×10
Gbps Ethernet.

◦ Amazon EC2 IaaS cloud platform (Amazon Web Services, AWS). Two
instance types have been used: (1) c3.4xlarge, 2 Intel Xeon octa-core
Ivy Bridge-EP processors, 30 GB of memory and 2 local SSD disks of
160 GB; and (2) i2.4xlarge, 2 Intel Xeon octa-core Ivy Bridge-EP proces-
sors, 122 GB of memory and 4 local SSD disks of 800 GB. These instances
are interconnected via Gigabit Ethernet.

◦ Microsoft Azure IaaS cloud platform (Microsoft Corporation). L16S ins-
tances were utilized, which have 1 Intel Xeon hexa-core Haswell-EP pro-
cessor, 128 GB of memory and 2.7 TB of SSD local storage, intercon-
nected via 4 ×10 Gbps Ethernet.

• A three-month research visit to the Université Grenoble Alpes, France, which
has allowed the access to the Grid’5000 infrastructure for evaluating the per-
formance benefits of Flame-MR when executing MapReduce queries belonging
to the VELaSSCo project. This research visit was funded by the Ministry of
Education, Culture and Sport of Spain through a competitive grant within the
FPU program (ref. EST16/00076).

Structure of the Thesis

The Thesis is organized as follows:

• Chapter 1 first introduces the main issues that users and developers find when
deploying and using popular Big Data processing frameworks. These issues
have motivated the research work that is described in the remainder of the
Thesis.

Preface xxi

• Chapter 2 presents the state of the art regarding the evaluation of Big Data
processing frameworks, including an overview of the most relevant frameworks,
benchmark suites and performance studies. Next, the BDEv tool is presented
by describing its objectives, characteristics and overall design. A practical use
case shows different experimental analysis that BDEv allows to conduct.

• Chapter 3 addresses the transparent acceleration of Hadoop MapReduce ap-
plications by presenting the design of the Flame-MR framework, detailing the
core characteristics of its architecture along with the approaches followed to
avoid some performance issues present in Hadoop. After that, this chapter
explains several optimizations implemented to improve memory efficiency and
reduce disk overheads, analyzing their benefits in terms of performance and
resource utilization.

• Chapter 4 conducts a thorough evaluation of Flame-MR by executing several
types of workloads including standard benchmarks and real-world MapReduce
applications. Several scenarios are considered, using different HPC and cloud
systems with distinct hardware and software characteristics, which guarantees
the portability of the optimizations proposed in Chapter 3.

• Chapter 5 extracts some final conclusions from the Thesis and discusses future
research lines regarding the development of new models and tools for Big Data
frameworks.

Main Contributions

The main original contributions derived from the Thesis are the following:

• Development of BDEv to characterize the performance and automatize the
evaluation of Big Data frameworks [122, 125].

• Experimental analysis of the behavior of popular Big Data processing frame-
works [123, 126, 129].

• Development of Flame-MR to optimize Hadoop workloads in a transparent
way, leveraging computational resources of HPC and cloud systems [127, 128].

xxii Preface

• Thorough performance evaluation of Flame-MR using standard benchmarks
and real-world Hadoop applications [35, 124].

Developed software

The software tools developed in this Thesis are publicly available:

• BDEv: automatic evaluation tool for Big Data processing frameworks. Avai-
lable at http://bdev.des.udc.es/.

• Flame-MR: in-memory MapReduce framework for transparent optimization of
Hadoop applications. Available at http://flamemr.des.udc.es/.

• MarDRe: MapReduce tool to remove duplicate and near-duplicate DNA reads
in large genomic datasets. Available at http://mardre.des.udc.es/.

Registered software

Three software products have been registered in the IP registry as outcomes of
this Thesis:

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Flame-MR: MapRe-
duce framework for in-memory computing, 2018. Record entry number: pen-
ding. Owning entity: Universidade da Coruña. Priority country: Spain.

• R. R. Expósito, J. Veiga, J. González-Domínguez, and J. Touriño. MapReduce
Duplicate Removal tool: MarDRe, November 2017. Record entry number:
03/2018/174. Owning entity: Universidade da Coruña. Priority country:
Spain.

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. MapReduce Evalua-
tor: MREv, June 2016. Record entry number: 03/2016/1054. Owning entity:
Universidade da Coruña. Priority country: Spain. In exploitation by Torus
Software Solutions S.L. through contract INV13317 since 18/12/2017.

http://bdev.des.udc.es/
http://flamemr.des.udc.es/
http://mardre.des.udc.es/

Preface xxiii

Publications from the Thesis

Journal publications

• J. Veiga, R. R. Expósito, B. Raffin, and J. Touriño. Optimization of real-
world MapReduce applications with Flame-MR: practical use cases. 2018.
(Submitted for journal publication).

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Enhancing in-
memory efficiency for MapReduce-based data processing. Journal of Parallel
and Distributed Computing, 120:323–338, 2018. JCR Q2.

• J. Veiga, J. Enes, R. R. Expósito, and J. Touriño. BDEv 3.0: energy efficiency
and microarchitectural characterization of Big Data processing frameworks.
Future Generation Computer Systems, 86:565–581, 2018. JCR Q1 (first decile).

• R. R. Expósito, J. Veiga, J. González-Domínguez, and J. Touriño. MarDRe: ef-
ficient MapReduce-based removal of duplicate DNA reads in the cloud. Bioin-
formatics, 33(17):2762–2764, 2017. JCR Q1 (first decile).

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Flame-MR: an event-
driven architecture for MapReduce applications. Future Generation Computer
Systems, 65:46–56, 2016. JCR Q1 (first decile).

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Analysis and eva-
luation of MapReduce solutions on an HPC cluster. Computers & Electrical
Engineering, 50:200–216, 2016. JCR Q3.

International conferences

• J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touriño. Per-
formance evaluation of Big Data frameworks for large-scale data analytics.
In 2016 IEEE International Conference on Big Data (IEEE BigData 2016),
pages 424–431. Washington, DC, USA, 2016.

xxiv Preface

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. MREv: an automatic
MapReduce Evaluation tool for Big Data workloads. In International Confe-
rence on Computational Science (ICCS’15), pages 80–89. Reykjavík, Iceland,
2015.

• J. Veiga, G. L. Taboada, X. C. Pardo, and J. Touriño. The HPS3 service:
reduction of cost and transfer time for storing data on clouds. In 16th IEEE
International Conference on High Performance Computing and Communica-
tions (HPCC’14), pages 213–220. Paris, France, 2014.

Book chapters

• J. Veiga, R. R. Expósito, and J. Touriño. Performance evaluation of Big
Data analysis. In S. Sakr and A. Zomaya, editors, Encyclopedia of Big Data
Technologies, pages 1–6. Springer International Publishing, Cham, 2018.

Other minor publications

• J. Veiga, R. R. Expósito, and J. Touriño. Flame-MR: transparent perfor-
mance improvement of Big Data applications. In Journée des doctorants de
l’Ecole Doctorale Mathématiques, Sciences et Technologies de l’Information,
Informatique (EDMSTII). Grenoble, France, 2017.

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Performance im-
provement of MapReduce applications using Flame-MR. In 2nd NESUS Win-
ter School & PhD Symposium 2017. Vibo Valentia, Italy, 2017.

Contents

1. Introduction 1

2. BDEv: automating the evaluation of Big Data frameworks 5

2.1. State of the art in evaluating data processing frameworks 6

2.1.1. Big Data processing frameworks 6

2.1.2. Benchmarking tools . 9

2.1.3. Performance studies of Big Data processing frameworks 12

2.1.4. Energy efficiency . 13

2.1.5. Microarchitectural characterization 16

2.1.6. Summary . 17

2.2. BDEv: goals and design . 17

2.2.1. Motivation . 17

2.2.2. BDEv characteristics . 19

2.2.3. BDEv design . 21

2.2.4. Evaluation metrics . 28

2.2.5. Operation . 31

2.2.6. Targeted use cases . 33

xxv

xxvi Contents

2.3. BDEv outcomes . 34

2.3.1. Experimental testbed . 35

2.3.2. Performance and energy efficiency 38

2.3.3. Power consumption and resource utilization 39

2.3.4. Microarchitecture-level metrics 43

2.4. Conclusions . 46

3. Flame-MR: efficient event-driven MapReduce data processing 49

3.1. Background . 50

3.2. Related work . 52

3.3. Flame-MR design . 55

3.3.1. Flame-MR architecture . 55

3.3.2. MapReduce operations . 60

3.4. Memory management optimizations 67

3.4.1. Garbage collection reduction 69

3.4.2. Buffer type analysis . 76

3.4.3. Iterative support . 80

3.5. Conclusions . 86

4. Experimental analysis of Flame-MR in cluster and cloud platforms 89

4.1. Related work . 90

4.2. Performance comparison with Hadoop and Spark in the cloud 91

4.2.1. Comparison with Hadoop . 93

4.2.2. Comparison with Spark . 97

4.3. Applicability study: optimization of real-world use cases 101

Contents xxvii

4.3.1. VELaSSCo: data visualization queries 101

4.3.2. CloudRS: error removal in genomic data 108

4.3.3. MarDRe: duplicate read removal in genome sequencing data . 116

4.4. Conclusions . 122

5. Conclusions and future work 123

References 127

A. Resumen extendido en castellano 145

List of Tables

2.1. Comparison of batch, stream and hybrid frameworks 10

2.2. Summary of works evaluating Big Data frameworks 18

2.3. Frameworks supported in BDEv . 23

2.4. Benchmarks supported in BDEv . 25

2.5. Node characteristics of Grid’5000 . 36

2.6. Configuration of the frameworks in Grid’5000 37

2.7. Benchmark characteristics . 37

3.1. Node characteristics of Pluton . 68

3.2. Configuration of Flame-MR in Pluton 68

3.3. Sort results for Flame-MR and Flame-MR-GCop ET: Execution Time;
GCT: Garbage Collection Time . 74

3.4. Sort results for different buffer types in Flame-MR-GCop ET: Exe-
cution Time; GCT: Garbage Collection Time 77

3.5. Execution times for PageRank . 84

4.1. Node characteristics of Amazon EC2 instances 92

4.2. Configuration of Hadoop and HDFS in Amazon EC2 94

4.3. Configuration of Flame-MR and Spark in Amazon EC2 94

xxix

xxx List of Tables

4.4. Node characteristics of Grid’5000 . 107

4.5. Configuration of the frameworks in Grid’5000 107

4.6. Node characteristics of Pluton . 113

4.7. Node characteristics of L16S instances in Azure 113

4.8. Configuration of the frameworks in Pluton 114

4.9. Configuration of the frameworks in Azure 114

4.10. Load balancing in MarDRe . 121

List of Figures

2.1. BDEv design overview . 22

2.2. Overview of the Intel RAPL architecture for a dual-socket system . . 29

2.3. BDEv control flow . 32

2.4. Execution time, energy consumption and ED2P ratio results (lower
is better) . 38

2.5. Average power consumption and resource utilization per node for
TeraSort . 41

2.6. Average power consumption and resource utilization per node for K-
Means . 42

2.7. Average power consumption and resource utilization per node for
PageRank . 43

2.8. Microarchitecture-level metrics results 45

3.1. Hadoop data flow with multiple map and reduce tasks 51

3.2. High-level architectural overview of Flame-MRO: Operations B: Buffers
C: Chunks . 56

3.3. Code examples for WordCount map and reduce functions in Flame-
MR and Hadoop . 61

3.4. Overview of the MapReduce workflow in Flame-MR O: Operations
B: Buffers C: Chunks . 62

xxxi

xxxii List of Figures

3.5. k-way merge (k=4) C: Chunks K: Keys V: Values p: pointers 65

3.6. DataPool overview in Flame-MR-GCop 70

3.7. Map output example . 72

3.8. GCT and memory usage over time for Flame-MR and Flame-MR-
GCop . 75

3.9. GCT and memory usage over time for the different DataBuffer im-
plementations in Flame-MR-GCop 79

3.10. Short-lived vs long-lived Workers . 81

3.11. Data cache example . 82

3.12. Resource utilization statistics of Flame-MR, Flame-MR-It-NoCache
and Flame-MR-It-Cache . 85

4.1. Execution times of Hadoop, Flame-MR and Flame-MR-It in Ama-
zon EC2 . 95

4.2. Disk utilization of Hadoop and Flame-MR-It for Sort 96

4.3. Memory utilization of Hadoop and Flame-MR-It for Sort 97

4.4. Execution times of Hadoop, Spark and Flame-MR-It in Amazon EC2 98

4.5. CPU utilization and network traffic for PageRank in i2.4xlarge 99

4.6. CPU utilization and network traffic for Connected Components in
i2.4xlarge . 100

4.7. Data object serialization in Flame-MR 105

4.8. Execution times of VELaSSCo queries with Hadoop and Flame-MR . 108

4.9. Execution times of CloudRS with Hadoop and Flame-MR 115

4.10. Load balancing mode in Flame-MR version 1.1 119

4.11. Execution times of MarDRe with Hadoop, Flame-MR and Flame-
MR-LB . 120

Chapter 1

Introduction

The data we generate and collect increases day by day in an exponential fashion.
In fact, the International Data Corporation (IDC) forecasts that we will globally
generate 163 ZB of data by 2025, ten times the 16.1 ZB generated in 2016 [101].
The term Big Data refers to the use of these huge volumes of data to obtain valuable
information, providing solutions to analytical problems in multiple fields such as
smart cities [66], social sciences [52], medicine [146], industry [138] and many more.
The main challenges that Big Data technologies have to face are defined by Gartner,
Inc. as volume, variety and velocity [44]. These three challenges are constantly
becoming more difficult to manage, since they put a lot of strain into the performance
of data processing systems.

The widespread adoption of Big Data technologies has been encouraged by a
change in the way data processing pipelines are defined. The publication of the
MapReduce programming model by Google [29] established the basis of a new com-
puting paradigm that focuses on moving the computation to where data is stored
rather than moving the data to the computation. As MapReduce processes large
datasets distributed among the nodes of a cluster, computational tasks can be col-
located within the nodes that contain the input data to be processed. Doing so,
it avoids unnecessary and costly data movements through the network. Moreover,
MapReduce programmers only need to define the transformation operations that
process the data. Low-level implementation details, such as network communica-
tions and task parallelism, are hidden to them. Therefore, Big Data developers

1

2 Chapter 1. Introduction

can focus on algorithm design, without requiring the programming effort and the
training needed by traditional parallel computing paradigms such as the Message
Passing Inteface (MPI) [53].

MapReduce is implemented by common Big Data processing frameworks, mainly
Apache Hadoop [8]. Other frameworks like Apache Spark [145] or Apache Flink [7]
also utilize some of its semantics, although they allow to perform a broader set
of data transformations for improved performance and programming productivity.
These frameworks process large datasets by executing workloads in cluster and cloud
platforms that can have up to thousands of nodes [67]. As the size of the datasets
grows, the computing capability required to obtain the demanded information in-
creases, reaching levels that are difficult to handle by traditional systems. This
situation requires Big Data developers and users to make a considerable effort to
identify and optimize the performance bottlenecks that may be present in current
technologies and systems, in order to keep workload execution times within accept-
able limits without damaging the quality of the results.

Determining the major factors that limit the performance of Big Data frame-
works is far from straightforward, as they are affected by a wide variety of aspects
such as their overall design and implementation, their task scheduling mechanism,
the workload distribution or the underlying system architecture. This has caused a
spur of research activity in assessing the performance and resource utilization of Big
Data frameworks. However, the large number of affecting factors makes it difficult
to extrapolate the results of these studies to a certain use case prior to obtaining
empirical information. Therefore, the identification of the potential performance
bottlenecks of a workload requires to perform a thorough experimental analysis. As
Big Data users come from many different fields without needing to be aware of the
low-level behavior of the frameworks, they might not have the skills and/or the time
required to perform these tasks in a fast, effective and accurate way.

Another issue is that Big Data applications are often limited by the performance
that the frameworks are able to provide. Clear examples of that can be found in the
large amount of Hadoop applications that have been developed since its release in
2007, some of them being the result of months or years of development. Although
Hadoop has continued to evolve and improve during this time, some initial design
decisions keep hindering its overall performance. In order to alleviate this issue, more

3

up-to-date frameworks like Spark or Flink have appeared to improve the performance
of Hadoop and provide newer and extended APIs. Most workloads that have been
ported to these APIs show great performance improvements.

However, a sheer number of applications still use Hadoop for data processing,
which reduces the performance that they are able to achieve. Adapting them to
Spark or Flink is not always assumable because of the significant programming and
testing effort that is required. Moreover, the actual performance benefit that may
be obtained is unknown beforehand, as it depends on the characteristics of the
workload. This can sometimes cause the performance to be very similar or even
worse when executed with Spark or Flink, which would mean a huge waste of time
and human resources that could be better employed in other tasks. In some cases,
the source code may not even be available, making its modification unfeasible.

The aim of this Thesis is to alleviate the main difficulties of evaluating and
optimizing Big Data workloads, providing new tools that can help users to obtain
valuable information about the behavior of the frameworks and optimize existing
MapReduce workloads without compromising application compatibility. On the one
hand, the performance evaluation of the frameworks is addressed by developing a
new evaluation tool, Big Data Evaluator (BDEv), which allows to conduct automatic
assessments of the most popular frameworks for Big Data processing. This includes
the configuration and cluster deployment of such frameworks, the generation of the
input datasets, the execution of the workloads and the extraction of several insight-
ful metrics. These metrics are not limited to performance, as they also take into
account scalability, resource utilization, energy efficiency and microarchitectural be-
havior. On the other hand, we also provide transparent performance optimization of
existing MapReduce workloads by developing Flame-MR, an in-memory computing
framework that redesigns the data processing pipeline of Hadoop. It implements an
event-driven architecture that leverages computational resources efficiently, improv-
ing the performance of Hadoop applications without changing their source code.
The evaluation of Flame-MR performed in public cloud platforms and High Perfor-
mance Computing (HPC) clusters shows great performance improvements at zero
effort and cost for both standard benchmarks and real-world applications.

Chapter 2

BDEv: automating the evaluation of
Big Data frameworks

The evaluation of Big Data frameworks is a crucial task to determine their be-
havior in a certain system, identifying potential performance bottlenecks that may
delay the processing of large datasets. While most of the existing works generally
focus only on execution time and resource utilization, analyzing other important
metrics is key to fully understand the behavior of these frameworks. For example,
microarchitecture-level events can bring meaningful insights to characterize the in-
teraction between frameworks and hardware. Moreover, energy consumption is also
gaining increasing attention as systems scale to thousands of cores. This chapter dis-
cusses the current state of the art in evaluating distributed processing frameworks,
while presenting our Big Data Evaluator (BDEv) tool to extract performance, re-
source utilization, energy efficiency and microarchitecture-level metrics from the
execution of representative Big Data workloads. The provided evaluation use cases
of BDEv demonstrate its usefulness to bring meaningful information from popular
frameworks such as Hadoop, Spark and Flink.

Section 2.1 provides an overview of the state of the art regarding the evaluation
of Big Data frameworks, including a classification of methods and tools. Section 2.2
describes the overall design and main targeted use cases of BDEv, along with a des-
cription of its behavior. Section 2.3 presents a practical use case of the utilization
of BDEv to evaluate Hadoop, Spark and Flink in terms of several evaluation met-

5

6 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

rics, analyzing the obtained results. Finally, Section 2.4 extracts some conclusions
about the great versatility that BDEv provides, which eases the optimization and
evaluation tasks of developers and users.

2.1. State of the art in evaluating data processing
frameworks

This section aims to provide an overview of Big Data processing systems and how
they are currently being evaluated. Once the most popular distributed processing
frameworks (Section 2.1.1) and benchmark suites (Section 2.1.2) are introduced,
several previous works that analyze the performance characteristics of Big Data
workloads are presented (Section 2.1.3), including interesting metrics such as their
energy efficiency (Section 2.1.4) and microarchitectural performance (Section 2.1.5).

2.1.1. Big Data processing frameworks

Hadoop [8], along with its implementation of the MapReduce model [29], has long
been one of the most popular frameworks for large-scale batch processing. Nowadays,
recent requirements from the users have made necessary the development of new
paradigms, technologies and tools. A clear example of this issue is the appearance
of use cases that require iterative and/or stream processing, implying the use of more
advanced frameworks. This is mandatory in order to build pipelines that handle and
process data arriving in a real-time manner from different sources, which cannot be
done with traditional batch processing frameworks such as Hadoop. In general,
current Big Data processing systems can be classified in three groups: (1) batch-
only, (2) stream-only and (3) hybrid, according to their underlying data processing
engine, framework topology and targeted use case.

Batch-only frameworks were the first to appear in order to handle big datasets
in a scalable and easy-to-program way. According to the MapReduce paradigm
as originally conceived by Google [29], input data is split and processed in chunks
following no particular order and generally with no time constraints. This model
computes the output data by using two phases: Map and Reduce. The Map phase

2.1 State of the art in evaluating data processing frameworks 7

extracts the relevant attributes for the computation and the Reduce phase operates
them to get the final result. Currently, the most popular batch processing frame-
work is Hadoop MapReduce, together with the Hadoop Distributed File System
(HDFS) [108] to manage distributed data storage and Yet Another Resource Nego-
tiator (YARN) [121] for resource management. In addition to running MapReduce
jobs, the vast Hadoop ecosystem has become the most commonly used platform to
solve Big Data problems, including multiple open-source projects such as the ma-
chine learning library Mahout [10], the graph processing engine Giraph [12], the
HDFS-based database HBase [9] and many more.

It is worth mentioning several modifications of Hadoop that adapt it to specific
interconnection networks such as RDMA-Hadoop [132], or that seek overall perfor-
mance improvements like NativeTask [141]. RDMA-Hadoop adapts several Hadoop
subsystems (e.g. HDFS) to use Remote Direct Memory Access (RDMA) networks
like InfiniBand [61], in order to achieve better communication efficiency (e.g. HDFS
replication, MapReduce data shuffling). In the case of NativeTask, it presents a
novel C++ implementation of the MapReduce model that includes efficient memory
allocation and sorting mechanisms.

The second group of Big Data frameworks, stream-only, were developed when
the need to process large-sized data streams arose. This is a scenario where batch
processing is not applicable due to time constraints, the possibility of having an
unending stream and the lack of real-time support. Examples of stream proces-
sing frameworks are Storm [62], Heron [73] and Samza [93]. These frameworks
follow a different approach than MapReduce, creating a graph-based architecture
using pipelines and Direct Acyclic Graphs (DAGs). Data management in stream-
ing frameworks is also different from the batch-only approach, which mainly relies
on HDFS. The streaming paradigm introduces the idea of sources and sinks. A
source is defined as the origin of the data into the streaming architecture, while the
sink is the end where output data is persisted. Although HDFS can still be used,
higher-level storage solutions are preferred. Examples of such solutions are queue
systems like Kafka [72] or databases like Cassandra [6], which adapt better to the
flowing nature of data streams. Moreover, in order to deploy a stream processing
architecture, another component is needed to properly manage the data throughout
the data flow. To play such a role, a message-oriented middleware is required, such

8 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

as the aforementioned Kafka, RabbitMQ [102] or ZeroMQ [59]. Streaming frame-
works may also use other resource management tools apart from YARN, especially
in cases where the deployed streaming pipelines and architectures need to be run-
ning continuously (i.e. if any part of the framework fails, it has to be relaunched in
an automatic way). Examples of such tools are Mesos [58] and Aurora [5], used by
Heron, while Samza relies solely on YARN. Regarding Storm, it can be integrated
with YARN, Mesos and Docker [87], or run stand-alone.

Finally, hybrid solutions such as Spark [145], Flink [7] or Apex [4] try to offer a
unified solution for data processing by covering both the batch and stream proces-
sing scenarios. These solutions inherit the functionalities offered by batch processing
models like MapReduce, as well as the new features of streaming frameworks. To
provide a more efficient data processing but remaining usable for stream proces-
sing, these solutions follow the DAG design philosophy, while also implementing
new architectures with further optimizations. Spark provides a batch processing en-
gine based on a novel data structure, Resilient Distributed Datasets (RDDs) [144],
which are in-memory data collections partitioned over the nodes of a cluster. As
RDDs keep data in memory, Spark can avoid disk traffic and alleviate some of the
issues that hinder the performance of Hadoop, especially for iterative workloads.
Spark also provides stream processing capabilities through Spark Streaming [112],
which implements a micro-batch processing model by buffering the stream in sub-
second increments which are sent as small fixed datasets for batch processing. More-
over, Spark includes other built-in libraries like MLlib [111] for machine learning
and GraphX [110] for graph algorithms. Regarding Flink, it relies on the custom-
developed Stratosphere platform [2] to specifically target stream processing. Flink
defines streams and transformations as the data sources and operations, respectively.
Unlike Spark, Flink provides a stream engine that allows handling incoming data on
an item-by-item basis as a true stream. It also supports batch processing by simply
considering batches to be data streams with finite boundaries. Like Spark, Flink also
includes built-in libraries that support machine learning algorithms (FlinkML [43])
and graph processing (Gelly [42]). Apex has been recently released as a new pro-
posal that aims to offer a mature platform that unifies batch and stream workloads.
It provides developers with several libraries and tools in order to lower the barrier
to entry and support a broad spectrum of data sources and sinks.

2.1 State of the art in evaluating data processing frameworks 9

As a summary, Table 2.1 shows the main characteristics of the most relevant
frameworks discussed in this section.

2.1.2. Benchmarking tools

This section offers an overview of existing benchmarking tools for evaluating
data processing frameworks. The most long-lived projects were originally designed
for analyzing the performance of batch-only workloads on Hadoop. That is the case
of HiBench [60], a popular benchmark suite that supports 19 workloads in its cur-
rent version (7.0), including micro-benchmarks, machine learning algorithms, SQL
queries, web search engines, graph benchmarks and streaming workloads. Apart
from Hadoop, it also supports hybrid and stream-only frameworks like Spark, Flink
and Storm and message queuing systems like Kafka. However, not all the workloads
are available for all the frameworks. HiBench generates the input datasets needed
for the workloads and reports the execution time, throughput and system resource
utilization as main metrics. Another well-known project, BigDataBench [130], im-
proves the quality of the input data by providing means to generate them from 13
real-world datasets. Furthermore, it supports 47 workloads classified in 7 different
types: artificial intelligence, online service, offline analytics, graph analytics, data
warehouse, NoSQL and streaming. From version 2.0 on, BigDataBench also includes
DCBench [64] and CloudRank-D [80], other benchmark suites which were previously
independent. MRBS [105] is a suite oriented to multi-criteria analysis as it takes
into account different metrics like latency, throughput and cost. MRBS includes
32 MapReduce workloads from 5 application domains: recommendation systems,
business intelligence, bioinformatics, text processing and data mining. Moreover,
MRBS can automatically set up the Hadoop cluster on which the benchmark will
run using a public cloud provider configured by the user. Once the cluster is running,
MRBS injects the dataset and runs the workload, releasing the resources when the
experiment concludes. Apart from evaluating the execution time of the workloads,
users can also assess the multi-tenancy of a Hadoop cluster by using GridMix [51].
This benchmark launches several synthetic jobs which emulate different users and
queues, being able to evaluate Hadoop features like the distributed cache load, data
compression/decompression and jobs with high memory requirements or resource
utilization (e.g. CPU, disk).

10
C
hapter

2.
B
D
E
v:

autom
ating

the
evaluation

ofB
ig

D
ata

fram
ew

orks

Table 2.1: Comparison of batch, stream and hybrid frameworks

Paradigm Resource manager Data management Real-time Use case

Hadoop batch-only YARN distrib. filesystems (e.g. HDFS),
object storage (e.g. S3)

no batch processing of non
time-sensitive workloads

RDMA-
Hadoop

batch-only YARN distrib. filesystems (e.g. HDFS),
parallel filesystems (e.g. Lustre),

object storage (e.g. S3)

no native support for RDMA
networks

NativeTask batch-only YARN distrib. filesystems (e.g. HDFS),
object storage (e.g. S3)

no native optimization for
MapReduce workloads

Storm stream-only YARN, stand-alone databases (e.g. Cassandra),
queue systems (e.g. Kafka)

yes low-latency and real-time
processing pipelines

Heron stream-only YARN, Mesos,
Docker, stand-alone

databases (e.g. Cassandra),
queue systems (e.g. Kafka)

yes improvements over Storm

Samza stream-only YARN queue systems (e.g. Kafka) yes large data flows accentuating
reliability and statefulness

Spark hybrid YARN, Mesos,
stand-alone

distrib. filesystems (e.g. HDFS),
databases (e.g. Cassandra),
object storage (e.g. S3)

near
real-time

batch and micro-batch
processing with streaming

support

Flink hybrid YARN, Mesos,
stand-alone

distrib. filesystems (e.g. HDFS),
databases (e.g. Cassandra),
queue systems (e.g. Kafka)

yes stream processing with
support for traditional batch

workloads

Apex hybrid YARN distrib. filesystems (e.g. HDFS),
databases (e.g. Cassandra),
object storage (e.g. S3),

queue systems (e.g. Kafka)

yes unified stream and batch
processing

2.1 State of the art in evaluating data processing frameworks 11

Benchmarking tools also exist which enable users to evaluate other Big Data
systems built on top of Hadoop. That is the case of PigMix [96], which evaluates
Pig [11], a high-level language for expressing data analytics workloads on top of
Hadoop. Furthermore, some Big Data benchmarks focus on evaluating the adapta-
bility of Hadoop to traditional database use cases. One example is MRBench [70],
which implements 22 relational SQL queries (e.g. select, join). The authors of
MRBench describe how these queries can be translated into MapReduce jobs, and
the issues that may arise. BigBench [45] proposes a standard benchmark for Big
Data that covers a representative number of application profiles. It includes a data
model that represents the typical characteristics of Big Data systems (i.e. variety,
velocity and volume), and a synthetic data generator that adopts some of its parts
from traditional database benchmarks to support structured, semi-structured and
unstructured data.

In the last years, new benchmark suites specifically oriented to in-memory pro-
cessing frameworks have appeared, like SparkBench [75]. It includes 10 workloads
with typical usage patterns of Spark: machine learning, graph processing, stream
computations and SQL query processing. It takes into account different metrics
like execution time, data process rate, shuffle data size, resource consumption and
input/output data size. Although little work can be found regarding benchmarks
specifically oriented to Flink, some proposals adapt existing ones to its new program-
ming paradigm. That is the case of [15], which uses BigBench to compare Flink and
Hive [119], showing that the former can achieve time savings of about 80%.

Not all Big Data benchmarking tools are focused on evaluating data processing
systems. For example, the AMPLab benchmark [3] is focused on evaluating data
warehousing solutions such as Hive, Tez [103], Shark [136] and Impala [71]. AMP-
Lab uses HiBench to generate the data and performs the evaluation by means of a
benchmark that includes scans, aggregations, joins and user-defined functions. The
Yahoo! Cloud Serving Benchmark (YCSB) [26] aims to evaluate different NoSQL
databases like HBase [9], Cassandra [6], MongoDB [90], Redis [100], Memcached [41],
and many others. YCSB currently includes 6 different workloads, providing an input
dataset generator and a configurable workload executor.

12 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.1.3. Performance studies of Big Data processing frameworks

The Hadoop framework has dominated the world of Big Data over the last
decade, and thus its performance has been thoroughly addressed by a wide range
of papers [30, 37, 38, 126]. However, recent works focus on in-memory processing
frameworks due to the better flexibility and performance they provide. That is
the reason why Spark is compared with Hadoop in [106], taking into account per-
formance and resource utilization. The results show that Spark can reduce the
execution time by 60% and 80% for CPU-bound and iterative benchmarks, respec-
tively. However, Hadoop is 50% faster than Spark for I/O-bound benchmarks such
as Sort. Meanwhile, another work [63] claims that frameworks like Twister [34] or
parallel paradigms like MPI can provide better performance than Spark for itera-
tive algorithms. By comparing Hadoop, HaLoop [19], Twister, Spark and an MPI
library, the authors conclude that Hadoop obtains the worst performance results.
Although Spark does not provide the best performance according to [63], it proves to
be the most appropriate option for developing Big Data algorithms in a flexible way.
This is because Twister does not support HDFS, which is indispensable for storing
big datasets, whereas MPI is not a feasible option for developing and maintaining
Big Data applications as it does not abstract data distribution, task parallelization
and inter-process communications. A similar conclusion is reached in [48], which
compares the performance of Spark and MPI for evolutionary algorithms.

Nowadays, Flink attracts increasing interest when evaluating Big Data frame-
works, usually being compared with Spark. All the works that compare Flink with
Spark conclude that the performance they provide is highly dependent on the work-
load executed. That is the case of [109], which compares Spark and Flink using
standard benchmarks like WordCount, K-Means, PageRank and relational queries.
The results show that Flink outperforms Spark except in the case of the most com-
putationally intensive workloads (e.g. WordCount). Another work [16] analyzes the
performance of Flink and Spark, configuring Spark both with the default and the
optimized Kryo serializers. This work uses three different genomic applications for
evaluating the frameworks: Histogram, Map and Join. Flink shows better perfor-
mance in Histogram and Map, while Spark gets the best results for Join.

In order to provide some insight into the differences between Spark and Flink,

2.1 State of the art in evaluating data processing frameworks 13

their internal design characteristics are addressed in [82], identifying a set of configu-
ration parameters that have a major influence on the execution time and scalability
of these frameworks: task parallelism, shuffle configuration, memory management
and data serialization. The benchmarks are also analyzed to identify the data ope-
rators they use. The main conclusion is that Spark is 40% faster than Flink for
large-graph processing, while Flink is 33% faster than Spark for single-iteration and
small-graph workloads. Further evaluations are conducted in [123] but using up-
dated versions of these frameworks, showing that Spark provides better results and
stability in general. However, some new features introduced by Flink can accelerate
iterative algorithms, like the use of delta iterations in PageRank, which allows re-
ducing the execution time by 70% compared with Spark. The authors also take into
account other important parameters of the system: HDFS block size, input data
size, interconnection network and thread configuration.

As can be seen, the evaluation of Spark and Flink is gaining attention, not only
in terms of performance but also taking into account usability, configuration para-
meters and resource utilization. The performance obtained by these frameworks is
highly dependent not only on the characteristics of the workload, but also on the
particular version being evaluated (both are active projects that are continuously
evolving). Furthermore, the suitability of the workloads that are usually executed
in these works has been discussed in [17], proposing a new evaluation methodology
that takes into account the input data size and the characteristics of the data model.
Note that all the previous works have focused their evaluations on the batch pro-
cessing capabilities of Spark and Flink. Other recent works have also assessed their
stream processing capabilities [24, 98, 104], comparing them with other stream-only
technologies such as Storm or Samza.

2.1.4. Energy efficiency

The energy efficiency of Big Data frameworks has been addressed by previous
works under different points of view, studying the main factors that can impact
energy consumption and, more recently, developing new proposals in order to de-
crease it. These works can be classified into three different groups, depending on
the method used to get the energy measurements.

14 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

The first group is composed by works that estimate the power values by using
an energy model. These models usually take into account the power specifications
of the underlying node and the utilization of system resources like the CPU. One
clear example is [91], an evaluation performed in the Microsoft Azure cloud [88] that
uses a model based on the CPU load of the virtual machines to estimate power con-
sumption. The results, which include experiments with a Hadoop cluster, show that
heterogeneity of cloud instances harms energy efficiency. This problem is addressed
in [23] by developing a new self-adaptive task assignment approach that uses an ant
colony algorithm to improve the performance and energy efficiency of MapReduce
jobs in heterogeneous Hadoop clusters. The authors modify Hadoop to implement
a new scheduling algorithm, obtaining 17% of energy savings compared to the de-
fault scheduler. The power measurements obtained in [23] are estimated by using a
simple model based on CPU resource utilization and the power consumption of the
machine in idle state. More examples of power estimation techniques are included
in [89], a survey of different power consumption models for CPUs, virtual machines
and servers.

In the second group, power values are obtained by means of an external power
meter that is directly connected to the nodes. This is the case of [39], which ana-
lyzes the performance and power consumption of several deployment configurations
of a Hadoop cluster. The results show that separating data and compute services
involves lower energy efficiency than collocating them, and that the power consump-
tion profiles are heavily application-specific. In the experiments, the power metrics
were provided by APC Power Distribution Units (PDUs). A similar PDU is used
to demonstrate that the energy-aware MapReduce scheduling algorithm proposed
in [85] can consume 40% less energy on average. Another work that analyzes the
energy efficiency of Hadoop [40] uses a power meter to measure the power consump-
tion of the whole system. The paper identifies four factors that affect the energy
efficiency of Hadoop: CPU intensiveness, I/O intensiveness, HDFS replication fac-
tor and HDFS block size, giving recommendations related to each of them. Another
performance study [76] compares the use of Hadoop on “small” ARM nodes with
“big” Intel Xeon ones, concluding that I/O-intensive workloads are more energy ef-
ficient on Xeon nodes, while CPU-intensive ones are more efficient on ARM nodes.
In this work, power values are recorded by using a Yokogawa power monitor con-
nected to the main electric input line of the system. In [81], “big” Intel Xeon nodes

2.1 State of the art in evaluating data processing frameworks 15

are compared with “small” Intel Atom ones using a Watts Up Pro power meter.
The results show that Xeon nodes perform more efficiently as the input data size
increases. The energy consumption of mobile devices can also be measured by using
power monitors. In [14], which analyzes the energy efficiency of Big Data stream
mobile applications, the batteries are sampled by using a power monitor to measure
the energy consumed during 3G/WiFi communications.

The last group of works uses a software interface to access energy counters pro-
vided by some CPU vendors. Some of these counters can be accessed by monitoring
tools like the Intel data center manager, used in [120] to analyze the energy effi-
ciency of Hadoop on an HPC cluster. This work also proposes the use of the ED2P

metric [84] to evaluate the performance-energy efficiency of Hadoop. Vendor-specific
technologies like the HPE integrated Lights-Out (iLO), consisting of a Baseboard
Management Controller (BMC) accessible through a REST interface, also allow
obtaining power measurements of the node. HPE iLO has been used in [126] to ana-
lyze the energy efficiency of different flavors of Hadoop on an HPC cluster, conclu-
ding that accelerating the completion of the workloads by using faster interconnects
(e.g. InfiniBand) or disks (e.g. SSD) can significantly reduce the energy consumed.
However, the most popular way of accessing these energy counters is using power
management interfaces that are provided by CPU vendors, which can be used to
monitor power in a wide range of modern CPUs. While AMD delivers the Applica-
tion Power Management (APM) interface, Intel provides the Running Average Power
Limit (RAPL) interface [27]. The accuracy of RAPL has been tested in [31], proving
that the values it provides can be very useful to characterize the power consumption
of an application. RAPL has also been used in [69] to evaluate the energy efficiency
of graph processing engines such as Giraph and the Spark GraphX library. This
work shows that GraphX is able to consume 42% less energy than Giraph thanks
to the use of in-memory RDDs, although it suffers from memory problems that do
not appear in Giraph. In [142], RAPL is also used to get power consumption values
to compare the horizontal and vertical scalability of a Spark cluster, showing that
vertical scalability provides better performance per watt.

16 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.1.5. Microarchitectural characterization

Most of the previously commented works generally focus on execution time and
resource utilization as the only metrics for analyzing performance, while only some
of them also take into account energy efficiency. However, there are few works that
try to further explore the results obtained in their evaluations by considering other
important factors. One interesting example of such metrics is the evaluation of
Big Data systems in terms of their microarchitectural performance, by collecting
the hardware counters provided by modern CPUs. For instance, available counters
allow users to obtain the number of CPU cycles, cache references and branch mis-
predictions. Note that depending on the CPU model there are different kinds of
counters, even across a same vendor (i.e. the availability of these counters is highly
CPU-dependent).

In [137], the characterization of Big Data benchmarks aims to identify redun-
dancies in benchmark suites, selecting some representative subsets of HiBench and
BigDataBench workloads in order to avoid repetitive results. To do so, the authors
execute several benchmarks with Hadoop calculating instructions per cycle, cache
miss and branch misprediction ratios, and off-chip bandwidth utilization using the
Oprofile tool [94]. Then, they perform a principal component analysis and a hie-
rarchical clustering algorithm to determine which benchmarks are redundant. A
similar study is performed in [65], but widening the range of microarchitectural-
level metrics that are analyzed and also using other frameworks apart from Hadoop
like Spark, Hive and Shark. In this case, the benchmarks are selected from Big-
DataBench and the metrics are collected using Perf [133]. The work [81] cited in
the previous subsection also uses performance counters to compare Intel Xeon and
Intel Atom nodes, obtaining the values by means of the Intel VTune performance
profiling tool.

Nowadays, the increasing use of memory intensive data analytics is motiva-
ting the appearance of new studies that characterize the performance of in-memory
frameworks. Intel VTune is employed in [13] to study the CPU and memory inten-
siveness of several Spark workloads, revealing that the latency of memory accesses is
the main performance bottleneck. Another work [143] proposes the effective cache
hit ratio, which aims to be more representative than the cache hit ratio when ex-

2.2 BDEv: goals and design 17

plaining the relationship between the number of cache hits and the execution times
in Spark. The effective cache hit ratio only takes a reference to a cache line as a
hit when the dependencies of such line are also located in the cache. Moreover, the
authors demonstrate the relevance of their proposal by implementing a new Spark
memory manager that handles cache lines and their dependencies as blocks. The
results show that their approach speeds up data-parallel jobs by up to 37%.

2.1.6. Summary

This section has provided an in-depth survey regarding the state of the art in
benchmarking Big Data processing frameworks by presenting around 50 works that
address this topic. As a summary, Table 2.2 includes a group of selected works
according to their relevance. The table shows the metrics evaluated in each work:
performance, resource utilization, energy efficiency and microarchitectural charac-
terization. It also includes which Big Data frameworks are evaluated and their
version (if indicated). The last column shows if there is any publicly available tool
to perform the experiments. Finally, the last row includes the metrics and frame-
works supported by our tool BDEv in order to provide a direct comparison with
previous works.

2.2. BDEv: goals and design

This section first discusses the need for a new tool to carry out in-depth evalua-
tions of Big Data frameworks on a certain system. Next, it describes our proposed
Big Data Evaluator (BDEv) tool [122], providing detailed information about its
features and design.

2.2.1. Motivation

The selection of a Big Data framework to use in a given system can be affected by
several factors. First, the performance of a framework is limited by its underlying de-
sign characteristics, depending on aspects like the scheduling of computational tasks

18
C
hapter

2.
B
D
E
v:

autom
ating

the
evaluation

ofB
ig

D
ata

fram
ew

orks

Table 2.2: Summary of works evaluating Big Data frameworks

Evaluated metrics Frameworks
Work Performance Resources Energy Microarch. Hadoop Spark Flink Avail.

[106] X X X(2.4.0) X(1.3.0)
[16] X X(1.3.1) X(0.9.0)
[82] X X X(1.5.3) X(0.10.2)
[123] X X(2.7.2) X(1.6.1) X(1.0.2) X

[91] X(Model) X

[39] X X(PDUs) X(0.20)
[69] X(RAPL) X(0.20) X(1.4.1)
[137] X(Oprofile) X(1.0.3)
[65] X(Perf) X(1.0.2) X(0.8.1)
[13] X X X(VTune) X

BDEv X X X(RAPL) X(Oprofile) X(2.7.3) X(2.2.0) X(1.3.2) X

2.2 BDEv: goals and design 19

or the pipelining of CPU and I/O operations. Second, the adaptability of the frame-
work to the system impacts the leveraging of system resources like CPU, memory or
network. Moreover, some cluster resources may have to be shared among different
applications running in the system, which limits the number of nodes available to
use. In those cases, the evaluation must consider different cluster sizes to determine
the best balance between performance and cluster occupation. In some environ-
ments, specially adapted frameworks can take advantage of specific resources, such
as HPC networks like InfiniBand or SSD-based disk technologies. These frameworks
must be carefully configured to ensure the fairness of the results.

Big Data users must be aware of all these issues when selecting an available
framework, understanding how it works, learning to configure it properly and chec-
king its correct operation. Moreover, the user has to elaborate a set of workloads,
searching for appropriate implementations for each framework and ensuring a fair
comparison between them. The evaluation process for each framework involves the
configuration and deployment of its daemons over the cluster and the execution of
the benchmarks. Once the evaluation is finished, the user must also access the out-
put files to check the successful completion of the benchmarks, copying the desired
data to a separate file to generate the output graphs.

All these issues turn the evaluation of Big Data frameworks into a difficult and te-
dious task. Our proposal to overcome them is BDEv, an evaluation tool that enables
in-depth, automatic assessment of Big Data frameworks. It includes different repre-
sentative workloads, unifying their configuration and generating user-friendly infor-
mation and reports. The design of BDEv is based on our previously released tool,
MapReduce Evaluator (MREv) [125], which was only focused on MapReduce frame-
works. Currently, BDEv is aimed at two main goals: (1) comparison between frame-
works in terms of performance and scalability; and (2) multi-evaluation in terms of
several factors like energy efficiency, resource utilization and microarchitectural-
level metrics.

2.2.2. BDEv characteristics

BDEv is based on the following features:

20 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

• Unified configuration

The evaluation parameters utilized in BDEv help to homogenize the confi-
guration of different frameworks. By allocating the same amount of system
resources to each framework, users can expect a fairer comparison between
them.

• Automation of experiments

BDEv is able to carry out the experiments without any interaction from the
user. Once the evaluation parameters are defined, BDEv performs the entire
experiment cycle in an automatic way, including the setting of the frameworks,
the generation of the input datasets and the execution of the workloads over
the cluster.

• Leveraging of system resources

The configuration of the frameworks is automatically set by detecting the
resources available in the system, like the number of CPU cores or the memory
size. Nevertheless, users can change any of these parameters to fit their specific
needs. BDEv also allows users to configure the frameworks to take advantage
of resources that are typically available in HPC systems, like the IP over
InfiniBand (IPoIB) interface.

• Multi-metric evaluation

The outcome of the experiments includes the output and execution time of the
workloads, along with useful statistics related with resource utilization (e.g.
CPU, disk, network), energy efficiency and microarchitectural events. All that
information enables the user to analyze the behavior of the frameworks from
a holistic point of view.

• Flexibility

BDEv can evaluate Big Data systems in different ways, adapting itself to the
particular needs of the user. Therefore, it provides a wide set of experimental
options that can be configured to determine the aspects (e.g. configuration
parameters, frameworks, workloads) that are evaluated in each experiment.
Note that default, safe values are provided to the user.

2.2 BDEv: goals and design 21

• Portability

BDEv aims to be easily executed in different kinds of systems. This involves
the use of some system-dependent configuration parameters, which can be
defined by the user, as well as the awareness of the environment where the
experiments are being run (e.g. automatic integration with job schedulers in
HPC systems).

• Error and timeout detection

In some cases, errors or exceptions can occur during the experiments. If they
are not detected, they can lead to incorrect measurements. BDEv analyzes
the output of the workloads to check for errors, avoiding the use of erroneous
executions for the final results. Users can also configure a timeout threshold,
so if a workload exceeds this value the execution is aborted and its results
are discarded.

• Easy collection of results

The information obtained by the different metrics is analyzed to extract a
summary that includes statistical results and automatically generated graphs.
This eases the comparisons made by users.

2.2.3. BDEv design

BDEv has been implemented following a modular design where the main func-
tionalities are provided by separate packages, which are shown in Figure 2.1. Each
of these packages along with their main components are described next.

Experiment

The Experiment package contains the components related to the general beha-
vior of BDEv. The Workflow manager determines the operations required to carry
out the evaluation by using the experiment parameters provided by the Configu-
ration manager. Then, it uses the Framework launcher and the Workload runner
to schedule framework- and workload-related operations, respectively. When the

22 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Figure 2.1: BDEv design overview

evaluation finishes, the Result reporter creates the summary of the experimental
results, generating related graphs by using the Graph generator.

Configuration

The Configuration package contains the components that determine the parame-
ters to be used in the evaluation. The Configuration manager reads the parameters
that have been defined by the user in the configuration directory. These parameters
are related to different aspects, like system characteristics (e.g. directory to store
the temporary files, network interfaces to use), HDFS configuration (e.g. block size)
and other framework-specific parameters (e.g. number of workers per node, sort
buffer size). They also include the experiment parameters defined by the user, such
as the cluster size, frameworks and workloads to be evaluated. If any system-related
parameter is not set, the System detector determines the default value by analyzing

2.2 BDEv: goals and design 23

Table 2.3: Frameworks supported in BDEv

Framework Version Network interconnects

Hadoop 1.2.1 / 2.7.6 / 2.8.3 / 2.9.0 / 3.1.0 GbE/ IPoIB

Hadoop-UDA 1.2.1 / 2.7.6 / 2.8.3 / 2.9.0 / 3.1.0 IPoIB & RDMA

RDMA-Hadoop 0.9.9 (GbE/ IPoIB) & RDMA

RDMA-Hadoop-2 1.2.0 / 1.3.5 (GbE/ IPoIB) & RDMA

Spark 1.6.3 / 2.3.0 GbE/ IPoIB

RDMA-Spark 0.9.4 / 0.9.5 (GbE/ IPoIB) & RDMA

Flink 1.3.2 / 1.4.2 GbE/ IPoIB

DataMPI 0.6.0 GbE/ IPoIB

Flame-MR 0.10.0 / 1.1 GbE/ IPoIB

the system, like the available memory size or the number of CPU cores.

Framework

The components of the Framework package control the correct configuration and
launching of the frameworks to be evaluated. The Framework launcher manages the
deployment of the underlying daemons over the cluster that are needed to run each
framework (e.g. NameNode/DataNode for HDFS), stopping them once the evalua-
tion has finished. Before the launch, the configuration directory of the framework
is set up by using a Configuration generator that is specific for each framework and
uses the parameters previously defined by the Configuration manager.

Table 2.3 contains the frameworks currently supported in BDEv 3.1, their tested
versions and the network interconnects they can use. Other versions of the frame-
works can also be used, as the support of minor releases is straightforward. However,
changing the major release may require some changes in BDEv. Note that at the
time of writing the last major versions of Hadoop (3.x) and Spark (2.x) are supported.

Apart from Hadoop, Spark and Flink, BDEv also supports some modifications of
these frameworks that use RDMA communications, like Hadoop-UDA [131], RDMA-

24 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Hadoop [132] and RDMA-Spark [79]. Furthermore, other frameworks completely
implemented from scratch like DataMPI [78] and Flame-MR [127] are also sup-
ported. To our knowledge, no other benchmarking tool provides support for as
many frameworks as BDEv.

Workload

The components related to the execution of the workloads are contained in the
Workload package. First, the Input dataset generator builds up the datasets required
for their execution. Next, the Workload runner executes the selected workloads,
using the Metric monitor components to record the different metrics.

BDEv supports different benchmark types: standard micro-benchmarks, graph
algorithms, machine learning workloads and SQL queries. It also allows executing
interactive and batch user-defined commands. The input data generators are spe-
cific to each benchmark type, but the user can also define its own input generator.
Table 2.4 contains the benchmarks currently included in BDEv and their corres-
ponding input dataset generators. The table also includes the origin of the source
code of the benchmarks, which have been carefully studied in order to provide a fair
performance comparison. Hence, each framework uses a benchmark implementation
based on the same algorithm, reading the same input and writing the same output
from/to HDFS. Although the algorithm remains unchanged, each framework em-
ploys an optimized version adapted to its available functionalities. Further details
about each benchmark are given next.

• TestDFSIO

Tests the throughput of HDFS by generating a large number of tasks perfor-
ming reads and writes simultaneously. It has been extracted from the examples
(“ex.” in the table) provided by the Hadoop distribution.

• WordCount

Counts the number of times each word appears in the input dataset. Both
WordCount and its input data generator, RandomTextWriter, are provided
as examples in the Hadoop distribution. In the case of Spark and Flink, the
source code has been adapted from their corresponding examples.

2.2
B
D
E
v:

goals
and

design
25

Table 2.4: Benchmarks supported in BDEv

Benchmark source
Category Benchmark Input Generator Hadoop Spark Flink

Micro-benchmark

TestDFSIO - Hadoop ex. - -

WordCount
RandomTextWriter

Hadoop ex. Adapted from ex. Adapted from ex.
Grep Hadoop ex. Adapted from ex. Adapted from ex.
Sort Hadoop ex. Adapted from ex. Adapted from ex.

TeraSort TeraGen Hadoop ex. Adapted from [117] Adapted from [117]

Graph processing
ConComp

DataGen
Pegasus Graphx Gelly

PageRank Pegasus Adapted from ex. Adapted from ex.

Machine Learning
Bayes DataGen Mahout MLlib -

K-Means GenKMeansDataset Mahout MLlib Adapted from ex.

SQL queries
Aggregation

DataGen
Hive Hive -

Join Hive Hive -
Scan Hive Hive -

User Command Provided by the user - - -

26 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

• Grep

Counts the matches of a regular expression in the input dataset. This bench-
mark is included in the Hadoop distribution, and in the case of Spark and
Flink it has been adapted from their examples. Its data generator is also
RandomTextWriter.

• Sort

Sort is an I/O-bound workload that is used to order an input text dataset
generated by RandomTextWriter. Hadoop includes it in its distribution, while
it has been adapted from the examples for Spark and Flink.

• TeraSort

A standard I/O-bound benchmark that sorts 100 byte-sized key-value tuples.
This workload assesses the shuffle and sort capabilities of the frameworks. The
reference implementation is provided by Hadoop, along with the corresponding
input data generator (TeraGen). Spark and Flink do not provide any official
implementation in their distributions. So, we have adapted the implementa-
tions provided in [117], which are compliant with the Hadoop one.

• Connected Components (ConComp)

An iterative graph algorithm that calculates the subnets of elements that are
interconnected. It is included in Pegasus [68], a graph mining system for
Hadoop. Both graph-oriented libraries of Spark and Flink, GraphX and Gelly,
respectively, contain an implementation of this algorithm. The input dataset
is generated by using the DataGen tool included in HiBench.

• PageRank

An iterative graph algorithm that obtains a ranking of the elements of a graph,
taking into account the number and quality of the links to each one. It uses the
same input data generator as Connected Components. Pegasus also provides
this algorithm for Hadoop, while the implementations for Spark and Flink have
been adapted from their examples. Moreover, alternative implementations are
supported by using the algorithms available in GraphX and Gelly, although
the performance of the examples is better according to our experiments.

2.2 BDEv: goals and design 27

• Bayes

An iterative clustering algorithm that classifies an input set of elements by
determining their probability to belong to several classes. Hadoop executes this
algorithm by using the Mahout project, while Spark uses its built-in machine
learning library MLlib. The input dataset is generated by the DataGen tool.
Flink neither supports this benchmark in FlinkML nor provides an example,
and so it is not currently included in BDEv.

• K-Means

An iterative clustering algorithm that classifies an input set of N samples into
K clusters. Mahout provides the implementation for Hadoop and the input
data generator (GenKMeansDataset). The Spark implementation is provided
by MLlib, but there is no such counterpart in FlinkML. However, in this case
Flink provides a code example that has been adapted to be included in BDEv.

• SQL queries

Aggregation, Join and Scan are typical database queries that extract infor-
mation from a database stored in Hive. The input dataset that these queries
process is generated by the DataGen tool. BDEv currently supports these
queries for Hadoop and Spark.

Metric

This package contains the monitors that extract the evaluation metrics configured
by the user. The Metric monitor launches the monitoring processes over the cluster
when a workload starts, stopping them when it finishes. Then, it communicates
with the Result reporter and the Graph generator to create the reports and graphs,
respectively, associated with the recorded data.

Each subcomponent of the Metric monitor specializes on a specific metric. As
mentioned in Section 2.2.2, BDEv aims to enable holistic evaluations of Big Data
frameworks by providing multiple evaluation metrics. The next section provides an
overview of the supported metrics and their implementation.

28 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.2.4. Evaluation metrics

This section provides an overview of the metrics available in BDEv: performance,
resource utilization, energy efficiency and microarchitectural characterization.

Performance

BDEv eases the analysis of the frameworks in terms of performance by measuring
the execution time of the workloads. After an experiment is complete, the execution
time is stored in a summary file. An associated graph is also generated containing
the average, maximum and minimum execution time of each workload. Scalability
comparisons are also supported by showing the execution time with each cluster size.

Resource utilization

Resource utilization results are useful to analyze the behavior of the frameworks
during an evaluation, identifying potential bottlenecks. To do so, BDEv monitors
system resources: CPU, disk, memory and network. When a workload is executed,
Resource utilization monitors are launched in each node of the cluster as previously
described in Section 2.2.3. These monitors make use of the dstat utility [33] to record
the results, which allows data extraction of all system resources in real time. After
the workload finishes, the monitors are stopped and the results of each individual
node are gathered and processed to generate the corresponding graphs. Average
values among the nodes are also calculated for each resource type.

Energy efficiency

Section 2.1.4 described how energy efficiency is usually assessed in Big Data
evaluations: using an energy model, a physical power meter or a software interface.
In BDEv, we have chosen the latter alternative as it provides more accurate power
information than using a model, also ensuring the portability across several systems,
which is not possible with power meters. We have used the RAPL interface that is
available in all Intel processors from the Sandy Bridge microarchitecture onwards.

2.2 BDEv: goals and design 29

Figure 2.2: Overview of the Intel RAPL architecture for a dual-socket system

We plan to extend this support to AMD processors in the near future by using the
APM interface.

Basically, RAPL provides an easy way to keep the power of the processor within
a user-defined limit. The internal circuitry of the CPU can estimate the current
energy consumption in a highly accurate way, providing these results to the user via
Model-Specific Registers (MSRs). These results are directly associated with compo-
nents of the Intel RAPL architecture, depicted in Figure 2.2. A package identifies
the energy consumption measurements of each CPU socket (i.e. each processor).
Inside each package, separated energy values are provided for the processing cores,
labeled as PP0 (Power Plane 0), and the integrated graphic card (if any), labeled as
PP1. These energy values always have the following relationship: PP0 + PP1 <=

package. RAPL also provides independent energy values for the memory modules
that are associated to each package, labeled as DRAM. Note that the figure shows
the architecture of a dual-socket system, each socket providing a quad-core processor
and a graphic card. Depending on the particular processor microarchitecture, the
measurements of some of these components may not be available.

In order to implement the Energy efficiency monitor in BDEv, we have adapted,
extended and integrated an existing tool [99] that accesses RAPL counters using
the Performance API (PAPI) interface [134]. Amongst many other features, PAPI
provides a standard interface for accessing hardware counters and its RAPL com-
ponent allows us to obtain energy consumption values. The monitor included in
BDEv detects all RAPL-related events available in a node and records the energy

30 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

values using a configurable time interval, storing them to the corresponding output
files. Note that RAPL only provides energy consumption values, and so the power
consumption is calculated by BDEv based on the energy consumed in each time
interval.

When the execution is finished, the Graph generator, using the information ela-
borated by the Result reporter, builds the time series graphs corresponding to the
recorded values for each node. The total energy consumed by all the nodes of the
cluster and the average power consumption per node are also calculated, and the
corresponding graphs are automatically generated for both metrics. Furthermore,
additional graphs that show the ED2P metric, mentioned in Section 2.1.4 and used
in the evaluation performed in Section 2.3.2, are also generated.

Microarchitectural characterization

The microarchitectural characterization of Big Data frameworks can provide use-
ful insight on the data operations (e.g. map, join) that can be limiting the perfor-
mance of the workloads. As mentioned in Section 2.1.5, most current processors
provide access to a set of hardware performance counters that allow performing a
fine-grained analysis in terms of several microarchitectural characteristics. These
counters can detect and count certain microarchitectural events from several hard-
ware sources such as the CPU pipeline or the different cache levels. Such events
can help to characterize the interaction between the applications and the hardware,
thus providing a more precise picture of the hardware resource utilization. In fact,
existing projects like Spark Tungsten [97] are specifically focused on microarchi-
tectural aspects (e.g. cache-aware computation) to improve overall performance.
BDEv allows programmers to accelerate this kind of developments by automating
the extraction of microarchitectural metrics.

The Microarchitectural characterization monitor collects microarchitecture-level
performance data about the underlying hardware by keeping count of the events that
happen in each node during the execution of a workload. An example of such events
is LLC_MISSES, which obtains the number of misses in the last level cache. We
have chosen Oprofile [94] as our base profiling tool, as it is able to provide hardware
counter values for the entire system where it is running. Using such a performance

2.2 BDEv: goals and design 31

profiling tool is less intrusive as it does not require manual instrumentation in the
source code as needed when using certain APIs. The monitor included in BDEv is
easy to configure by indicating the specific events to be recorded. Once the user sets
these parameters by modifying the appropriate configuration files, the Configuration
manager provides the corresponding values to the monitor.

The microarchitectural monitor operates as described in Section 2.2.3, starting
the monitoring when a workload begins. The output results include the values of
each event counter for each computing node and the total sum of the events occurred
in the cluster during the execution. Furthermore, the summary graphs generated at
the end of the experiments gather the values related to each event for each framework
and workload, easing the comparison between experiments.

2.2.5. Operation

Figure 2.3 shows the high-level control flow of an execution with BDEv. At
the beginning of the experiment, BDEv is initialized by setting the configuration
parameters specified by the user and creating the output directory. BDEv iterates
over the selected cluster sizes and frameworks. Once it configures a framework, it
launches the daemons and initializes the benchmarks, generating the required input
datasets. Before running a benchmark, its output subdirectory is created and the
monitors that collect the metric results are launched. When the benchmark has
finished, BDEv automatically generates the metric-related data files and graphs,
saving the information of each cluster node and calculating the summary values.
Once the benchmark has been executed the number of times configured by the user,
the most relevant performance results are appended to the summary report. After
executing the selected benchmarks with a particular framework, its daemons are
shut down to start executing the next framework (if any).

All the results from an evaluation are stored in an output directory, which in-
cludes the summary report, the BDEv log, the output subdirectories for each bench-
mark and the evaluation graphs. The summary report shows the configuration pa-
rameters and a summary of the main performance results. The BDEv log contains
the sequence of events during the evaluation, such as the successful configuration
and operation of each framework or the end of the execution of each benchmark.

32 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Initialize BDEv

Set cluster size

Set framework

Configure framework

Start daemons

Initialize benchmarks Set benchmark

Run benchmark

Generate metric results

Executions left?

Generate performance

results

no

Benchmarks left?Stop daemons
no

Frameworks left?

Cluster sizes left?

no

Finish BDEv

no

yes

yes

yes

yes

Figure 2.3: BDEv control flow

2.2 BDEv: goals and design 33

The output subdirectories of the benchmarks include the standard output, execu-
tion times and metrics results for each framework and cluster size, both in text and
graphical format. Finally, the evaluation graphs allow to carry out visual compari-
sons of the frameworks in terms of performance and scalability, resource utilization,
energy efficiency and microarchitectural behavior.

2.2.6. Targeted use cases

The use of BDEv is not restricted to a single scenario. Several kinds of users
can benefit from its features in a different way, including developers, system admi-
nistrators and end users. This section provides more details about the usefulness of
BDEv in each use case.

• Developers

The development cycle of a Big Data framework or application generally in-
cludes several tests that serve to check the correct functioning of the solution.
BDEv can automate this task by defining one or more experimental cases that
process a certain dataset to get an expected result, detecting errors or time-
outs during the execution. Moreover, the standard output of the workload
can be analyzed to verify if the obtained result agrees with the expected one.
Similarly, sometimes a component of a framework or an application is modi-
fied to optimize a certain metric, like the utilization of some resource (e.g.
disk, network) or a microarchitectural metric (e.g. data cache locality). Using
BDEv, the developer can: (1) identify the component to be optimized by ana-
lyzing the results from the evaluation metrics provided by BDEv; (2) once the
optimized version has been implemented, BDEv can compare it with previous
versions by stressing the targeted component and obtaining new metric results.
For instance, developers can analyze the impact of load balancing issues on
the power profile of a framework by defining several experiments that present
distinct distributions, from balanced to skewed.

• System administrators

The configuration of a Big Data framework for a specific hardware infras-
tructure involves the definition of a large set of parameters. This can turn

34 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

into an overwhelming task, considering that each parameter may have diffe-
rent possibilities that affect the performance of the framework. In some cases,
selecting an appropriate setting for a parameter involves an experimental eva-
luation of the different values. BDEv can ease this task by automatically
evaluating those configurations, previously defined by the system administra-
tor. As BDEv configurations can be defined separately (i.e. by using several
configuration directories), the total set of possibilities can be established a
priori, carrying out the experiments straightforwardly without needing user
interaction. Apart from memory and CPU settings, BDEv also considers the
configuration of multiple disks and the use of high performance resources like
the IPoIB interface, allowing administrators to analyze the impact of their
utilization on the different metrics.

• End users

Big Data users often come from many different research fields, sometimes
without a thoughtful understanding of the insights of Big Data frameworks or
the kind of workloads more suited for each one. Hence, the use of an evaluation
tool like BDEv can ease the task of selecting the most suitable implementation
of a workload that is available for several Big Data frameworks (e.g. K-Means
for Hadoop, Spark and Flink). The selection of the framework will depend
on the particular metric (e.g. performance, energy consumption) that the
user may want to optimize. BDEv can also benefit those users that need to
adjust the configuration parameters of a framework in order to optimize an
application according to a certain metric (e.g. adjusting the HDFS block size
to improve performance).

2.3. BDEv outcomes

This section presents a practical use case of BDEv by analyzing popular Big
Data frameworks taking into account all the evaluation metrics described in Sec-
tion 2.2.4: performance, energy consumption, resource utilization and microarchi-
tectural characterization. In order to do so, BDEv has been used to deploy several
frameworks and execute different standard benchmarks on an HPC cluster, extrac-

2.3 BDEv outcomes 35

ting the metrics in an automatic way. The results demonstrate the potential of
our tool to provide meaningful insights from the behavior of Big Data processing
frameworks. Section 2.3.1 describes the experimental testbed employed in the eva-
luation. Section 2.3.2 analyzes the results obtained in terms of the execution time
and energy efficiency, while Section 2.3.3 assesses the power consumption and re-
source utilization. Finally, Section 2.3.4 characterizes the frameworks according to
their microarchitecture-level performance.

All the metrics shown in the graphs belong to the same base experiment, which
corresponds to the one that obtained the median execution time among a set of
10 measurements. Note that the observed standard deviations were not significant
and so they are not shown for clarity purposes. In order to ensure the same con-
ditions for each framework and workload, the operating system buffer cache of the
nodes has been erased before executing each experiment.

2.3.1. Experimental testbed

This section first describes the hardware and software characteristics of the sys-
tem. Then, it details the frameworks and workloads being evaluated.

System configuration

The experiments have been executed in the Grid’5000 infrastructure [50], using
a 16-node cluster that corresponds with 1 master and 15 slaves. The main hardware
and software characteristics of the nodes are described in Table 2.5. Basically, each
node provides 2 Intel Haswell-based processors with 8 physical cores each (i.e. 16
cores per node), 128 GB of memory and 2 local disks of 558 GB each.

Evaluated frameworks

The evaluation has focused on popular state-of-the-art in-memory processing
frameworks: Spark and Flink. Hadoop, the most widespread batch processing
framework, has also been analyzed to use its results as a baseline. The experi-
ments have been carried out using the last stable versions as of July 2017 (Hadoop

36 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Table 2.5: Node characteristics of Grid’5000

Hardware configuration

CPU model 2 × Intel Xeon E5-2630 v3 (Haswell)
CPU Speed (Turbo) 2.40 GHz (3.20 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 128 GB DDR4 2133 MHz
Disk 2 × 558 GB HDD
Network 4 × 10 Gbps Ethernet

Software configuration

OS version Debian Jessie 8.5
Kernel 3.16.0-4
Java Oracle JDK 1.8.0_121
Scala 2.11.8

2.7.3, Spark 2.2.0 and Flink 1.3.2). Their configuration has been set according to
their corresponding user guides and taking into account the characteristics of the
underlying system (e.g. number of CPU cores, memory size). The most important
parameters of the resulting configurations are shown in Table 2.6. This table also
shows the main parameters for HDFS, which has been used to store the input and
output datasets.

Workloads

The workloads that have been assessed are common batch processing bench-
marks selected to represent different use cases: sorting (TeraSort), machine learning
(K-Means), graph analysis (Connected Components) and web search indexing (Page-
Rank), already introduced in Section 2.2.3. The characteristics of the workloads are
summarized in Table 2.7, including the size of the input dataset and the data gene-
rator. The size of the datasets has been adjusted to keep the execution times into
reasonable ranges. Furthermore, the iterative benchmarks have been executed until
convergence (i.e. until reaching a final solution).

2.3 BDEv outcomes 37

Table 2.6: Configuration of the frameworks in Grid’5000

Hadoop HDFS

Mapper/Reducer heap size 3.4 GB HDFS block size 512 MB
Mappers per node 16 Replication factor 1
Reducers per node 16
Shuffle parallel copies 20
IO sort MB 852 MB
IO sort spill percent 80%

Spark Flink

Executor heap size 109 GB TaskManager heap size 109 GB
Workers per node 1 TaskManagers per node 1
Worker cores 32 TaskManager cores 32
Default parallelism 480 Network buffers per node 20480

Parallelism 480
IO sort spill percent 80%

Table 2.7: Benchmark characteristics
Input dataset

Benchmark Size Generator

TeraSort 300 GB TeraGen

K-Means 39 GB (N=900M, K=5) GenKMeansDataset

ConComp 20 GB (30M pages) DataGen

PageRank 20 GB (30M pages) DataGen

38 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

 0

 200

 400

 600

 800

 1000

 1200

TeraSort ConComp K-Means PageRank

T
im

e
 (

s
)

Hadoop
Spark
Flink

 0

 200

 400

 600

 800

 1000

 1200

TeraSort ConComp K-Means PageRank

T
im

e
 (

s
)

Hadoop
Spark
Flink

(a) Execution time

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

E
n

e
rg

y
 (

M
J
)

Hadoop
Spark
Flink

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

E
n

e
rg

y
 (

M
J
)

Hadoop
Spark
Flink

(b) Energy consumption

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

TeraSort ConComp K-Means PageRank

Hadoop
Spark
Flink

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

TeraSort ConComp K-Means PageRank

Hadoop
Spark
Flink

(c) ED2P ratio

Figure 2.4: Execution time, energy consumption and ED2P ratio results
(lower is better)

2.3.2. Performance and energy efficiency

Once the configuration of the experiments has been defined, the experimental
results from the evaluation of Hadoop, Spark and Flink with BDEv are presented.

Figure 2.4a shows the performance of the frameworks in terms of execution time,
while Figure 2.4b presents their energy efficiency in terms of total energy consumed.
Both metrics have been used to calculate the corresponding ED2P ratio, displayed
in Figure 2.4c using a logarithmic scale. The ED2P metric was first proposed
in [84] and measures the performance-energy efficiency of a workload as shown in
Equation 2.1.

ED2P = Energy Consumed× (Execution T ime)2 (2.1)

2.3 BDEv outcomes 39

As can be seen in Figure 2.4a, Hadoop is the best framework for TeraSort,
outperforming Spark and Flink by 32%, which shows off the great data sorting ca-
pabilities of the MapReduce engine. The energy reductions provided by Hadoop
are slightly higher (see Figure 2.4b): 35% and 38% lower energy consumption than
Spark and Flink, respectively. This is explained by the fact that Hadoop shows
lower CPU utilization than the other frameworks for TeraSort (as will be analyzed
in Figures 2.5d, 2.5e and 2.5f), thus leading to lower energy consumption. As ex-
pected, in-memory frameworks clearly outperform Hadoop by a large margin when
running iterative workloads. For instance, Spark is 34% faster than Flink and 78%
faster than Hadoop for Connected Components, providing similar percentages of
energy reduction according to Figure 2.4b. Regarding K-Means and PageRank, the
best performers are Spark and Flink, respectively. Note also that the ED2P metric
reveals that the best performer for K-Means and PageRank provides a 10x improve-
ment over the second one. This indicates that the results of the best framework
are considered far better when energy consumption is taken into account. Finally,
it is worth mentioning the variability of the energy consumption for different work-
loads. While the execution times of Spark and Flink are generally proportional to
the energy consumed with a constant correlation, Hadoop presents higher consump-
tion for PageRank and Connected Components even when their runtimes are similar
to TeraSort. This demonstrates that Hadoop is clearly less energy efficient when
running iterative workloads that are not I/O-bound.

2.3.3. Power consumption and resource utilization

Analyzing the usage of system resources can provide a better understanding of
both the processing frameworks and the workloads, being of great interest to cor-
relate these system metrics with power consumption, as can be done with BDEv.
We have selected three workloads for this analysis: TeraSort, K-Means and Page-
Rank. Results for Connected Components have not been included as its power
profile is very similar to PageRank. The power values shown in the next graphs
only include the consumption of the entire package and the DRAM component (see
Figure 2.2), as this CPU model (Intel Haswell) has neither an integrated graphic
card nor does it provide the separate consumption of the processing cores. For sim-
plicity purposes, the power consumption of each node is calculated by summing the

40 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

values of its two CPUs.

Figures 2.5, 2.6 and 2.7 present the power consumption, CPU and disk utiliza-
tion for TeraSort, K-Means and PageRank, respectively. Regarding TeraSort, its
I/O-bound nature can be clearly identified by analyzing the disk utilization graphs.
However, the CPU graphs show isolated peak values for all the frameworks, espe-
cially at the end of the shuffle phase (around the second 200 for Hadoop and Spark,
and 350 for Flink). As expected, those CPU peaks are correlated with the peak va-
lues in the power consumption graphs. It is interesting to note that Hadoop is not
only the fastest framework for TeraSort, but also the one that shows a more stable
power consumption, aside from two short peaks at the beginning of the execution
and during the shuffle phase (see Figure 2.5a). Although the runtimes of Flink and
Spark are very similar, they present quite different power, CPU and disk profiles.
In fact, Flink shows higher CPU usages (see Figure 2.5f), averaging 70% CPU usage
during the shuffle phase, while Hadoop and Spark never go above 30% aside from
very short peaks. Hadoop presents the lowest CPU utilization, especially during the
reduce phase (just after the shuffle phase), which explains its great energy savings
mentioned before in the analysis of Figure 2.4b. Finally, it is easy to observe that
Hadoop and Spark present a clear disk bottleneck during approximately the first half
of the execution (see Figures 2.5g and 2.5h), while Flink also shows this bottleneck
but especially during the computation of the reduce phase (see Figure 2.5i). This
fact proves that the underlying data flow implemented by Flink to process the input
dataset is quite different to the one used by Hadoop and Spark. Note that, as men-
tioned in Section 2.1.1, Hadoop and Spark are based on batch processing engines,
while Flink relies on a stream processing architecture that treats batch workloads
as a special case of streaming computations.

A similar analysis can be conducted for K-Means and PageRank (Figures 2.6
and 2.7). Their iterative nature can be seen in the cyclical behavior of both power
consumption and CPU utilization. This is especially clear for Hadoop and Flink
in K-Means (Figures 2.6d and 2.6f), and for Hadoop and Spark in PageRank (Fig-
ures 2.7d and 2.7e). Regarding the power consumption of K-Means, Spark shows
considerably lower power values (below 90 watts) than Flink (see Figures 2.6b
and 2.6c), which correlates with the aforementioned 10x improvement pointed out by
the ED2P ratio. The analysis of the system resource utilization illustrates that the

2.3 BDEv outcomes 41

Hadoop Spark Flink

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(c)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(d)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(e)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(f)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(g)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(h)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(i)

Figure 2.5: Average power consumption and resource utilization per node
for TeraSort

disk access pattern for K-Means presents certain similarities across all the frame-
works, showing noticeable disk I/O at the beginning and end of the execution,
which mainly corresponds with reading/writing the input/output data (see Fig-
ures 2.6g, 2.6h and 2.6i). However, almost no disk activity is observed during the
data processing, discarding any disk bottleneck in K-Means. This is mostly due
to the strong iterative nature of this algorithm and the caching of intermediate re-
sults. Spark and Flink perform this caching by using in-memory data structures,
while Hadoop takes advantage of the underlying buffer cache provided by the ope-
rating system that stores the data before writing to disk. In this case, it seems that

42 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Hadoop Spark Flink

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(c)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(d)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(e)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(f)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(g)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(h)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(i)

Figure 2.6: Average power consumption and resource utilization per node
for K-Means

the amount of data being processed can be cached entirely in memory. Regarding
PageRank (Figure 2.7), Hadoop and Spark present high to medium disk utilization,
respectively, as shown in Figures 2.7g and 2.7h. This is especially relevant when
compared with Flink, which shows nearly zero disk I/O except an initial short peak
to read the input dataset (see Figure 2.7i). This means that the PageRank imple-
mentations of Hadoop and Spark are generating a higher amount of intermediate
data than the Flink counterpart, thus causing higher disk I/O and runtime. Ne-
vertheless, it can be concluded that no disk bottleneck occurs for Spark and Flink.
Finally, Hadoop is not only the worst performer when running PageRank, but also

2.3 BDEv outcomes 43

Hadoop Spark Flink

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600 700 800

P
o
w

e
r

(W
)

Time (s)

Package DRAM

(c)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(d)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(e)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

(f)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(g)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(h)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

(i)

Figure 2.7: Average power consumption and resource utilization per node
for PageRank

presents the highest power consumption, CPU and disk utilization by far. This
confirms Hadoop as the least energy efficient framework when executing iterative
workloads, as mentioned before when analyzing the energy results of Figure 2.4b.

2.3.4. Microarchitecture-level metrics

The microarchitectural characterization has been carried out by measuring 10
hardware performance counters to calculate 5 different microarchitecture-level met-
rics: Instructions Per Cycle (IPC), branch misprediction ratio and L1/L2/L3 miss

44 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

ratios. The L1 total miss ratio is not supported by this CPU, and thus the L1 miss
ratio only refers to load instructions. Figure 2.8 displays the results obtained for
these metrics, calculated over the sum of the values recorded in all nodes of the
cluster.

Regarding IPC (see Figure 2.8a), Hadoop outperforms both Flink and Spark for
all the workloads, while Spark obtains higher values than Flink except for PageRank.
The higher IPC obtained by Hadoop does not mean that it is actually performing
better, as it only translates into more work being done per clock cycle. It is im-
portant to note that the efficiency indicated by the IPC metric may not be directly
related with the execution time, as the high-level source code used to implement
the frameworks (Java or Scala depending on the framework) and the workload itself
are quite different (i.e. the machine code executed in the end by the CPU can vary
completely). For the rest of the metrics, lower values generally translate into better
performance. The branch misprediction ratios displayed in Figure 2.8b show that
Hadoop presents higher values than Spark and Flink. In this case, a higher value
can directly affect performance by decreasing the throughput of the CPU pipeline,
as much more useless instructions are first being issued to the execution pipeline and
then discarded when the branch prediction turns out to be wrong. Flink and Spark
do not present any prevalence one over the other, aside from the PageRank imple-
mentation of Flink, that shows a noticeable lower value than Spark (highly correlated
with the execution times shown in Figure 2.4a). Although a higher branch mispre-
diction ratio may initially be related to a higher IPC value due to the additional
instructions that are executed, the IPC shown in the graph is actually calculated
using the INS_RETIRED event. This event only counts those instructions that end
up being needed by the program flow. So, all those other instructions executed by
the CPU in a speculative way are not taken into account, such as the ones that are
issued when predicting a branch.

The miss ratios for the three cache levels available in this system (L1, L2 and
L3) are shown in Figures 2.8c, 2.8d and 2.8e, respectively. For the first level, there
is no clear difference between the frameworks, as this cache turns out to be highly
efficient obtaining very low ratios overall (below 2.5%). As data is generally read
in a sequential way when processed by these frameworks, most of these accesses hit
the L1 cache. For the L2 cache, Hadoop presents lower miss ratios than Spark and

2.3 BDEv outcomes 45

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

#
 i

n
s

tr
u

c
c

ti
o

n
s

 /
 #

 c
y

c
le

s

Hadoop
Spark
Flink

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

#
 i

n
s

tr
u

c
c

ti
o

n
s

 /
 #

 c
y

c
le

s

Hadoop
Spark
Flink

(a) Instructions Per Cycle (IPC)

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

 0

 0.5

 1

 1.5

 2

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

(b) Branch misprediction ratio

 0

 0.5

 1

 1.5

 2

 2.5

 3

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

 0

 0.5

 1

 1.5

 2

 2.5

 3

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

(c) L1 cache load miss ratio

 0

 20

 40

 60

 80

 100

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

 0

 20

 40

 60

 80

 100

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

(d) L2 cache miss ratio

 0

 20

 40

 60

 80

 100

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

 0

 20

 40

 60

 80

 100

TeraSort ConComp K-Means PageRank

M
is

s
 p

e
rc

e
n

ta
g

e
 (

%
)

Hadoop
Spark
Flink

(e) L3 cache miss ratio

Figure 2.8: Microarchitecture-level metrics results

Flink, with a wide difference in K-Means (86% and 88% lower, respectively). For
Spark and Flink there is no clear prevalent solution, as results are rather similar and
depend on the workload. The higher L2 miss ratios of Spark and Flink means that,
although they have shorter execution times for all the workloads except for TeraSort,
their memory accesses seem to present less data locality. The same behavior can be

46 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

observed for the L3 cache, as Hadoop shows the lowest values. Furthermore, both
Hadoop and Flink have rather constant L3 miss ratios across workloads, with values
under 20% and 30%, respectively. Meanwhile, Spark shows higher and more variable
ratios, ranging from 30% to 60%. PageRank presents the worst scenario with a
considerably higher ratio than Hadoop and Flink. Note that this may be related to
the PageRank execution time obtained by Spark, which is significantly worse than
Flink as shown in Figure 2.4a. The low variability of the L3 miss ratios of Hadoop
and Flink can be explained by the larger size of this last cache level compared with
the other ones. This fact mitigates any difference that the implementation of the
workload may present for each framework.

The analysis performed in this section has shown the utility of microarchitecture-
level metrics to evaluate the execution of Big Data workloads. Other scenarios
where the use of these metrics can be useful are: (1) comparing the behavior of
different implementations of the same algorithm using a particular Big Data frame-
work; (2) analyzing the impact of different configuration parameters of a framework;
and (3) improving a specific microarchitectural metric when optimizing applications
and frameworks.

2.4. Conclusions

Current Big Data applications are becoming increasingly larger and even more
resource consuming. However, the performance metrics generally used to characte-
rize Big Data processing frameworks, such as total execution time or average CPU
utilization, are often simplistic. Although these metrics can be useful to provide a
broad picture, the large scale of Big Data applications is demanding the conside-
ration of more insightful metrics, like energy consumption or low-level microarchi-
tecture events, to adequately assess the performance of both the frameworks and
workloads. However, only some recent state-of-the-art evaluations focus on energy
efficiency, while very little work takes into account microarchitecture-level aspects.
Furthermore, none of them provides reliable, portable and publicly available tools
to carry out the evaluations on different systems.

This chapter has first presented an overview of the state of the art regarding

2.4 Conclusions 47

the evaluation of distributed data processing frameworks for Big Data analytics,
highlighting the need of more advanced evaluation tools to enable the assessment of
resource utilization, energy efficiency and microarchitecture-level characterization.
Next, we have presented the design of BDEv, a powerful benchmarking tool that
allows the utilization of such metrics in multiple use cases, made by supporting
dstat-based records, Intel RAPL measurements and Oprofile-based monitoring. As
these utilities are available in a wide range of systems, the portability of the tool
is ensured. Finally, BDEv has been used to evaluate representative data processing
frameworks (Hadoop, Spark and Flink) in terms of performance, resource utilization,
energy efficiency and CPU events. The analysis of the results provided by BDEv
demonstrate its usefulness to fully understand the behavior of these frameworks
when processing large datasets.

Chapter 3

Flame-MR: efficient event-driven
MapReduce data processing

Most organizations that analyze their data with the MapReduce paradigm use
the popular Hadoop framework. As mentioned in Section 2.1.1, the performance
issues of its design have caused the development of several Hadoop modifications (e.g.
RDMA-Hadoop), which attempt to improve performance by changing some of its
underlying subsystems (e.g. network communications). However, these solutions are
not always capable to cope with all its performance bottlenecks, as they only focus on
certain parts of the Hadoop architecture. Therefore, the remaining parts can inherit
existing inefficiencies such as excessive object creations or redundant memory data
copies. The portability of the framework can also be affected if the optimizations are
system-specific, like the use of native libraries or hardware accelerators. Moreover,
Section 2.3 proved that up-to-date frameworks like Spark or Flink can achieve good
performance improvements, although they do not keep compatibility with Hadoop
applications. Adapting the source code of these applications (if possible) can be
an overwhelming task, so it may not compensate the actual performance benefits
obtained as a result.

For these reasons, there is a need for new frameworks in order to accelerate
existing Hadoop applications while preserving API compatibility. This chapter in-
troduces Flame-MR [127], a new event-driven MapReduce framework that redesigns
completely the underlying Hadoop architecture. It enables efficient MapReduce data

49

50 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

processing by avoiding redundant memory copies and pipelining data movements,
without requiring to modify the source code of existing applications.

Furthermore, Java applications often suffer from garbage collection overheads
when the size of the heap managed by the Java Virtual Machine (JVM) reaches the
available memory size [56]. This turns memory management into a crucial perfor-
mance factor to be considered when developing Big Data frameworks. One of the
main goals of Flame-MR is to maximize its in-memory data processing capabilities.
So, it must manage memory resources in an efficient way to minimize garbage col-
lection overheads. This chapter addresses this issue by presenting some proposals
in order to reduce memory allocations, while also caching intermediate results to
avoid unnecessary network and disk operations. The impact of these proposals on
the performance of Flame-MR is evaluated through experimental analysis.

This chapter is organized as follows. Section 3.1 describes the main characteris-
tics of the MapReduce programming model and its de facto standard implementa-
tion, Hadoop. Section 3.2 analyzes other existing works that attempt to optimize
the performance of Hadoop by utilizing different approaches. The design of Flame-
MR is next described in Section 3.3, giving some details about the most important
optimizations implemented. Section 3.4 analyzes the memory usage of Flame-MR
and describes some further optimizations. Finally, the conclusions extracted are
commented in Section 3.5.

3.1. Background

The MapReduce programming model was originally proposed by Google in [29].
This model allows developing large-scale Big Data workloads by keeping low-level
implementation details such as task parallelization and data communication hidden
to the programmer. The only thing that has to be defined are the data processing
functions, map and reduce, that operate the input data represented in form of key-
value pairs. The map function processes each input pair independently to extract
the relevant attributes and the reduce function operates them to get a final result.

As mentioned in Section 2.1.1, the most popular implementation of MapReduce
is Hadoop [8], an open-source Java-based framework frequently used for storing

3.1 Background 51

Figure 3.1: Hadoop data flow with multiple map and reduce tasks

and processing large datasets. It mainly consists of two components, the MapRe-
duce data engine and the Hadoop Distributed File System (HDFS) [108], which
distributes the storage of large amounts of data over the nodes of a cluster. Hadoop
workloads commonly use the MapReduce model to process textual data stored in
HDFS, following several steps: input, map, shuffle, merge, reduce and output. These
steps are depicted in Figure 3.1. As can be seen, the input dataset stored in HDFS
is divided in many splits that are read by map operations to extract the relevant
key-value pairs. These pairs are partitioned, sorted by key and sent through the
network to the nodes where they will be merged to form the reduce input. Each
reduce operation reads the pairs contained in its input partition, processing them
to generate the output result that is written to HDFS.

Hadoop can adapt its behavior to the particular needs of each application, as it
provides a wide set of configuration options to do so. This includes the setting of
some software components defined via Java interfaces, modifying their implemen-
tation according to the computation that the user needs to perform. For example,
the user can configure a different input and output formatter class if the data is
not in textual format. Similarly, users can use primitive data types included in
Hadoop or define their own ones by developing a custom implementation of the
Writable interface. This interface establishes the methods that the custom data

52 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

types need to implement, which are mandatory to serialize and compare the data
objects. Moreover, other application types apart from MapReduce can be deployed
in a Hadoop cluster by using Yet Another Resource Negotiator (YARN) [121], which
was introduced in Hadoop 2 to manage the computational resources of the nodes.

Nowadays, many applications and libraries use Hadoop to carry out MapReduce
workloads. However, Hadoop presents some performance bottlenecks that hinder its
utilization for large-scale analytics due to poor resource utilization and inefficient
data parallelism. This situation has caused the appearance of several alternative
frameworks like Spark and Flink, which can be used to execute Big Data workloads
with a more flexible API and increased performance. However, rewriting existing
MapReduce applications to the new APIs generally requires a significant program-
ming effort. Furthermore, the source code is not always publicly available, which
precludes the users from rewriting it. This Thesis overcomes these issues by propo-
sing Flame-MR, a new MapReduce framework that redesigns completely the Hadoop
architecture in order to improve its performance and scalability while keeping com-
patibility with Hadoop APIs. Furthermore, its Java-based implementation ensures
its portability.

3.2. Related work

The broad adoption of the Hadoop project has caused the appearance of several
MapReduce frameworks that attempt to improve its performance. Most of them
modify some of its subsystems, like network communications or disk I/O, to adapt
them to specific environments. That is the case of Mellanox Unstructured Data
Accelerator (UDA) [86] and RDMA-Hadoop [57], which adapt Hadoop to HPC re-
sources, such as RDMA interconnects like InfiniBand. On the one hand, Mellanox
UDA is a plugin written in C++ which combines an RDMA-based communica-
tion protocol along with an efficient merge-sort algorithm based on the network
levitated merge [131]. On the other hand, RDMA-Hadoop redesigns the network
communications to take full advantage of RDMA interconnects, while performing
data prefetching and caching mechanisms [132]. RDMA-Hadoop incorporates these
modifications in a Hadoop distribution which is available separately. Both Mellanox
UDA and RDMA-Hadoop keep compatibility with the user interfaces. However, they

3.2 Related work 53

only modify certain Hadoop subsystems, which can lead to limited performance im-
provements compared to an overall redesign of the Hadoop underlying architecture.

Another modification of Hadoop is NativeTask [141], which rewrites some of its
parts using C++, like task delegation and memory management. Furthermore, it
takes into account the cache hierarchy to redesign the merge-sort algorithm [140].
However, the optimizations performed by NativeTask are highly dependent on the
underlying system, which hinders its portability. This is also the case of Main Me-
mory MapReduce (M3R) [107], which uses the X10 programming language [20] to
implement an iterative MapReduce framework that keeps compatibility with Hadoop
APIs. Another important drawback of M3R is that the workload has to fit in me-
mory, preventing its use for real-world Big Data scenarios. iMapReduce [147], ano-
ther iterative Hadoop modification, not only avoids to write intermediate results
to HDFS, but also minimizes task scheduling and synchronization overheads. Ne-
vertheless, the applicability of these optimizations is limited to applications with
single-job iterations.

The performance bottlenecks of Hadoop have caused the emergence of new
frameworks that fully replace the Hadoop implementation. One of these frame-
works is DataMPI [78], which makes use of the MPI standard to leverage the high-
performance interconnects that are usually available in HPC systems. MapReduce
Implementation Adapted for HPC Environments (MARIANE) [36] is designed to
take advantage of the General Parallel Filesystem (GPFS), which is also commonly
found in HPC systems. Other solutions, like Spark [145] and Flink [7], optimize the
memory usage by using collections of elements as an alternative to key-value pairs.
Both expand the set of operations available to the end user, rather than providing
only map and reduce functions. The main problem with this kind of proposals is
that they do not provide full compatibility with Hadoop APIs, so the code of the
applications must be adapted or even rewritten from scratch.

Memory efficiency has been the subject of study of many works. Some of
them [83, 113] enhanced the scalability of MPI libraries in terms of memory usage.
Although these works are not focused on Big Data processing, some of the challenges
they face are similar to our case (e.g. keeping memory scalability as the number
of processes grows). Regarding Big Data frameworks, there exist some previous
works that have investigated their memory efficiency. In [32], the memory usage

54 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

of Hadoop and Hive is characterized by analyzing the memory footprint, memory
bandwidth and cache misses of different workloads. The authors of [95] studied the
use of large memory pages when executing Big Data applications in non-uniform
memory access systems, concluding that large pages do not show significant perfor-
mance improvements when the dataset is sufficiently large. The scalability of Spark
has been evaluated in [142], studying whether it is better to increase the number
of nodes in the cluster or improve the hardware characteristics (CPU, memory and
disk) of the nodes. Although each configuration performed differently depending
on the workload type, the one with faster nodes showed a better performance per
watt ratio.

The development of new techniques to improve memory management in Big Data
frameworks has been addressed in different ways. In [139], the authors presented
a novel two-level storage system with an upper-level in-memory file system that
leverages high I/O throughput and data locality, while a lower-level in-disk parallel
file system provides consistency and larger capacity. Moreover, works like [25] use
new storage technologies, such as SSD disks, to alleviate bandwidth and memory
requirements. Other proposals target the memory management performed by object-
oriented languages (e.g. Scala, Java) in order to adapt it to the characteristics
of Big Data workloads. That is the case of Yak [92], which proposes a hybrid
garbage collection approach that distinguishes between objects belonging to the
control space and the data space. Yak adapts the memory management of each
object type to its lifespan characteristics, being able to alleviate the overhead of
garbage collection operations in Big Data frameworks like Hadoop. Another work,
Deca [77], analyzes the data objects of Spark applications to estimate their expected
lifespan, allocating and releasing memory accordingly to minimize garbage collection
overheads. Although it would be interesting to compare these alternatives with
Flame-MR, these projects are not publicly available.

Finally, another modification of Hadoop, called SHadoop [54], also improves the
job and task execution mechanisms, although the improvement is mostly significant
in jobs with short runtimes.

3.3 Flame-MR design 55

3.3. Flame-MR design

This section presents the overall design of Flame-MR. First, the main characteris-
tics of its internal architecture are discussed in Section 3.3.1. Second, Section 3.3.2
describes in more detail the different phases of the MapReduce data processing
pipeline in this architecture.

3.3.1. Flame-MR architecture

Flame-MR is a distributed processing framework implemented in “pure” Java
code (i.e. 100% Java) for executing standard MapReduce algorithms. Being fully
integrated with the Hadoop ecosystem, Flame-MR runs on YARN, which is its
resource management layer, and uses HDFS for data storage. Its design is oriented
to optimize the performance of the overall MapReduce data processing, improving
the utilization of the system resources (CPU, memory, disk and network) and the
overlapping of the data flow. Moreover, the architecture of Flame-MR has a strong
flexibility due to the use of the same software interfaces to manage in-memory data,
network communications and HDFS I/O. Flame-MR acts as a plugin that is fully
compatible with Hadoop APIs, so existing MapReduce applications do not have to
be rewritten.

The Flame-MR workflow is composed of the classic MapReduce phases: input,
map, sort, copy (or shuffle), merge, reduce and output. The input phase reads the
input dataset from HDFS and the map phase extracts the valuable information by
applying the user-defined map function to each input pair. Once the map output
is generated, the sort phase ensures the correct ordering of the output pairs, which
are sent through the network during the copy step. The merge phase generates the
reduce input by merging all the incoming map output pairs. Next, the reducer ap-
plies the user-defined reduce function to each set of key-value pairs, computing the
final output which is written to HDFS in the output step. In Hadoop, one or more
phases are performed for a certain part of the input dataset by independent Java
processes called tasks (e.g. a map task performs the input, map and sort phases).
However, Flame-MR arranges the phases into MapReduce operations, which are lo-
gical processing units performed by a Java thread. Unlike Hadoop, these operations

56 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Figure 3.2: High-level architectural overview of Flame-MR
O: Operations B: Buffers C: Chunks

are executed within the same Java process (from now on, Worker). For a given
input data, each operation performs some of the explained phases depending on its
operation type (map, merge or reduce), as will be described in Section 3.3.2.

Figure 3.2 presents a high-level overview of the Flame-MR architecture, which is
based on a traditional master-slave model. This model has been adapted to YARN,
in which the master and the slaves are executed inside YARN containers. At the
application launching, the master container (AppMaster in the figure) allocates one
or more Workers per computing node in the cluster as configured by the user. In
the same way, the user configures the CPU cores and memory allocated to each
YARN container, which in turn determines the resources available for the Workers.
The configuration of the Workers (i.e. number of Workers per node and resources
available for the Worker) provides higher flexibility than the Hadoop model, in which
each map/reduce task is allocated in a separate container depending on the amount
of memory available in each node. Furthermore, each Worker in Flame-MR allocates
memory and CPU resources by means of a DataPool and a ThreadPool, respectively.

3.3 Flame-MR design 57

The DataPool structure manages the amount of memory available in the Worker,
allocating memory buffers for the different MapReduce operations. Likewise, these
operations allocate CPU cores by means of the ThreadPool scheduler.

The input and output data is read and written, respectively, by using Data-
Structures. Basically, these structures are data queues that contain a certain number
of data chunks to be processed. Moreover, the Workers use the network to transfer
the map output data and synchronize their computation at certain moments of the
process (e.g. before the reduce phase). More details about the architectural design
of Flame-MR are provided next.

Optimized memory usage

Flame-MR manages in-memory data using chunks, which are treated as logical
data units in the same way as HDFS uses blocks. The chunks are written by an
operation in a MapReduce phase and read by another operation in the next phase.
Internally, each chunk has a number of memory buffers that contain the physical
data in memory or abstract a file path in disk. In order to manage the buffers that
fit in memory, each Worker defines a DataPool for allocating them. This pool is
shared among all the MapReduce operations in a certain Worker, optimizing the
amount of memory needed at any moment. When a configurable threshold size is
exceeded, the DataPool begins to spill buffers to disk, allocating the freed space to
new buffers, until the threshold condition is satisfied again. After that, if a spilled
buffer is attempted to be read, the DataPool reallocates its original size and the
data is read back from disk.

All buffers have a fixed size, which is configurable by the user (the default value is
1 MB). The configuration of the buffer size is useful in order to handle the available
memory and balance the number of buffers managed by the DataPool during the
MapReduce data processing. Moreover, the DataPool uses a single operation to spill
a buffer to disk or read it back, so the buffer size is a relevant parameter in order to
optimize the I/O throughput.

58 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Thread-based processing model

In Hadoop, each map/reduce task is executed in a YARN container (i.e. in a
JVM), which has a separate resource allocation. This can lead to poor resource
utilization at some stages during the MapReduce workflow. For example, reducers
which are waiting for the mappers to complete cannot share their resources with
them and so the finalization of the mappers is delayed. Flame-MR differs from this
model by treating each map/reduce task as an operation, which is carried out by
a Java thread. Moreover, the overhead of thread creation/destruction is minimized
by means of a ThreadPool which runs as many threads as the number of CPU
cores available for the Worker. As in the case of the DataPool, the ThreadPool
is shared by all the MapReduce operations in a Worker, optimizing the number of
them being executed at any moment and maximizing the memory utilization and
CPU resources.

The ThreadPool has a queue of operations waiting to be processed, which are
ordered by using a priority system. The priority of each operation is determined
by the MapReduce phase to which it belongs. For example, map operations have
a higher priority than merge operations, in order to maximize the amount of map
outputs that can be processed by the merge operations. Further details about the
operations performed by Flame-MR are given in Section 3.3.2.

Event-driven architecture

The relationship between data chunks and the operations that process them
is made through an event-driven architecture. This architecture is composed of
several DataStructures that contain the data chunks waiting to be processed. De-
pending on the specific MapReduce phase, the pending operations are queued to the
ThreadPool to process all the input data chunks existing in a DataStructure (e.g.
at the beginning of the reduce phase) or to process the chunks as they arrive to
the DataStructure (e.g. in the input of the merge phase). In the latter case, when
the DataStructure receives new data chunks it generates an event to indicate the
ThreadPool that there are data waiting to be processed.

There are three main types of DataStructures: in-memory, network and HDFS.

3.3 Flame-MR design 59

In-memory DataStructures (i.e. the input for merge and reduce operations) contain
several data chunks which are waiting to be processed. They behave as a queue
between MapReduce operations (e.g. between merge and reduce operations in the
case of the reduce input DataStructure, which will be further depicted in Figure 3.4).
Network DataStructures abstract network communications (i.e. the map output).
Data chunks added to these DataStructures will be sent through the network to the
corresponding Worker, which is determined by the partition assigned to the chunk.
Finally, HDFS DataStructures abstract I/O movements to HDFS, reading the input
at the beginning of the MapReduce workflow (i.e. the map input) and writing the
output at the end (i.e. the reduce output). These three kinds of DataStructures
implement the same interface, which provides a flexible software architecture.

The design of the event-driven architecture in Flame-MR keeps some similarities
with the Staged Event-Driven Architecture (SEDA) [135]. SEDA proposes an ar-
chitecture for well-conditioned, scalable Internet services consisting of several stages
connected by queues, in which each stage represents a step of the whole process.
Flame-MR also carries out a series of stages by means of the MapReduce opera-
tions, which are connected by DataStructures that work in a similar way as the
queues in SEDA. However, Flame-MR uses the same ThreadPool for all the opera-
tions instead of using one ThreadPool per stage as in the case of SEDA. By doing
this, Flame-MR optimizes the number of operations that are being executed at any
moment and prioritizes them in order to maximize the amount of data processed.

Copy-avoidance mechanism

One of the main performance bottlenecks of Hadoop is the high number of re-
dundant memory copies. Many of them are performed when reading from HDFS
and translating the input data stream to Writable objects (e.g. Text, IntWritable,
LongWritable). In order to alleviate this situation, equivalent primitive Writable
types in Flame-MR do not copy data fields from the input chunks to the correspon-
ding memory objects, but keep references to these fields instead. Using the position
where each field starts and its length, the information is not retrieved and trans-
lated unless it is needed, avoiding extra data copies. Furthermore, data fields do not
have to be translated into the Writable objects when written to another data chunk.
This is especially relevant in identity map/reduce functions, which write their input

60 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

key-value pairs to the output chunks without modifying them. In this kind of func-
tions, which are very common in some workloads (e.g. Sort), the references kept by
the Writable objects are used to copy each data field directly from the input to the
output chunk, and thus involving a single memory copy.

Hadoop-like map and reduce functions

Existing Hadoop applications can be executed without any source code modi-
fication, as Flame-MR implements the Hadoop APIs. An example of the source
code defined by the user is presented in Figure 3.3, which shows the map and re-
duce functions (Figures 3.3a and 3.3b, respectively) for the WordCount program.
Note that there is no difference between the source code of both Flame-MR and
Hadoop functions, so they are displayed only once. Likewise, the Hadoop driver of
the MapReduce job does not need any change to be run with Flame-MR.

3.3.2. MapReduce operations

As mentioned before, the MapReduce data processing in Flame-MR is divided
into three operation types: map, merge and reduce. These operations can be ob-
served in Figure 3.4, which shows an overview of the whole data processing pipeline.
More details about the computation that these operations perform and their specific
optimizations are provided next.

Map operations

At the beginning of the job execution, the AppMaster (see Figure 3.2) divides the
input dataset into independent splits, and then they are allocated to the different
Workers. Next, each Worker creates one map operation per input split and queues
them to the ThreadPool. Each map operation processes the input, map, sort and
copy phases for its associated split. The basic stages of a map operation are depicted
in the left part of Figure 3.4a. In the input step, the map operation (O1 in the figure)
creates a new data chunk (C1) and uses the DataPool to allocate enough space for
it. The chunk is filled with the data using the HDFS client libraries. Once the input

3.3 Flame-MR design 61

public static class WordCountMapper extends
Mapper<Object, Text, Text, IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value,
Context context) throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);

}
}

}

(a) WordCount mapper

public static class WordCountReducer extends
Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException
{
int sum = 0;

for (IntWritable val : values)
{
sum += val.get();

}

result.set(sum);
context.write(key, result);

}
}

(b) WordCount reducer

Figure 3.3: Code examples for WordCount map and reduce functions
in Flame-MR and Hadoop

62 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

(a) MapReduce data flow of map and merge operations

(b) MapReduce data flow of reduce operations

Figure 3.4: Overview of the MapReduce workflow in Flame-MR
O: Operations B: Buffers C: Chunks

chunk resides in an in-memory buffer (B1), its key-value pairs are read one by one
and passed to the user-defined map function. As the map function generates the
output key-value pairs, these are kept in memory and grouped by their partition
number. This number is calculated based on the key of the pair, which determines
the Worker that will merge and reduce it. Once the size of the output pairs exceeds
a certain threshold, a partition group is sorted in memory and written to a new
data chunk. During the copy stage, this data chunk is sent through the network to
the corresponding Worker. Further characteristics of map operations are explained
next.

3.3 Flame-MR design 63

• Two-level partitioning

In Hadoop, each map output pair belongs to a partition that corresponds
with the reducer that will process it. In Flame-MR, each Worker can run
more than one reduce operation, and so each Worker has a set of partition
numbers that belongs to it. Hence, there are two levels of partitioning: the
first one defines the Worker that will reduce the partition and the second one
defines the reduce operation within the Worker. This two-level partitioning is
necessary in order to parallelize the reduce phase, while enabling the Worker to
share the computational resources allocated to it among the different parti-
tions.

• In-memory object sort

Unlike Hadoop, map output pairs are not written to a temporary chunk while
they are not sorted. As mentioned before, the Writable objects produced by
the user-defined map function are kept in memory. When the size of the objects
exceeds a certain threshold, they are sorted and written to the final data chunk
that is sent through the network. This threshold is calculated as a percentage
of the DataPool size divided by the number of threads in the ThreadPool. This
value can be tuned by the user via a configurable parameter to adapt it to the
characteristics of the underlying system, although a default value is provided.
The in-memory object sort allows Flame-MR to avoid many memory copies
during the sort phase. Furthermore, the copy-avoidance mechanism explained
in Section 3.3.1 enables to store the output of identity map operations as
objects that reference the input data, copying directly the input data to the
output chunk when sorting the results.

• Pipelined map, sort and copy phases

As explained in the previous paragraph, mappers sort and send their output
pairs through the network once they exceed a certain threshold size. This
behavior acts as a pipeline that alternates the computation of the map, sort
and copy phases. The design of Hadoop takes a different approach, as the
reducers are responsible for retrieving the output. The mappers sort and
store their output locally until it is requested, by means of a network service
called ShuffleHandler. This service is shared by the mappers of a node and

64 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

so it is placed in a separate Java process. Moreover, if a mapper runs out
of memory, it will spill some of the output pairs to disk, reading them back
when the reducer queries the map output. As Flame-MR map operations
send directly their output chunks from the memory space of the Worker, the
locality of in-memory data is higher compared with Hadoop. Flame-MR also
avoids waiting for the reducers to retrieve the map output, which can delay
the communications and cause unnecessary spill operations. However, this
feature may have some impact on the fault tolerance of Flame-MR. As the
mapper does not retain the map output pairs, they cannot be retrieved back
if a node fails like in the case of Hadoop. Nevertheless, our first prototype
focuses primarily on performance aspects of MapReduce applications. Further
work is planned to study how to improve the fault tolerance of Flame-MR
without harming performance.

The chunks are sent through the network by sending each data buffer to the
destination. Flame-MR can be configured to send each data buffer in several
packets, using a fixed packet size. The use of the packet size is useful to
adapt the communications to the characteristics of the underlying network
(e.g. maximum transmission unit), while the buffer size can be optimized for
spilling to disk.

Merge operations

Merge operations are responsible for processing the map output chunks received
through the network, merging them to form the reduce input. The data flow of
merge operations can be seen in the right part of Figure 3.4a. When a Worker
receives a map output chunk, it is stored in a DataStructure and a new merge
operation (O6 in the figure) is queued to the ThreadPool. When this operation
is executed, it first checks the DataStructure for unprocessed partitions, selecting
one of them and taking all its incoming chunks. Then, the operation merges these
chunks until getting a single one, which is added to the reduce input DataStructure.
Moreover, this chunk can be merged again as new chunks arrive at the Worker.
Next, we provide some further details about the optimizations implemented in merge
operations.

3.3 Flame-MR design 65

Figure 3.5: k-way merge (k=4)
C: Chunks K: Keys V: Values p: pointers

• k-way merger

The merge algorithm used in Hadoop is a 2-way algorithm that merges two pairs
at a time. Flame-MR uses a different approach by performing a k -way merge
algorithm that merges k chunks at a time. The input chunks are organized in
a list and sorted by the first key that appears in each chunk. Next, the first
pair of the first chunk is copied to the merged chunk, advancing the position
of the read chunk and reordering the chunk list according to it. The pairs
are read until there is none left. An example of this algorithm is depicted in
Figure 3.5, which shows the input chunks C1, C2 and C3 being merged to
chunk C4. Each chunk contains a list of key-value pairs <Kx,Vx>. It can be
seen that the first chunk of the list is C2, which is currently pointing to the
key-value pair <K2,V2>. Hence, this pair is copied to chunk C4 in step 1.
Next, the current positions of C2 and C4 are moved forward by updating their
pointers (p2 and p4, respectively) in step 2. Finally, step 3 updates the list
order by placing C1 in the first place as <K1’,V1’> becomes the lowest key
in the list.

As the k -way merge algorithm processes multiple data chunks at once, it min-
imizes the number of merge operations needed to compute the reduce input,
thus avoiding many comparisons and memory copies. Furthermore, Flame-MR

66 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

calculates k based on a percentage of the available memory, which enhances
memory efficiency and avoids spilling data to disk.

• Binary comparison

In Hadoop, many data types define the BinaryComparable interface. This
enables to compare the binary representations of the objects in the merge phase
using the memory buffers that contain their data, without translating the data
fields to the Writable objects. Flame-MR also uses binary comparison, but it
does not create the objects. Instead, it compares the fragments of the chunks
corresponding to the objects. By doing so, it avoids creating and destroying
many objects and the corresponding overhead of the JVM garbage collection.

Reduce operations

Reduce operations perform two phases: reduce and output. Their data flow
is shown in Figure 3.4b. Once all map outputs have been merged, each Worker
generates a reduce operation per chunk partition. Each reduce operation (O9 in
the figure) reads its associated input data chunk and reduces the final output by
applying the user-defined function to each set of key-value pairs. Finally, the chunks
are stored in HDFS during the output phase. This phase has been optimized as
explained below.

• Pipelined output

Hadoop writes the reduce output pairs to HDFS as they are being generated
by the reduce function. This causes a large number of writes to HDFS, with a
significant overhead each of them. In order to avoid this, reduce operations in
Flame-MR store their output pairs to a data chunk, which is written to HDFS
once it reaches a certain threshold size. This mechanism is similar to the way
map output pairs are sent through the network. The use of the threshold size
ensures that the reduce output does not exceed the available memory space in
the DataPool, in which case the data buffers would have to be spilled to a local
disk. Furthermore, it also acts as a write pipeline that allows to alternate the
computation of the reduce function and the writing of the results to HDFS.

3.4 Memory management optimizations 67

3.4. Memory management optimizations

Memory usage is a crucial factor for avoiding performance issues when using
large memory spaces. This section focuses on the development of efficient memory
management techniques to analyze their impact on overall performance. Using the
original implementation of Flame-MR presented in Section 3.3 as a baseline, several
optimizations have been developed and evaluated comparatively through experimen-
tal analysis. First, Section 3.4.1 analyzes the performance overhead caused by long
pauses of the Garbage Collector (GC), explaining several optimizations to reduce
them. Second, Section 3.4.2 analyzes different implementations of the in-memory
buffers that contain the data to be processed. Finally, Section 3.4.3 focuses on itera-
tive workloads, explaining how to avoid the writing of intermediate results to HDFS
and the benefits of doing so.

The optimizations presented in each of these sections are evaluated by means
of several performance experiments carried out in a multi-core cluster, Pluton. Ta-
ble 3.1 contains the main hardware and software characteristics of this cluster. Ac-
cording to these characteristics, Flame-MR has been configured as shown in Ta-
ble 3.2, which also contains the relevant configuration parameters for HDFS. More-
over, Flame-MR has been configured to use the IPoIB interface, which allows to
employ this network through the IP protocol and obtain lower latencies and higher
bandwidths than with Gigabit Ethernet. The version of Hadoop deployed to make
use of YARN and HDFS components is 2.7.2. The experiments have been carried
out using 9 nodes, corresponding with 1 master and 8 slaves.

The execution of the experiments has been automated by using BDEv, selec-
ting Sort and PageRank among the workloads supported as they are representative
examples of I/O-bound and iterative workloads, respectively (see Section 2.2.3).
Sort has been used to order a 100 GB input text dataset, while the input dataset
of PageRank has a size of approximately 20 GB (30 Mpages), with a maximum of
5 iterations per execution. The results provided in this section take into account a
minimum of 10 executions for each experiment making sure to clear the OS buffer
cache between each execution. Finally, the GC used is Parallel GC, which is enabled
by default and provides the best throughput as the number of cores increases [46].

68 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.1: Node characteristics of Pluton

Hardware configuration

CPU model 2 × Intel Xeon E5-2660 (Sandy Bridge-EP)
CPU Speed (Turbo) 2.20 GHz (3 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 64 GB DDR3 1600 MHz
Disk 1 TB HDD
Networks InfiniBand FDR & GbE

Software configuration

OS version CentOS release 6.4
Kernel 2.6.32-573
Java Oracle JDK 1.8.0_45

Table 3.2: Configuration of Flame-MR in Pluton

Flame-MR

Workers per node 4
ThreadPool size 4
Worker heap size 10.5 GB
DataPool size 6.3 GB
DataBuffer size 1 MB
HDFS block size 128 MB
Replication factor 3

3.4 Memory management optimizations 69

3.4.1. Garbage collection reduction

The JVM provides automatic memory management by allocating available me-
mory on the heap to objects when they are created. The programmer cannot control
when this memory is released, as Java objects cannot be explicitly destroyed. Ins-
tead, the JVM tracks the objects on the heap and their references from the Java
code, removing an object and releasing its memory when it has no other objects
referencing to it. This process is transparently performed by the GC included in
the JVM [114]. Using large heap sizes, garbage collection can consume a considera-
ble amount of computational resources, incurring significant performance penalties
and even program stalls. In fact, it is one of the most common performance issues
in Java applications [56]. For Big Data frameworks, this issue becomes even more
important, as they execute workloads with very long execution times, creating a
large number of objects and having high memory usage. For this reason, Flame-MR
has been analyzed to identify means of reducing the amount of garbage collection
performed, which has led to two main techniques, static memory allocation and
buffered map output, explained next. These techniques have been incorporated into
a modified version of Flame-MR, called Flame-MR-GCop.

Static memory allocation

In the original implementation of Flame-MR, MapReduce operations (e.g. map,
merge) allocate memory space by requesting DataBuffers to a DataPool. Each of
these requests causes a new object to be created, with its corresponding memory
allocation on the heap. Once the DataBuffer is used, it is returned to the DataPool,
which dereferences the DataBuffer in order to be garbage collected. This behavior
involves a lot of DataBuffer object creations and collections, with their correspon-
ding memory allocations and deallocations. Moreover, the default implementation
of DataBuffers relies on primitive byte arrays (i.e. byte[]) to contain the data, which
are initialized to a default value at the time of creation. In Flame-MR-GCop, the
behavior of the DataPool has been completely redesigned, using static memory al-
location in order to avoid the excessive creation of DataBuffers and to minimize
GC overheads.

The basic principle of static memory allocation is that once the memory has

70 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Figure 3.6: DataPool overview in Flame-MR-GCop

been allocated, it is reused by several operations, without neither releasing it nor
dereferencing the objects. Figure 3.6 depicts the new design of the DataPool, where
DataBuffers are managed by means of two different classes: LogicalBuffers and
MemoryBuffers. On the one hand, LogicalBuffers are associated with the data they
contain, which can be in memory or in disk. On the other hand, MemoryBuffers are
associated with the memory space that is allocated to them, each one containing a
byte array of a fixed size (1 MB by default). LogicalBuffers reference to Memory-
Buffers, using them to store the data from the operations. When a LogicalBuffer
is created by an operation, it requests a MemoryBuffer to the DataPool. If the
DataPool has a free MemoryBuffer available then it is returned, otherwise a new
one is created.

When the DataPool reaches the maximum number of buffers, it will not be able
to create a new one. Instead, the DataPool picks a LogicalBuffer from the list and
spills its corresponding MemoryBuffer to disk, giving it to the new LogicalBuffer.
The former LogicalBuffer keeps a reference to the disk file, retrieving the data when
an operation attempts to read its content. Finally, when a LogicalBuffer stops
being used, its MemoryBuffer is put back to the DataPool. In order to minimize the
number of data spills and recoveries, the DataPool chooses the victim LogicalBuffer
using a priority-aware schema, which uses one queue for each operation type that
creates the LogicalBuffers. These queues are ordered depending on the likelihood
of the LogicalBuffers to be requested back from disk. For example, LogicalBuffers
created in shuffle operations have the lowest priority, as they will have to wait until
the end of the map phase to be merged. Therefore, they are the first candidates

3.4 Memory management optimizations 71

to be spilled.

In Flame-MR, most of the Worker memory is held by the DataPool, and so
reusing MemoryBuffers reduces a high amount of memory allocations and dealloca-
tions. It also reduces the time taken to initialize the arrays when they are allocated,
as the MemoryBuffers are reused without being reinitialized. Instead, they are lazily
cleared by setting their writing position to zero. Moreover, both LogicalBuffers and
MemoryBuffers use the same DataBuffer interface in order to keep a good design
flexibility. MapReduce operations can therefore allocate buffers and operate the
data without having specific information about where they are stored.

Buffered map output

One of the main objectives of Flame-MR is to minimize the redundant memory
copies in operations like sort and merge. To this end, the key-value objects produced
by the map operations are kept in memory until being sorted, without writing
them to a temporary buffer. This behavior allows to reduce the memory copies
but can lead to scalability issues with very large problem sizes due to the high
amount of objects to be managed during garbage collection, causing long stalls.
In order to overcome these limitations, the writing of the map output has been
improved in Flame-MR-GCop by storing binary representations of the output pairs
to a temporary buffer. This avoids to keep the objects in memory and reduces the
garbage collection overhead, although it increases the number of memory copies.
Furthermore, the partitioning and sorting mechanisms have been carefully studied,
reassembling them for improved performance and scalability, as described next.

In Flame-MR-GCop, each mapper has a set of temporary buffers available for
writing the output. When a map operation produces an output key-value pair,
it is written to one of these buffers. Once a buffer is full, the output pairs are
sorted and sent through the network. The number of times this event is triggered
depends on how many temporary buffers are available for each mapper. Using one
single buffer for all partitions is likely to cause an excessive number of sorts, as the
buffer will be filled very quickly. However, having one buffer per partition is not a
feasible option due to its poor scalability (the number of partitions increases with
the number of computing nodes in the cluster). Therefore, the solution adopted in

72 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

(a) Partitioning

(b) Indexed sort

Figure 3.7: Map output example

Flame-MR-GCop is to arrange the partitions into a set of groups, calculated as a
configurable percentage of the available memory. Each group has an assigned buffer,
which contains the output pairs belonging to the partitions in that group. When
this buffer is full, the sorter is in charge of iterating the several partitions of the
group and sorting their corresponding pairs. Figure 3.7a shows an example of a pair
partitioning, calculating the partition group number and its associated temporary
buffer. The key-value pair <K4,V4> is in partition 9, which belongs to group 1. This
group contains those partitions Pi which meet the condition i mod #groups = 1,
which are P1, P5, P9, and so on.

Each partition has an associated index that keeps track of the positions where the
pairs are stored in the buffer. In the sort operation, this index is used for ordering
the positions by comparing the pairs in the buffer. No data objects are created in
this operation. Instead, the sort algorithm uses a binary comparison of the content
of the positions. Figure 3.7b shows an example of a sort operation. The index (I9) is
used to access the positions that contain pairs <K4,V4>, <K6,V6> and <K3,V3>.
Then, the index is sorted according to the order of the keys, K4 < K6 < K3. Finally,
the output pairs are copied to another buffer (S9) which will be used for sending the

3.4 Memory management optimizations 73

data to the corresponding Worker.

Experimental results

This section evaluates the optimizations described previously by comparing the
original version of Flame-MR and the optimized one (Flame-MR-GCop) using the
Sort benchmark. As the map and reduce functions do not perform any compu-
tation over the data, the results are only affected by the overall efficiency of the
MapReduce engine, which makes Sort a suitable benchmark for evaluating memory
optimizations. In order to avoid repetitive results, the optimizations have not been
assessed separately, thus focusing on the benefits that Flame-MR-GCop can provide
as a whole. Some early experiments have been carried out in order to assess the
indexed sort mechanism, which reduced up to 39% the longest Garbage Collection
Time (GCT) among the Workers compared to sorting the map output buffer by
creating all the objects. This provided some reductions in execution time, and so
the indexed sorting mechanism has been used in the next experiments. Regarding
the number of map output buffers, by default they occupy up to 40% of the available
Worker heap size. In the experiments, the corresponding number of buffers is higher
than the total number of partitions in the cluster, so each buffer has been assigned
to a single partition.

Table 3.3 shows the experimental results. The Execution Time (ET in the table)
represents the time taken by the workload to be completed. Due to the high variabi-
lity between experiments, the results include the minimum, median and maximum
ET. The corresponding GCT metric also shows great variability, and so several re-
sults are provided. The best and worst cases represent the Workers with the shortest
and longest GCT, respectively, while the total GCT represents the sum of the GCT
from all the 32 Workers (i.e. 8 slave nodes and 4 Workers per node, see Table 3.2).
The GCT of each Worker was obtained with jstat [118]. As can be seen, the me-
mory management improvements of Flame-MR-GCop obtain a much lower GCT
(best, worst and total) compared to the previous version. This is reflected on ET,
especially in the maximum case, which has an 85% reduction in total GCT and a
44% reduction in ET. Note that the worst GCT is the value that determines the
delay caused by GC overheads, since the fastest Workers will have to wait for the
slowest ones. The results show a clear correlation between the worst GCT and ET

74 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.3: Sort results for Flame-MR and Flame-MR-GCop
ET: Execution Time; GCT: Garbage Collection Time

ET GCT
Framework Minimum Best /Worst /Total

Flame-MR 864s 10s / 34s / 685s
Flame-MR-GCop 649s 3s / 7s / 119s

Median Best /Worst /Total

Flame-MR 1000s 12s / 36s / 782s
Flame-MR-GCop 744s 3s / 6s / 128s

Maximum Best /Worst /Total

Flame-MR 1454s 14s / 170s / 828s
Flame-MR-GCop 819s 3s / 5s / 124s

for Flame-MR, but not for Flame-MR-GCop. This means that the worst GCT of the
improved version does not have such a great impact on ET as in the previous version.

Figure 3.8 presents the evolution of memory usage over time. The graphs show
two scenarios: the Worker with the shortest GCT (Figures 3.8a and 3.8b) and the
longest GCT (Figures 3.8c and 3.8d) for the experiment with median ET, previously
shown in Table 3.3. The lines in these graphs depict different values related with me-
mory behavior, including the accumulated GCT along the execution of the Worker.
The JVM memory size shows the memory occupied by the Worker process, while the
heap usage shows the actual size of memory that is being used by Java objects. It can
be seen that Flame-MR-GCop (Figures 3.8b and 3.8d) presents a significantly lower
GCT than Flame-MR (Figures 3.8a and 3.8c), along with a more stable heap usage.
In Flame-MR, the heap usage has a great variability over time, as the DataBuffers
are created and dereferenced as needed. It can be observed that merge operations,
which begin at 240s approximately in both scenarios, cause the highest variability
in heap size, increasing the JVM size to its maximum value. This behavior is moti-
vated by the high amount of DataBuffers that each merge operation consumes and
produces, which also increases GCT, as shown in the graphs. In contrast, the heap
usage of Flame-MR-GCop has a low variability, with increasing values until a cer-
tain maximum. Once this maximum is reached, the heap usage does not decrease,

3.4 Memory management optimizations 75

Flame-MR Flame-MR-GCop

W
or

ke
r

w
it
h

sh
or

te
st

G
C
T

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 240 480 720 960 1200
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 240 480 720 960 1200
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(b)

W
or

ke
r

w
it
h

lo
n
ge

st
G

C
T

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 240 480 720 960 1200
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(c)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 240 480 720 960 1200
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(d)

Figure 3.8: GCT and memory usage over time for Flame-MR and
Flame-MR-GCop

as the DataBuffers are kept by the DataPool in order to be reused. The reuse of
DataBuffers also reduces the GCT, making the merge operations go unnoticed in
terms of memory activity compared with Flame-MR.

The results shown in this section demonstrate the impact of the GC overhead on
workload performance, as well as the effectiveness of the static memory allocation
and buffered map output techniques for reducing the GCT and thus the overall
execution time. Moreover, the variability on heap size is also significantly reduced.

76 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

3.4.2. Buffer type analysis

In Java, there are two basic ways of allocating memory for new objects: on-heap
and off-heap. On the one hand, on-heap memory is used by general objects and
classes, being always tracked and deleted if needed by the GC. On the other hand, off-
heap memory can be used for allocating buffers outside the Java heap (i.e. in native
memory), which avoids copying data from heap space to native memory during OS
calls (e.g. I/O operations). For storing bytes, which is the data type internally
used by Flame-MR, both kinds of memory can be allocated using the ByteBuffer
class provided by the JVM. ByteBuffer objects can then be used as the source and
destination of I/O system calls. The underlying memory type that is being used is
encapsulated by the ByteBuffer object, using the HeapByteBuffer subclass for on-
heap memory (wrapping a primitive byte array) and the DirectByteBuffer subclass
for off-heap memory (wrapping memory allocated outside the heap using a malloc-
like call). Although off-heap memory is out of the control of the GC (i.e. memory
buffers are never moved), DirectByteBuffer objects can be garbage collected. So, the
deallocation of off-heap memory is also performed during GC execution. This section
discusses the different alternatives for implementing MemoryBuffers, evaluating their
performance and their impact on garbage collection.

MemoryBuffer implementations

As introduced in Section 3.3.1, Flame-MR manages memory using buffers (Me-
moryBuffer objects). The underlying implementation of these buffers is abstracted
by the DataBuffer interface, and so their external behavior is separated from the
actual memory operations they perform. This feature allows the implementation of
several kinds of MemoryBuffers that allocate memory in different ways. By default,
MemoryBuffers use primitive byte arrays to store the data in the heap. Additionally,
two MemoryBuffer implementations have been developed in Flame-MR-GCop, using
HeapByteBuffers and DirectByteBuffers, respectively.

On the one hand, HeapByteBuffers operate over encapsulated primitive byte
arrays but also provide methods to extract them. This is useful to perform some
operations in Flame-MR, like binary comparisons, by working directly with the byte
array and overcoming certain limitations of the ByteBuffer interface. On the other

3.4 Memory management optimizations 77

Table 3.4: Sort results for different buffer types in Flame-MR-GCop
ET: Execution Time; GCT: Garbage Collection Time

ET GCT
Buffer type Minimum Best /Worst /Total

Byte array 649s 3s / 7s / 119s
HeapByteBuffer 681s 2s / 6s / 118s
DirectByteBuffer 649s 2s / 7s / 121s

Median Best /Worst /Total

Byte array 744s 3s / 6s / 128s
HeapByteBuffer 764s 3s / 5s / 117s
DirectByteBuffer 696s 2s / 11s / 130s

Maximum Best /Worst /Total

Byte array 819s 3s / 5s / 124s
HeapByteBuffer 855s 3s / 6s / 124s
DirectByteBuffer 779s 2s / 8s / 130s

hand, DirectByteBuffers can potentially reduce memory copies and improve the
performance of some I/O operations. However, DirectByteBuffers do not provide
any method to extract the underlying byte array, and so any data access must comply
with the ByteBuffer interface. Moreover, Hadoop libraries do not currently support
the use of ByteBuffers for writing data to HDFS, and so output operations performed
by Flame-MR have to use primitive byte arrays. While HeapByteBuffers allow
extracting the encapsulated arrays to perform these operations, DirectByteBuffers
must first copy their data to the heap. These issues make it difficult to determine
theoretically which MemoryBuffer implementation is the most suitable. The next
section analyzes the performance of the different alternatives.

Experimental results

The experiments to evaluate the three implementations of MemoryBuffers were
conducted in a similar way to those of Section 3.4.1. The ET and GCT results
of the Sort executions are shown in Table 3.4. Regarding ET, it can be seen that

78 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

DirectByteBuffers obtain better results than the other two alternatives. Although
the minimum ET is the same as with byte arrays, the median and maximum results
are better. As mentioned before, HeapByteBuffers behave as encapsulated byte
arrays, showing similar performance than these ones, plus the overhead of mana-
ging the actual ByteBuffer objects, which causes HeapByteBuffers to have a higher
ET. Moreover, the results do not show any clear correlation between GCT and
ET. Although DirectByteBuffers are the ones with slightly higher total GCT, the
differences are almost negligible.

The graphs of Figure 3.9 show the accumulated GCT, heap size and JVM size of
the Worker with the shortest and the longest GCT for the experiment with median
ET (see Table 3.4). As expected, these graphs do not show any significant variation
between byte arrays (Figures 3.9a and 3.9d) and HeapByteBuffers (Figures 3.9b
and 3.9e), as they are using the same kind of memory in the end. However, the
behavior of DirectByteBuffers (Figures 3.9c and 3.9f) greatly differs from them,
showing a smaller heap size and larger JVM size. The former is caused by the off-
heap allocation of DirectByteBuffers, which is obviously not reflected in the heap
size. Meanwhile, the additional copies needed for accessing the data from the heap
are responsible for the larger JVM size. The use of off-heap memory also reduces
the GCT during most of the computation time. However, the scenario of the Worker
with the longest GCT (Figure 3.9f) shows a remarkable characteristic, which is a
high amount of GCT consumed in a short period of time when reaching the end
of the workload. This is caused by the deallocation of off-heap buffers to make
room for on-heap ones, needed to write the final output to HDFS due to its API
incompatibility. When the off-heap MemoryBuffers are deleted from the DataPool,
the DirectByteBuffers stop being referenced, and so the GC collects them. The
deallocation of off-heap memory, included in this process, incurs a high performance
penalty, and so the GCT is affected.

The conclusion that can be extracted from these results is that off-heap buffers
generally obtain a better performance than on-heap alternatives. Although some
operations are more expensive when performed outside the heap (e.g. binary com-
parison), the improvement of I/O operations allows to get better overall results. Cur-
rently, the main issue about using DirectByteBuffers is the lack of an API method
for storing them to HDFS, which is expected to be overcome with future releases of

3.4
M
em

ory
m
anagem

ent
optim

izations
79

Byte array HeapByteBuffer DirectByteBuffer

W
or

ke
r

w
it
h

sh
or

te
st

G
C
T

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)
Time (s)

GCT Heap size JVM size

(a)

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(b)

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(c)

W
or

ke
r

w
it
h

lo
n
ge

st
G

C
T

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(d)

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(e)

 0

 2

 4

 6

 8

 10

 12

 0 180 360 540 720 900
 0

 2

 4

 6

 8

 10

 12

C
P

U
 T

im
e

 (
s
)

S
iz

e
 (

G
B

)

Time (s)

GCT Heap size JVM size

(f)

Figure 3.9: GCT and memory usage over time for the different DataBuffer implementations in Flame-MR-GCop

80 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Hadoop libraries.

3.4.3. Iterative support

In real use cases, most MapReduce applications are composed by more than a
single job, iterating several times over the input dataset to get a final result. Each
MapReduce job reads the output of the previous one and generates a new dataset,
until meeting a certain stop condition or reaching the maximum number of itera-
tions. Although iterative applications are very common, MapReduce frameworks
like Hadoop are not well suited for them. This is caused by the writing of interme-
diate results to HDFS and the high overhead of launching and finishing jobs, which
leads to poor performance of the overall workload.

Like Hadoop, the versions of Flame-MR discussed in the previous sections are
not oriented to iterative applications. This section focuses on how to improve the
performance of these applications, avoiding to write intermediate results to HDFS
by caching data in memory to minimize the use of disk and maximize in-memory
processing. Two steps have been carried out to achieve this objective: the use of
long-lived Workers and the implementation of a data cache.

Long-lived Workers

In each execution of a MapReduce job, Flame-MR starts one or more Workers
per computing node in the cluster. When the job finishes these Workers are stopped,
and hence they have to be restarted to launch the following job. In a similar way,
Hadoop starts a Java process for each mapper or reducer, and so each job also
involves the launching and stopping of multiple JVMs. Both approaches prevent
caching intermediate results in memory between iterations, as all in-memory data
are lost when the corresponding JVMs are finalized (i.e. all the output data have to
be written to HDFS). Therefore, the first requisite for implementing a data cache in
Flame-MR is to avoid stopping and restarting the Workers, reusing them through all
the MapReduce jobs performed during the execution of an application. This feature
also minimizes the overhead of launching new Worker processes for each job.

The proposed solution is to modify the way Workers are managed, avoiding the

3.4 Memory management optimizations 81

(a) Short-lived Workers (b) Long-lived Workers

Figure 3.10: Short-lived vs long-lived Workers

finalization of their JVMs when a MapReduce job is completed. Figure 3.10 depicts
the main differences between the previous behavior of Workers, called short-lived
Workers, and the new approach, long-lived Workers. On the one hand, short-lived
Workers (see Figure 3.10a) are started for executing a certain job, being stopped after
this job is finished. On the other hand, long-lived Workers (Figure 3.10b) are reused
several times. Instead of being started for running a job, these Workers are initialized
at the beginning of the MapReduce Driver (MR Driver in the figures). They keep
waiting until they receive a job launch message from the driver and execute the
corresponding MapReduce job. When the job finishes, they send a message back to
the driver and keep waiting for more jobs to run. When the application concludes,
the driver sends a message for stopping the Workers and releasing the computational
resources allocated to them.

The use of long-lived Workers is mandatory to implement a data cache. It also
improves the performance of iterative applications, reducing the overhead between
iterations by avoiding the costly initialization of new JVM processes in each job.
Furthermore, the internal structures of Flame-MR, such as DataPool and Thread-
Pool, are also reused along the entire application workflow, initializing them only
once. Note that this includes the costly allocation and initialization of Memory-
Buffers, already commented in Section 3.4.1.

82 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Figure 3.11: Data cache example

Data cache

Long-lived Workers can be configured to use a data cache in order to avoid the
writing of intermediate results to HDFS. When this feature is activated, each Worker
stores its output DataBuffers to an in-memory DataStructure, which is indexed in
the DataCache. Figure 3.11 illustrates the behavior of the DataCache with an
example of a cache hit. The output from several MapReduce jobs is tracked by
associating the output path of each one (Pathi) with its corresponding DataStructure
(Di), which contains a set of LogicalBuffers (Lj). When a new job starts, the Worker
reads the entries in the DataCache to check if the input path of the job is present.
In this example, the input data (D2) is read directly from the DataStructure stored
in the DataCache. Otherwise, the input data has to be read from HDFS. When the
job finishes, it adds its own output DataStructure (D4) to the DataCache, making
it available for future jobs. When the entire application finishes and the Worker
is stopped, the contents of the DataCache are flushed to HDFS making use of the
path information. After that, the dataset stored in HDFS is equivalent to the one
written by a non-cached execution of the application.

It is important to note that the output of a MapReduce job is often accessed by
the MR Driver before the entire application is completed. In fact, many iterative
applications perform different kinds of operations over the intermediate results, like
moving data from one path to another, deleting discarded results or reading some

3.4 Memory management optimizations 83

of them to check a stop condition. In these cases, the data cached by the Workers
would be unavailable for the MR Driver, causing either errors in the driver program
or incorrect results. Thus, the behavior of HDFS calls must be modified in order
to ensure the same results as in non-cached jobs. First, jobs create empty output
directories when finished, so the HDFS state from the point of view of the MR
Driver remains the same. The HDFS calls are then monitored during execution to
modify the content of the DataCaches accordingly. When the MR Driver attempts
to delete a path that is cached, its entry is removed and the DataBuffers are released.
When a path is moved, the corresponding entries change the associated path, with
no writings to HDFS. Finally, when the MR Driver attempts to read a dataset,
the Workers flush the content of the cached DataStructures to HDFS, filling the
empty output directories. After the data are available in HDFS, the corresponding
DataCache entries are removed and the MR Driver can then access data in the
standard way. This behavior ensures that the data of the output directory are
always entirely in memory or in HDFS, preventing any inconsistency in subsequent
jobs. However, in some cases, a MapReduce job can process data from HDFS and
the DataCache simultaneously, when the input is composed of several paths stored
in different places. As data are independently stored either in DataBuffers or HDFS
blocks, they can always be read and processed in parallel. Note also that HDFS
generally keeps several replicas of each data block as configured by the user, which
ensures the reliability of the intermediate results. Our current implementation of
the DataCache does not perform any replication, and so if a Worker is torn down,
it would mean the loss of all its intermediate results. Although the reliability of the
final results is ensured after writing them to HDFS, new fault tolerance mechanisms
are needed to avoid data loss in case of Worker breakdown, but reducing disk and
network overheads.

The approach described has some similarities with the one implemented in the
M3R framework [107], which uses a key-value pair cache through the execution of
in-memory iterative jobs. However, our implementation differs in the way data are
represented in memory, using instead a binary format to store the data in Data-
Buffers and thus reducing the overhead incurred by the GC tracking. Futhermore,
the data size can be higher than the available memory space, in which case Flame-
MR will spill some of the buffers to disk, while M3R can only work with in-memory
data and thus with a maximum data size.

84 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.5: Execution times for PageRank

Flame-MR Flame-MR-
GCop

Flame-MR-It-
NoCache

Flame-MR-It-
Cache

1895s 1429s 1176s 1060s

The optimizations explained in this section, long-lived Workers and the data
cache, have been integrated in Flame-MR-GCop, resulting in a new version called
Flame-MR-It. The following section analyzes the performance improvement ob-
tained with this iterative-aware version.

Experimental results

This section analyzes the performance and resource efficiency of the iterative
application PageRank. Although other iterative workloads have also been tested,
the results did not differ significantly from the ones obtained with PageRank, and so
they were not included in this section. Table 3.5 shows the median execution time
of the different versions of Flame-MR. In order to analyze the performance improve-
ment obtained by the use of the data cache, Flame-MR-It has been executed with
and without activating the cache (Flame-MR-It-Cache and Flame-MR-It-NoCache,
respectively). The results show that both configurations of Flame-MR-It reduce
significantly the execution time of PageRank with respect to the previous versions.
Using Flame-MR-GCop as baseline, Flame-MR-It-NoCache reduces the execution
time by 18%, while Flame-MR-It-Cache decreases it by 26%. Hence, most part of
the obtained improvement is because of the use of long-lived Workers. This reveals
that for this application the initialization of the Workers has a significant impact
on performance, being even more significant than the writing of the intermediate
results to HDFS (only 38 GB per iteration in this case), avoided by the use of the
data cache.

Figure 3.12 depicts the resource utilization statistics of Flame-MR and both
versions of Flame-MR-It. In terms of CPU usage, both Flame-MR-It versions show
lower values along the entire computation of the workload. This is caused by the
GC optimizations explained in Section 3.4.1, as well as by the reduction of the
initialization overhead between iterations. Furthermore, the activation of the data

3.4 Memory management optimizations 85

Flame-MR Flame-MR-It-
NoCache

Flame-MR-It-Cache

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Wait I/O System User

0 B

10 GB

20 GB

30 GB

40 GB

50 GB

60 GB

70 GB

 0 400 800 1200 1600 2000

M
e
m

o
ry

 u
ti
liz

a
ti
o
n

Time (s)

Swapped Free Used Cached

0 B

10 GB

20 GB

30 GB

40 GB

50 GB

60 GB

70 GB

 0 400 800 1200 1600 2000

M
e
m

o
ry

 u
ti
liz

a
ti
o
n

Time (s)

Swapped Free Used Cached

0 B

10 GB

20 GB

30 GB

40 GB

50 GB

60 GB

70 GB

 0 400 800 1200 1600 2000

M
e
m

o
ry

 u
ti
liz

a
ti
o
n

Time (s)

Swapped Free Used Cached

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

 0

 20

 40

 60

 80

 100

 0 400 800 1200 1600 2000

D
is

k
 u

ti
liz

a
ti
o
n
 (

%
)

Time (s)

Util

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

 0 400 800 1200 1600 2000

N
e
tw

o
rk

 t
ra

ff
ic

Time (s)

Recv Send

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

 0 400 800 1200 1600 2000

N
e
tw

o
rk

 t
ra

ff
ic

Time (s)

Recv Send

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

 0 400 800 1200 1600 2000

N
e
tw

o
rk

 t
ra

ff
ic

Time (s)

Recv Send

Figure 3.12: Resource utilization statistics of Flame-MR, Flame-MR-It-NoCache
and Flame-MR-It-Cache

86 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

cache has a direct effect on CPU usage, almost eliminating the CPU time waiting for
I/O. Regarding memory usage1, Flame-MR-It-NoCache takes further advantage of
the memory optimizations, avoiding the maximum and minimum peaks of Flame-
MR by means of the static DataBuffer allocation (see Section 3.4.1). The use of
long-lived Workers also improves memory usage by avoiding the release of the entire
JVM memory space each time a job is finished. Activating the data cache also
contributes to a more stable memory usage, as it avoids the increase of the memory
used by the OS buffer cache.

Both Flame-MR and Flame-MR-It-NoCache show high disk utilization in each
iteration of PageRank, reaching 100% values during several intervals of the workload.
Meanwhile, Flame-MR-It-Cache shows almost no disk utilization, as the interme-
diate results are neither written to nor read from HDFS. Regarding network traffic,
both Flame-MR and Flame-MR-It-NoCache show higher values than Flame-MR-It-
Cache. This is caused by the sending of data blocks through the network when they
are replicated according to the configured replication factor (3, see Table 3.2). As
Flame-MR-It-Cache does not write any intermediate results to HDFS, it only incurs
the traffic belonging to the shuffle phase. In conclusion, the use of the data cache
not only improves performance but also increases resource efficiency.

3.5. Conclusions

Hadoop is the most popular open-source MapReduce framework to handle Big
Data applications. Although the need for improving the performance of MapReduce
applications is steadily increasing, the high cost (or impossibility) of rewriting their
source code can make the adoption of new frameworks like Spark or Flink unfeasible.
In order to overcome this situation, this chapter has presented Flame-MR, a new
MapReduce framework that improves the performance of Hadoop without modifying
the source code of the applications. Flame-MR transparently replaces the internal
design of Hadoop with an event-driven architecture that optimizes the use of me-
mory and CPU resources, while also alleviating other performance bottlenecks such
as redundant memory copies and the overhead of object creation/destruction. Fur-

1Note that the label “Cached” refers to the OS buffer cache, not to the data cache of Flame-
MR-It-Cache

3.5 Conclusions 87

thermore, it pipelines the output of map and reduce phases to decrease disk usage
and improve the overlapping of data processing with disk and network operations.

Future systems are expected to have increasing memory sizes, which can be
challenging to current data processing frameworks. Thus, the impact of memory
efficiency on the performance of Flame-MR has been analyzed in depth, presenting
several memory optimization techniques that have been implemented and evaluated.
The obtained results have shown that these techniques can reduce the amount of
object allocations and deallocations, decreasing GC overheads and overall execution
times by 85% and 44%, respectively. Moreover, several memory buffer implemen-
tations have been analyzed, showing that direct byte buffers can improve the per-
formance of I/O-bound operations. Finally, the performance of iterative workloads
was improved by reusing Worker processes and caching intermediate data to avoid
unnecessary writes to HDFS, reducing execution times by 26%.

Chapter 4

Experimental analysis of Flame-MR
in cluster and cloud platforms

The previous chapter described the design and implementation of Flame-MR, as
well as some optimizations regarding the efficient use of memory resources for large-
scale data processing. This chapter evaluates the performance of Flame-MR at large
scale using different scenarios. First, the performance of Flame-MR is compared with
Hadoop and Spark when executing standard benchmarks in the Amazon EC2 cloud
platform [1]. The experimental results show significant performance benefits redu-
cing Hadoop execution times by up to 65%, while providing very competitive results
compared to Spark. Second, the performance improvement of real-world use cases
is analyzed by evaluating three MapReduce applications that are commonly used to
process large-scale datasets in different research areas. The experimental evaluation,
conducted in high performance clusters and the Microsoft Azure cloud [88], shows a
clear outperformance of Flame-MR over Hadoop. In most cases, Flame-MR reduces
the execution times by more than a half.

The chapter is organized as follows. Section 4.1 describes related works that eva-
luate the performance obtained by framework optimizations. Section 4.2 addresses
the evaluation of Flame-MR using standard benchmarks, while Section 4.3 analyzes
three different real-world use cases by performing an experimental evaluation for
each of them. Finally, Section 4.4 provides the main conclusions extracted from the
results.

89

90 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

4.1. Related work

As commented in Section 3.2, many papers in the literature have compared the
performance benefits of using the MapReduce model with different data processing
engines (e.g. NativeTask [141]), file systems (e.g. MARIANE [36]), and network
interconnects (e.g. RDMA-Hadoop [132]). These papers generally execute popular
Big Data benchmarks like TeraSort or K-Means. The use of these benchmarks
allows to compare more easily the benefits of the different optimizations, although
they are affected by the experimental testbed that is being used in each specific
case. However, the sole use of these results makes it difficult to determine the actual
performance benefit that a user can obtain when replacing Hadoop with any of the
optimized alternatives.

Regarding large-scale applications employed in real use cases, their optimization
is often performed by translating their source code to a more efficient computing
paradigm. For example, Kira [148] is a distributed astronomy image processing
toolkit implemented on top of Spark. It can obtain a 3.7× speedup on the Amazon
EC2 cloud over an equivalent parallel implementation written in C and running on
the GlusterFS file system. A similar approach has been employed in [55] to adapt
high energy physics workflows to Spark, obtaining improved usability and perfor-
mance when compared to other existing sequential implementations like ROOT [18].
Although these works prove to accelerate the execution of real-world applications,
a considerable effort is required to translate existing applications and libraries to a
new computing paradigm.

Some other works use these applications to determine the performance bene-
fits of framework optimizations. For example, the Kira toolkit is used in [116]
to evaluate RDMA-Spark [79], which improves the results of standard Spark with a
1.21× speedup. In the case of Hadoop, the authors of OEHadoop [115] evaluate their
proposal by simulating a Facebook job trace extracted from the SWIM project [22].
OEHadoop, which offloads data replication to a low-level optical multicast system,
obtains better performance than the original Hadoop, although the results provided
are extracted from simulations and not from empirical data.

One of the most important requirements that framework optimizations must
meet is portability, as the same MapReduce application is likely to be executed

4.2 Performance comparison with Hadoop and Spark in the cloud 91

in many different systems. This makes Flame-MR a good candidate to improve
performance by leveraging memory resources, as it has been specifically designed to
accelerate applications in a transparent and portable way.

4.2. Performance comparison with Hadoop and Spark
in the cloud

This section presents an experimental evaluation of Flame-MR in the cloud com-
pared to popular Big Data processing frameworks. The goal is to obtain performance
evaluation results of the original version of Flame-MR described in Section 3.3, as
well as to determine the benefits of the memory-enhanced and iterative-aware ver-
sions described in Section 3.4 (i.e. Flame-MR-It).

First, Section 4.2.1 compares Flame-MR-It with the de-facto standard MapRe-
duce implementation, Hadoop [8], assessing the impact of managing memory in a
more efficient way when executing representative MapReduce workloads at a suffi-
ciently large scale. This evaluation takes into account both performance and resource
utilization metrics, also including the results for the original version of Flame-MR in
order to determine the improvement achieved by all the optimizations presented in
Section 3.4. Then, Section 4.2.2 analyzes the performance benefits of using Flame-
MR-It compared to a state-of-the-art in-memory framework, Spark [145]. Note that
both frameworks are oriented to improve the performance of Hadoop. Hence, com-
paring them is useful to determine the performance gain that Flame-MR-It provides,
unlike Spark, without modifying the source code of existing MapReduce applications.

The experiments have been carried out in a public cloud infrastructure, Amazon
EC2 [1], which is the most popular Infrastructure as a Service (IaaS) platform. In
order to evaluate the behavior of the frameworks under different memory configu-
rations, two Amazon EC2 instance types have been used: c3.4xlarge and i2.4xlarge,
which were allocated in the US East (North Virginia) region. Table 4.1 contains
the main hardware and software characteristics of both instances, as advertised by
Amazon. As can be seen, the memory size of c3.4xlarge is 30 GB, while i2.4xlarge
has 122 GB. The wide difference in terms of memory between these instances is
of great interest to study the performance of the frameworks when running in a

92 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Table 4.1: Node characteristics of Amazon EC2 instances

Hardware configuration

c3.4xlarge i2.4xlarge

CPU model 2 × Intel Xeon E5-2680 v2
(Ivy Bridge-EP)

2 × Intel Xeon E5-2670 v2
(Ivy Bridge-EP)

CPU Speed (Turbo) 2.80 GHz (3.60 GHz) 2.50 GHz (3.30 GHz)
#Cores 16 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 25 MB 32 KB / 256 KB / 25 MB
Memory 30 GB DDR3 1600 MHz 122 GB DDR3 1600 MHz
Disk 2 × 160 GB SSD 4 × 800 GB SSD
Network Gigabit Ethernet Gigabit Ethernet

Software configuration

c3.4xlarge / i2.4xlarge

OS version Amazon Linux AMI 2016.09
Kernel 4.4.19-29.55
Java OpenJDK 1.7.0_111
Scala 2.10.6

more memory-constrained system (i.e. c3.4xlarge) compared to i2.4xlarge instan-
ces, allowing to analyze the impact of memory management under different system
configurations. Furthermore, i2.4xlarge instances also provide more local storage: 4
SSD disks of 800 GB vs. 2 SSD disks of 160 GB for c3.4xlarge. However, note that
the CPU speed of c3.4xlarge is slightly higher, which may improve the performance
of CPU-bound workloads. The experiments were run on a 33-instance cluster (i.e.
1 master and 32 slaves).

Several benchmarks have been analyzed by using BDEv: WordCount, Sort, Page-
Rank, Connected Components and K-Means. In the experiments, WordCount and
Sort processed a 500 GB dataset, while PageRank and Connected Components per-
formed 5 iterations over a 40 GB dataset (60 Mpages). K-Means processed an input
dataset of 130 GB (3 Gsamples), using 10 clusters and performing a maximum of
5 iterations. The metric shown in the graphs is the mean value of 10 measurements

4.2 Performance comparison with Hadoop and Spark in the cloud 93

for each experiment, clearing the OS buffer cache between each execution.

Finally, the evaluated frameworks have been Hadoop 2.7.2, Spark 1.6.3, the
original version of Flame-MR and its optimized version, Flame-MR-It. The latter
has been configured to use the data cache in the iterative benchmarks (PageRank,
Connected Components and K-Means), and byte arrays as the underlying imple-
mentation for DataBuffers. In order to provide the best results for each framework,
their configuration, shown in Tables 4.2 and 4.3, has been carefully adapted to the
characteristics of the instances, adjusting some of the parameters (e.g. DataBuffer
size) by experimental tuning.

4.2.1. Comparison with Hadoop

Figures 4.1a and 4.1b show the execution times when using c3.4xlarge and
i2.4xlarge instances, respectively. Note that the results of K-Means with Flame-
MR are not included as the original version did not provide support for Mahout
workloads. As can be observed, Flame-MR-It significantly outperforms Hadoop
with an average improvement of 32% and 48% in c3.4xlarge and i2.4xlarge, res-
pectively. These results confirm that Flame-MR-It presents a significantly better
performance than Hadoop, especially when using large memory sizes as the im-
provements are higher as the memory of the instances increases. The only case in
which Hadoop obtains a similar performance to Flame-MR-It is when running Word-
Count in c3.4xlarge. This is caused by the high amount of Java objects created by
the user-defined map function, which affects the performance in memory-constrained
systems, as the GC has to perform a lot of collections to make room for new objects.
The results also show the significant performance improvement of Flame-MR-It over
Flame-MR, demonstrating the effectiveness of the in-memory techniques developed.

Note that the choice of the instance type has a significant impact on the perfor-
mance of the frameworks. The benchmarks that are influenced the most are Word-
Count and Sort. In fact, Hadoop and Flame-MR obtain lower execution times for
WordCount in c3.4xlarge than in i2.4xlarge. This means that, for this benchmark,
both frameworks are clearly constrained by the CPU power, and the larger memory
and better disk features of i2.4xlarge do not compensate for its lower CPU speed
(see Table 4.1). However, Flame-MR-It is not affected by this problem, achieving

94 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Table 4.2: Configuration of Hadoop and HDFS in Amazon EC2

Hadoop

c3.4xlarge i2.4xlarge

Mappers per node 8 8
Reducers per node 8 8
Mapper/Reducer heap size 1.7 GB 6.33 GB
IO sort MB 380 MB 1.58 GB
Shuffle parallel copies 20 20
IO sort spill percent 80% 80%

HDFS

c3.4xlarge / i2.4xlarge

HDFS block size 128 MB
Replication factor 3

Table 4.3: Configuration of Flame-MR and Spark in Amazon EC2

Flame-MR / Flame-MR-It

c3.4xlarge i2.4xlarge

Workers per node 4 4
ThreadPool size 4 4
Worker heap size 5.4 GB 22.8 GB
DataPool size 3.3 GB 15.2 GB
DataBuffer size 512 KB / 128 KB 1 MB / 256 KB

Spark

c3.4xlarge i2.4xlarge

Executor heap size 23.8 GB 101.3 GB
Executors per node 1 1
Executor cores 16 16

4.2 Performance comparison with Hadoop and Spark in the cloud 95

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-It

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-It

(a) c3.4xlarge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-It

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-It

(b) i2.4xlarge

Figure 4.1: Execution times of Hadoop, Flame-MR and Flame-MR-It in
Amazon EC2

for WordCount better performance in i2.4xlarge than in c3.4xlarge. This indicates
that Flame-MR-It obtains a higher benefit than Hadoop from the use of large me-
mory sizes, without being penalized by the CPU speed. Regarding Sort, it is the
benchmark that shows the most important benefit from using i2.4xlarge. Sort is an
I/O-bound workload, so this improvement can be clearly attributed to the higher
number of disks provided by i2.4xlarge (4 disks), which improves the bandwidth
of I/O operations, along with more memory space (122 GB), allowing the frame-
works to retain more data in memory without spilling them to disk. As in the case of
WordCount, Flame-MR-It benefits more than Hadoop from the use of i2.4xlarge ins-
tances, which means that the Flame-MR architecture together with the in-memory
techniques presented in Section 3.4.1 are more suited to systems with larger memory
sizes.

Finally, PageRank, Connected Components (ConComp in the figures) and K-
Means are iterative applications, and so their performance is determined by the
behavior within each iteration and between iterations. Hence, Flame-MR-It not only
improves the execution time of each iteration due to its memory optimizations, but
also reduces the overhead between iterations (e.g. launching of Worker processes)
by means of the techniques explained in Section 3.4.3: reusing the Worker processes
and avoiding to write intermediate results to HDFS by caching data in memory.

The resource utilization of Hadoop and Flame-MR-It can be useful to analyze
their behavior in the c3.4xlarge and i2.4xlarge instances. As previously commented,

96 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Hadoop Flame-MR-It

c3
.4

xl
ar

ge

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

D
is

k
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Util

(a)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200
D

is
k
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Util

(b)

i2
.4

xl
ar

ge

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

D
is

k
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Util

(c)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

D
is

k
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Util

(d)

Figure 4.2: Disk utilization of Hadoop and Flame-MR-It for Sort

Sort was the benchmark which showed wider performance differences between both
instance types. Therefore, it has been selected for analyzing the resource utilization
of both frameworks, calculated as the average values among the slave nodes during
the experiment with the median execution time. The disk and memory utilization
results are shown in Figures 4.2 and 4.3, respectively.

As can be observed in Figure 4.2, the disk constitutes the main performance
bottleneck in c3.4xlarge (see Figures 4.2a and 4.2b), while the larger memory size and
higher number of disks provided by i2.4xlarge alleviate the load per disk (Figures 4.2c
and 4.2d). This, in turn, accelerates the completion of the benchmark by 2.32×
and 2.60× for Hadoop and Flame-MR-It, respectively. In c3.4xlarge, Flame-MR-It
presents lower disk utilization than Hadoop along the entire execution thanks to its
better in-memory computing capabilities.

4.2 Performance comparison with Hadoop and Spark in the cloud 97

Hadoop Flame-MR-It

c3
.4

xl
ar

ge

0 B

5 GB

10 GB

15 GB

20 GB

25 GB

30 GB

35 GB

 0 200 400 600 800 1000 1200

M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Time (s)

Swapped Free Used Cached

(a)

0 B

5 GB

10 GB

15 GB

20 GB

25 GB

30 GB

35 GB

 0 200 400 600 800 1000 1200

M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Time (s)

Swapped Free Used Cached

(b)

i2
.4

xl
ar

ge

0 B

20 GB

40 GB

60 GB

80 GB

100 GB

120 GB

140 GB

 0 100 200 300 400 500

M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Time (s)

Swapped Free Used Cached

(c)

0 B

20 GB

40 GB

60 GB

80 GB

100 GB

120 GB

140 GB

 0 100 200 300 400 500

M
e

m
o

ry
 u

ti
liz

a
ti
o

n

Time (s)

Swapped Free Used Cached

(d)

Figure 4.3: Memory utilization of Hadoop and Flame-MR-It for Sort

Regarding memory utilization, Figures 4.3a and 4.3c show that Hadoop hea-
vily relies on the OS buffer cache to accelerate I/O operations, which matches with
the high disk utilization values commented before. Meanwhile, Flame-MR-It (Figu-
res 4.3b and 4.3d) keeps lower buffer cache values by avoiding disk access as much
as possible and retaining more data in the Workers’ memory. This feature allows
Flame-MR-It to have more memory space available to be used even in memory-
constrained systems like c3.4xlarge instances.

4.2.2. Comparison with Spark

Figure 4.4 shows the performance results of Hadoop, Spark and Flame-MR-It.
As can be seen, the best performer depends on the workload being executed. On the

98 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Spark

Flame-MR-It

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Spark

Flame-MR-It

(a) c3.4xlarge

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Spark

Flame-MR-It

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

WordCount Sort PageRank ConComp K-Means

T
im

e
 (

s
)

Hadoop
Spark

Flame-MR-It

(b) i2.4xlarge

Figure 4.4: Execution times of Hadoop, Spark and Flame-MR-It in Amazon EC2

one hand, WordCount obtains the lowest execution times with Spark. This is due to
the better suitability of the in-memory data structures of Spark to CPU-bound work-
loads like this one, combined with the use of efficient data processing operators like
the reduceByKey() function. On the other hand, Flame-MR-It obtains the best re-
sults for Sort, mainly because of the great data sorting capabilities of the MapReduce
model together with the optimized memory and GC management for large datasets
provided by Flame-MR-It. Regarding iterative workloads, PageRank, Connected
Components and K-Means also differ on the best framework to use. The in-memory
optimizations of Flame-MR-It prove to be highly efficient for PageRank, reducing
the execution time of Spark by 35% and 20% in c3.4xlarge and i2.4xlarge, respecti-
vely. However, Spark obtains better performance than Flame-MR-It for Connected
Components and K-Means. This is due to the use of its built-in graph processing
engine, GraphX, and its machine learning library, MLlib, that fully leverage the
in-memory data operators of Spark. Note that the Spark implementation of these
iterative workloads can use in-memory data to check convergence at the end of each
iteration, whereas the Hadoop implementation used by Flame-MR-It must read the
data from HDFS to perform this task, thus incurring additional network and disk
overhead in the MR Driver.

In order to provide more information about the performance differences of Spark
and Flame-MR-It, their resource utilization has been analyzed. The results of Page-
Rank and Connected Components are especially relevant because of the wide perfor-
mance differences they show, taking into account that they process the same input

4.2 Performance comparison with Hadoop and Spark in the cloud 99

Spark Flame-MR-It

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Wait I/O System User

(a)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Wait I/O System User

(b)

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

 0 200 400 600 800 1000

N
e

tw
o

rk
 t

ra
ff

ic

Time (s)

Recv Send

(c)

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

 0 200 400 600 800 1000

N
e

tw
o

rk
 t

ra
ff

ic

Time (s)

Recv Send

(d)

Figure 4.5: CPU utilization and network traffic for PageRank in i2.4xlarge

dataset using different graph algorithms. Figures 4.5 and 4.6 depict the CPU utiliza-
tion and network traffic of PageRank and Connected Components, respectively, for
i2.4xlarge instances. Although disk and memory utilization have also been analyzed,
the disk traffic is almost negligible during the entire execution of both frameworks
(below 14%). The main difference in the memory utilization is that Spark consumes
62% and 25% more memory than Flame-MR-It for PageRank and Connected Com-
ponents, respectively. Apart from that, both frameworks show the same pattern
that does not bring any meaningful insight. Therefore, disk and memory utilization
graphs are not shown for clarity purposes.

The iterative behavior of both Spark and Flame-MR-It for PageRank can be
clearly seen in Figure 4.5. The CPU utilization peaks correspond with the jobs
performed during the workload (see Figures 4.5a and 4.5b). Network traffic also

100 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Spark Flame-MR-It

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

Wait I/O System User

(a)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500
C

P
U

 u
ti
liz

a
ti
o

n
 (

%
)

Time (s)

Wait I/O System User

(b)

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

 0 100 200 300 400 500

N
e

tw
o

rk
 t

ra
ff

ic

Time (s)

Recv Send

(c)

0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

 0 100 200 300 400 500

N
e

tw
o

rk
 t

ra
ff

ic

Time (s)

Recv Send

(d)

Figure 4.6: CPU utilization and network traffic for Connected Components in
i2.4xlarge

shows similar peaks of activity that belong to the data shuffling within each job
(Figures 4.5c and 4.5d). Note that Flame-MR-It shows a gap without activity at
the beginning of the workload (Figure 4.5b), which is due to the data initialization
performed by the MR Driver in PageRank. Regarding Connected Components, it
can be seen that the iterative behavior of the workload is present in Flame-MR-It
(Figures 4.6b and 4.6d) but is not so clear in Spark (Figures 4.6a and 4.6c). As
previously commented, the optimized GraphX library leverages the Spark opera-
tions in a more efficient way than the MapReduce counterpart, thus benefiting from
improved operation scheduling and in turn better performance. Another remark is
that the best performer is the one with the highest network traffic: Flame-MR-It
for PageRank (Figure 4.5d) and Spark for Connected Components (Figure 4.6c).
Therefore, network bandwidth is not a performance bottleneck for any of these

4.3 Applicability study: optimization of real-world use cases 101

workloads.

As a summary, the average performance improvement that Spark and Flame-MR-
It obtain, compared to Hadoop, is 63% and 48%, respectively, when using i2.4xlarge
instances. These results confirm the overall efficiency of our memory optimizations,
as Flame-MR-It can transparently improve the performance of MapReduce work-
loads, while providing competitive results compared to Spark. Using one or another
to improve the performance of an existing MapReduce application would depend on
the particular workload characterization and the willingness of the user to modify
the source code (if available).

4.3. Applicability study: optimization of real-world
use cases

The previous section has evaluated the performance benefits provided by Flame-
MR when executing standard benchmarks. These are synthetic workloads that do
not always reflect the characteristics of the applications executed in real-world use
cases. Hence, this section selects three MapReduce applications that are commonly
used to process large-scale datasets, analyzing their MapReduce implementations
and describing how Flame-MR adapts to the characteristics of each one. The per-
formance comparison between Flame-MR1 and Hadoop analyzes the benefits for
each specific use case.

4.3.1. VELaSSCo: data visualization queries

VELaSSCo [74] is a Big Data visualization architecture that relies on the MapRe-
duce model to extract information from simulation datasets. This section first
provides more details of this project and describes the main characteristics of the
MapReduce workloads. Next, the main challenges of running these workloads with
Flame-MR are explained, analyzing its benefits by presenting the experimental con-
figuration and performance results. Finally, some concluding remarks are provided.

1As Flame-MR-It has shown better performance and resource utilization in the previous section,
this version is evaluated in this section relabeled as “Flame-MR”.

102 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Overview

VELaSSCo is a query-based visualization framework that aims at providing users
with a tool to manipulate and visualize large simulation datasets. These datasets are
generated by large parallel simulations relying on Finite Element Methods (FEM)
or Discrete Element Methods (DEM). For both methods the simulation updates
the properties of the nodes (FEM) or particles (DEM) at each time step. The
user runs a 3D visualization client to request the execution of specific visualization
algorithms on given parts of the data. The query is sent to the VELaSSCo cluster
and translated into a Hadoop job that queries the input data and performs the
expected data transformation. The result is sent back to the client for the final 3D
rendering and display. The VELaSSCo architecture can be decomposed into three
subsystems: client, analytics and storage, described next.

The client subsystem provides data visualization to the user, generating a new
query when the user performs an action. Each query has a certain type depending
on the action performed by the user. Analytical queries are the ones that require to
extract some information from the dataset by means of a MapReduce workload (e.g.
calculating the bounding box of a model). The analytics subsystem is in charge
of receiving these queries and determining the computation needed to complete
each one. That computation is performed by a MapReduce workload on a Hadoop
cluster. The workloads employed in VELaSSCo consist of a single MapReduce job
that typically operates over a subset of the dataset (a few simulation time steps for
instance). Finally, the data persistence is performed by the storage subsystem. This
subsystem employs HDFS to distribute the data among the computing nodes of the
cluster. It also relies on HBase [9], a database system on top of HDFS, to allow
the extraction of parts of the dataset without reading it entirely. This optimizes
the amount of I/O operations needed to perform the computations. Instead of
searching the relevant data through the entire dataset, the MapReduce workload
uses the key-value format provided by HBase to fetch the required elements. The
indexed system used in HBase accelerates the retrieving operation by avoiding the
reading of unnecessary data.

As VELaSSCo is a real-time visualization platform, the performance of the ac-
tions executed by the user is crucial to ensure an appropriate user experience. Howe-

4.3 Applicability study: optimization of real-world use cases 103

ver, Hadoop is not able to achieve this goal when dealing with large-scale datasets.
This use case focuses on the acceleration of the queries used in the analytics sub-
system of VELaSSCo by using Flame-MR.

MapReduce implementation

We list below the main analytical queries included in VELaSSCo:

• GetBoundingBoxOfAModel (BB): Computes the spatial bounding box for the
selected dataset, i.e the min and max coordinate of the enclosed elements in
the x, y and z dimensions.

• GetBoundaryOfAMesh (BM): Computes the set of elements that are at the
boundary of the selected mesh, i.e. the surface given by the triangles belonging
to only one mesh cell.

• GetListOfVerticesFromMesh (LVM): Obtains a list of identifiers (IDs) of the
elements contained in a mesh.

• GetMissingIDsOfVerticesWithoutResults (MIV): Obtains the IDs of those mesh
elements that do not contain any simulation result.

• GetSimplifiedMesh (SM): Obtains a simplified version of the mesh model, re-
ducing the total dataset size by combining nearby elements.

As previously mentioned, these queries are performed by MapReduce workloads
that are composed of a single job. All jobs extract the input data from HBase,
selecting the relevant elements according to the information provided by the user. To
read the data, the MapReduce implementation is based on a custom input formatter
provided by HBase, which is used by the mappers to iterate over the entries allocated
to them. Once the output of the job is calculated, it is converted to text files and
stored in HDFS in order to be accessible by the client.

The implementation of each query includes the definition of the map and reduce
functions. These functions use custom data types defined in VELaSSCo, which
implement the Writable interface required for data serialization. So, map and reduce
functions are configured to use these data types when reading and writing data.

104 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Challenges

The use of Flame-MR to optimize the VELaSSCo queries must take into account
the characteristics that differ from standard Hadoop jobs. In particular, reading
input data from HBase and using custom data types must be handled correctly to
avoid incompatibility problems. This section describes how they are supported in
Flame-MR.

Flame-MR is oriented to processing large textual datasets stored in HDFS, which
is a common use case in MapReduce applications. Therefore, the reading of input
data has been designed to make the common case fast. When launching a map
operation, Flame-MR connects to HDFS and reads a full input split (e.g. 256 MB)
to memory by copying the data to a set of medium-sized DataBuffers (e.g. 1 MB)
allocated in the DataPool, as explained in Section 3.3.1. Once the input split is
read, the connection to HDFS is closed and the DataBuffers are parsed in memory
to obtain the input pairs and feed the mappers.

The in-memory parsing mechanism of Flame-MR is only possible when the input
dataset is stored in HDFS in textual format. For other formats, the data source is
unknown, and the software interface defined by Hadoop only allows reading the
input pairs one by one. Therefore, copying an input split entirely to memory is not
allowed and the reading of input data needs to be addressed differently. That is the
case of VELaSSCo, which reads the data from HBase. When a map operation is
launched in Flame-MR, the input formatter connects to the HBase server to read
the data contained in the input split. Then, the map operation uses the interfaces
provided by the input formatter class to read the input pairs, passing them to the
user-defined map function. By doing this, the correct functioning of the queries is
ensured. Note that this behavior can be extrapolated to any formatter class.

The use of custom data objects in VELaSSCo has also implications for Flame-
MR. This happens because Flame-MR modifies the behavior of primitive Hadoop
data types, like text and numerical types, in order to optimize read and write ope-
rations (see Section 3.3.1). These modifications include the use of in-memory ad-
dressing of serialized data to avoid the creation of data objects in sort and copy
operations. When a key-value pair is stored in a DataBuffer, a header is added to
indicate the pair and key lengths, which will be used to read data without creating

4.3 Applicability study: optimization of real-world use cases 105

(a) Primitive types

(b) Writable objects

Figure 4.7: Data object serialization in Flame-MR

the objects. Therefore, the implementation of primitive data types in Flame-MR is
extended with additional methods to obtain the length of data objects before wri-
ting them to the buffer. As VELaSSCo implements specific data objects inside each
query, Flame-MR must adapt its behavior to comply with the standard Writable
interface, which does not provide any information about the length of the objects.

The serialization mechanism of Hadoop primitive data types in Flame-MR is
shown in Figure 4.7a. The pair and key length are calculated before writing the key-
value pair to the buffer. To obtain the same results with custom Writable objects,
Flame-MR performs the mechanism shown in Figure 4.7b. Pair and key lengths are
unknown beforehand, so their positions must be skipped, writing the key-value pair
after them. Once the data has been written, the lengths are calculated according to
the writing position after copying the key-value pair. The lengths are then written
by going backwards on the DataBuffer to the original position. This mechanism
ensures compatibility with all types of Writable objects, while maintaining the in-
memory optimizations of Flame-MR.

106 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Experimental configuration

Next, we will describe the experimental testbed used in the comparison between
Hadoop and Flame-MR when executing the VELaSSCo queries. The experiments
have been conducted in the Grid’5000 infrastructure [50]. Two cluster sizes (n) have
been used: 17 and 25 nodes with 1 master and n-1 slaves. These nodes are equipped
with 2 Intel Haswell-based processors with 8 physical cores each (i.e. 16 cores per
node), 128 GB of memory and 2 local disks of 558 GB each (see Table 4.4 for more
details). The experiments have used HBase 1.2.4, Hadoop 2.7.3 and Flame-MR 1.1.
The configuration of the frameworks has been carefully set up by following their user
guides, taking into account the characteristics of the systems (e.g. number of CPU
cores, memory size). The most important parameters of the resulting configuration
are shown in Table 4.5.

The VELaSSCo queries used in the evaluation are the ones described previously.
The input dataset has been extracted from a FEM simulation that represents the
wind flow in the city of Barcelona with an eight-meter resolution. This dataset has
12,089,137 vertices and occupies 367 GB. For each query, the median elapsed time
of 10 executions was calculated, although the standard deviations observed were not
significant.

Performance results

Figures 4.8a and 4.8b show the execution times of VELaSSCo queries using
17 and 25 nodes, respectively. Flame-MR widely outperforms Hadoop with both
cluster sizes, showing an average reduction in execution time of 87% with 17 nodes
and 88% with 25 nodes. This reduction is due to the more efficient architecture of
Flame-MR, which can better leverage the memory and CPU resources of the system.
Note that each Worker process in Flame-MR can schedule multiple map and reduce
operations, allocating them to the cores available as they become idle. Therefore, the
Worker can use the same HBase connection for all map operations. Instead, Hadoop
allocates a single Java process to each map and reduce task, and so it creates an
HBase connection for each one, increasing the overhead. This enables Flame-MR to
process more HBase requests per time unit compared to Hadoop, which is reflected
in the information counters provided by HBase.

4.3 Applicability study: optimization of real-world use cases 107

Table 4.4: Node characteristics of Grid’5000

Hardware configuration

CPU model 2 × Intel Xeon E5-2630 v3 (Haswell)
CPU speed (Turbo) 2.40 GHz (3.20 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 128 GB DDR4 2133 MHz
Disk 2 × 558 GB HDD
Network 4 × 10 Gbps Ethernet

Software configuration

OS version Debian Jessie 8.5
Kernel 3.16.0-4
Java Oracle JDK 1.8.0_121

Table 4.5: Configuration of the frameworks in Grid’5000

Hadoop HDFS

Mapper/Reducer heap size 7.25 GB HDFS block size 256 MB
Mappers per node 8 Replication factor 3
Reducers per node 8
Shuffle parallel copies 20
IO sort MB 1600 MB
IO sort spill percent 80%

Flame-MR

Workers per node 2
ThreadPool size 8
Worker heap size 44 GB
DataPool size 30.8 GB
DataBuffer size 1 MB

108 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

 0

 100

 200

 300

 400

 500

BB BM LVM MIV SM

T
im

e
 (

s
)

VELaSSCo query

Hadoop
Flame-MR

 0

 100

 200

 300

 400

 500

BB BM LVM MIV SM

T
im

e
 (

s
)

VELaSSCo query

Hadoop
Flame-MR

(a) 17 nodes

 0

 100

 200

 300

 400

 500

BB BM LVM MIV SM

T
im

e
 (

s
)

VELaSSCo query

Hadoop
Flame-MR

 0

 100

 200

 300

 400

 500

BB BM LVM MIV SM

T
im

e
 (

s
)

VELaSSCo query

Hadoop
Flame-MR

(b) 25 nodes

Figure 4.8: Execution times of VELaSSCo queries with Hadoop and Flame-MR

Remarks

This section addressed the optimization of analytical queries used to process
datasets stored in HBase. These queries implement custom input formats and data
types by using the class interfaces provided by Hadoop. Flame-MR is able to adapt
to these characteristics without hindering the optimizations implemented in its un-
derlying in-memory architecture. Using Flame-MR, the performance of the queries
is improved by almost one order of magnitude, enhancing the user experience of
VELaSSCo.

4.3.2. CloudRS: error removal in genomic data

This section addresses the optimization of CloudRS [21], a bioinformatics tool
that detects and corrects errors in large genomic datasets. First, an overview of
the purpose of CloudRS is presented and the main characteristics of its MapReduce
implementation are provided. Next, the challenges of using Flame-MR to optimize
its performance are introduced, presenting also the experimental configuration and
performance results. Finally, the last part of the section extracts some conclusions
from this practical use case.

4.3 Applicability study: optimization of real-world use cases 109

Overview

The datasets generated by Next Generation Sequencing (NGS) platforms are
composed of a large number of DNA sequence fragments, which are small pieces
of genomic information contained in a string of characters (called reads). Each
character of a read represents a DNA base, namely Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T). The analysis of these datasets is performed by
processing the sequences and identifying relationships between them.

During the generation of genomic datasets, NGS sequencers often introduce er-
rors by placing incorrect bases in the reads. This can affect the quality of the results
obtained by downstream analysis, and so it is usually minimized by introducing an
error correction phase in the preprocessing stage of the NGS pipeline. In fact, this
is a critical step in NGS workflows like de novo genome assembly or DNA resequen-
cing. CloudRS is a popular tool for performing this preprocessing task, being based
on the ReadStack (RS) algorithm [47]. This algorithm makes use of the characteris-
tics of NGS datasets to identify common patterns in the sequences and correct the
mismatching ones.

The DNA sequences that compose a dataset are not necessarily disjoint, as they
can share information due to the overlap of reads performed by the sequencer.
CloudRS takes advantage of this characteristic to identify redundant information
in the sequences and correct errors in the bases. First, it splits each sequence into
several subsequences. Second, it compares the different candidates for each subse-
quence, choosing the one that appears most of the times.

CloudRS is implemented with the MapReduce model by operating over datasets
stored in HDFS. As it is a common step in large NGS workflows, its performance
is crucial to obtain the results of the analysis in a reasonable time. For that rea-
son, it has been chosen to be optimized with Flame-MR. Further details about its
implementation are provided in the next section.

MapReduce implementation

CloudRS is an iterative workload that follows several phases to process the input
dataset, explained below:

110 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

1. LoadReads: This phase prepares the input dataset to be processed, discarding
noisy information and converting the sequences into a more suitable format
for Hadoop. In order to avoid the comparison of very repetitive sequences, it
also builds a list of the most frequent subsequences. Later, this list is used to
filter them out and avoid workload imbalance.

2. PreCorrection: Each sequence is split into different subsequences that are
candidates in the next phases. The candidates for each subsequence are aligned
to allow their comparison, using a wildcard pattern.

3. ErrorCorrection: The set of subsequence candidates is iterated through by
using the information obtained in the previous phases. First, the most frequent
subsequences are filtered out. Then, the candidates are compared by emitting
a vote for each position. When all the votes have been emitted, the correct
alternative is chosen by majority. This calculation repeats several times until
the obtained subsequences remain invariant.

4. Screening: Once the correct subsequences have been calculated, the input
dataset is reprocessed to fix the errors, replacing each subsequence with its
corresponding correct alternative.

5. Conversion: The output dataset is converted to a standard format in order to
be processed by subsequent NGS applications (e.g. sequence alignment).

Using these five phases, the execution of CloudRS involves a total of 11 MapRe-
duce jobs, some of them being repeated in the ErrorCorrection phase. Their im-
plementation uses an old version of the Hadoop API, although this only affects the
interfaces used by the source code of the workload. CloudRS also makes use of
the DistributedCache feature provided by Hadoop to make the list of most frequent
sequences available to the mappers during the ErrorCorrection phase.

The input and output formatter classes in CloudRS are standard ones that ope-
rate over textual data stored in HDFS. Instead of using a custom formatter, CloudRS
gives format to the data within the user-defined map and reduce functions. CloudRS
uses standard Hadoop Text objects to represent the data as strings, separating the
different fields by using special characters. Note that this is a very inefficient imple-
mentation compared to the use of a custom formatter that can represent in-memory

4.3 Applicability study: optimization of real-world use cases 111

data as binary objects. The approach of CloudRS requires to parse data objects
from textual data, while also having to convert them to strings when writing the
output.

Challenges

As explained previously, CloudRS is an iterative workload that executes several
MapReduce jobs to obtain the final result. The resource management of Flame-
MR adapts better to this kind of computation than Hadoop, thus providing better
performance. On the one hand, Hadoop allocates one Java process per map/reduce
task. Therefore, Hadoop needs to create many map and reduce processes at the start
of each job, stopping them when the job is finished. On the other hand, Flame-MR
deploys a single Java process per Worker and uses a ThreadPool to execute the map
and reduce functions, as described in Section 3.3.1. These processes are reutilized
between MapReduce jobs until the entire workload is finished. Note that Flame-MR
also benefits from the reutilization of internal data structures like the allocation of
memory buffers.

Regarding data input and output, Flame-MR is oriented to the processing of
large textual datasets, as previously mentioned. Therefore, it uses optimized input
and output formatters that minimize the amount of connections to HDFS. Similarly,
the implementation of textual data objects used in Flame-MR reduces the amount
of memory copies and object creations when performing sort and copy operations.
CloudRS makes use of both characteristics, and so it is especially well suited to
be optimized with Flame-MR. However, the inefficient data formatting explained
before is intrinsic to CloudRS, as it is performed inside the map/reduce functions.
The goal of Flame-MR is to improve applications’ performance without modifying
their source code, and so we cannot modify those user-defined functions. Therefore,
the inefficiency of the data formatting will also be present in Flame-MR, although
it is alleviated by using its efficient implementations of textual data objects.

The use of the old Hadoop API is also supported in Flame-MR by connecting old
classes and methods with its corresponding counterparts in the new API. Further-
more, Flame-MR supports the use of the DistributedCache by copying the data files
required by the mappers to the computing nodes where they are being executed,

112 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

thus making the data available to the application.

Experimental configuration

The experimental configuration used to evaluate CloudRS with Hadoop and
Flame-MR is described below. As genomic applications are executed in many kinds
of systems, the evaluation has considered two different scenarios: the use of a private
cluster with 9 nodes, Pluton, and a public cloud platform, Microsoft Azure [88], with
17 and 25 instances. As in the case of VELaSSCo, each cluster size n corresponds
to 1 master and n-1 slaves.

The hardware and software characteristics of Pluton and Azure are shown in
Tables 4.6 and 4.7, respectively. Pluton nodes are equipped with 16 cores each,
64 GB of memory and one local disk of 1 TB, being interconnected via InfiniBand
FDR and Gigabit Ethernet. Azure experiments have been carried out using L16S
instances located in the West Europe region. These instances have 16 cores per
node, 128 GB of memory and a local SSD disk of 2.7 TB. The experiments have
used Hadoop 2.7.4 and Flame-MR 1.1. The configuration has been adapted to
the characteristics of the systems, resulting in the parameters shown in Tables 4.8
and 4.9 for Pluton and Azure, respectively. Furthermore, both frameworks have
used the IPoIB interface available in Pluton, which allows taking advantage of the
InfiniBand network via the IP protocol. Finally, some parameters such as the HDFS
block size have been experimentally tuned to obtain the best performance on each
system.

The input dataset used in the experiments is SRR921890, which has been ob-
tained from the DDBJ Sequence Read Archive (DRA) [28]. It is composed of 16 mil-
lion sequences of 100 bases each (5.2 GB in total). The results shown correspond
to the median elapsed time of 10 executions. The standard deviations observed
were not significant. In this use case, the experiments have been conducted by
using BDEv.

4.3 Applicability study: optimization of real-world use cases 113

Table 4.6: Node characteristics of Pluton

Hardware configuration

CPU model 2 × Intel Xeon E5-2660 (Sandy Bridge)
CPU speed (Turbo) 2.20 GHz (3 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 64 GB DDR3 1600 MHz
Disk 1 TB HDD
Networks InfiniBand FDR & GbE

Software configuration

OS version CentOS release 6.8
Kernel 2.6.32-642
Java Oracle JDK 1.8.0_45

Table 4.7: Node characteristics of L16S instances in Azure

Hardware configuration

CPU model Intel Xeon E5-2698B v3 (Haswell)
CPU speed 2 GHz
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 40 MB
Memory 128 GB
Disk 2.7 TB SSD
Network 4 × 10 Gbps Ethernet

Software configuration

OS version CentOS release 7.4
Kernel 3.10.0-514
Java OpenJDK 1.8.0_151

114 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

Table 4.8: Configuration of the frameworks in Pluton

Hadoop HDFS

Mapper/Reducer heap size 3.4 GB HDFS block size 256 MB
Mappers per node 8 Replication factor 3
Reducers per node 8
Shuffle parallel copies 20
IO sort MB 841 MB
IO sort spill percent 80%

Flame-MR

Workers per node 4
ThreadPool size 4
Worker heap size 11.8 GB
DataPool size 8.3 GB
DataBuffer size 512 KB

Table 4.9: Configuration of the frameworks in Azure

Hadoop HDFS

Mapper/Reducer heap size 6.7 GB HDFS block size 128 MB
Mappers per node 8 Replication factor 3
Reducers per node 8
Shuffle parallel copies 20
IO sort MB 1704 MB
IO sort spill percent 80%

Flame-MR

Workers per node 4
ThreadPool size 4
Worker heap size 24 GB
DataPool size 16.8 GB
DataBuffer size 512 KB

4.3 Applicability study: optimization of real-world use cases 115

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Pluton
(9 nodes)

Azure
(17 nodes)

Azure
(25 nodes)

T
im

e
 (

s
)

Hadoop
Flame-MR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Pluton
(9 nodes)

Azure
(17 nodes)

Azure
(25 nodes)

T
im

e
 (

s
)

Hadoop
Flame-MR

Figure 4.9: Execution times of CloudRS with Hadoop and Flame-MR

Performance results

Figure 4.9 shows the performance results of CloudRS. As can be seen, Flame-
MR clearly outperforms Hadoop in both testbeds. In fact, Flame-MR obtains a 78%
reduction in execution time in Pluton. In the case of Azure, it obtains a reduction
of approximately 40% for both cluster sizes. Note that Hadoop presents a huge
performance improvement when scaling from Pluton with 9 nodes to Azure with
17 nodes. In addition to the double amount of slave nodes, this improvement is due
to the better node characteristics of Azure. Compared to Pluton, Azure provides
a more recent CPU microarchitecture and doubles the available memory, while the
SSD disk decreases I/O waiting times. Furthermore, the execution time of Flame-
MR with 9 nodes in Pluton is almost the same as using Hadoop in Azure with
17 nodes. Therefore, Flame-MR allows reducing the execution time of CloudRS
without needing to increase the computational resources, obtaining a performance
improvement equivalent to using a double-sized cluster in this specific case, mini-
mizing incurred costs in public cloud platforms such as Azure.

Remarks

The use of Flame-MR to optimize CloudRS has shown an important reduction
in execution time. Taking into account that the data formatting inefficiency of the

116 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

source code of the application cannot be avoided, this use case is a good example of
how Flame-MR can reduce the performance impact of those inefficiencies, without
redesigning the software or employing further computing resources.

4.3.3. MarDRe: duplicate read removal in genome sequen-
cing data

This section addresses the optimization of MarDRe [35], a bioinformatics appli-
cation that removes duplicate reads in large genomic datasets. The first part of the
section describes the main functionalities and characteristics of MarDRe, providing
the details of its MapReduce implementation. After the challenges of optimizing
MarDRe with Flame-MR are explained, the experimental configuration and results
show the performance benefits of Flame-MR. Finally, some conclusions are extracted
from this use case.

Overview

As explained in Section 4.3.2, genomic datasets generated by NGS sequencers
contain redundant information due to the existence of overlapped reads. This cha-
racteristic causes the appearance of duplicate or near-duplicate sequences in large
datasets, which neither provide new information nor improve the results of analy-
tical processes. However, processing them consumes system resources and wastes
execution time. Therefore, they are often removed to decrease the overall runtime
of the downstream analysis.

MarDRe is a MapReduce application that is used to detect and remove these
duplicate sequences in genomic datasets stored in HDFS. It is based on a clustering
mechanism that groups the sequences by similarity. Then, the sequences within a
group are compared by using an optimized algorithm that discards the sequences
that do not provide new information.

As in the case of CloudRS, MarDRe is usually performed in the preprocessing
stage. Therefore, reducing its execution time can have a significant impact on the
performance of the overall NGS pipeline. Further details of its implementation are

4.3 Applicability study: optimization of real-world use cases 117

provided below.

MapReduce implementation

The MapReduce workload used in MarDRe performs a single Hadoop job to
process the data stored in HDFS. In contrast to CloudRS, MarDRe supports input
datasets stored in FASTQ/FASTA, which are standard formats commonly employed
in genomic datasets.

The map phase is used to cluster the DNA sequences into groups. Each mapper
reads the data belonging to its input split by using a custom formatter that reads
the sequences in FASTQ/FASTA format. The input sequences are then divided
into prefix and suffix to group the ones that share the same prefix. During the
shuffle phase, the prefix is used as key to partition and sort the map output pairs.
The value of the pair contains the sequence information by using a custom data type
defined in MarDRe. Next, the map output pairs are sent to the reducer nodes where
they are processed. Once the reducers receive all the assigned sequences, they carry
out the comparison to filter out the duplicates by using the optimized algorithm
presented in [49]. This algorithm does not compare all the sequences within each
group, but uses the first one as a reference for the rest. If the number of mismatches
of a sequence with respect to the first one is higher than a user-defined threshold,
the sequence is discarded. Moreover, the bases of the sequences are not compared
one by one. Instead, a 4-bit encoding is used to represent the bases, determining
the differences by using a bit-wise XOR operation. After that, the output of the
reducers containing the remaining sequences without duplicates is written to HDFS
in FASTQ/FASTA format.

MarDRe is especially well suited to the MapReduce model, as the main part of
its clustering algorithm is performed by the underlying grouping-by-key mechanism
of Hadoop. Furthermore, its implementation leverages the use of custom format-
ters and data objects to avoid inefficient parsing of the input dataset. Although
MarDRe shows good performance with balanced workloads, real-world datasets are
highly skewed, with lots of sequences that share a common prefix. This situa-
tion introduces important load balancing problems in the reduce phase due to the
comparison of large sets of sequences. In turn, this causes some reducers to have

118 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

excessive execution times. As a MapReduce job has to wait for all reducers to finish,
the load balance problem in the reduce phase affects the overall performance. The
next section discusses how Flame-MR solves this problem in a transparent way.

Challenges

Flame-MR must adapt to the characteristics of MarDRe when optimizing its
performance. As in the VELaSSCo use case, the use of custom formatters and data
objects in MarDRe requires the utilization of the standard API provided by Hadoop,
while keeping the in-memory optimizations.

Regarding the load balancing problem explained before, the standard behavior
of Flame-MR emulates the way Hadoop processes the data without modifying the
operation of the map and reduce functions. Therefore, load imbalance also affects
Flame-MR. To alleviate it without changing the source code of the application, a
new load balancing mode has been developed in Flame-MR version 1.1. During the
reduce phase, large partitions are detected and split into several chunks. In doing
so, the computation is parallelized and the execution times of heavy-loaded reducers
are decreased.

Figure 4.10 illustrates the operation of the load balancing mode. Instead of
processing a large partition with a single reduce operation, the data is split into
different chunks with a maximum size calculated upon the number of chunks defined
by the user. Next, each chunk is reduced in parallel, writing the output to HDFS.
Note that this mechanism is likely to introduce changes in the output results of
the reduce phase, as the input pairs are passed to the reduce function in different
groups. Therefore, the load balancing mode is only applicable to those Hadoop jobs
that can support modifications in the reduce partitioning without affecting the logic
of the application, even if the final output suffers slight variations. In the particular
case of MarDRe, the splitting of partitions leads to different comparisons to be done
between sequences. Although this may modify the actual sequences that are filtered
in the end, it does not affect the purpose of the workload as long as the percentage
of sequences filtered does not vary significantly. For example, in the experimental
results provided next, the amount of duplicate reads filtered did not vary more than
0.02% when using the load balancing mode.

4.3 Applicability study: optimization of real-world use cases 119

Figure 4.10: Load balancing mode in Flame-MR version 1.1

Experimental configuration

MarDRe and CloudRS are both executed as preprocessing steps of an NGS ana-
lysis on Big Data infrastructures. Therefore, the evaluation of MarDRe has em-
ployed the same experimental configuration as CloudRS using Pluton and Azure as
testbeds (see Tables 4.6, 4.7, 4.8 and 4.9 in Section 4.3.2), and the BDEv tool to
conduct the evaluation. However, the computational requirements of MarDRe are
significantly lower than CloudRS, and so a larger dataset was used in these experi-
ments: SRR377645. This dataset is composed of 214 million reads of 100 bases each
(67 GB).

The evaluation includes the results of Hadoop, Flame-MR and Flame-MR with
the load balancing mode activated (labeled as Flame-MR-LB in the graphs). By
default, the number of chunks used in the load balancing mode is set to the number
of cores of the Worker. In the experiments, this value has been tuned for improved
performance, splitting each partition in 13 and 9 chunks in Pluton and Azure, res-
pectively.

Performance results

Figure 4.11 shows the execution times of MarDRe with Hadoop, Flame-MR and
Flame-MR-LB. As can be seen, Flame-MR outperforms Hadoop by 43% in Plu-
ton and by approximately 24% in Azure for both cluster sizes. The improvement
provided by Flame-MR-LB is even better, reducing the execution time of Hadoop
by 66% both in Pluton and Azure (17 nodes), and by 77% when using 25 nodes

120 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

 0

 200

 400

 600

 800

 1000

 1200

Pluton
(9 nodes)

Azure
(17 nodes)

Azure
(25 nodes)

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-LB

 0

 200

 400

 600

 800

 1000

 1200

Pluton
(9 nodes)

Azure
(17 nodes)

Azure
(25 nodes)

T
im

e
 (

s
)

Hadoop
Flame-MR

Flame-MR-LB

Figure 4.11: Execution times of MarDRe with Hadoop, Flame-MR and
Flame-MR-LB

in Azure. This huge improvement demonstrates the effectiveness of the load bal-
ancing mode explained previously, together with the efficient in-memory architec-
ture of Flame-MR.

Note that the execution times of Hadoop and Flame-MR using 25 nodes are
higher than with 17 nodes, which is due to the workload imbalance problem. With
more nodes and thus more reducers, the load per reducer is decreased, but the re-
ducers that process the largest partitions require the same time. This issue, together
with the additional overhead of managing more nodes, hinders the performance of
both frameworks. However, Flame-MR-LB does not present this problem, obtaining
slightly better results with 25 nodes than with 17.

In order to provide more information about the load balance problem of MarDRe,
Table 4.10 shows the processing time of the fastest, median and slowest reducer com-
pared to the overall execution time. As can be seen, the time consumed by the slo-
west reducer is clearly correlated with the overall execution time of the application.
Furthermore, there exist huge differences between the fastest and slowest reducers.
In the case of Hadoop and Flame-MR, the use of larger clusters decreases the pro-
cessing time of the fastest and median reducers. This does not always happen with
the slowest reducer, which consumes more time with 25 nodes than with 17 for both
frameworks. This fact, along with the overhead of managing more nodes, causes

4.3 Applicability study: optimization of real-world use cases 121

Table 4.10: Load balancing in MarDRe

(a) Pluton (9 nodes)

Reducer time
Fastest Median Slowest Execution time

Hadoop 25.7s 136s 972.2s 1168.3s
Flame-MR 14.9s 19.7s 435.7s 662.5s
Flame-MR-LB 0.004s 1.1s 184.2s 394.7s

(b) Azure (17 nodes)

Reducer time
Fastest Median Slowest Execution time

Hadoop 12.7s 22.1s 259.4s 316.4s
Flame-MR 11.8s 15.8s 203.1s 243.9s
Flame-MR-LB 0.001s 1.1s 60.5s 106.3s

(c) Azure (25 nodes)

Reducer time
Fastest Median Slowest Execution time

Hadoop 8.9s 13.8s 346.3s 398.7s
Flame-MR 6s 8.2s 254.9s 299.5s
Flame-MR-LB 0.001s 0.8s 29.1s 88.1s

the overall execution time to be higher. Flame-MR-LB shows a different behavior.
When using larger clusters, the fastest and median reducers remain almost inva-
riant, while the slowest one consumes less time. This, in turn, reduces the overall
execution time of Flame-MR-LB.

Remarks

This section has shown the benefits of optimizing MarDRe with Flame-MR.
Without modifying its source code, we obtain significant performance improvements

122 Chapter 4. Experimental analysis of Flame-MR in cluster and cloud platforms

by better leveraging the system resources. Furthermore, the new load balancing
mode available in Flame-MR has demonstrated its usefulness to reduce the impact
of skewed loads in the reduce phase, reducing up to 77% the execution time of
Hadoop.

4.4. Conclusions

This chapter has addressed the evaluation of Flame-MR using several use cases
and systems. First, Flame-MR has been compared with Hadoop on different Amazon
EC2 instances, obtaining lower execution times for all benchmarks, with a maximum
reduction of 65%. These performance differences become wider when using larger
memory sizes. Therefore, Flame-MR is able to provide better in-memory compu-
ting capabilities than Hadoop, making it more suited for future computing systems
with increasingly larger memory. Compared to representative in-memory compu-
ting frameworks like Spark, Flame-MR provides very competitive performance but
without modifying the source code of the applications.

Second, the performance benefits of Flame-MR in real-world use cases have been
assessed by using three different workloads from two application domains: visuali-
zation queries (VELaSSCo) and preprocessing of genomic datasets (CloudRS and
MarDRe). On the one hand, Flame-MR improves the execution time of the analyti-
cal queries of VELaSSCo by adapting its behavior to the custom input formats and
data objects defined in the workload. On the other hand, the iterative algorithm
performed by CloudRS is also accelerated, overcoming some of the inefficiencies of its
underlying implementation. Finally, the use of Flame-MR in MarDRe has not only
optimized the underlying Hadoop data engine but also alleviated its load balancing
problems.

The execution of several standard benchmarks with distinct characteristics, to-
gether with the assessment of real-world applications on different cluster and cloud
systems, has proved the significant performance benefits provided by Flame-MR
over Hadoop.

Chapter 5

Conclusions and future work

Next, we summarize the main contributions of the Thesis and provide some
insights on future research directions.

Conclusions

Over the last several years, the datasets managed by Big Data systems have
been experiencing a steady increase in size and complexity, demanding higher data
processing capabilities from distributed frameworks such as Apache Hadoop. As
a consequence, analyzing and optimizing the performance of these frameworks has
gained huge attention. This Thesis has focused on these issues by providing deve-
lopers and users with new tools that, on the one hand, ease the task of evaluating
Big Data frameworks and, on the other, accelerate existing Hadoop applications in
a transparent way.

The assessment of Big Data frameworks has been addressed by developing the
Big Data Evaluator (BDEv) tool, which eases the burden of setting up experimental
testbeds using different frameworks and workloads. BDEv helps the user to unify
the configuration of the different frameworks, facilitating a fair comparison among
them. BDEv automatically configures the frameworks, launches their daemons over
the cluster, generates the input datasets required for the experiments and executes
the corresponding workloads. During their execution, it extracts the evaluation

123

124 Chapter 5. Conclusions and future work

metrics indicated by the user. These metrics are not only limited to performance
and scalability, as BDEv also monitors resource utilization, energy efficiency and
microarchitectural behavior. Several practical use cases have demonstrated the use-
fulness of BDEv to extract valuable information about the behavior of popular Big
Data frameworks such as Hadoop, Spark and Flink.

Regarding the optimization of data processing pipelines, this Thesis has pro-
posed Flame-MR, a MapReduce framework that accelerates existing Hadoop ap-
plications without any source code modification. It is based on an event-driven
architecture that efficiently parallelizes data processing operations and movements,
leveraging computational resources such as CPU cores and memory. The overall
design of Flame-MR reduces the amount of redundant memory copies performed
by Hadoop, while also using efficient sort and merge algorithms. Further optimiza-
tions of Flame-MR reutilize in-memory buffers to avoid unnecessary allocations and
deallocations. Moreover, the caching of intermediate results has also reduced the
overhead of disk and network operations in iterative workloads.

The performance benefits of Flame-MR have been thoroughly evaluated in dif-
ferent scenarios and systems. The use of standard benchmarks makes it easier to
compare the performance results between frameworks. Using these benchmarks,
Flame-MR reduces the execution time of Hadoop by 48% on average, while sho-
wing very competitive results compared to Spark. Although Spark obtains better
performance for some iterative benchmarks, it is outperformed by Flame-MR when
executing I/O-bound workloads like Sort and PageRank, with the additional benefit
that it does not require the rewriting of existing Hadoop applications as with Spark.

Flame-MR has also been evaluated by using several real-world applications, in-
cluding analytical database queries (VELaSSCo), error correction in genomic datasets
(CloudRS) and duplicate read removal in genomic datasets (MarDRe). These appli-
cations, originally written for Hadoop, show an acceleration between 40% and 90%,
which means that their execution time is reduced up to an order of magnitude in
some cases. These results, along with the ones obtained using standard benchmarks,
clearly demonstrate the performance benefits of Flame-MR over Hadoop.

125

Future work

The proposal of new evaluation and optimization tools for Big Data workloads
sets the basis for future research lines that can benefit from the work conducted
in this Thesis. As Big Data ecosystems are becoming more heterogeneous both
in terms of hardware and software, there is need for intensified efforts to find new
evaluation techniques to enable accurate comparisons of systems and paradigms.

Although execution time is generally used as the main performance metric for
batch workloads, it cannot be applied to all scenarios (e.g. stream processing), which
hinders performance comparisons between different paradigms. Therefore, there is
need for new standard metrics, analogous to the ones utilized in more traditional
parallel paradigms (e.g. Floating point Operations Per Second, FLOPS). These
metrics must ease the extrapolation of results when varying experiment parameters
like input data size or system characteristics like cluster size. Measuring the amount
of data processed per unit time (MB/s) can be an initial approximation to such
metric, but it is not always adequate, as the input data size can vary between
scenarios due to format specifications. Moreover, iterative workloads do not spend all
the execution time processing the input data. These issues must be carefully taken
into account in order to elaborate a sound proposal for standard performance metrics
in Big Data.

As frameworks evolve over time, they are becoming more complex to deploy,
use and configure. This situation demands new evaluation tools and methods that
cooperate with the frameworks in an active way. In addition to extracting evaluation
metrics like resource utilization or energy efficiency, they must be able to use that
information to improve performance. By analyzing the recorded data, the evaluation
process must be fed back to adjust the configuration of the frameworks or adapt the
system resources to the needs of the applications in a real-time fashion.

Data processing optimization is currently oriented to the performance improve-
ment of a specific framework, solving existing issues in its design. However, the
applicability of this approach is clearly limited to that specific framework. New
optimizations should aim to find solutions to common performance problems, which
may arise in multiple frameworks. Examples of that are data serialization or task
scheduling issues. Finding efficient design solutions for them could provide deve-

126 Chapter 5. Conclusions and future work

lopers with valuable guidelines when designing new data processing frameworks or
optimizing the existing ones.

The programming APIs currently exposed by Big Data processing frameworks
often share many similarities among them. For example, Spark and Flink have a
lot of data operators in common, such as map() or filter(). Therefore, the defini-
tion of a standard data processing API would be very helpful to homogenize the
way operations are defined by these frameworks. Similarly to the way the MPI
standard unified parallel programming in HPC, a common Big Data programming
model would allow multiple implementations of the same operations, focusing on
providing an efficient implementation for them while keeping compatibility between
frameworks.

Bibliography

[1] Amazon Web Services Inc. Amazon Elastic Compute Cloud (Amazon EC2).
https://aws.amazon.com/ec2/. [Last visited: October 2018].

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The Strato-
sphere platform for Big Data analytics. The VLDB Journal, 23(6):939–964,
2014.

[3] AMPLab: a data warehouse benchmark. https://amplab.cs.berkeley.

edu/benchmark/. [Last visited: October 2018].

[4] Apache Apex: enterprise-grade unified stream and batch processing engine.
https://apex.apache.org/. [Last visited: October 2018].

[5] Apache Aurora: Mesos framework for long-running services and cron jobs.
http://aurora.apache.org/. [Last visited: October 2018].

[6] Apache Cassandra: distributed NoSQL database. http://cassandra.

apache.org/. [Last visited: October 2018].

[7] Apache Flink: scalable batch and stream data processing. http://flink.

apache.org/. [Last visited: October 2018].

[8] Apache Hadoop. http://hadoop.apache.org/. [Last visited: Octo-
ber 2018].

[9] Apache HBase: Hadoop distributed Big Data store. https://hbase.

apache.org/. [Last visited: October 2018].

127

https://aws.amazon.com/ec2/
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://apex.apache.org/
http://aurora.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://flink.apache.org/
http://flink.apache.org/
http://hadoop.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/

128 Bibliography

[10] Apache Mahout: scalable machine learning and data mining. http://

mahout.apache.org/. [Last visited: October 2018].

[11] Apache Pig: high-level language for data analysis. https://pig.apache.

org/. [Last visited: October 2018].

[12] C. Avery. Giraph: large-scale graph processing infrastructure on Hadoop. In
2011 Hadoop Summit, pages 5–9. Santa Clara, CA, USA, 2011.

[13] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguadé. Performance charac-
terization of in-memory data analytics on a modern cloud server. In 5th IEEE
International Conference on Big Data and Cloud Computing (BDCloud 2015),
pages 1–8. Dalian, China, 2015.

[14] E. Baccarelli, N. Cordeschi, A. Mei, M. Panella, M. Shojafar, and J. Stefa.
Energy-efficient dynamic traffic offloading and reconfiguration of networked
data centers for Big Data stream mobile computing: review, challenges, and
a case study. IEEE Network, 30(2):54–61, 2016.

[15] S. Bergamaschi, L. Gagliardelli, G. Simonini, and S. Zhu. BigBench workload
executed by using Apache Flink. Procedia Manufacturing, 11:695–702, 2017.

[16] M. Bertoni, S. Ceri, A. Kaitoua, and P. Pinoli. Evaluating cloud frameworks
on genomic applications. In 2015 IEEE International Conference on Big Data
(IEEE BigData 2015), pages 193–202. Santa Clara, CA, USA, 2015.

[17] C. Boden, A. Spina, T. Rabl, and V. Markl. Benchmarking data flow systems
for scalable machine learning. In 4th ACM SIGMOD Workshop on Algo-
rithms and Systems for MapReduce and Beyond (BeyondMR’17), pages 5:1–
5:10. Chicago, IL, USA, 2017.

[18] R. Brun and F. Rademakers. ROOT – an object oriented data analysis frame-
work. Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, 389(1-2):81–86,
1997.

[19] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: efficient itera-
tive data processing on large clusters. Proceedings of the VLDB Endowment,
3(1):285–296, 2010.

http://mahout.apache.org/
http://mahout.apache.org/
https://pig.apache.org/
https://pig.apache.org/

Bibliography 129

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA’05),
pages 519–538. San Diego, CA, USA, 2005.

[21] C.-C. Chen, Y.-J. Chang, W.-C. Chung, D.-T. Lee, and J.-M. Ho. CloudRS:
an error correction algorithm of high-throughput sequencing data based on
scalable framework. In 2013 IEEE International Conference on Big Data
(IEEE BigData 2013), pages 717–722. Santa Clara, CA, USA, 2013.

[22] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in Big
Data systems: a cross-industry study of MapReduce workloads. Proceedings
of the VLDB Endowment, 5(12):1802–1813, 2012.

[23] D. Cheng, P. Lama, C. Jiang, and X. Zhou. Towards energy efficiency in he-
terogeneous Hadoop clusters by adaptive task assignment. In 35th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS’15), pages
359–368. Columbus, OH, USA, 2015.

[24] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky. Benchmarking
streaming computation engines: Storm, Flink and Spark streaming. In 1st
IEEE Workshop on Emerging Parallel and Distributed Runtime Systems and
Middleware (IPDRM’16), pages 1789–1792. Chicago, IL, USA, 2016.

[25] I. S. Choi, W. Yang, and Y.-S. Kee. Early experience with optimizing I/O
performance using high-performance SSDs for in-memory cluster computing.
In 2015 IEEE International Conference on Big Data (IEEE BigData 2015),
pages 1073–1083. Santa Clara, CA, USA, 2015.

[26] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-
marking cloud serving systems with YCSB. In 1st ACM Symposium on Cloud
Computing (SoCC’10), pages 143–154. Indianapolis, IN, USA, 2010.

[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL:
memory power estimation and capping. In 2010 International Symposium on

130 Bibliography

Low-Power Electronics and Design (ISLPED’10), pages 189–194. Austin, TX,
USA, 2010.

[28] DDBJ Sequence Read Archive (DRA). https://www.ddbj.nig.ac.jp/dra.
[Last visited: October 2018].

[29] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[30] E. Dede, Z. Fadika, M. Govindaraju, and L. Ramakrishnan. Benchmark-
ing MapReduce implementations under different application scenarios. Future
Generation Computer Systems, 36:389–399, 2014.

[31] S. Desrochers, C. Paradis, and V. M. Weaver. A validation of DRAM RAPL
power measurements. In 2nd International Symposium on Memory Systems
(MEMSYS’16), pages 455–470. Alexandria, VA, USA, 2016.

[32] M. Dimitrov, K. Kumar, P. Lu, V. Viswanathan, and T. Willhalm. Memory
system characterization of Big Data workloads. In 2013 IEEE International
Conference on Big Data (IEEE BigData 2013), pages 15–22. Santa Clara, CA,
USA, 2013.

[33] dstat: versatile resource statistics tool. http://dag.wiee.rs/home-made/

dstat/. [Last visited: October 2018].

[34] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.
Twister: a runtime for iterative MapReduce. In 19th ACM International
Symposium on High Performance Distributed Computing (HPDC’2010), pages
810–818. Chicago, IL, USA, 2010.

[35] R. R. Expósito, J. Veiga, J. González-Domínguez, and J. Touriño. MarDRe: ef-
ficient MapReduce-based removal of duplicate DNA reads in the cloud. Bioin-
formatics, 33(17):2762–2764, 2017.

[36] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. MARIANE: using
MapReduce in HPC environments. Future Generation Computer Systems,
36:379–388, 2014.

https://www.ddbj.nig.ac.jp/dra
http://dag.wiee.rs/home-made/dstat/
http://dag.wiee.rs/home-made/dstat/

Bibliography 131

[37] Z. Fadika, M. Govindaraju, R. Canon, and L. Ramakrishnan. Evaluating
Hadoop for data-intensive scientific operations. In 5th IEEE International
Conference on Cloud Computing (CLOUD’12), pages 67–74. Honolulu, HI,
USA, 2012.

[38] E. Feller, L. Ramakrishnan, and C. Morin. On the performance and energy
efficiency of Hadoop deployment models. In 2013 IEEE International Confe-
rence on Big Data (IEEE BigData 2013), pages 131–136. Santa Clara, CA,
USA, 2013.

[39] E. Feller, L. Ramakrishnan, and C. Morin. Performance and energy efficiency
of Big Data applications in cloud environments: a Hadoop case study. Journal
of Parallel and Distributed Computing, 79:80–89, 2015.

[40] B. Feng, J. Lu, Y. Zhou, and N. Yang. Energy efficiency for MapReduce
workloads: an in-depth study. In 23rd Australasian Database Conference
(ADC’12), pages 61–70. Melbourne, Australia, 2012.

[41] B. Fitzpatrick. Distributed caching with Memcached. Linux Journal, 124:72–
76, 2004.

[42] Flink Gelly: Apache Flink’s graph-processing API and library.
https://ci.apache.org/projects/flink/flink-docs-release-1.

3/dev/libs/gelly/index.html. [Last visited: October 2018].

[43] FlinkML: machine learning library for Flink. https://github.com/apache/
flink/tree/master/flink-libraries/flink-ml. [Last visited: Octo-
ber 2018].

[44] Gartner IT glossary: Big Data. https://www.gartner.com/it-glossary/
big-data/. [Last visited: October 2018].

[45] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Ja-
cobsen. BigBench: towards an industry standard benchmark for Big Data
analytics. In 2013 ACM SIGMOD International Conference on Management
of Data (SIGMOD’13), pages 1197–1208. New York, NY, USA, 2013.

https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/libs/gelly/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/libs/gelly/index.html
https://github.com/apache/flink/tree/master/flink-libraries/flink-ml
https://github.com/apache/flink/tree/master/flink-libraries/flink-ml
https://www.gartner.com/it-glossary/big-data/
https://www.gartner.com/it-glossary/big-data/

132 Bibliography

[46] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scalability of
garbage collectors on many cores. In 6th Workshop on Programming Languages
and Operating Systems (PLOS’11), pages 7:1–7:5. Cascais, Portugal, 2011.

[47] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J.
Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes, A. M. Berlin, D. Aird,
M. Costello, R. Daza, L. Williams, R. Nicol, A. Gnirke, C. Nusbaum, E. S.
Lander, and D. B. Jaffe. High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of the National Academy
of Sciences, 108(4):1513–1518, 2011.

[48] P. González, X. C. Pardo, D. R. Penas, D. Teijeiro, J. R. Banga, and R. Doallo.
Using the cloud for parameter estimation problems: comparing Spark vs MPI
with a case-study. In 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2017), pages 797–806. Madrid, Spain,
2017.

[49] J. González-Domínguez and B. Schmidt. ParDRe: faster parallel duplicated
reads removal tool for sequencing studies. Bioinformatics, 32(10):1562–1564,
2016.

[50] Grid’5000: large-scale resource provisioning network. https://www.

grid5000.fr. [Last visited: October 2018].

[51] GridMix: a benchmark for Hadoop clusters. https://hadoop.apache.org/
docs/stable1/gridmix.html. [Last visited: October 2018].

[52] J. Grimmer. We are all social scientists now: how Big Data, machine learning,
and causal inference work together. PS: Political Science & Politics, 48(1):80–
83, 2015.

[53] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789–828, 1996.

[54] R. Gu, X. Yang, J. Yan, Y. Sun, B. Wang, C. Yuan, and Y. Huang. SHadoop:
improving MapReduce performance by optimizing job execution mechanism in

https://www.grid5000.fr
https://www.grid5000.fr
https://hadoop.apache.org/docs/stable1/gridmix.html
https://hadoop.apache.org/docs/stable1/gridmix.html

Bibliography 133

Hadoop clusters. Journal of Parallel and Distributed Computing, 74(3):2166–
2179, 2014.

[55] O. Gutsche, M. Cremonesi, P. Elmer, B. Jayatilaka, J. Kowalkowski, J. Pi-
varski, S. Sehrish, C. M. Surez, A. Svyatkovskiy, and N. Tran. Big Data in
HEP: a comprehensive use case study. Journal of Physics: Conference Series,
898(7):072012, 2017.

[56] M. Hertz and E. D. Berger. Quantifying the performance of garbage collection
vs. explicit memory management. In 20th Annual ACM SIGPLAN Confe-
rence on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’05), pages 313–326. San Diego, CA, USA, 2005.

[57] High-Performance Big Data (HiBD) project. http://hibd.cse.

ohio-state.edu/. [Last visited: October 2018].

[58] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: a platform for fine-grained resource sharing
in the data center. In 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’11), pages 295–308. Boston, MA, USA, 2011.

[59] P. Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc.,
2013.

[60] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench benchmark
suite: characterization of the MapReduce-based data analysis. In 26th IEEE
International Conference on Data Engineering Workshops (ICDEW 2010),
pages 41–51. Long Beach, CA, USA, 2010.

[61] IBTA, InfiniBand Trade Association. http://www.infinibandta.org. [Last
visited: October 2018].

[62] M. H. Iqbal and T. R. Soomro. Big Data analysis: Apache Storm perspective.
International Journal of Computer Trends and Technology, 19(1):9–14, 2015.

[63] P. Jakovits and S. N. Srirama. Evaluating MapReduce frameworks for iterative
scientific computing applications. In 2014 International Conference on High
Performance Computing & Simulation (HPCS’14), pages 226–233. Bologna,
Italy, 2014.

http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/
http://www.infinibandta.org

134 Bibliography

[64] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo. Characterizing data analysis
workloads in data centers. In 2013 IEEE International Symposium on Work-
load Characterization (IISWC’13), pages 66–76. Portland, OR, USA, 2013.

[65] Z. Jia, J. Zhan, L. Wang, R. Han, S. A. McKee, Q. Yang, C. Luo, and J. Li.
Characterizing and subsetting Big Data workloads. In 2014 IEEE Interna-
tional Symposium on Workload Characterization (IISWC’14), pages 191–201.
Raleigh, NC, USA, 2014.

[66] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami. An information framework
for creating a smart city through Internet of Things. IEEE Internet of Things
Journal, 1(2):112–121, 2014.

[67] K. Kambatla, G. Kollias, V. Kumar, and A. Grama. Trends in Big Data
analytics. Journal of Parallel and Distributed Computing, 74(7):2561–2573,
2014.

[68] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: a peta-scale graph
mining system - implementation and observations. In 9th IEEE International
Conference on Data Mining (ICDM’09), pages 229–238. Miami, FL, USA,
2009.

[69] K. N. Khan, M. A. Hoque, T. Niemi, Z. Ou, and J. K. Nurminen. Energy
efficiency of large scale graph processing platforms. In 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016),
pages 1287–1294. Heidelberg, Germany, 2016.

[70] K. Kim, K. Jeon, H. Han, S.-G. Kim, H. Jung, and H. Y. Yeom. MRBench: a
benchmark for MapReduce framework. In 14th IEEE International Conference
on Parallel and Distributed Systems (ICPADS’08), pages 11–18. Melbourne,
Australia, 2008.

[71] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: a modern,

Bibliography 135

open-source SQL engine for Hadoop. In 7th Biennial Conference on Inno-
vative Data Systems Research (CIDR’15), pages 28:1–28:10. Asilomar, CA,
USA, 2015.

[72] J. Kreps, N. Narkhede, and J. Rao. Kafka: a distributed messaging system for
log processing. In 6th International Workshop on Networking Meets Databases
(NetDB II), pages 1–7. Athens, Greece, 2011.

[73] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.
Patel, K. Ramasamy, and S. Taneja. Twitter Heron: stream processing at
scale. In 2015 ACM SIGMOD International Conference on Management of
Data (SIGMOD’15), pages 239–250. Melbourne, Australia, 2015.

[74] B. Lange and T. Nguyen. A Hadoop use case for engineering data. In 12th In-
ternational Conference on Cooperative Design, Visualization and Engineering
(CDVE’15), pages 134–141. Mallorca, Spain, 2015.

[75] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. SparkBench: a Spark
benchmarking suite characterizing large-scale in-memory data analytics. Clus-
ter Computing, 20(3):2575–2589, 2017.

[76] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo. A performance
study of Big Data on small nodes. Proceedings of the VLDB Endowment,
8(7):762–773, 2015.

[77] L. Lu, X. Shi, Y. Zhou, X. Zhang, H. Jin, C. Pei, L. He, and Y. Geng.
Lifetime-based memory management for distributed data processing systems.
Proceedings of the VLDB Endowment, 9(12):936–947, 2016.

[78] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. DataMPI: extending MPI to
Hadoop-like Big Data computing. In 28th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’14), pages 829–838. Phoenix, AZ,
USA, 2014.

[79] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-performance design of
Apache Spark with RDMA and its benefits on various workloads. In 2016 IEEE
International Conference on Big Data (IEEE BigData 2016), pages 253–262.
Washington, DC, USA, 2016.

136 Bibliography

[80] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z. Xu, and N. Sun.
Cloudrank-D: benchmarking and ranking cloud computing systems for data
processing applications. Frontiers of Computer Science, 6(4):347–362, 2012.

[81] M. Malik, S. Rafatirah, A. Sasan, and H. Homayoun. System and architecture
level characterization of Big Data applications on big and little core server
architectures. In 2015 IEEE International Conference on Big Data (IEEE
BigData 2015), pages 85–94. Santa Clara, CA, USA, 2015.

[82] O.-C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández. Spark
versus Flink: understanding performance in Big Data analytics frameworks. In
2016 IEEE International Conference on Cluster Computing (CLUSTER’16),
pages 433–442. Taipei, Taiwan, 2016.

[83] S. Markidis, I. B. Peng, J. L. Träff, V. B. Antoine Rougier, R. Machado,
M. Rahn, A. Hart, D. Holmes, M. Bull, and E. Laure. The EPiGRAM project:
preparing parallel programming models for Exascale. InWorkshop on Exascale
Multi/Many Core Computing Systems (E-MuCoCoS), pages 56–68. Frankfurt,
Germany, 2016.

[84] A. J. Martin. Towards an energy complexity of computation. Information
Processing Letters, 77(2–4):181–187, 2001.

[85] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and W. Shi. Energy-aware
scheduling of MapReduce jobs for Big Data applications. IEEE Transactions
on Parallel and Distributed Systems, 26(10):2720–2733, 2015.

[86] Mellanox Technologies: Hadoop. http://www.mellanox.com/page/

hadoop. [Last visited: October 2018].

[87] D. Merkel. Docker: lightweight Linux containers for consistent development
and deployment. Linux Journal, 239:76–91, 2014.

[88] Microsoft Azure: cloud computing platform & services. https://azure.

microsoft.com. [Last visited: October 2018].

[89] C. Mobius, W. Dargie, and A. Schill. Power consumption estimation models
for processors, virtual machines, and servers. IEEE Transactions on Parallel
and Distributed Systems, 25(6):1600–1614, 2014.

http://www.mellanox.com/page/hadoop
http://www.mellanox.com/page/hadoop
https://azure.microsoft.com
https://azure.microsoft.com

Bibliography 137

[90] MongoDB: document-oriented NoSQL database. https://www.mongodb.

com/. [Last visited: October 2018].

[91] C. Negru, M. Mocanu, V. Cristea, S. Sotiriadis, and N. Bessis. Analysis
of power consumption in heterogeneous virtual machine environments. Soft
Computing, 21(16):4531–4542, 2017.

[92] K. Nguyen, L. Fang, G. H. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu.
Yak: a high-performance Big-Data-friendly garbage collector. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’16),
pages 349–365. Savannah, GA, USA, 2016.

[93] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta,
and R. H. Campbell. Samza: stateful scalable stream processing at LinkedIn.
Proceedings of the VLDB Endowment, 10(12):1634–1645, 2017.

[94] Oprofile: a system profiler for Linux. http://oprofile.sourceforge.net.
[Last visited: October 2018].

[95] J. Park, M. Han, and W. Baek. Quantifying the performance impact of large
pages on in-memory Big-Data workloads. In 2016 IEEE International Sympo-
sium on Workload Characterization (IISWC’16), pages 1–10. Providence, RI,
USA, 2016.

[96] PigMix: queries for testing Pig performance. https://cwiki.apache.org/
confluence/display/PIG/PigMix. [Last visited: October 2018].

[97] Project Tungsten. https://databricks.com/blog/2015/04/28/

project-tungsten-bringing-spark-closer-to-bare-metal.html.
[Last visited: October 2018].

[98] S. Qian, G. Wu, J. Huang, and T. Das. Benchmarking modern distributed
streaming platforms. In 2016 IEEE International Conference on Industrial
Technology (ICIT 2016), pages 592–598. Taipei, Taiwan, 2016.

[99] RAPL read tool. https://github.com/LPD-EPFL/raplread. [Last visited:
October 2018].

https://www.mongodb.com/
https://www.mongodb.com/
http://oprofile.sourceforge.net
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://github.com/LPD-EPFL/raplread

138 Bibliography

[100] Redis: open-source in-memory database. https://redis.io/. [Last visited:
October 2018].

[101] D. Reinsel, J. Gantz, and J. Rydning. Data age 2025: the evolution of data
to life-critical. https://www.seagate.com/www-content/our-story/

trends/files/Seagate-WP-DataAge2025-March-2017.pdf. [Last visi-
ted: October 2018].

[102] M. Rostanski, K. Grochla, and A. Seman. Evaluation of highly available
and fault-tolerant middleware clustered architectures using RabbitMQ. In
2014 Federated Conference on Computer Science and Information Systems
(FedCSIS’14), pages 879–884. Warsaw, Poland, 2014.

[103] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.
Apache Tez: a unifying framework for modeling and building data processing
applications. In 2015 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’15), pages 1357–1369. Melbourne, Australia, 2015.

[104] J. Samosir, M. Indrawan-Santiago, and P. D. Haghighi. An evaluation of
data stream processing systems for data driven applications. In International
Conference on Computational Science (ICCS’16), pages 439–449. San Diego,
CA, USA, 2016.

[105] A. Sangroya, D. Serrano, and S. Bouchenak. MRBS: towards dependability
benchmarking for Hadoop MapReduce. In 18th International Euro-Par Con-
ference on Parallel Processing Workshops (Euro-Par’12), pages 3–12. Rhodes
Island, Greece, 2012.

[106] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Öz-
can. Clash of the titans: MapReduce vs. Spark for large scale data analytics.
Proceedings of the VLDB Endowment, 8(13):2110–2121, 2015.

[107] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta. M3R: increased per-
formance for in-memory Hadoop jobs. Proceedings of the VLDB Endowment,
5(12):1736–1747, 2012.

[108] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed

https://redis.io/
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

Bibliography 139

File System. In IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST’2010), pages 1–10. Incline Village, NV, USA, 2010.

[109] N. Spangenberg, M. Roth, and B. Franczyk. Evaluating new approaches of
Big Data analytics frameworks. In 18th International Conference on Business
Information Systems (BIS’15), pages 28–37. Poznań, Poland, 2015.

[110] Spark GraphX: Apache Spark’s API for graphs and graph-parallel computa-
tion. http://spark.apache.org/graphx/. [Last visited: October 2018].

[111] Spark MLlib: Apache Spark’s scalable machine learning library. http://

spark.apache.org/mllib/. [Last visited: October 2018].

[112] Spark Streaming. https://spark.apache.org/streaming/. [Last visited:
October 2018].

[113] S. Sumimoto, Y. Ajima, K. Saga, T. Nose, N. Shida, and T. Nanri. The design
of advanced communication to reduce memory usage for Exascale systems. In
12th International Meeting on High Performance Computing for Computa-
tional Science (VECPAR’16). Porto, Portugal, 2016.

[114] Sun Microsystems. Memory management in the Java HotSpot™ virtual
machine. http://www.oracle.com/technetwork/java/javase/tech/

memorymanagement-whitepaper-1-150020.pdf. [Last visited: Octo-
ber 2018].

[115] Y. Tang, H. Guo, T. Yuan, Q. Wu, X. Li, C. Wang, X. Gao, and J. Wu.
OEHadoop: accelerate Hadoop applications by co-designing Hadoop with data
center network. IEEE Access, 6:25849–25860, 2018.

[116] M. Tatineni, X. Lu, D. Choi, A. Majumdar, and D. K. Panda. Experiences
and benefits of running RDMA-Hadoop and Spark on SDSC Comet. In 5th
Annual Conference on Diversity, Big Data, and Science at Scale (XSEDE’16),
pages 23:1–23:5. Miami, FL, USA, 2016.

[117] TeraSort for Apache Spark and Flink. https://github.com/eastcirclek/
terasort. [Last visited: October 2018].

http://spark.apache.org/graphx/
http://spark.apache.org/mllib/
http://spark.apache.org/mllib/
https://spark.apache.org/streaming/
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://github.com/eastcirclek/terasort
https://github.com/eastcirclek/terasort

140 Bibliography

[118] The jstat utility. http://docs.oracle.com/javase/8/docs/technotes/
guides/troubleshoot/tooldescr017.html. [Last visited: October 2018].

[119] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony,
H. Liu, and R. Murthy. Hive - a Petabyte scale data warehouse using Hadoop.
In 26th IEEE International Conference on Data Engineering (ICDE 2010),
pages 996–1005. Long Beach, CA, USA, 2010.

[120] N. Tiwari, S. Sarkar, U. Bellur, and M. Indrawan. An empirical study of
Hadoop’s energy efficiency on a HPC cluster. In International Conference on
Computational Science (ICCS’14), pages 62–72. Cairns, Australia, 2014.

[121] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Ra-
dia, B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: Yet Another Re-
source Negotiator. In 4th ACM Symposium on Cloud Computing (SoCC’13),
pages 5:1–5:16. Santa Clara, CA, USA, 2013.

[122] J. Veiga, J. Enes, R. R. Expósito, and J. Touriño. BDEv 3.0: energy efficiency
and microarchitectural characterization of Big Data processing frameworks.
Future Generation Computer Systems, 86:565–581, 2018.

[123] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touriño. Per-
formance evaluation of Big Data frameworks for large-scale data analytics.
In 2016 IEEE International Conference on Big Data (IEEE BigData 2016),
pages 424–431. Washington, DC, USA, 2016.

[124] J. Veiga, R. R. Expósito, B. Raffin, and J. Touriño. Optimization of real-
world MapReduce applications with Flame-MR: practical use cases. 2018.
(Submitted for journal publication).

[125] J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. MREv: an automatic
MapReduce Evaluation tool for Big Data workloads. In International Confe-
rence on Computational Science (ICCS’15), pages 80–89. Reykjavík, Iceland,
2015.

http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr017.html
http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr017.html

Bibliography 141

[126] J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Analysis and eva-
luation of MapReduce solutions on an HPC cluster. Computers & Electrical
Engineering, 50:200–216, 2016.

[127] J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Flame-MR: an event-
driven architecture for MapReduce applications. Future Generation Computer
Systems, 65:46–56, 2016.

[128] J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Enhancing in-
memory efficiency for MapReduce-based data processing. Journal of Parallel
and Distributed Computing, 120:323–338, 2018.

[129] J. Veiga, R. R. Expósito, and J. Touriño. Performance evaluation of Big
Data analysis. In S. Sakr and A. Zomaya, editors, Encyclopedia of Big Data
Technologies, pages 1–6. Springer International Publishing, Cham, 2018.

[130] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. BigDataBench: a
Big Data benchmark suite from Internet services. In 20th IEEE International
Symposium on High-Performance Computer Architecture (HPCA’14), pages
488–499. Orlando, FL, USA, 2014.

[131] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal. Hadoop accelera-
tion through network levitated merge. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), pages
57:1–57:10. Seattle, WA, USA, 2011.

[132] M. Wasi-Ur-Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang, and
D. K. Panda. High-performance RDMA-based design of Hadoop MapReduce
over InfiniBand. In 27th IEEE International Parallel and Distributed Proces-
sing Symposium Workshops and PhD Forum (IPDPSW’13), pages 1908–1917.
Boston, MA, USA, 2013.

[133] V. M. Weaver. Linux perf_event features and overhead. In 2nd International
Workshop on Performance Analysis of Workload Optimized Systems (Fast-
Path’13), page 80. Austin, TX, USA, 2013.

142 Bibliography

[134] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore. Measuring energy and power with PAPI. In
41st International Conference on Parallel Processing Workshops (ICPPW’12),
pages 262–268. Pittsburgh, PA, USA, 2012.

[135] M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture for well-
conditioned, scalable Internet services. ACM SIGOPS Operating Systems Re-
view, 35(5):230–243, 2001.

[136] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.
Shark: SQL and rich analytics at scale. In 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD’13), pages 13–24. New York,
NY, USA, 2013.

[137] W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li, and C. Xu.
A characterization of Big Data benchmarks. In 2013 IEEE International Con-
ference on Big Data (IEEE BigData 2013), pages 118–125. Santa Clara, CA,
USA, 2013.

[138] L. D. Xu, E. L. Xu, and L. Li. Industry 4.0: state of the art and future trends.
International Journal of Production Research, 56(8):2941–2962, 2018.

[139] P. Xuan, W. B. Ligon, P. K. Srimani, R. Ge, and F. Luo. Accelerating Big
Data analytics on HPC clusters using two-level storage. Parallel Computing,
61:18–34, 2017.

[140] D. Yan, X.-S. Yin, C. Lian, X. Zhong, X. Zhou, and G.-S. Wu. Using memory
in the right way to accelerate Big Data processing. Journal of Computer
Science and Technology, 30(1):30–41, 2015.

[141] D. Yang, X. Zhong, D. Yan, F. Dai, X. Yin, C. Lian, Z. Zhu, W. Jiang, and
G. Wu. NativeTask: a Hadoop compatible framework for high performance.
In 2013 IEEE International Conference on Big Data (IEEE BigData 2013),
pages 94–101. Santa Clara, CA, USA, 2013.

[142] T. Yoo, M. Yim, I. Jeong, Y. Lee, and S.-T. Chun. Performance evaluation of
in-memory computing on scale-up and scale-out cluster. In 8th International

Bibliography 143

Conference on Ubiquitous and Future Networks (ICUFN 2016), pages 456–461.
Vienna, Austria, 2016.

[143] Y. Yu, W. Wang, J. Zhang, and K. B. Letaief. LERC: coordinated cache
management for data-parallel systems. In 2017 IEEE Global Communications
Conference (GLOBECOM 2017), pages 1–6. Singapore, 2017.

[144] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: a fault-
tolerant abstraction for in-memory cluster computing. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’12), pages
15–28. San Jose, CA, USA, 2012.

[145] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gon-
zalez, S. Shenker, and I. Stoica. Apache Spark: a unified engine for Big Data
processing. Communications of the ACM, 59(11):56–65, 2016.

[146] F. Zhang, J. Cao, S. U. Khan, K. Li, and K. Hwang. A task-level adaptive
MapReduce framework for real-time streaming data in healthcare applications.
Future Generation Computer Systems, 43-44:149–160, 2015.

[147] Y. Zhang, Q. Gao, L. Gao, and C. Wang. iMapReduce: a distributed com-
puting framework for iterative computation. Journal of Grid Computing,
10(1):47–68, 2012.

[148] Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, O. Zahn, M. J. Franklin,
D. A. Patterson, and S. Perlmutter. Kira: processing astronomy imagery
using Big Data technology. IEEE Transactions on Big Data. (In press).
doi: 10.1109/TBDATA.2016.2599926.

http://dx.doi.org/10.1109/TBDATA.2016.2599926

Appendix A

Resumen extendido en castellano

El uso de tecnologías Big Data para el procesamiento de datos a gran escala
se está extendiendo a gran velocidad, transformando la forma en la que obtenemos
información valiosa de grandes volúmenes de datos. A medida que el tamaño de los
datos aumenta, su análisis resulta más exigente para los sistemas de computación
actuales. Esta situación pone en el punto de mira el rendimiento y escalabilidad
de los entornos de procesamiento de datos masivos, lo que a su vez requiere nuevas
maneras de evaluarlos y optimizarlos. La presente Tesis, “Evaluación y Optimización
del Procesamiento Big Data en Entornos de Computación de Altas Prestaciones”,
aborda estas cuestiones por medio del diseño e implementación de nuevas herra-
mientas con el objetivo de ayudar a desarrolladores y usuarios a identificar y aliviar
los posibles problemas de rendimiento.

Introducción

La cantidad de datos que generamos y recopilamos se incrementa día a día de
manera exponencial. De hecho, la International Data Corporation (IDC) prevé que
generaremos 163 ZB de datos en el año 2025, diez veces los 16.1 ZB generados en
2016 [101]. El término Big Data se refiere al uso de estos grandes volúmenes de
datos para obtener información útil, aportando soluciones a problemas analíticos
en múltiples campos como ciudades inteligentes [66], ciencias sociales [52], medici-

145

146 Appendix A. Resumen extendido en castellano

na [146], industria [138] y muchos más. Los principales retos a los que se enfrentan
las tecnologías Big Data son definidos por Gartner, Inc. como volumen, variedad y
velocidad [44]. Estos tres retos son cada vez más difíciles de gestionar, ya que ejercen
una gran presión en el rendimiento de los sistemas de procesamiento de datos.

La creciente adopción del Big Data se ha fomentado por el cambio en la forma
en la que se definen las operaciones de procesamiento de datos. La publicación del
modelo de programación MapReduce por parte de Google [29] sentó la base de
un nuevo paradigma de computación que se centra en trasladar la computación al
lugar donde se almacenan los datos en vez de trasladar los datos al lugar donde
se procesan. MapReduce se utiliza popularmente en entornos de procesamiento Big
Data, principalmente Apache Hadoop [8]. Otros entornos como Apache Spark [145] o
Apache Flink [7] también utilizan parte de su semántica, aunque permiten realizar un
conjunto de transformaciones más amplio. Todos estos entornos procesan de forma
distribuida grandes volúmenes de datos en sistemas clúster y cloud que pueden tener
hasta miles de nodos [67]. A medida que la cantidad de datos a procesar aumenta, la
capacidad de computación necesaria para ello alcanza niveles difíciles de gestionar
por los sistemas actuales. Esta situación obliga a desarrolladores y usuarios de Big
Data a hacer un esfuerzo considerable para identificar y optimizar los problemas
de rendimiento que puedan existir en las tecnologías y sistemas actuales, con el
fin de mantener los tiempos de ejecución de las aplicaciones dentro de unos límites
aceptables, a la vez que se garantiza la calidad de los resultados.

Determinar los factores que limitan el rendimiento de los entornos Big Data no
es una tarea trivial, ya que se ven afectados por una gran variedad de aspectos
como su diseño e implementación, la planificación de las tareas, la distribución de
la carga de trabajo o la arquitectura del sistema. Esto ha supuesto un gran estímulo
para la actividad investigadora en torno a la evaluación del rendimiento y el uso
de recursos de entornos Big Data. Sin embargo, los resultados de estos estudios
son difíciles de extrapolar a casos de uso concretos sin antes obtener información
empírica, debido al gran número de factores que influyen en su comportamiento.
Por lo tanto, identificar problemas de rendimiento de una carga de trabajo requiere
un profundo análisis experimental. Ya que los usuarios de Big Data provienen de
campos muy diferentes, en ocasiones sin conocimiento acerca del comportamiento a
bajo nivel de los entornos, pueden no contar ni con las habilidades ni con el tiempo

147

necesario para realizar este tipo de tareas adecuadamente.

Otra problemática a destacar está relacionada con las limitaciones de rendimien-
to que los entornos ejercen con frecuencia sobre las aplicaciones. Un ejemplo claro
de ello se puede encontrar en gran cantidad de aplicaciones Hadoop que se han desa-
rrollado desde su liberación en 2007, alguna de ellas como resultado de meses o años
de desarrollo. Aunque Hadoop ha seguido evolucionando y mejorando durante este
tiempo, algunas decisiones de diseño iniciales siguen perjudicando su rendimiento
general. Para aliviar este problema han surgido entornos más modernos, como Spark
o Flink, mejorando el rendimiento de Hadoop y ofreciendo APIs más nuevas y am-
plias. La mayoría de aplicaciones que se han portado a estas APIs han obtenido
grandes mejoras de rendimiento.

Sin embargo, un gran número de aplicaciones aún utiliza Hadoop para el pro-
cesamiento de datos, lo que reduce el rendimiento que pueden alcanzar. Adaptarlas
para usar Spark o Flink no siempre es asumible debido al excesivo esfuerzo de pro-
gramación y testeo que se requiere. Así mismo, la mejora de rendimiento que se
puede obtener es a priori desconocida, ya que depende de las características de la
aplicación. Esto puede provocar que el rendimiento sea igual o incluso peor cuando
se ejecuta con Spark o Flink, lo que supondría un gran gasto de tiempo y recursos
humanos que podrían haberse empleado mejor en otras tareas. En algunos casos, el
código fuente ni siquiera estaría disponible, lo que impediría su modificación.

El propósito de esta Tesis es paliar algunas de las principales dificultades de
evaluar y optimizar aplicaciones Big Data, proporcionando nuevas herramientas pa-
ra ayudar a los usuarios a obtener información acerca del comportamiento de los
entornos Big Data y optimizar aplicaciones ya existentes sin comprometer la com-
patibilidad. Por un lado, la evaluación del rendimiento de los entornos se ha abordado
desarrollando una nueva herramienta de evaluación, Big Data Evaluator (BDEv),
que permite evaluar de manera automática los entornos de procesamiento Big Data
más populares. Por otro lado, se ha propuesto el entorno Flame-MR para permi-
tir la optimización transparente de aplicaciones Hadoop, utilizando computación en
memoria para rediseñar la manera en la que se procesan los datos.

148 Appendix A. Resumen extendido en castellano

Objetivos y Metodología de Trabajo

Los principales objetivos de esta Tesis se listan a continuación.

1. Desarrollo de una herramienta automática de evaluación de entornos de pro-
cesamiento Big Data.

• Configuración y despliegue automático de entornos.

• Soporte para distintos benchmarks de diferentes tipos.

• Evaluación con múltiples métricas.

• Fácil recolección de resultados (p.e. generación automática de gráficas).

2. Diseño e implementación de un nuevo entorno MapReduce para el procesa-
miento de datos en memoria.

• Reemplazo transparente de la arquitectura de Hadoop.

• Aprovechamiento de los recursos del sistema (p.e. CPU, memoria).

• Solapamiento eficiente del procesamiento.

• Compatibilidad entre aplicaciones.

3. Evaluación exhaustiva del rendimiento del nuevo entorno.

• Evaluación en plataformas cloud y sistemas de computación de altas pres-
taciones.

• Ejecución de benchmarks estándar y aplicaciones de uso real.

• Caracterización y análisis en profundidad de las aplicaciones.

Estos objetivos se han llevado a cabo utilizando una metodología de trabajo
clásica en investigación e ingeniería: análisis, diseño, implementación y evaluación.
Esta metodología se ha aplicado al primer y segundo objetivo, que se correspon-
den con los ciclos de desarrollo de la Tesis. Para abordar el primer objetivo se ha
estudiado el estado del arte actual referente a la evaluación de entornos de procesa-
miento de datos, identificando los problemas más comunes que se encuentran a la
hora de realizar evaluaciones experimentales en sistemas Big Data. Los resultados

149

de este análisis se han utilizado como base para diseñar la herramienta MapRedu-
ce Evaluator (MREv), que más tarde evolucionó a una herramienta más completa,
Big Data Evaluator (BDEv). Una vez completada su implementación, se ha testado
adecuadamente utilizando múltiples entornos, aplicaciones y sistemas.

Para alcanzar el segundo objetivo se ha desarrollado un nuevo entorno llamado
Flame-MR. Utilizando los resultados obtenidos por BDEv en la primera parte de
la Tesis, se han identificado diversos puntos débiles de rendimiento para los que
Flame-MR ha sido específicamente diseñado. Este diseño se ha realizado de manera
modular, implementando y testando los componentes software con una aproxima-
ción iterativa. Una vez obtenida la versión inicial del entorno, se han desarrollado
diversas técnicas de gestión de memoria para mejorar el rendimiento. La versión
final de Flame-MR se ha evaluado en sistemas cloud y clúster de altas prestaciones,
ejecutando benchmarks estándar y aplicaciones de uso real, para alcanzar el tercer
objetivo de la Tesis.

Conclusiones

La investigación llevada a cabo en esta Tesis ha permitido alcanzar los objetivos
de manera satisfactoria. En primer lugar, el desarrollo de la herramienta BDEv
para evaluar entornos Big Data ha permitido facilitar la obtención de resultados
experimentales con el fin de analizar en profundidad el comportamiento de dichos
entornos. BDEv gestiona de manera automática la configuración y despliegue en
modo clúster de los entornos, la generación de los conjuntos de datos de entrada, la
ejecución de los benchmarks y aplicaciones y la extracción de diversas métricas de
rendimiento. Estas métricas no se limitan a tiempos de ejecución, sino que también
incluyen escalabilidad, uso de recursos, eficiencia energética y comportamiento a
nivel de microarquitectura. El uso de BDEv facilita al usuario la configuración de
los entornos de manera homogénea, lo que a su vez permite una comparación más
justa entre ellos. Su utilidad se ha demostrado en diversos casos prácticos, ya que
la información obtenida ha mostrado ser de gran valor para el análisis de entornos
Big Data como Hadoop, Spark y Flink.

Con respecto a la optimización del procesamiento de datos, esta Tesis propone

150 Appendix A. Resumen extendido en castellano

Flame-MR, un entorno MapReduce que acelera aplicaciones Hadoop ya existen-
tes sin necesidad de modificar el código fuente escrito por el usuario. Flame-MR
se basa en una arquitectura dirigida por eventos que paraleliza eficientemente las
operaciones de procesamiento y los movimientos de datos, aprovechando los recur-
sos computacionales, como CPU y memoria, de manera más eficiente. El diseño de
Flame-MR también reduce el número de copias en memoria que realiza Hadoop,
además de utilizar algoritmos eficientes para el ordenamiento y fusión de datos.

Debido a la gran importancia del uso de la memoria en las aplicaciones Big Data,
se han implementado diversas técnicas de optimización de la gestión de la memoria
con el objetivo de reutilizar los buffers empleados para el procesamiento de los datos.
De esta manera se consiguen evitar operaciones innecesarias de reserva de memoria,
mejorando el rendimiento de las aplicaciones. También se ha hecho hincapié en
reducir el tráfico de disco y red en la medida de lo posible, para lo que se han
cacheado en memoria los resultados intermedios. En vez de hacer uso del sistema
de ficheros HDFS empleado por Hadoop, los datos de salida se han mantenido en
estructuras en memoria para ser procesados por subsiguientes trabajos MapReduce,
lo que mejora significativamente el rendimiento de los algoritmos iterativos.

La mejora de rendimiento obtenida por Flame-MR se ha evaluado en diferentes
escenarios y sistemas. El uso de benchmarks estándar ha facilitado la comparación
entre los resultados de rendimiento de distintos entornos. Utilizando estos bench-
marks, Flame-MR reduce el tiempo de ejecución de Hadoop en un 48% de media,
además de obtener resultados muy competitivos con respecto a Spark. Aunque Spark
consigue mejor rendimiento en benchmarks iterativos, es superado por Flame-MR
al ejecutar benchmarks intensivos en entrada/salida como Sort y PageRank, con el
beneficio adicional de no requerir la reescritura del código fuente de las aplicaciones
Hadoop, como sí ocurre con Spark.

Flame-MR también se ha evaluado utilizando varias aplicaciones extraídas de
casos de uso reales, incluyendo consultas analíticas a bases de datos (VELaSSCo),
corrección de errores en conjuntos de datos genómicos (CloudRS) y eliminación de
secuencias de ADN duplicadas en conjuntos de datos genómicos (MarDRe). Estas
aplicaciones, escritas originalmente para Hadoop, presentan una aceleración de entre
un 40% y un 90% cuando se ejecutan con Flame-MR, lo que supone que su tiempo de
ejecución se reduce hasta un orden de magnitud en algunos casos. Estos resultados,

151

junto con los obtenidos usando benchmarks estándar, demuestran claramente los
beneficios de Flame-MR sobre Hadoop en términos de rendimiento.

Trabajo Futuro

La propuesta de nuevas herramientas de evaluación y optimización de entornos y
aplicaciones Big Data sienta la base para líneas de trabajo futuras que se beneficien
del trabajo llevado a cabo durante esta Tesis. A medida que los ecosistemas Big
Data se hacen más heterogéneos, tanto en términos de hardware como de software,
es necesario aumentar el esfuerzo para encontrar nuevas técnicas de evaluación que
permitan comparar de manera precisa distintos sistemas y paradigmas.

Aunque el tiempo de ejecución se utiliza comúnmente como principal métri-
ca de rendimiento para trabajos batch, no se puede aplicar en todos los escenarios
(p.e. procesamiento streaming), lo que dificulta la comparación de rendimiento entre
diferentes paradigmas. Por lo tanto, es necesario proponer métricas estándar más ac-
tualizadas, análogas a las utilizadas en paradigmas paralelos más tradicionales (p.e.
operaciones en punto flotante por segundo, FLOPS). Estas nuevas métricas deben
facilitar la extrapolación de resultados cuando se varían parámetros experimentales
como el tamaño de los datos de entrada o características del sistema como el número
de nodos del clúster. Aunque la cantidad de datos procesados por unidad de tiempo
(MB/s) puede ser una aproximación inicial para tal métrica, no siempre es adecuada
ya que el tamaño de los datos de entrada puede variar entre escenarios debido a las
especificaciones del formato. Por otro lado, las aplicaciones iterativas no emplean
todo el tiempo de ejecución procesando los datos de entrada. Estas cuestiones deben
tenerse en cuenta cuidadosamente para elaborar una propuesta sólida de métricas
estándar de rendimiento.

A medida que los entornos evolucionan con el tiempo, se está haciendo más
compleja su utilización y configuración. Esta situación requiere nuevas herramientas
y métodos de evaluación que cooperen con los entornos de manera activa. Además de
extraer métricas de evaluación como uso de recursos o eficiencia energética, deben
ser capaces de utilizar esa información para mejorar el rendimiento. Analizando
los datos recogidos, el proceso de evaluación debe retroalimentarse para ajustar la

152 Appendix A. Resumen extendido en castellano

configuración de los entornos o adaptar los recursos del sistema a las necesidades de
las aplicaciones en tiempo real.

En la actualidad, la optimización del procesamiento de datos está orientada a
mejorar el rendimiento de un determinado entorno, aliviando problemas existentes
en su diseño. Sin embargo, la aplicabilidad de este enfoque se ve claramente limi-
tada al uso de ese entorno en concreto. Las nuevas optimizaciones deben aspirar a
buscar soluciones a problemas de rendimiento comunes que se puedan encontrar en
múltiples entornos. Ejemplos de ello son ineficiencias en la serialización de datos o
en la planificación de las tareas. Encontrar soluciones de diseño eficientes para estas
cuestiones puede aportar a los desarrolladores guías de actuación de gran utilidad
a la hora de diseñar nuevos entornos de procesamiento de datos u optimizar los ya
existentes.

Las APIs de programación que ofrecen los entornos de procesamiento Big Data
muestran muchas similitudes entre sí. Por ejemplo, Spark y Flink tienen en común
muchas operaciones de transformación de los datos, como map() o filter(). Por lo
tanto, establecer una API estándar de procesamiento de datos sería de gran ayuda
para homogeneizar la manera en la que se definen las operaciones en esos entor-
nos. De manera similar a la que el estándar MPI unificó la programación paralela
en el ámbito de la computación de altas prestaciones, un modelo de programación
estándar para Big Data permitiría múltiples implementaciones de las mismas ope-
raciones, centrándose en conseguir su implementación de manera eficiente mientras
se garantiza la compatibilidad entre diferentes entornos de procesamiento.

Principales Contribuciones

Las principales contribuciones originales derivadas de la Tesis son las siguientes:

• Desarrollo de la herramienta BDEv para caracterizar el rendimiento y auto-
matizar la evaluación de entornos Big Data [122, 125].

• Análisis experimental del comportamiento de entornos de procesamiento Big
Data [123, 126, 129].

153

• Desarrollo de Flame-MR para optimizar aplicaciones Hadoop de manera trans-
parente, aprovechando los recursos computacionales de sistemas clúster y cloud
de altas prestaciones [127, 128].

• Evaluación exhaustiva de Flame-MR utilizando benchmarks estándar y apli-
caciones extraídas de casos de uso reales [35, 124].

Software desarrollado

Las herramientas software desarrolladas en esta Tesis están disponibles pública-
mente:

• BDEv: herramienta de evaluación automática para entornos de procesamiento
Big Data. Disponible en http://bdev.des.udc.es/.

• Flame-MR: entorno MapReduce de computación en memoria para optimizar
aplicaciones Hadoop de manera transparente. Disponible en http://flamemr.
des.udc.es/.

• MarDRe: herramienta MapReduce para eliminar secuencias de ADN duplica-
das en grandes conjuntos de datos genómicos. Disponible en http://mardre.

des.udc.es/.

Software registrado

Tres productos software resultado de esta Tesis se han registrado en el Registro
de la Propiedad Intelectual:

• J. Veiga, R. R. Expósito, G. L. Taboada, y J. Touriño. Flame-MR: framework
MapReduce para computación en memoria, 2018. Número de asiento registral:
pendiente. Entidad titular: Universidade da Coruña. País de prioridad: España.

http://bdev.des.udc.es/
http://flamemr.des.udc.es/
http://flamemr.des.udc.es/
http://mardre.des.udc.es/
http://mardre.des.udc.es/

154 Appendix A. Resumen extendido en castellano

• R. R. Expósito, J. Veiga, J. González-Domínguez, y J. Touriño. MapReduce
Duplicate Removal tool: MarDRe, Noviembre 2017. Número de asiento regis-
tral: 03/2018/174. Entidad titular: Universidade da Coruña. País de prioridad:
España.

• J. Veiga, R. R. Expósito, G. L. Taboada, y J. Touriño. MapReduce Evalua-
tor: MREv, Junio 2016. Número de asiento registral: 03/2016/1054. Entidad
titular: Universidade da Coruña. País de prioridad: España. En explotación
por Torus Software Solutions S.L. a través del contrato INV13317 desde el
18/12/2017.

Publicaciones de la Tesis

Artículos en revistas

• J. Veiga, R. R. Expósito, B. Raffin, and J. Touriño. Optimization of real-world
MapReduce applications with Flame-MR: practical use cases. 2018. (Enviado
para publicación en revista).

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Enhancing in-
memory efficiency for MapReduce-based data processing. Journal of Parallel
and Distributed Computing, 120:323–338, 2018. JCR Q2.

• J. Veiga, J. Enes, R. R. Expósito, and J. Touriño. BDEv 3.0: energy ef-
ficiency and microarchitectural characterization of Big Data processing fra-
meworks. Future Generation Computer Systems, 86:565–581, 2018. JCR Q1
(primer decil).

• R. R. Expósito, J. Veiga, J. González-Domínguez, and J. Touriño. MarDRe:
efficient MapReduce-based removal of duplicate DNA reads in the cloud. Bio-
informatics, 33(17):2762–2764, 2017. JCR Q1 (primer decil).

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Flame-MR: an event-
driven architecture for MapReduce applications. Future Generation Computer
Systems, 65:46–56, 2016. JCR Q1 (primer decil).

155

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Analysis and eva-
luation of MapReduce solutions on an HPC cluster. Computers & Electrical
Engineering, 50:200–216, 2016. JCR Q3.

Congresos internacionales

• J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touriño. Per-
formance evaluation of Big Data frameworks for large-scale data analytics.
In 2016 IEEE International Conference on Big Data (IEEE BigData 2016),
pages 424–431. Washington, DC, USA, 2016.

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. MREv: an automatic
MapReduce Evaluation tool for Big Data workloads. In International Confe-
rence on Computational Science (ICCS’15), pages 80–89. Reykjavík, Iceland,
2015.

• J. Veiga, G. L. Taboada, X. C. Pardo, and J. Touriño. The HPS3 service:
reduction of cost and transfer time for storing data on clouds. In 16th IEEE
International Conference on High Performance Computing and Communica-
tions (HPCC’14), pages 213–220. Paris, France, 2014.

Capítulos de libro

• J. Veiga, R. R. Expósito, and J. Touriño. Performance evaluation of Big
Data analysis. In S. Sakr and A. Zomaya, editors, Encyclopedia of Big Data
Technologies, pages 1–6. Springer International Publishing, Cham, 2018.

Otras publicaciones menores

• J. Veiga, R. R. Expósito, and J. Touriño. Flame-MR: transparent performance
improvement of Big Data applications. In Journée des doctorants de l’Ecole
Doctorale Mathématiques, Sciences et Technologies de l’Information, Informa-
tique (EDMSTII). Grenoble, France, 2017.

156 Appendix A. Resumen extendido en castellano

• J. Veiga, R. R. Expósito, G. L. Taboada, and J. Touriño. Performance impro-
vement of MapReduce applications using Flame-MR. In 2nd NESUS Winter
School & PhD Symposium 2017. Vibo Valentia, Italy, 2017.

	1 Introduction
	2 BDEv: automating the evaluation of Big Data frameworks
	2.1 State of the art in evaluating data processing frameworks
	2.1.1 Big Data processing frameworks
	2.1.2 Benchmarking tools
	2.1.3 Performance studies of Big Data processing frameworks
	2.1.4 Energy efficiency
	2.1.5 Microarchitectural characterization
	2.1.6 Summary

	2.2 BDEv: goals and design
	2.2.1 Motivation
	2.2.2 BDEv characteristics
	2.2.3 BDEv design
	2.2.4 Evaluation metrics
	2.2.5 Operation
	2.2.6 Targeted use cases

	2.3 BDEv outcomes
	2.3.1 Experimental testbed
	2.3.2 Performance and energy efficiency
	2.3.3 Power consumption and resource utilization
	2.3.4 Microarchitecture-level metrics

	2.4 Conclusions

	3 Flame-MR: efficient event-driven MapReduce data processing
	3.1 Background
	3.2 Related work
	3.3 Flame-MR design
	3.3.1 Flame-MR architecture
	3.3.2 MapReduce operations

	3.4 Memory management optimizations
	3.4.1 Garbage collection reduction
	3.4.2 Buffer type analysis
	3.4.3 Iterative support

	3.5 Conclusions

	4 Experimental analysis of Flame-MR in cluster and cloud platforms
	4.1 Related work
	4.2 Performance comparison with Hadoop and Spark in the cloud
	4.2.1 Comparison with Hadoop
	4.2.2 Comparison with Spark

	4.3 Applicability study: optimization of real-world use cases
	4.3.1 VELaSSCo: data visualization queries
	4.3.2 CloudRS: error removal in genomic data
	4.3.3 MarDRe: duplicate read removal in genome sequencing data

	4.4 Conclusions

	5 Conclusions and future work
	References
	A Resumen extendido en castellano

