DOCTORAL THESIS

Evaluation and Optimization of Big
Data Processing on High
Performance Computing Systems

Jorge Veiga Fachal

2018

>‘ l< UNIVERSIDADE DA CORUNA

Evaluation and Optimization of Big
Data Processing on High

Performance Computing Systems

Jorge Veiga Fachal
DOCTORAL THESIS

October 2018

PhD Advisors:
Roberto Rey Exposito

Juan Tourino Dominguez

PhD Program in Information Technology Research

>‘ l< UNIVERSIDADE DA CORUNA

Dr. Roberto Rey Exposito Dr. Juan Tourino Dominguez

Profesor Ayudante Doctor Catedratico de Universidad
Dpto. de Ingenieria de Dpto. de Ingenieria de
Computadores Computadores
Universidade da Coruna Universidade da Coruna
CERTIFICAN

Que la memoria titulada “ Evaluation and Optimization of Big Data Processing on
High Performance Computing Systems’ ha sido realizada por D. Jorge Veiga Fachal
bajo nuestra direcciéon en el Departamento de Ingenieria de Computadores de la
Universidade da Coruna, y concluye la Tesis Doctoral que presenta para optar al

grado de Doctor en Ingenieria Informética con la Mencién de Doctor Internacional.

En A Coruna, a 5 de Octubre de 2018

Fdo.: Roberto Rey Exposito Fdo.: Juan Tourino Dominguez

Director de la Tesis Doctoral Director de la Tesis Doctoral

Fdo.: Jorge Veiga Fachal
Autor de la Tesis Doctoral

A todos los que me habéis ayudado a realizar esta tesis,

y a los que no, pues mira, también

Acknowledgments

I want to thank my advisors Juan and Roberto for giving me the opportunity to
develop this Thesis and for their valuable guidance; I believe working with them has
been a truly enriching experience. I also thank all the members of the GAC that
contributed to this work in some way, especially Xoan for helping me to take my
first steps into the research world. Moreover, thanks to my lab colleagues for the

wonderful work environment and for all the coffee breaks and dinners that we shared.

I want to say thanks to my family; to my parents for encouraging me to aim high,
to my siblings Mar and Carlos for their support and to my beloved partner Ian for
his company through all these years. I am very grateful to all my friends that lent
me a hand when I needed it, especially Nuria, Manu and Laura for all the times

they made me forget the work for a while.

I would like to thank Dr. Bruno Raffin and his group for hosting me during my
three-month research visit to the Inria Grenoble Rhone-Alpes reseach center, and
for providing access to the Grid’5000 computing platform. I really appreciated the

comments on my work and the welcoming environment that I found there.

Finally, I want to acknowledge the following funders of this work: the Computer
Architecture Group, the Department of Computer Engineering, and the Univer-
sity of A Coruna for the human and material support; the NESUS network under
the COST Action IC1305; the Galician Government (refs. GRC2013/055, ED431C
2017/04, R2014/041, ED431D R2016/045 and predoctoral grant ED 481A-2015/189);
and the Spanish Government (refs. TIN2013-42148-P, TIN2016-75845-P, FPU grant
FPU14/02805 and mobility grant EST16,/00076).

Jorge Veiga Fachal

VII

A person has the right,
and I think the responsibility,
to develop all of their talents.

Jessye Norman

Resumo

Hoxe en dia, moitas organizacions empregan tecnoloxias Big Data para extraer
informacion de grandes volumes de datos. A medida que o tamano destes volu-
mes crece, satisfacer as demandas de rendemento das aplicacions de procesamento
de datos masivos faise mais dificil. Esta Tese céntrase en avaliar e optimizar estas
aplicacions, presentando duas novas ferramentas chamadas BDEv e Flame-MR. Por
unha banda, BDEv analiza o comportamento de frameworks de procesamento Big
Data como Hadoop, Spark e Flink, moi populares na actualidade. BDEv xestiona
a sta configuracion e despregamento, xerando os conxuntos de datos de entrada
e executando cargas de traballo previamente elixidas polo usuario. Durante cada
execucion, BDEv extrae diversas métricas de avaliaciéon que incliien rendemento,
uso de recursos, eficiencia enerxética e comportamento a nivel de microarquitectura.
Doutra banda, Flame-MR permite optimizar o rendemento de aplicacions Hadoop
MapReduce. En xeral, o seu deseno baséase nunha arquitectura dirixida por eventos
capaz de mellorar a eficiencia dos recursos do sistema mediante o solapamento da
computacién coas comunicacions. Ademais de reducir o nimero de copias en memo-
ria que presenta Hadoop, emprega algoritmos eficientes para ordenar e mesturar os
datos. Flame-MR substitiie o motor de procesamento de datos MapReduce de xeito
totalmente transparente, polo que non é necesario modificar o cdédigo de aplicacions
xa existentes. A mellora de rendemento de Flame-MR foi avaliada de maneira ex-
haustiva en sistemas cluster e cloud, executando tanto benchmarks estdndar coma
aplicacions pertencentes a casos de uso reais. Os resultados amosan unha reducién
de entre un 40 % e un 90 % do tempo de execucion das aplicacions. Esta Tese pro-
porciona aos usuarios e desenvolvedores de Big Data duas potentes ferramentas
para analizar e comprender o comportamento de frameworks de procesamento de
datos e reducir o tempo de execucion das aplicacions sen necesidade de contar con

coniecemento experto para elo.

XI

Resumen

Hoy en dia, muchas organizaciones utilizan tecnologias Big Data para extraer
informacion de grandes volumenes de datos. A medida que el tamano de estos vo-
limenes crece, satisfacer las demandas de rendimiento de las aplicaciones de proce-
samiento de datos masivos se vuelve més dificil. Esta Tesis se centra en evaluar y
optimizar estas aplicaciones, presentando dos nuevas herramientas llamadas BDEv
y Flame-MR. Por un lado, BDEv analiza el comportamiento de frameworks de pro-
cesamiento Big Data como Hadoop, Spark y Flink, muy populares en la actualidad.
BDEv gestiona su configuracion y despliegue, generando los conjuntos de datos de
entrada y ejecutando cargas de trabajo previamente elegidas por el usuario. Durante
cada ejecucion, BDEv extrae diversas métricas de evaluacion que incluyen rendimien-
to, uso de recursos, eficiencia energética y comportamiento a nivel de microarqui-
tectura. Por otro lado, Flame-MR permite optimizar el rendimiento de aplicaciones
Hadoop MapReduce. En general, su diseno se basa en una arquitectura dirigida por
eventos capaz de mejorar la eficiencia de los recursos del sistema mediante el sola-
pamiento de la computacion con las comunicaciones. Ademas de reducir el niimero
de copias en memoria que presenta Hadoop, utiliza algoritmos eficientes para orde-
nar y mezclar los datos. Flame-MR reemplaza el motor de procesamiento de datos
MapReduce de manera totalmente transparente, por lo que no se necesita modificar
el codigo de aplicaciones ya existentes. La mejora de rendimiento de Flame-MR ha
sido evaluada de manera exhaustiva en sistemas cluster y cloud, ejecutando tanto
benchmarks estdndar como aplicaciones pertenecientes a casos de uso reales. Los
resultados muestran una reduccion de entre un 40 % y un 90 % del tiempo de ejecu-
cion de las aplicaciones. Esta Tesis proporciona a los usuarios y desarrolladores de
Big Data dos potentes herramientas para analizar y comprender el comportamiento
de frameworks de procesamiento de datos y reducir el tiempo de ejecucion de las

aplicaciones sin necesidad de contar con conocimiento experto para ello.

XIII

Abstract

Nowadays, Big Data technologies are used by many organizations to extract
valuable information from large-scale datasets. As the size of these datasets in-
creases, meeting the huge performance requirements of data processing applications
becomes more challenging. This Thesis focuses on evaluating and optimizing these
applications by proposing two new tools, namely BDEv and Flame-MR. On the one
hand, BDEv allows to thoroughly assess the behavior of widespread Big Data pro-
cessing frameworks such as Hadoop, Spark and Flink. It manages the configuration
and deployment of the frameworks, generating the input datasets and launching the
workloads specified by the user. During each workload, it automatically extracts
several evaluation metrics that include performance, resource utilization, energy ef-
ficiency and microarchitectural behavior. On the other hand, Flame-MR optimizes
the performance of existing Hadoop MapReduce applications. Its overall design is
based on an event-driven architecture that improves the efficiency of the system
resources by pipelining data movements and computation. Moreover, it avoids re-
dundant memory copies present in Hadoop, while also using efficient sort and merge
algorithms for data processing. Flame-MR replaces the underlying MapReduce data
processing engine in a transparent way and thus the source code of existing applica-
tions does not require to be modified. The performance benefits provided by Flame-
MR have been thoroughly evaluated on cluster and cloud systems by using both
standard benchmarks and real-world applications, showing reductions in execution
time that range from 40% to 90%. This Thesis provides Big Data users with power-
ful tools to analyze and understand the behavior of data processing frameworks and

reduce the execution time of the applications without requiring expert knowledge.

XV

Preface

The use of Big Data technologies for large-scale data processing is widely sprea-
ding, transforming the way we extract valuable information from large amounts of
data. As the size of the input datasets increases, their analysis becomes a challenging
task for current computing systems. This situation puts a lot of strain onto the
performance and scalability of current data processing frameworks, which in turn
demands for new ways of evaluating and optimizing them. The present Thesis,
“Evaluation and Optimization of Big Data Processing on High Performance Com-
puting Systems”, addresses these issues by designing and implementing new tools
that can help developers and users to identify and alleviate existing performance
bottlenecks.

Objectives and Work Methodology

The main objectives of this Thesis are listed below, including some key sub-goals

that must be met.

1. Development of an automatic tool to evaluate Big Data frameworks.

e Automatic configuration and deployment of frameworks.
e Support for several benchmarks with different characterizations.
e Multi-metric evaluation.

e Easy collection of results (e.g. automatic graph generation).

XVII

XVIII Preface

2. Design and implementation of a new MapReduce framework for in-memory

data processing.

e Transparent replacement of Hadoop’s architecture.
e Leveraging of system resources (e.g. CPU, memory).
e Efficient data pipelining.

e Application compatibility.
3. Thorough performance evaluation of the new framework.

e Evaluation in cloud and High Performance Computing (HPC) systems.
e Execution of standard benchmarks and real-world applications.

e In-depth analysis and characterization of the workloads.

These objectives have been addressed by using a classic work methodology in
research and engineering: analysis, design, implementation and evaluation. This
methodology has been applied to the first and second objectives, which correspond
with the development cycles of the Thesis. To address the first objective, the cur-
rent state of the art regarding the assessment of data processing frameworks was
reviewed, identifying the most common issues encountered when conducting expe-
rimental evaluations in Big Data systems. The results from this analysis were used
as a basis for the design of the MapReduce Evaluator (MREv) tool, which later
evolved into a more comprehensive tool: Big Data Evaluator (BDEv). Once the im-
plementation of BDEv was complete, it was appropriately tested by using multiple

frameworks, workloads and systems.

In order to achieve the second objective, a new framework named Flame-MR was
developed. Its performance targets were first identified by analyzing the behavior
of Hadoop, using the results obtained by BDEv during the first part of the The-
sis. Next, Flame-MR was designed in a modular way, implementing and testing the
software components using an iterative approach. When the initial functional ver-
sion of the framework was complete, several memory management techniques were
developed for further performance. The final version of Flame-MR was evaluated in
HPC and cloud systems to achieve the third objective of the Thesis, executing both

standard benchmarks and real-world applications.

Preface XIX

Funding and Technical Means
The means that were used to carry out this Thesis have been the following:

e Working material, human and financial support primarily by the Computer
Architecture Group of the University of A Coruna, along with Research Fel-
lowships funded by the Ministry of Education, Culture and Sport of Spain
(FPU program, ref. FPU14/02805) and by the Galician Government (Xunta
de Galicia, ref. ED 481A-2015/189).

e Access to bibliographical material through the library of the University of A

Coruna.
e Additional funding through the following research projects:

o European funding: “Network For Sustainable Ultrascale Computing” (NE-
SUS COST Action ref. 1C1305).

o State funding by the Ministry of Economy and Competitiveness of Spain
through the project “New Challenges in High Performance Computing;:
from Architectures to Applications” (refs. TIN2013-42148-P and TIN2016-
75845-P).

o Regional funding by the Galician Government (Xunta de Galicia) under
the Consolidation Program of Competitive Research Groups (Computer
Architecture Group, refs. GRC2013/055 and ED431C 2017/04) and Net-
work of Cloud and Big Data Technologies for HPC (refs. R2014/041 and
ED431D R2016,/045).

o Private funding: project “Spark-based Duplicate Reads Removal Tool for
Sequencing Studies” funded by the “Microsoft Azure for Research” pro-
gram (ref. MS-AZR-0036P), and project “High-Performance Computing
and Communications in AWS” funded by a research grant of Amazon

Web Services (AWS) LLC.
e Access to clusters, supercomputers and cloud computing platforms:

o Pluton cluster (Computer Architecture Group, University of A Coruna,

Spain). 16 nodes with 2 octa-core Intel Xeon Sandy Bridge-EP proces-

XX

Preface

sors, 64 GB of memory and 1 HDD disk of 1 TB, interconnected via
Gigabit Ethernet and InfiniBand FDR.

Grid’5000 infrastructure (Inria, CNRS, RENATER and several French
Universities). For the experiments of the Thesis, 33 nodes have been
used, each of them with 2 Intel Xeon octa-core Haswell-EP processors,
128 GB of memory and 2 HDD disks of 558 GB, inteconnected via 4 x10
Gbps Ethernet.

Amazon EC2 laaS cloud platform (Amazon Web Services, AWS). Two
instance types have been used: (1) c¢3.4xlarge, 2 Intel Xeon octa-core
Ivy Bridge-EP processors, 30 GB of memory and 2 local SSD disks of
160 GB; and (2) i2.4xlarge, 2 Intel Xeon octa-core Ivy Bridge-EP proces-
sors, 122 GB of memory and 4 local SSD disks of 800 GB. These instances

are interconnected via Gigabit Ethernet.

Microsoft Azure TaaS cloud platform (Microsoft Corporation). L16S ins-
tances were utilized, which have 1 Intel Xeon hexa-core Haswell-EP pro-
cessor, 128 GB of memory and 2.7 TB of SSD local storage, intercon-
nected via 4 x10 Gbps Ethernet.

e A three-month research visit to the Université Grenoble Alpes, France, which
has allowed the access to the Grid’5000 infrastructure for evaluating the per-
formance benefits of Flame-MR when executing MapReduce queries belonging
to the VELaSSCo project. This research visit was funded by the Ministry of
Education, Culture and Sport of Spain through a competitive grant within the
FPU program (ref. EST16/00076).

Structure of the Thesis

The Thesis is organized as follows:

e Chapter 1 first introduces the main issues that users and developers find when
deploying and using popular Big Data processing frameworks. These issues
have motivated the research work that is described in the remainder of the
Thesis.

Preface XXI

e Chapter 2 presents the state of the art regarding the evaluation of Big Data
processing frameworks, including an overview of the most relevant frameworks,
benchmark suites and performance studies. Next, the BDEv tool is presented
by describing its objectives, characteristics and overall design. A practical use

case shows different experimental analysis that BDEv allows to conduct.

e Chapter 3 addresses the transparent acceleration of Hadoop MapReduce ap-
plications by presenting the design of the Flame-MR framework, detailing the
core characteristics of its architecture along with the approaches followed to
avoid some performance issues present in Hadoop. After that, this chapter
explains several optimizations implemented to improve memory efficiency and
reduce disk overheads, analyzing their benefits in terms of performance and

resource utilization.

e Chapter 4 conducts a thorough evaluation of Flame-MR by executing several
types of workloads including standard benchmarks and real-world MapReduce
applications. Several scenarios are considered, using different HPC and cloud
systems with distinct hardware and software characteristics, which guarantees

the portability of the optimizations proposed in Chapter 3.

e Chapter 5 extracts some final conclusions from the Thesis and discusses future
research lines regarding the development of new models and tools for Big Data

frameworks.

Main Contributions

The main original contributions derived from the Thesis are the following:

e Development of BDEv to characterize the performance and automatize the
evaluation of Big Data frameworks [122, 125].

e Experimental analysis of the behavior of popular Big Data processing frame-
works [123, 126, 129].

e Development of Flame-MR to optimize Hadoop workloads in a transparent

way, leveraging computational resources of HPC and cloud systems [127, 128§].

XXII Preface

e Thorough performance evaluation of Flame-MR using standard benchmarks
and real-world Hadoop applications [35, 124].

Developed software
The software tools developed in this Thesis are publicly available:

e BDEv: automatic evaluation tool for Big Data processing frameworks. Avai-
lable at http://bdev.des.udc.es/.

e Flame-MR: in-memory MapReduce framework for transparent optimization of
Hadoop applications. Available at http://flamemr.des.udc.es/.

e MarDRe: MapReduce tool to remove duplicate and near-duplicate DNA reads
in large genomic datasets. Available at http://mardre.des.udc.es/.

Registered software

Three software products have been registered in the IP registry as outcomes of
this Thesis:

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. Flame-MR: MapRe-
duce framework for in-memory computing, 2018. Record entry number: pen-

ding. Owning entity: Universidade da Coruna. Priority country: Spain.

e R. R. Exposito, J. Veiga, J. Gonzalez-Dominguez, and J. Tourino. MapReduce
Duplicate Removal tool: MarDRe, November 2017. Record entry number:
03/2018/174. Owning entity: Universidade da Coruna. Priority country:
Spain.

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. MapReduce Evalua-
tor: MREv, June 2016. Record entry number: 03/2016/1054. Owning entity:
Universidade da Coruna. Priority country: Spain. In exploitation by Torus
Software Solutions S.L. through contract INV13317 since 18,/12/2017.

http://bdev.des.udc.es/
http://flamemr.des.udc.es/
http://mardre.des.udc.es/

Preface XXIII

Publications from the Thesis

Journal publications

e J. Veiga, R. R. Exposito, B. Raffin, and J. Tourino. Optimization of real-
world MapReduce applications with Flame-MR: practical use cases. 2018.
(Submitted for journal publication).

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. Enhancing in-
memory efficiency for MapReduce-based data processing. Journal of Parallel
and Distributed Computing, 120:323-338, 2018. JCR Q2.

e J. Veiga, J. Enes, R. R. Exposito, and J. Tourino. BDEv 3.0: energy efficiency
and microarchitectural characterization of Big Data processing frameworks.
Future Generation Computer Systems, 86:565-581, 2018. JCR Q1 (first decile).

e R. R. Exposito, J. Veiga, J. Gonzélez-Dominguez, and J. Tourino. MarDRe: ef-
ficient MapReduce-based removal of duplicate DNA reads in the cloud. Bioin-
formatics, 33(17):2762-2764, 2017. JCR Q1 (first decile).

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. Flame-MR: an event-
driven architecture for MapReduce applications. Future Generation Computer
Systems, 65:46-56, 2016. JCR Q1 (first decile).

e J. Veiga, R. R. Expoésito, G. L. Taboada, and J. Tourino. Analysis and eva-
luation of MapReduce solutions on an HPC cluster. Computers & Electrical
Engineering, 50:200-216, 2016. JCR Q3.

International conferences

e J. Veiga, R. R. Exposito, X. C. Pardo, G. L. Taboada, and J. Tourino. Per-
formance evaluation of Big Data frameworks for large-scale data analytics.
In 2016 IEEE International Conference on Big Data (IEEE BigData 2016),
pages 424-431. Washington, DC, USA, 2016.

XXIV Preface

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. MREv: an automatic
MapReduce Evaluation tool for Big Data workloads. In International Confe-
rence on Computational Science (ICCS’15), pages 80-89. Reykjavik, Iceland,
2015.

e J. Veiga, G. L. Taboada, X. C. Pardo, and J. Tourino. The HPS3 service:
reduction of cost and transfer time for storing data on clouds. In 16th IEEE

International Conference on High Performance Computing and Communica-
tions (HPCC’14), pages 213-220. Paris, France, 2014.

Book chapters

e J. Veiga, R. R. Exposito, and J. Tourino. Performance evaluation of Big
Data analysis. In S. Sakr and A. Zomaya, editors, Encyclopedia of Big Data
Technologies, pages 1-6. Springer International Publishing, Cham, 2018.

Other minor publications

e J. Veiga, R. R. Exposito, and J. Tourino. Flame-MR: transparent perfor-
mance improvement of Big Data applications. In Journée des doctorants de
I’Ecole Doctorale Mathématiques, Sciences et Technologies de l’Information,
Informatique (EDMSTII). Grenoble, France, 2017.

e J. Veiga, R. R. Exposito, G. L. Taboada, and J. Tourino. Performance im-
provement of MapReduce applications using Flame-MR. In 2nd NESUS Win-
ter School & PhD Symposium 2017. Vibo Valentia, Italy, 2017.

Contents

1. Introduction

2. BDEv: automating the evaluation of Big Data frameworks
2.1. State of the art in evaluating data processing frameworks
2.1.1. Big Data processing frameworks
2.1.2. Benchmarking tools
2.1.3. Performance studies of Big Data processing frameworks
2.1.4. Energy efficiency L.
2.1.5. Microarchitectural characterization
2.1.6. Summary
2.2. BDEv: goals and design
2.2.1. Motivationo
2.2.2. BDEv characteristicso
2.23. BDEvdesign oo
2.2.4. Evaluation metrics
2.2.5. Operation

2.2.6. Targeted use cases

XXV

XXVI Contents
2.3. BDEvoutcomes 34
2.3.1. Experimental testbedo 35

2.3.2. Performance and energy efficiency 38

2.3.3. Power consumption and resource utilization 39

2.3.4. Microarchitecture-level metrics 43

24. Conclusions 46

3. Flame-MR: efficient event-driven MapReduce data processing 49

3.1.
3.2.

3.3.

3.4.

3.5.

Background oo 50
Related worko 52
Flame-MR designo 95
3.3.1. Flame-MR architecture 95
3.3.2. MapReduce operations 60
Memory management optimizations 67
3.4.1. Garbage collection reduction 69
3.4.2. Buffer typeanalysiso oo 76
3.4.3. Iterative support 80
Conclusions 86

4. Experimental analysis of Flame-MR in cluster and cloud platforms 89

4.1.

4.2.

4.3.

Related work oo 90
Performance comparison with Hadoop and Spark in the cloud 91
4.2.1. Comparison with Hadoop 93
4.2.2. Comparison with Spark 97

Applicability study: optimization of real-world use cases 101

Contents XXVII

4.3.1. VELaSSCo: data visualization queries 101
4.3.2. CloudRS: error removal in genomic data 108

4.3.3. MarDRe: duplicate read removal in genome sequencing data . 116

4.4. Conclusions 122
5. Conclusions and future work 123
References 127

A. Resumen extendido en castellano 145

List of Tables

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

2.7.

3.1.
3.2.

3.3.

3.4.

3.5.

4.1.
4.2.

4.3.

Comparison of batch, stream and hybrid frameworks
Summary of works evaluating Big Data frameworks
Frameworks supported in BDEv
Benchmarks supported in BDEv
Node characteristics of Grid’5000
Configuration of the frameworks in Grid’5000

Benchmark characteristics

Node characteristics of Pluton
Configuration of Flame-MR in Pluton

Sort results for Flame-MR and Flame-MR-GCop ET: Execution Time;
GCT: Garbage Collection Time

Sort results for different buffer types in Flame-MR-GCop ET: Exe-
cution Time; GCT: Garbage Collection Time

Execution times for PageRank

Node characteristics of Amazon EC2 instances
Configuration of Hadoop and HDFS in Amazon EC2

Configuration of Flame-MR and Spark in Amazon EC2

XXIX

XXX List of Tables
4.4. Node characteristics of Grid’5000 107
4.5. Configuration of the frameworks in Grid’5000 107
4.6. Node characteristics of Pluton 113
4.7. Node characteristics of L16S instances in Azure 113
4.8. Configuration of the frameworks in Pluton 114
4.9. Configuration of the frameworks in Azure 114

4.10. Load balancing in MarDRe 121

List of Figures

2.1.
2.2.
2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

3.1.

3.2.

3.3.

3.4.

BDEv design overview 22
Overview of the Intel RAPL architecture for a dual-socket system . . 29
BDEv control flow 32

Execution time, energy consumption and ED?P ratio results (lower

Average power consumption and resource utilization per node for
TeraSort 41

Average power consumption and resource utilization per node for K-
Means oL 42

Average power consumption and resource utilization per node for

PageRank 43
Microarchitecture-level metrics results 45
Hadoop data flow with multiple map and reduce tasks 51

High-level architectural overview of Flame-MR O: Operations B: Buffers
C:Chunks 56

Code examples for WordCount map and reduce functions in Flame-
MR and Hadoop 61

Overview of the MapReduce workflow in Flame-MR O: Operations
B: Buffers C: Chunks oo 62

XXXI

XXXII List of Figures
3.5. k-way merge (k=4) C: Chunks K: Keys V: Values p: pointers 65
3.6. DataPool overview in Flame-MR-GCop 70
3.7. Map output example 72
3.8. GCT and memory usage over time for Flame-MR and Flame-MR-

GCop . . . 75
3.9. GCT and memory usage over time for the different DataBuffer im-

plementations in Flame-MR-GCop 79
3.10. Short-lived vs long-lived Workers 81
3.11. Data cache example oL 82
3.12. Resource utilization statistics of Flame-MR, Flame-MR-It-NoCache

and Flame-MR-It-Cache 85
4.1. Execution times of Hadoop, Flame-MR and Flame-MR-It in Ama-

zon EC2 . . 0L o 95
4.2. Disk utilization of Hadoop and Flame-MR-It for Sort 96
4.3. Memory utilization of Hadoop and Flame-MR-It for Sort 97
4.4. Execution times of Hadoop, Spark and Flame-MR-It in Amazon EC2 98
4.5. CPU utilization and network traffic for PageRank in i2.4xlarge 99
4.6. CPU utilization and network traffic for Connected Components in

i24xlarge 100
4.7. Data object serialization in Flame-MR 105
4.8. Execution times of VELaSSCo queries with Hadoop and Flame-MR . 108
4.9. Execution times of CloudRS with Hadoop and Flame-MR 115
4.10. Load balancing mode in Flame-MR version 1.1 119
4.11. Execution times of MarDRe with Hadoop, Flame-MR and Flame-

MR-LB . . oo 120

Chapter 1
Introduction

The data we generate and collect increases day by day in an exponential fashion.
In fact, the International Data Corporation (IDC) forecasts that we will globally
generate 163 ZB of data by 2025, ten times the 16.1 ZB generated in 2016 [101].
The term Big Data refers to the use of these huge volumes of data to obtain valuable
information, providing solutions to analytical problems in multiple fields such as
smart cities [66], social sciences [52], medicine [146], industry [138] and many more.
The main challenges that Big Data technologies have to face are defined by Gartner,
Inc. as volume, variety and velocity [44]. These three challenges are constantly
becoming more difficult to manage, since they put a lot of strain into the performance

of data processing systems.

The widespread adoption of Big Data technologies has been encouraged by a
change in the way data processing pipelines are defined. The publication of the
MapReduce programming model by Google [29] established the basis of a new com-
puting paradigm that focuses on moving the computation to where data is stored
rather than moving the data to the computation. As MapReduce processes large
datasets distributed among the nodes of a cluster, computational tasks can be col-
located within the nodes that contain the input data to be processed. Doing so,
it avoids unnecessary and costly data movements through the network. Moreover,
MapReduce programmers only need to define the transformation operations that
process the data. Low-level implementation details, such as network communica-

tions and task parallelism, are hidden to them. Therefore, Big Data developers

2 Chapter 1. Introduction

can focus on algorithm design, without requiring the programming effort and the
training needed by traditional parallel computing paradigms such as the Message
Passing Inteface (MPI) [53].

MapReduce is implemented by common Big Data processing frameworks, mainly
Apache Hadoop [8]. Other frameworks like Apache Spark [145] or Apache Flink |7]
also utilize some of its semantics, although they allow to perform a broader set
of data transformations for improved performance and programming productivity.
These frameworks process large datasets by executing workloads in cluster and cloud
platforms that can have up to thousands of nodes [67]. As the size of the datasets
grows, the computing capability required to obtain the demanded information in-
creases, reaching levels that are difficult to handle by traditional systems. This
situation requires Big Data developers and users to make a considerable effort to
identify and optimize the performance bottlenecks that may be present in current
technologies and systems, in order to keep workload execution times within accept-

able limits without damaging the quality of the results.

Determining the major factors that limit the performance of Big Data frame-
works is far from straightforward, as they are affected by a wide variety of aspects
such as their overall design and implementation, their task scheduling mechanism,
the workload distribution or the underlying system architecture. This has caused a
spur of research activity in assessing the performance and resource utilization of Big
Data frameworks. However, the large number of affecting factors makes it difficult
to extrapolate the results of these studies to a certain use case prior to obtaining
empirical information. Therefore, the identification of the potential performance
bottlenecks of a workload requires to perform a thorough experimental analysis. As
Big Data users come from many different fields without needing to be aware of the
low-level behavior of the frameworks, they might not have the skills and /or the time

required to perform these tasks in a fast, effective and accurate way.

Another issue is that Big Data applications are often limited by the performance
that the frameworks are able to provide. Clear examples of that can be found in the
large amount of Hadoop applications that have been developed since its release in
2007, some of them being the result of months or years of development. Although
Hadoop has continued to evolve and improve during this time, some initial design

decisions keep hindering its overall performance. In order to alleviate this issue, more

up-to-date frameworks like Spark or Flink have appeared to improve the performance
of Hadoop and provide newer and extended APIs. Most workloads that have been

ported to these APIs show great performance improvements.

However, a sheer number of applications still use Hadoop for data processing,
which reduces the performance that they are able to achieve. Adapting them to
Spark or Flink is not always assumable because of the significant programming and
testing effort that is required. Moreover, the actual performance benefit that may
be obtained is unknown beforehand, as it depends on the characteristics of the
workload. This can sometimes cause the performance to be very similar or even
worse when executed with Spark or Flink, which would mean a huge waste of time
and human resources that could be better employed in other tasks. In some cases,

the source code may not even be available, making its modification unfeasible.

The aim of this Thesis is to alleviate the main difficulties of evaluating and
optimizing Big Data workloads, providing new tools that can help users to obtain
valuable information about the behavior of the frameworks and optimize existing
MapReduce workloads without compromising application compatibility. On the one
hand, the performance evaluation of the frameworks is addressed by developing a
new evaluation tool, Big Data Evaluator (BDEv), which allows to conduct automatic
assessments of the most popular frameworks for Big Data processing. This includes
the configuration and cluster deployment of such frameworks, the generation of the
input datasets, the execution of the workloads and the extraction of several insight-
ful metrics. These metrics are not limited to performance, as they also take into
account scalability, resource utilization, energy efficiency and microarchitectural be-
havior. On the other hand, we also provide transparent performance optimization of
existing MapReduce workloads by developing Flame-MR, an in-memory computing
framework that redesigns the data processing pipeline of Hadoop. It implements an
event-driven architecture that leverages computational resources efficiently, improv-
ing the performance of Hadoop applications without changing their source code.
The evaluation of Flame-MR performed in public cloud platforms and High Perfor-
mance Computing (HPC) clusters shows great performance improvements at zero

effort and cost for both standard benchmarks and real-world applications.

Chapter 2

BDEv: automating the evaluation of

Big Data frameworks

The evaluation of Big Data frameworks is a crucial task to determine their be-
havior in a certain system, identifying potential performance bottlenecks that may
delay the processing of large datasets. While most of the existing works generally
focus only on execution time and resource utilization, analyzing other important
metrics is key to fully understand the behavior of these frameworks. For example,
microarchitecture-level events can bring meaningful insights to characterize the in-
teraction between frameworks and hardware. Moreover, energy consumption is also
gaining increasing attention as systems scale to thousands of cores. This chapter dis-
cusses the current state of the art in evaluating distributed processing frameworks,
while presenting our Big Data Evaluator (BDEv) tool to extract performance, re-
source utilization, energy efficiency and microarchitecture-level metrics from the
execution of representative Big Data workloads. The provided evaluation use cases
of BDEv demonstrate its usefulness to bring meaningful information from popular

frameworks such as Hadoop, Spark and Flink.

Section 2.1 provides an overview of the state of the art regarding the evaluation
of Big Data frameworks, including a classification of methods and tools. Section 2.2
describes the overall design and main targeted use cases of BDEv, along with a des-
cription of its behavior. Section 2.3 presents a practical use case of the utilization

of BDEv to evaluate Hadoop, Spark and Flink in terms of several evaluation met-

6 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

rics, analyzing the obtained results. Finally, Section 2.4 extracts some conclusions
about the great versatility that BDEv provides, which eases the optimization and

evaluation tasks of developers and users.

2.1. State of the art in evaluating data processing

frameworks

This section aims to provide an overview of Big Data processing systems and how
they are currently being evaluated. Once the most popular distributed processing
frameworks (Section 2.1.1) and benchmark suites (Section 2.1.2) are introduced,
several previous works that analyze the performance characteristics of Big Data
workloads are presented (Section 2.1.3), including interesting metrics such as their

energy efficiency (Section 2.1.4) and microarchitectural performance (Section 2.1.5).

2.1.1. Big Data processing frameworks

Hadoop [8], along with its implementation of the MapReduce model [29], has long
been one of the most popular frameworks for large-scale batch processing. Nowadays,
recent requirements from the users have made necessary the development of new
paradigms, technologies and tools. A clear example of this issue is the appearance
of use cases that require iterative and /or stream processing, implying the use of more
advanced frameworks. This is mandatory in order to build pipelines that handle and
process data arriving in a real-time manner from different sources, which cannot be
done with traditional batch processing frameworks such as Hadoop. In general,
current Big Data processing systems can be classified in three groups: (1) batch-
only, (2) stream-only and (3) hybrid, according to their underlying data processing

engine, framework topology and targeted use case.

Batch-only frameworks were the first to appear in order to handle big datasets
in a scalable and easy-to-program way. According to the MapReduce paradigm
as originally conceived by Google [29], input data is split and processed in chunks
following no particular order and generally with no time constraints. This model

computes the output data by using two phases: Map and Reduce. The Map phase

2.1 State of the art in evaluating data processing frameworks 7

extracts the relevant attributes for the computation and the Reduce phase operates
them to get the final result. Currently, the most popular batch processing frame-
work is Hadoop MapReduce, together with the Hadoop Distributed File System
(HDFS) [108] to manage distributed data storage and Yet Another Resource Nego-
tiator (YARN) [121] for resource management. In addition to running MapReduce
jobs, the vast Hadoop ecosystem has become the most commonly used platform to
solve Big Data problems, including multiple open-source projects such as the ma-
chine learning library Mahout [10], the graph processing engine Giraph [12], the
HDFS-based database HBase [9] and many more.

It is worth mentioning several modifications of Hadoop that adapt it to specific
interconnection networks such as RDMA-Hadoop [132], or that seek overall perfor-
mance improvements like NativeTask [141]. RDMA-Hadoop adapts several Hadoop
subsystems (e.g. HDFS) to use Remote Direct Memory Access (RDMA) networks
like InfiniBand [61], in order to achieve better communication efficiency (e.g. HDFS
replication, MapReduce data shuffling). In the case of NativeTask, it presents a
novel C+-+ implementation of the MapReduce model that includes efficient memory

allocation and sorting mechanisms.

The second group of Big Data frameworks, stream-only, were developed when
the need to process large-sized data streams arose. This is a scenario where batch
processing is not applicable due to time constraints, the possibility of having an
unending stream and the lack of real-time support. Examples of stream proces-
sing frameworks are Storm [62], Heron [73| and Samza [93|. These frameworks
follow a different approach than MapReduce, creating a graph-based architecture
using pipelines and Direct Acyclic Graphs (DAGs). Data management in stream-
ing frameworks is also different from the batch-only approach, which mainly relies
on HDFS. The streaming paradigm introduces the idea of sources and sinks. A
source is defined as the origin of the data into the streaming architecture, while the
sink is the end where output data is persisted. Although HDFS can still be used,
higher-level storage solutions are preferred. Examples of such solutions are queue
systems like Kafka [72] or databases like Cassandra [6], which adapt better to the
flowing nature of data streams. Moreover, in order to deploy a stream processing
architecture, another component is needed to properly manage the data throughout

the data flow. To play such a role, a message-oriented middleware is required, such

8 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

as the aforementioned Katka, RabbitM(Q [102] or ZeroMQ [59]. Streaming frame-
works may also use other resource management tools apart from YARN, especially
in cases where the deployed streaming pipelines and architectures need to be run-
ning continuously (i.e. if any part of the framework fails, it has to be relaunched in
an automatic way). Examples of such tools are Mesos [58] and Aurora [5], used by
Heron, while Samza relies solely on YARN. Regarding Storm, it can be integrated
with YARN, Mesos and Docker [87], or run stand-alone.

Finally, hybrid solutions such as Spark [145], Flink |7] or Apex [4] try to offer a
unified solution for data processing by covering both the batch and stream proces-
sing scenarios. These solutions inherit the functionalities offered by batch processing
models like MapReduce, as well as the new features of streaming frameworks. To
provide a more efficient data processing but remaining usable for stream proces-
sing, these solutions follow the DAG design philosophy, while also implementing
new architectures with further optimizations. Spark provides a batch processing en-
gine based on a novel data structure, Resilient Distributed Datasets (RDDs) [144],
which are in-memory data collections partitioned over the nodes of a cluster. As
RDDs keep data in memory, Spark can avoid disk traffic and alleviate some of the
issues that hinder the performance of Hadoop, especially for iterative workloads.
Spark also provides stream processing capabilities through Spark Streaming [112],
which implements a micro-batch processing model by buffering the stream in sub-
second increments which are sent as small fixed datasets for batch processing. More-
over, Spark includes other built-in libraries like MLIlib [111] for machine learning
and GraphX [110] for graph algorithms. Regarding Flink, it relies on the custom-
developed Stratosphere platform [2] to specifically target stream processing. Flink
defines streams and transformations as the data sources and operations, respectively.
Unlike Spark, Flink provides a stream engine that allows handling incoming data on
an item-by-item basis as a true stream. It also supports batch processing by simply
considering batches to be data streams with finite boundaries. Like Spark, Flink also
includes built-in libraries that support machine learning algorithms (FlinkML [43])
and graph processing (Gelly [42]). Apex has been recently released as a new pro-
posal that aims to offer a mature platform that unifies batch and stream workloads.
It provides developers with several libraries and tools in order to lower the barrier

to entry and support a broad spectrum of data sources and sinks.

2.1 State of the art in evaluating data processing frameworks 9

As a summary, Table 2.1 shows the main characteristics of the most relevant

frameworks discussed in this section.

2.1.2. Benchmarking tools

This section offers an overview of existing benchmarking tools for evaluating
data processing frameworks. The most long-lived projects were originally designed
for analyzing the performance of batch-only workloads on Hadoop. That is the case
of HiBench [60], a popular benchmark suite that supports 19 workloads in its cur-
rent version (7.0), including micro-benchmarks, machine learning algorithms, SQL
queries, web search engines, graph benchmarks and streaming workloads. Apart
from Hadoop, it also supports hybrid and stream-only frameworks like Spark, Flink
and Storm and message queuing systems like Kafka. However, not all the workloads
are available for all the frameworks. HiBench generates the input datasets needed
for the workloads and reports the execution time, throughput and system resource
utilization as main metrics. Another well-known project, BigDataBench [130], im-
proves the quality of the input data by providing means to generate them from 13
real-world datasets. Furthermore, it supports 47 workloads classified in 7 different
types: artificial intelligence, online service, offline analytics, graph analytics, data
warehouse, NoSQL and streaming. From version 2.0 on, BigDataBench also includes
DCBench [64] and CloudRank-D [80], other benchmark suites which were previously
independent. MRBS [105] is a suite oriented to multi-criteria analysis as it takes
into account different metrics like latency, throughput and cost. MRBS includes
32 MapReduce workloads from 5 application domains: recommendation systems,
business intelligence, bioinformatics, text processing and data mining. Moreover,
MRBS can automatically set up the Hadoop cluster on which the benchmark will
run using a public cloud provider configured by the user. Once the cluster is running,
MRBS injects the dataset and runs the workload, releasing the resources when the
experiment concludes. Apart from evaluating the execution time of the workloads,
users can also assess the multi-tenancy of a Hadoop cluster by using GridMix [51].
This benchmark launches several synthetic jobs which emulate different users and
queues, being able to evaluate Hadoop features like the distributed cache load, data
compression/decompression and jobs with high memory requirements or resource

utilization (e.g. CPU, disk).

Table 2.1: Comparison of batch, stream and hybrid frameworks

Paradigm Resource manager Data management Real-time Use case
Hadoop batch-only YARN distrib. filesystems (e.g. HDFS), no batch processing of non
object storage (e.g. S3) time-sensitive workloads
RDMA- batch-only YARN distrib. filesystems (e.g. HDFS), no native support for RDMA
Hadoop parallel filesystems (e.g. Lustre), networks
object storage (e.g. S3)
NativeTask | batch-only YARN distrib. filesystems (e.g. HDFS), no native optimization for
object storage (e.g. S3) MapReduce workloads
Storm stream-only ~ YARN, stand-alone databases (e.g. Cassandra), yes low-latency and real-time
queue systems (e.g. Kafka) processing pipelines
Heron stream-only YARN, Mesos, databases (e.g. Cassandra), yes improvements over Storm
Docker, stand-alone queue systems (e.g. Kafka)
Samza stream-only YARN queue systems (e.g. Kafka) yes large data flows accentuating
reliability and statefulness
Spark hybrid YARN, Mesos, distrib. filesystems (e.g. HDFS), near batch and micro-batch
stand-alone databases (e.g. Cassandra), real-time processing with streaming
object storage (e.g. S3) support
Flink hybrid YARN, Mesos, distrib. filesystems (e.g. HDFS), yes stream processing with
stand-alone databases (e.g. Cassandra), support for traditional batch
queue systems (e.g. Kafka) workloads
Apex hybrid YARN distrib. filesystems (e.g. HDFS), yes unified stream and batch
databases (e.g. Cassandra), processing
object storage (e.g. S3),
queue systems (e.g. Kafka)

0T

syIomourej eye(] S1g Jo uoryenyess oy} Suryewrojne AL ‘g I01deyn

2.1 State of the art in evaluating data processing frameworks 11

Benchmarking tools also exist which enable users to evaluate other Big Data
systems built on top of Hadoop. That is the case of PigMix [96], which evaluates
Pig [11], a high-level language for expressing data analytics workloads on top of
Hadoop. Furthermore, some Big Data benchmarks focus on evaluating the adapta-
bility of Hadoop to traditional database use cases. One example is MRBench [70],
which implements 22 relational SQL queries (e.g. select, join). The authors of
MRBench describe how these queries can be translated into MapReduce jobs, and
the issues that may arise. BigBench [45] proposes a standard benchmark for Big
Data that covers a representative number of application profiles. It includes a data
model that represents the typical characteristics of Big Data systems (i.e. variety,
velocity and volume), and a synthetic data generator that adopts some of its parts
from traditional database benchmarks to support structured, semi-structured and

unstructured data.

In the last years, new benchmark suites specifically oriented to in-memory pro-
cessing frameworks have appeared, like SparkBench [75]. It includes 10 workloads
with typical usage patterns of Spark: machine learning, graph processing, stream
computations and SQL query processing. It takes into account different metrics
like execution time, data process rate, shuffle data size, resource consumption and
input /output data size. Although little work can be found regarding benchmarks
specifically oriented to Flink, some proposals adapt existing ones to its new program-
ming paradigm. That is the case of [15], which uses BigBench to compare Flink and

Hive [119], showing that the former can achieve time savings of about 80%.

Not all Big Data benchmarking tools are focused on evaluating data processing
systems. For example, the AMPLab benchmark [3] is focused on evaluating data
warehousing solutions such as Hive, Tez [103], Shark [136] and Impala [71]. AMP-
Lab uses HiBench to generate the data and performs the evaluation by means of a
benchmark that includes scans, aggregations, joins and user-defined functions. The
Yahoo! Cloud Serving Benchmark (YCSB) [26] aims to evaluate different NoSQL
databases like HBase [9], Cassandra [6], MongoDB [90], Redis [100], Memcached [41],
and many others. YCSB currently includes 6 different workloads, providing an input

dataset generator and a configurable workload executor.

12 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.1.3. Performance studies of Big Data processing frameworks

The Hadoop framework has dominated the world of Big Data over the last
decade, and thus its performance has been thoroughly addressed by a wide range
of papers [30, 37, 38, 126]. However, recent works focus on in-memory processing
frameworks due to the better flexibility and performance they provide. That is
the reason why Spark is compared with Hadoop in [106], taking into account per-
formance and resource utilization. The results show that Spark can reduce the
execution time by 60% and 80% for CPU-bound and iterative benchmarks, respec-
tively. However, Hadoop is 50% faster than Spark for I/O-bound benchmarks such
as Sort. Meanwhile, another work [63] claims that frameworks like Twister [34] or
parallel paradigms like MPI can provide better performance than Spark for itera-
tive algorithms. By comparing Hadoop, HaLoop [19], Twister, Spark and an MPI
library, the authors conclude that Hadoop obtains the worst performance results.
Although Spark does not provide the best performance according to [63], it proves to
be the most appropriate option for developing Big Data algorithms in a flexible way.
This is because Twister does not support HDF'S, which is indispensable for storing
big datasets, whereas MPI is not a feasible option for developing and maintaining
Big Data applications as it does not abstract data distribution, task parallelization
and inter-process communications. A similar conclusion is reached in [48], which

compares the performance of Spark and MPI for evolutionary algorithms.

Nowadays, Flink attracts increasing interest when evaluating Big Data frame-
works, usually being compared with Spark. All the works that compare Flink with
Spark conclude that the performance they provide is highly dependent on the work-
load executed. That is the case of [109], which compares Spark and Flink using
standard benchmarks like WordCount, K-Means, PageRank and relational queries.
The results show that Flink outperforms Spark except in the case of the most com-
putationally intensive workloads (e.g. WordCount). Another work [16] analyzes the
performance of Flink and Spark, configuring Spark both with the default and the
optimized Kryo serializers. This work uses three different genomic applications for
evaluating the frameworks: Histogram, Map and Join. Flink shows better perfor-

mance in Histogram and Map, while Spark gets the best results for Join.

In order to provide some insight into the differences between Spark and Flink,

2.1 State of the art in evaluating data processing frameworks 13

their internal design characteristics are addressed in [82], identifying a set of configu-
ration parameters that have a major influence on the execution time and scalability
of these frameworks: task parallelism, shuffle configuration, memory management
and data serialization. The benchmarks are also analyzed to identify the data ope-
rators they use. The main conclusion is that Spark is 40% faster than Flink for
large-graph processing, while Flink is 33% faster than Spark for single-iteration and
small-graph workloads. Further evaluations are conducted in [123] but using up-
dated versions of these frameworks, showing that Spark provides better results and
stability in general. However, some new features introduced by Flink can accelerate
iterative algorithms, like the use of delta iterations in PageRank, which allows re-
ducing the execution time by 70% compared with Spark. The authors also take into
account other important parameters of the system: HDFS block size, input data

size, interconnection network and thread configuration.

As can be seen, the evaluation of Spark and Flink is gaining attention, not only
in terms of performance but also taking into account usability, configuration para-
meters and resource utilization. The performance obtained by these frameworks is
highly dependent not only on the characteristics of the workload, but also on the
particular version being evaluated (both are active projects that are continuously
evolving). Furthermore, the suitability of the workloads that are usually executed
in these works has been discussed in [17], proposing a new evaluation methodology
that takes into account the input data size and the characteristics of the data model.
Note that all the previous works have focused their evaluations on the batch pro-
cessing capabilities of Spark and Flink. Other recent works have also assessed their
stream processing capabilities [24, 98, 104], comparing them with other stream-only

technologies such as Storm or Samza.

2.1.4. Energy efficiency

The energy efficiency of Big Data frameworks has been addressed by previous
works under different points of view, studying the main factors that can impact
energy consumption and, more recently, developing new proposals in order to de-
crease it. These works can be classified into three different groups, depending on

the method used to get the energy measurements.

14 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

The first group is composed by works that estimate the power values by using
an energy model. These models usually take into account the power specifications
of the underlying node and the utilization of system resources like the CPU. One
clear example is [91], an evaluation performed in the Microsoft Azure cloud [88] that
uses a model based on the CPU load of the virtual machines to estimate power con-
sumption. The results, which include experiments with a Hadoop cluster, show that
heterogeneity of cloud instances harms energy efficiency. This problem is addressed
in [23| by developing a new self-adaptive task assignment approach that uses an ant
colony algorithm to improve the performance and energy efficiency of MapReduce
jobs in heterogeneous Hadoop clusters. The authors modify Hadoop to implement
a new scheduling algorithm, obtaining 17% of energy savings compared to the de-
fault scheduler. The power measurements obtained in [23| are estimated by using a
simple model based on CPU resource utilization and the power consumption of the
machine in idle state. More examples of power estimation techniques are included
in [89], a survey of different power consumption models for CPUs, virtual machines

and servers.

In the second group, power values are obtained by means of an external power
meter that is directly connected to the nodes. This is the case of [39], which ana-
lyzes the performance and power consumption of several deployment configurations
of a Hadoop cluster. The results show that separating data and compute services
involves lower energy efficiency than collocating them, and that the power consump-
tion profiles are heavily application-specific. In the experiments, the power metrics
were provided by APC Power Distribution Units (PDUs). A similar PDU is used
to demonstrate that the energy-aware MapReduce scheduling algorithm proposed
in [85] can consume 40% less energy on average. Another work that analyzes the
energy efficiency of Hadoop [40] uses a power meter to measure the power consump-
tion of the whole system. The paper identifies four factors that affect the energy
efficiency of Hadoop: CPU intensiveness, I/O intensiveness, HDFS replication fac-
tor and HDF'S block size, giving recommendations related to each of them. Another
performance study [76] compares the use of Hadoop on “small” ARM nodes with
“big” Intel Xeon ones, concluding that 1/O-intensive workloads are more energy ef-
ficient on Xeon nodes, while CPU-intensive ones are more efficient on ARM nodes.
In this work, power values are recorded by using a Yokogawa power monitor con-

nected to the main electric input line of the system. In [81], “big” Intel Xeon nodes

2.1 State of the art in evaluating data processing frameworks 15

are compared with “small” Intel Atom ones using a Watts Up Pro power meter.
The results show that Xeon nodes perform more efficiently as the input data size
increases. The energy consumption of mobile devices can also be measured by using
power monitors. In [14], which analyzes the energy efficiency of Big Data stream
mobile applications, the batteries are sampled by using a power monitor to measure

the energy consumed during 3G /WiFi communications.

The last group of works uses a software interface to access energy counters pro-
vided by some CPU vendors. Some of these counters can be accessed by monitoring
tools like the Intel data center manager, used in [120] to analyze the energy effi-
ciency of Hadoop on an HPC cluster. This work also proposes the use of the £D?P
metric [84] to evaluate the performance-energy efficiency of Hadoop. Vendor-specific
technologies like the HPE integrated Lights-Out (iLO), consisting of a Baseboard
Management Controller (BMC) accessible through a REST interface, also allow
obtaining power measurements of the node. HPE iLO has been used in [126] to ana-
lyze the energy efficiency of different flavors of Hadoop on an HPC cluster, conclu-
ding that accelerating the completion of the workloads by using faster interconnects
(e.g. InfiniBand) or disks (e.g. SSD) can significantly reduce the energy consumed.
However, the most popular way of accessing these energy counters is using power
management interfaces that are provided by CPU vendors, which can be used to
monitor power in a wide range of modern CPUs. While AMD delivers the Applica-
tion Power Management (APM) interface, Intel provides the Running Average Power
Limit (RAPL) interface [27]. The accuracy of RAPL has been tested in [31], proving
that the values it provides can be very useful to characterize the power consumption
of an application. RAPL has also been used in [69] to evaluate the energy efficiency
of graph processing engines such as Giraph and the Spark GraphX library. This
work shows that GraphX is able to consume 42% less energy than Giraph thanks
to the use of in-memory RDDs, although it suffers from memory problems that do
not appear in Giraph. In [142], RAPL is also used to get power consumption values
to compare the horizontal and vertical scalability of a Spark cluster, showing that

vertical scalability provides better performance per watt.

16 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.1.5. Microarchitectural characterization

Most of the previously commented works generally focus on execution time and
resource utilization as the only metrics for analyzing performance, while only some
of them also take into account energy efficiency. However, there are few works that
try to further explore the results obtained in their evaluations by considering other
important factors. One interesting example of such metrics is the evaluation of
Big Data systems in terms of their microarchitectural performance, by collecting
the hardware counters provided by modern CPUs. For instance, available counters
allow users to obtain the number of CPU cycles, cache references and branch mis-
predictions. Note that depending on the CPU model there are different kinds of
counters, even across a same vendor (i.e. the availability of these counters is highly
CPU-dependent).

In [137], the characterization of Big Data benchmarks aims to identify redun-
dancies in benchmark suites, selecting some representative subsets of HiBench and
BigDataBench workloads in order to avoid repetitive results. To do so, the authors
execute several benchmarks with Hadoop calculating instructions per cycle, cache
miss and branch misprediction ratios, and off-chip bandwidth utilization using the
Oprofile tool [94]. Then, they perform a principal component analysis and a hie-
rarchical clustering algorithm to determine which benchmarks are redundant. A
similar study is performed in [65|, but widening the range of microarchitectural-
level metrics that are analyzed and also using other frameworks apart from Hadoop
like Spark, Hive and Shark. In this case, the benchmarks are selected from Big-
DataBench and the metrics are collected using Perf [133]. The work [81] cited in
the previous subsection also uses performance counters to compare Intel Xeon and
Intel Atom nodes, obtaining the values by means of the Intel VTune performance

profiling tool.

Nowadays, the increasing use of memory intensive data analytics is motiva-
ting the appearance of new studies that characterize the performance of in-memory
frameworks. Intel VTune is employed in [13] to study the CPU and memory inten-
siveness of several Spark workloads, revealing that the latency of memory accesses is
the main performance bottleneck. Another work [143] proposes the effective cache

hit ratio, which aims to be more representative than the cache hit ratio when ex-

2.2 BDEv: goals and design 17

plaining the relationship between the number of cache hits and the execution times
in Spark. The effective cache hit ratio only takes a reference to a cache line as a
hit when the dependencies of such line are also located in the cache. Moreover, the
authors demonstrate the relevance of their proposal by implementing a new Spark
memory manager that handles cache lines and their dependencies as blocks. The

results show that their approach speeds up data-parallel jobs by up to 37%.

2.1.6. Summary

This section has provided an in-depth survey regarding the state of the art in
benchmarking Big Data processing frameworks by presenting around 50 works that
address this topic. As a summary, Table 2.2 includes a group of selected works
according to their relevance. The table shows the metrics evaluated in each work:
performance, resource utilization, energy efficiency and microarchitectural charac-
terization. It also includes which Big Data frameworks are evaluated and their
version (if indicated). The last column shows if there is any publicly available tool
to perform the experiments. Finally, the last row includes the metrics and frame-
works supported by our tool BDEv in order to provide a direct comparison with

previous works.

2.2. BDEv: goals and design

This section first discusses the need for a new tool to carry out in-depth evalua-
tions of Big Data frameworks on a certain system. Next, it describes our proposed
Big Data Evaluator (BDEv) tool [122|, providing detailed information about its

features and design.

2.2.1. Motivation

The selection of a Big Data framework to use in a given system can be affected by
several factors. First, the performance of a framework is limited by its underlying de-

sign characteristics, depending on aspects like the scheduling of computational tasks

Table 2.2: Summary of works evaluating Big Data frameworks

Evaluated metrics Frameworks

Work ‘ Performance Resources Emnergy Microarch. ‘ Hadoop Spark Flink ‘Avail.

[106] v v v (2.4.0) v(1.3.0)
I16] v V(1.3.1) v(0.9.0)
182] v v V(1.5.3) v(0.10.2)
[123] v V(272) v(161) v(1.02) |
[91] v/ (Model) v
139] v / (PDUs) v (0.20)
[69] v (RAPL) v (0.20) v/(1.4.1)
[137] v (Oprofile) | v/(1.0.3)
[65] v (Perf) v (1.0.2) v(0.8.1)
[13] v v v (VTune) v
BDEv v v v (RAPL) v/ (Oprofile) | v(2.7.3) v/(2.2.0) v(1.3.2) v

31

syIomourej eye(] S1g Jo uoryenyess oy} Suryewrojne AL ‘g I01deyn

2.2 BDEv: goals and design 19

or the pipelining of CPU and 1/O operations. Second, the adaptability of the frame-
work to the system impacts the leveraging of system resources like CPU, memory or
network. Moreover, some cluster resources may have to be shared among different
applications running in the system, which limits the number of nodes available to
use. In those cases, the evaluation must consider different cluster sizes to determine
the best balance between performance and cluster occupation. In some environ-
ments, specially adapted frameworks can take advantage of specific resources, such
as HPC networks like InfiniBand or SSD-based disk technologies. These frameworks

must be carefully configured to ensure the fairness of the results.

Big Data users must be aware of all these issues when selecting an available
framework, understanding how it works, learning to configure it properly and chec-
king its correct operation. Moreover, the user has to elaborate a set of workloads,
searching for appropriate implementations for each framework and ensuring a fair
comparison between them. The evaluation process for each framework involves the
configuration and deployment of its daemons over the cluster and the execution of
the benchmarks. Once the evaluation is finished, the user must also access the out-
put files to check the successful completion of the benchmarks, copying the desired

data to a separate file to generate the output graphs.

All these issues turn the evaluation of Big Data frameworks into a difficult and te-
dious task. Our proposal to overcome them is BDEv, an evaluation tool that enables
in-depth, automatic assessment of Big Data frameworks. It includes different repre-
sentative workloads, unifying their configuration and generating user-friendly infor-
mation and reports. The design of BDEv is based on our previously released tool,
MapReduce Evaluator (MREv) [125], which was only focused on MapReduce frame-
works. Currently, BDEv is aimed at two main goals: (1) comparison between frame-
works in terms of performance and scalability; and (2) multi-evaluation in terms of
several factors like energy efficiency, resource utilization and microarchitectural-

level metrics.

2.2.2. BDEv characteristics

BDEv is based on the following features:

20

Chapter 2. BDEv: automating the evaluation of Big Data frameworks

e Unified configuration

The evaluation parameters utilized in BDEv help to homogenize the confi-
guration of different frameworks. By allocating the same amount of system
resources to each framework, users can expect a fairer comparison between
them.

Automation of experiments

BDEv is able to carry out the experiments without any interaction from the
user. Once the evaluation parameters are defined, BDEv performs the entire
experiment cycle in an automatic way, including the setting of the frameworks,
the generation of the input datasets and the execution of the workloads over

the cluster.

Leveraging of system resources

The configuration of the frameworks is automatically set by detecting the
resources available in the system, like the number of CPU cores or the memory
size. Nevertheless, users can change any of these parameters to fit their specific
needs. BDEv also allows users to configure the frameworks to take advantage
of resources that are typically available in HPC systems, like the IP over
InfiniBand (IPolIB) interface.

Multi-metric evaluation

The outcome of the experiments includes the output and execution time of the
workloads, along with useful statistics related with resource utilization (e.g.
CPU, disk, network), energy efficiency and microarchitectural events. All that
information enables the user to analyze the behavior of the frameworks from

a holistic point of view.

Flexibility
BDEv can evaluate Big Data systems in different ways, adapting itself to the

particular needs of the user. Therefore, it provides a wide set of experimental
options that can be configured to determine the aspects (e.g. configuration
parameters, frameworks, workloads) that are evaluated in each experiment.

Note that default, safe values are provided to the user.

2.2 BDEv: goals and design 21

e Portability

BDEv aims to be easily executed in different kinds of systems. This involves
the use of some system-dependent configuration parameters, which can be
defined by the user, as well as the awareness of the environment where the

experiments are being run (e.g. automatic integration with job schedulers in
HPC systems).

e Error and timeout detection

In some cases, errors or exceptions can occur during the experiments. If they
are not detected, they can lead to incorrect measurements. BDEv analyzes
the output of the workloads to check for errors, avoiding the use of erroneous
executions for the final results. Users can also configure a timeout threshold,
so if a workload exceeds this value the execution is aborted and its results

are discarded.

e Easy collection of results

The information obtained by the different metrics is analyzed to extract a
summary that includes statistical results and automatically generated graphs.

This eases the comparisons made by users.

2.2.3. BDEv design

BDEv has been implemented following a modular design where the main func-
tionalities are provided by separate packages, which are shown in Figure 2.1. Each

of these packages along with their main components are described next.

Experiment

The Experiment package contains the components related to the general beha-
vior of BDEv. The Workflow manager determines the operations required to carry
out the evaluation by using the experiment parameters provided by the Configu-
ration manager. Then, it uses the Framework launcher and the Workload runner

to schedule framework- and workload-related operations, respectively. When the

22 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

System
detector

reporter

Input dataset
generator

Framework | K

Experiment |
Configuration I Workload |
Workflow [F~=ao —
Lo d-- manager "‘"—---__-

Configuration <[“T~E Workload
manager ’ runner

\:V Result [=~=~ Graph ’ \i/

$ generator 2

Framework
launcher

Metric

monitor

"4

Configuration
generator

$ Performance

Resource
utilization

:

Energy
efficiency

:

Microarchitectural
characterization

Figure 2.1: BDEv design overview

evaluation finishes, the Result reporter creates the summary of the experimental

results, generating related graphs by using the Graph generator.

Configuration

The Configuration package contains the components that determine the parame-
ters to be used in the evaluation. The Configuration manager reads the parameters
that have been defined by the user in the configuration directory. These parameters
are related to different aspects, like system characteristics (e.g. directory to store
the temporary files, network interfaces to use), HDFS configuration (e.g. block size)
and other framework-specific parameters (e.g. number of workers per node, sort
buffer size). They also include the experiment parameters defined by the user, such
as the cluster size, frameworks and workloads to be evaluated. If any system-related

parameter is not set, the System detector determines the default value by analyzing

2.2 BDEv: goals and design 23

Table 2.3: Frameworks supported in BDEv

Framework Version Network interconnects
Hadoop 1.2.1/2.7.6/2.8.3/2.9.0/3.1.0 GbE / IPolB
Hadoop-UDA 1.21/2.76/2.83/2.9.0/3.1.0 IPoIB & RDMA
RDMA-Hadoop 0.9.9 (GbE/IPoIB) & RDMA
RDMA-Hadoop-2 1.2.0/1.3.5 (GbE /IPoIB) & RDMA
Spark 1.6.3/2.3.0 GbE /IPolB
RDMA-Spark 0.9.4/0.9.5 (GbE /IPoIB) & RDMA
Flink 1.3.2/1.4.2 GbE /IPolB
DataMPI 0.6.0 GbE /IPolB
Flame-MR 0.10.0/1.1 GbE / IPolB

the system, like the available memory size or the number of CPU cores.

Framework

The components of the Framework package control the correct configuration and
launching of the frameworks to be evaluated. The Framework launcher manages the
deployment of the underlying daemons over the cluster that are needed to run each
framework (e.g. NameNode/DataNode for HDFS), stopping them once the evalua-
tion has finished. Before the launch, the configuration directory of the framework
is set up by using a Configuration generator that is specific for each framework and

uses the parameters previously defined by the Configuration manager.

Table 2.3 contains the frameworks currently supported in BDEv 3.1, their tested
versions and the network interconnects they can use. Other versions of the frame-
works can also be used, as the support of minor releases is straightforward. However,
changing the major release may require some changes in BDEv. Note that at the

time of writing the last major versions of Hadoop (3.x) and Spark (2.x) are supported.

Apart from Hadoop, Spark and Flink, BDEv also supports some modifications of
these frameworks that use RDMA communications, like Hadoop-UDA [131], RDMA-

24 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Hadoop [132] and RDMA-Spark [79]. Furthermore, other frameworks completely
implemented from scratch like DataMPI [78] and Flame-MR [127]| are also sup-
ported. To our knowledge, no other benchmarking tool provides support for as

many frameworks as BDEv.

Workload

The components related to the execution of the workloads are contained in the
Workload package. First, the Input dataset generator builds up the datasets required
for their execution. Next, the Workload runner executes the selected workloads,

using the Metric monitor components to record the different metrics.

BDEv supports different benchmark types: standard micro-benchmarks, graph
algorithms, machine learning workloads and SQL queries. It also allows executing
interactive and batch user-defined commands. The input data generators are spe-
cific to each benchmark type, but the user can also define its own input generator.
Table 2.4 contains the benchmarks currently included in BDEv and their corres-
ponding input dataset generators. The table also includes the origin of the source
code of the benchmarks, which have been carefully studied in order to provide a fair
performance comparison. Hence, each framework uses a benchmark implementation
based on the same algorithm, reading the same input and writing the same output
from/to HDFS. Although the algorithm remains unchanged, each framework em-
ploys an optimized version adapted to its available functionalities. Further details

about each benchmark are given next.

e Test DFSIO
Tests the throughput of HDFS by generating a large number of tasks perfor-

ming reads and writes simultaneously. It has been extracted from the examples
(“ex.” in the table) provided by the Hadoop distribution.

e WordCount

Counts the number of times each word appears in the input dataset. Both
WordCount and its input data generator, RandomTextWriter, are provided
as examples in the Hadoop distribution. In the case of Spark and Flink, the

source code has been adapted from their corresponding examples.

Table 2.4: Benchmarks supported in BDEv

Benchmark source

Category Benchmark Input Generator Hadoop Spark Flink
Test DFSIO - Hadoop ex. - -
_ WordCount Hadoop ex. Adapted from ex. Adapted from ex.
Micro-benchmark Grep RandomTextWriter | Hadoop ex. Adapted from ex. Adapted from ex.
Sort Hadoop ex. Adapted from ex. Adapted from ex.
TeraSort TeraGen | Hadoop ex. Adapted from [117] Adapted from [117]
_ ConComp Pegasus Graphx Gelly
Graph processing DataGen
PageRank Pegasus ~ Adapted from ex. Adapted from ex.
. _ Bayes DataGen Mahout MLlIlib -
Machine Learning .
K-Means GenKMeansDataset Mahout MLIlib Adapted from ex.
Aggregation Hive Hive -
SQL queries Join DataGen Hive Hive -
Scan Hive Hive -
User Command Provided by the user - - -

USISop pur s[eos A ¢'C

Gc

26

Chapter 2. BDEv: automating the evaluation of Big Data frameworks

e Grep

Counts the matches of a regular expression in the input dataset. This bench-
mark is included in the Hadoop distribution, and in the case of Spark and
Flink it has been adapted from their examples. Its data generator is also
RandomTextWriter.

Sort

Sort is an I/O-bound workload that is used to order an input text dataset
generated by RandomTextWriter. Hadoop includes it in its distribution, while
it has been adapted from the examples for Spark and Flink.

TeraSort
A standard I/O-bound benchmark that sorts 100 byte-sized key-value tuples.

This workload assesses the shuffle and sort capabilities of the frameworks. The
reference implementation is provided by Hadoop, along with the corresponding
input data generator (TeraGen). Spark and Flink do not provide any official
implementation in their distributions. So, we have adapted the implementa-

tions provided in [117], which are compliant with the Hadoop one.

Connected Components (ConComp)

An iterative graph algorithm that calculates the subnets of elements that are
interconnected. It is included in Pegasus [68], a graph mining system for
Hadoop. Both graph-oriented libraries of Spark and Flink, GraphX and Gelly,
respectively, contain an implementation of this algorithm. The input dataset

is generated by using the DataGen tool included in HiBench.

PageRank

An iterative graph algorithm that obtains a ranking of the elements of a graph,
taking into account the number and quality of the links to each one. It uses the
same input data generator as Connected Components. Pegasus also provides
this algorithm for Hadoop, while the implementations for Spark and Flink have
been adapted from their examples. Moreover, alternative implementations are
supported by using the algorithms available in GraphX and Gelly, although

the performance of the examples is better according to our experiments.

2.2 BDEv: goals and design 27

e Bayes

An iterative clustering algorithm that classifies an input set of elements by
determining their probability to belong to several classes. Hadoop executes this
algorithm by using the Mahout project, while Spark uses its built-in machine
learning library MLIib. The input dataset is generated by the DataGen tool.
Flink neither supports this benchmark in FlinkML nor provides an example,

and so it is not currently included in BDEv.

o K-Means

An iterative clustering algorithm that classifies an input set of N samples into
K clusters. Mahout provides the implementation for Hadoop and the input
data generator (GenKMeansDataset). The Spark implementation is provided
by MLIib, but there is no such counterpart in FlinkML. However, in this case
Flink provides a code example that has been adapted to be included in BDEv.

e SQL queries

Aggregation, Join and Scan are typical database queries that extract infor-
mation from a database stored in Hive. The input dataset that these queries
process is generated by the DataGen tool. BDEv currently supports these
queries for Hadoop and Spark.

Metric

This package contains the monitors that extract the evaluation metrics configured
by the user. The Metric monitor launches the monitoring processes over the cluster
when a workload starts, stopping them when it finishes. Then, it communicates
with the Result reporter and the Graph generator to create the reports and graphs,

respectively, associated with the recorded data.

Each subcomponent of the Metric monitor specializes on a specific metric. As
mentioned in Section 2.2.2, BDEv aims to enable holistic evaluations of Big Data
frameworks by providing multiple evaluation metrics. The next section provides an

overview of the supported metrics and their implementation.

28 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.2.4. Evaluation metrics

This section provides an overview of the metrics available in BDEv: performance,

resource utilization, energy efficiency and microarchitectural characterization.

Performance

BDEv eases the analysis of the frameworks in terms of performance by measuring
the execution time of the workloads. After an experiment is complete, the execution
time is stored in a summary file. An associated graph is also generated containing
the average, maximum and minimum execution time of each workload. Scalability

comparisons are also supported by showing the execution time with each cluster size.

Resource utilization

Resource utilization results are useful to analyze the behavior of the frameworks
during an evaluation, identifying potential bottlenecks. To do so, BDEv monitors
system resources: CPU, disk, memory and network. When a workload is executed,
Resource utilization monitors are launched in each node of the cluster as previously
described in Section 2.2.3. These monitors make use of the dstat utility [33] to record
the results, which allows data extraction of all system resources in real time. After
the workload finishes, the monitors are stopped and the results of each individual
node are gathered and processed to generate the corresponding graphs. Average

values among the nodes are also calculated for each resource type.

Energy efficiency

Section 2.1.4 described how energy efficiency is usually assessed in Big Data
evaluations: using an energy model, a physical power meter or a software interface.
In BDEv, we have chosen the latter alternative as it provides more accurate power
information than using a model, also ensuring the portability across several systems,
which is not possible with power meters. We have used the RAPL interface that is

available in all Intel processors from the Sandy Bridge microarchitecture onwards.

2.2 BDEv: goals and design 29

PACKAGEO PACKAGE1
PPO PPO
DRAM DRAM
PP1 PP1

Figure 2.2: Overview of the Intel RAPL architecture for a dual-socket system

We plan to extend this support to AMD processors in the near future by using the
APM interface.

Basically, RAPL provides an easy way to keep the power of the processor within
a user-defined limit. The internal circuitry of the CPU can estimate the current
energy consumption in a highly accurate way, providing these results to the user via
Model-Specific Registers (MSRs). These results are directly associated with compo-
nents of the Intel RAPL architecture, depicted in Figure 2.2. A package identifies
the energy consumption measurements of each CPU socket (i.e. each processor).
Inside each package, separated energy values are provided for the processing cores,
labeled as PP0 (Power Plane 0), and the integrated graphic card (if any), labeled as
PP1. These energy values always have the following relationship: PP0 + PP1 <=
package. RAPL also provides independent energy values for the memory modules
that are associated to each package, labeled as DRAM. Note that the figure shows
the architecture of a dual-socket system, each socket providing a quad-core processor
and a graphic card. Depending on the particular processor microarchitecture, the

measurements of some of these components may not be available.

In order to implement the Energy efficiency monitor in BDEv, we have adapted,
extended and integrated an existing tool [99] that accesses RAPL counters using
the Performance API (PAPI) interface [134]. Amongst many other features, PAPI
provides a standard interface for accessing hardware counters and its RAPL com-
ponent allows us to obtain energy consumption values. The monitor included in
BDEv detects all RAPL-related events available in a node and records the energy

30 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

values using a configurable time interval, storing them to the corresponding output
files. Note that RAPL only provides energy consumption values, and so the power
consumption is calculated by BDEv based on the energy consumed in each time

interval.

When the execution is finished, the Graph generator, using the information ela-
borated by the Result reporter, builds the time series graphs corresponding to the
recorded values for each node. The total energy consumed by all the nodes of the
cluster and the average power consumption per node are also calculated, and the
corresponding graphs are automatically generated for both metrics. Furthermore,
additional graphs that show the £ D?P metric, mentioned in Section 2.1.4 and used

in the evaluation performed in Section 2.3.2, are also generated.

Microarchitectural characterization

The microarchitectural characterization of Big Data frameworks can provide use-
ful insight on the data operations (e.g. map, join) that can be limiting the perfor-
mance of the workloads. As mentioned in Section 2.1.5, most current processors
provide access to a set of hardware performance counters that allow performing a
fine-grained analysis in terms of several microarchitectural characteristics. These
counters can detect and count certain microarchitectural events from several hard-
ware sources such as the CPU pipeline or the different cache levels. Such events
can help to characterize the interaction between the applications and the hardware,
thus providing a more precise picture of the hardware resource utilization. In fact,
existing projects like Spark Tungsten [97] are specifically focused on microarchi-
tectural aspects (e.g. cache-aware computation) to improve overall performance.
BDEv allows programmers to accelerate this kind of developments by automating

the extraction of microarchitectural metrics.

The Microarchitectural characterization monitor collects microarchitecture-level
performance data about the underlying hardware by keeping count of the events that
happen in each node during the execution of a workload. An example of such events
is LLC MISSES, which obtains the number of misses in the last level cache. We
have chosen Oprofile [94] as our base profiling tool, as it is able to provide hardware

counter values for the entire system where it is running. Using such a performance

2.2 BDEv: goals and design 31

profiling tool is less intrusive as it does not require manual instrumentation in the
source code as needed when using certain APIs. The monitor included in BDEv is
easy to configure by indicating the specific events to be recorded. Once the user sets
these parameters by modifying the appropriate configuration files, the Configuration

manager provides the corresponding values to the monitor.

The microarchitectural monitor operates as described in Section 2.2.3, starting
the monitoring when a workload begins. The output results include the values of
each event counter for each computing node and the total sum of the events occurred
in the cluster during the execution. Furthermore, the summary graphs generated at
the end of the experiments gather the values related to each event for each framework

and workload, easing the comparison between experiments.

2.2.5. Operation

Figure 2.3 shows the high-level control flow of an execution with BDEv. At
the beginning of the experiment, BDEv is initialized by setting the configuration
parameters specified by the user and creating the output directory. BDEv iterates
over the selected cluster sizes and frameworks. Once it configures a framework, it
launches the daemons and initializes the benchmarks, generating the required input
datasets. Before running a benchmark, its output subdirectory is created and the
monitors that collect the metric results are launched. When the benchmark has
finished, BDEv automatically generates the metric-related data files and graphs,
saving the information of each cluster node and calculating the summary values.
Once the benchmark has been executed the number of times configured by the user,
the most relevant performance results are appended to the summary report. After
executing the selected benchmarks with a particular framework, its daemons are

shut down to start executing the next framework (if any).

All the results from an evaluation are stored in an output directory, which in-
cludes the summary report, the BDEv log, the output subdirectories for each bench-
mark and the evaluation graphs. The summary report shows the configuration pa-
rameters and a summary of the main performance results. The BDEv log contains
the sequence of events during the evaluation, such as the successful configuration

and operation of each framework or the end of the execution of each benchmark.

32 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Initialize BDEv
—> Set cluster size
— Set framework
Configure framework
Start daemons
Initialize benchmarks Set benchmark ——
Run benchmark <
Generate metric results
yes
Executions left?
no
[Generate performance]
results
[Stop daemons

[Finish BDEv]

Figure 2.3: BDEv control flow

2.2 BDEv: goals and design 33

The output subdirectories of the benchmarks include the standard output, execu-
tion times and metrics results for each framework and cluster size, both in text and
graphical format. Finally, the evaluation graphs allow to carry out visual compari-
sons of the frameworks in terms of performance and scalability, resource utilization,

energy efficiency and microarchitectural behavior.

2.2.6. Targeted use cases

The use of BDEv is not restricted to a single scenario. Several kinds of users
can benefit from its features in a different way, including developers, system admi-
nistrators and end users. This section provides more details about the usefulness of

BDEv in each use case.

e Developers

The development cycle of a Big Data framework or application generally in-
cludes several tests that serve to check the correct functioning of the solution.
BDEv can automate this task by defining one or more experimental cases that
process a certain dataset to get an expected result, detecting errors or time-
outs during the execution. Moreover, the standard output of the workload
can be analyzed to verify if the obtained result agrees with the expected one.
Similarly, sometimes a component of a framework or an application is modi-
fied to optimize a certain metric, like the utilization of some resource (e.g.
disk, network) or a microarchitectural metric (e.g. data cache locality). Using
BDEv, the developer can: (1) identify the component to be optimized by ana-
lyzing the results from the evaluation metrics provided by BDEv; (2) once the
optimized version has been implemented, BDEv can compare it with previous
versions by stressing the targeted component and obtaining new metric results.
For instance, developers can analyze the impact of load balancing issues on
the power profile of a framework by defining several experiments that present

distinct distributions, from balanced to skewed.

e System administrators

The configuration of a Big Data framework for a specific hardware infras-

tructure involves the definition of a large set of parameters. This can turn

34

Chapter 2. BDEv: automating the evaluation of Big Data frameworks

2.3.

into an overwhelming task, considering that each parameter may have diffe-
rent possibilities that affect the performance of the framework. In some cases,
selecting an appropriate setting for a parameter involves an experimental eva-
luation of the different values. BDEv can ease this task by automatically
evaluating those configurations, previously defined by the system administra-
tor. As BDEv configurations can be defined separately (i.e. by using several
configuration directories), the total set of possibilities can be established a
priori, carrying out the experiments straightforwardly without needing user
interaction. Apart from memory and CPU settings, BDEv also considers the
configuration of multiple disks and the use of high performance resources like
the IPoIB interface, allowing administrators to analyze the impact of their

utilization on the different metrics.

End users

Big Data users often come from many different research fields, sometimes
without a thoughtful understanding of the insights of Big Data frameworks or
the kind of workloads more suited for each one. Hence, the use of an evaluation
tool like BDEv can ease the task of selecting the most suitable implementation
of a workload that is available for several Big Data frameworks (e.g. K-Means
for Hadoop, Spark and Flink). The selection of the framework will depend
on the particular metric (e.g. performance, energy consumption) that the
user may want to optimize. BDEv can also benefit those users that need to
adjust the configuration parameters of a framework in order to optimize an
application according to a certain metric (e.g. adjusting the HDFS block size

to improve performance).

BDEv outcomes

This section presents a practical use case of BDEv by analyzing popular Big

Data frameworks taking into account all the evaluation metrics described in Sec-

tion 2.2.4: performance, energy consumption, resource utilization and microarchi-

tectural characterization. In order to do so, BDEv has been used to deploy several

frameworks and execute different standard benchmarks on an HPC cluster, extrac-

2.3 BDEv outcomes 35

ting the metrics in an automatic way. The results demonstrate the potential of
our tool to provide meaningful insights from the behavior of Big Data processing
frameworks. Section 2.3.1 describes the experimental testbed employed in the eva-
luation. Section 2.3.2 analyzes the results obtained in terms of the execution time
and energy efficiency, while Section 2.3.3 assesses the power consumption and re-
source utilization. Finally, Section 2.3.4 characterizes the frameworks according to

their microarchitecture-level performance.

All the metrics shown in the graphs belong to the same base experiment, which
corresponds to the one that obtained the median execution time among a set of
10 measurements. Note that the observed standard deviations were not significant
and so they are not shown for clarity purposes. In order to ensure the same con-
ditions for each framework and workload, the operating system buffer cache of the

nodes has been erased before executing each experiment.

2.3.1. Experimental testbed

This section first describes the hardware and software characteristics of the sys-

tem. Then, it details the frameworks and workloads being evaluated.

System configuration

The experiments have been executed in the Grid’5000 infrastructure [50], using
a 16-node cluster that corresponds with 1 master and 15 slaves. The main hardware
and software characteristics of the nodes are described in Table 2.5. Basically, each
node provides 2 Intel Haswell-based processors with 8 physical cores each (i.e. 16
cores per node), 128 GB of memory and 2 local disks of 558 GB each.

Evaluated frameworks

The evaluation has focused on popular state-of-the-art in-memory processing
frameworks: Spark and Flink. Hadoop, the most widespread batch processing
framework, has also been analyzed to use its results as a baseline. The experi-

ments have been carried out using the last stable versions as of July 2017 (Hadoop

36 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Table 2.5: Node characteristics of Grid’5000

Hardware configuration

CPU model 2 x Intel Xeon E5-2630 v3 (Haswell)
CPU Speed (Turbo) 2.40 GHz (3.20 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 128 GB DDR4 2133 MHz
Disk 2 x 558 GB HDD
Network 4 x 10 Gbps Ethernet

Software configuration

OS version Debian Jessie 8.5
Kernel 3.16.0-4
Java Oracle JDK 1.8.0 121
Scala 2.11.8

2.7.3, Spark 2.2.0 and Flink 1.3.2). Their configuration has been set according to
their corresponding user guides and taking into account the characteristics of the
underlying system (e.g. number of CPU cores, memory size). The most important
parameters of the resulting configurations are shown in Table 2.6. This table also
shows the main parameters for HDFS, which has been used to store the input and

output datasets.

Workloads

The workloads that have been assessed are common batch processing bench-
marks selected to represent different use cases: sorting (TeraSort), machine learning
(K-Means), graph analysis (Connected Components) and web search indexing (Page-
Rank), already introduced in Section 2.2.3. The characteristics of the workloads are
summarized in Table 2.7, including the size of the input dataset and the data gene-
rator. The size of the datasets has been adjusted to keep the execution times into
reasonable ranges. Furthermore, the iterative benchmarks have been executed until

convergence (i.e. until reaching a final solution).

2.3 BDEv outcomes

37

Table 2.6: Configuration of the frameworks in Grid’5000

Hadoop HDFS
Mapper/Reducer heap size 3.4 GB | HDFS block size 512 MB
Mappers per node 16 | Replication factor 1
Reducers per node 16
Shuffle parallel copies 20
IO sort MB 852 MB
IO sort spill percent 80%

Spark Flink
Executor heap size 109 GB | TaskManager heap size 109 GB
Workers per node 1 | TaskManagers per node 1
Worker cores 32 | TaskManager cores 32
Default parallelism 480 | Network buffers per node 20480
Parallelism 480
IO sort spill percent 80%
Table 2.7: Benchmark characteristics
Input dataset
Benchmark Size Generator
TeraSort 300 GB TeraGen
K-Means 39 GB (N=900M, K=5) GenKMeansDataset
ConComp 20 GB (30M pages) DataGen
PageRank 20 GB (30M pages) DataGen

38 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

800 g?\ * %% P ’ 7
s 600 f '§§ ﬁ % 1 gﬁ%§ ? % \ ?
. 5% ?///* |
200 | §\ ' \gi\ ° '{}f\ . 7 3“4\ /? \
Bl THuHB
(a) Execution time (b) Energy consumption

1e+13

Hadoop wwwwwswu
Spark s
Flink s

1e+12

S

1e+11

>

1e+10

e
__
NN

&

ConComp K-Means Pagel

(c) ED?P ratio

2

R

AN
.

5
B

1e+09

TeraSort

Figure 2.4: Execution time, energy consumption and ED?P ratio results
(lower is better)

2.3.2. Performance and energy efficiency

Once the configuration of the experiments has been defined, the experimental
results from the evaluation of Hadoop, Spark and Flink with BDEv are presented.

Figure 2.4a shows the performance of the frameworks in terms of execution time,
while Figure 2.4b presents their energy efficiency in terms of total energy consumed.
Both metrics have been used to calculate the corresponding FD?P ratio, displayed
in Figure 2.4c using a logarithmic scale. The ED?P metric was first proposed
in [84] and measures the performance-energy efficiency of a workload as shown in

Equation 2.1.

ED?P = Energy Consumed x (Execution Time)? (2.1)

2.3 BDEv outcomes 39

As can be seen in Figure 2.4a, Hadoop is the best framework for TeraSort,
outperforming Spark and Flink by 32%, which shows off the great data sorting ca-
pabilities of the MapReduce engine. The energy reductions provided by Hadoop
are slightly higher (see Figure 2.4b): 35% and 38% lower energy consumption than
Spark and Flink, respectively. This is explained by the fact that Hadoop shows
lower CPU utilization than the other frameworks for TeraSort (as will be analyzed
in Figures 2.5d, 2.5e and 2.5f), thus leading to lower energy consumption. As ex-
pected, in-memory frameworks clearly outperform Hadoop by a large margin when
running iterative workloads. For instance, Spark is 34% faster than Flink and 78%
faster than Hadoop for Connected Components, providing similar percentages of
energy reduction according to Figure 2.4b. Regarding K-Means and PageRank, the
best performers are Spark and Flink, respectively. Note also that the £D?P metric
reveals that the best performer for K-Means and PageRank provides a 10x improve-
ment over the second one. This indicates that the results of the best framework
are considered far better when energy consumption is taken into account. Finally,
it is worth mentioning the variability of the energy consumption for different work-
loads. While the execution times of Spark and Flink are generally proportional to
the energy consumed with a constant correlation, Hadoop presents higher consump-
tion for PageRank and Connected Components even when their runtimes are similar
to TeraSort. This demonstrates that Hadoop is clearly less energy efficient when

running iterative workloads that are not I/O-bound.

2.3.3. Power consumption and resource utilization

Analyzing the usage of system resources can provide a better understanding of
both the processing frameworks and the workloads, being of great interest to cor-
relate these system metrics with power consumption, as can be done with BDEv.
We have selected three workloads for this analysis: TeraSort, K-Means and Page-
Rank. Results for Connected Components have not been included as its power
profile is very similar to PageRank. The power values shown in the next graphs
only include the consumption of the entire package and the DRAM component (see
Figure 2.2), as this CPU model (Intel Haswell) has neither an integrated graphic
card nor does it provide the separate consumption of the processing cores. For sim-

plicity purposes, the power consumption of each node is calculated by summing the

40 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

values of its two CPUs.

Figures 2.5, 2.6 and 2.7 present the power consumption, CPU and disk utiliza-
tion for TeraSort, K-Means and PageRank, respectively. Regarding TeraSort, its
[/O-bound nature can be clearly identified by analyzing the disk utilization graphs.
However, the CPU graphs show isolated peak values for all the frameworks, espe-
cially at the end of the shuffle phase (around the second 200 for Hadoop and Spark,
and 350 for Flink). As expected, those CPU peaks are correlated with the peak va-
lues in the power consumption graphs. It is interesting to note that Hadoop is not
only the fastest framework for TeraSort, but also the one that shows a more stable
power consumption, aside from two short peaks at the beginning of the execution
and during the shuffle phase (see Figure 2.5a). Although the runtimes of Flink and
Spark are very similar, they present quite different power, CPU and disk profiles.
In fact, Flink shows higher CPU usages (see Figure 2.5f), averaging 70% CPU usage
during the shuffle phase, while Hadoop and Spark never go above 30% aside from
very short peaks. Hadoop presents the lowest CPU utilization, especially during the
reduce phase (just after the shuffle phase), which explains its great energy savings
mentioned before in the analysis of Figure 2.4b. Finally, it is easy to observe that
Hadoop and Spark present a clear disk bottleneck during approximately the first half
of the execution (see Figures 2.5g and 2.5h), while Flink also shows this bottleneck
but especially during the computation of the reduce phase (see Figure 2.51). This
fact proves that the underlying data flow implemented by Flink to process the input
dataset is quite different to the one used by Hadoop and Spark. Note that, as men-
tioned in Section 2.1.1, Hadoop and Spark are based on batch processing engines,
while Flink relies on a stream processing architecture that treats batch workloads

as a special case of streaming computations.

A similar analysis can be conducted for K-Means and PageRank (Figures 2.6
and 2.7). Their iterative nature can be seen in the cyclical behavior of both power
consumption and CPU utilization. This is especially clear for Hadoop and Flink
in K-Means (Figures 2.6d and 2.6f), and for Hadoop and Spark in PageRank (Fig-
ures 2.7d and 2.7e). Regarding the power consumption of K-Means, Spark shows
considerably lower power values (below 90 watts) than Flink (see Figures 2.6b
and 2.6¢), which correlates with the aforementioned 10x improvement pointed out by

the ED?P ratio. The analysis of the system resource utilization illustrates that the

2.3 BDEv outcomes

41

Hadoop

Package mmsm

DRAM
180

160

140

120

100
80
60
40
20

Power (W)

0 200 400 600

Time (s)

(a)

System mm—

800 1000

Wait /O s

1200

User

100

R

60

CPU utilization (%)

0 200 400 600

Time (s)

800 1000

1200

Disk utilization (%)

0 200

400 600

Time (s)

(2)

800 1000

1200

Power (W)

CPU utilization (%)

Disk utilization (%)

Package mmm

Spark

DRAM

Flink

Package msss= DRAM s

180

i

200

400

Wait /O e

600
Time (s)

(b)

System m—

800 1000 1200

User mmmmm

Power (W)

160
140
120
100
80
60
40
20

0
0 200

400 600

Time (s)

(©)

System mm—

800 1000 1200

Wait /O s User mmmm

100

80

200

400

600
Time (s)

(e)

Util - s

800 1000 1200

CPU utilization (%)

60

40

20

0

0 200

400 600

Time (s)

800 1000 1200

0
0

200

400

600
Time (s)

(h)

800 1000 1200

Disk utilization (%)

0
0 200

400 600

Time (s)

(i)

800 1000 1200

Figure 2.5: Average power consumption and resource utilization per node
for TeraSort

disk access pattern for K-Means presents certain similarities across all the frame-
works, showing noticeable disk I/O at the beginning and end of the execution,
which mainly corresponds with reading/writing the input/output data (see Fig-
ures 2.6g, 2.6h and 2.61). However, almost no disk activity is observed during the
data processing, discarding any disk bottleneck in K-Means. This is mostly due

to the strong iterative nature of this algorithm and the caching of intermediate re-

sults. Spark and Flink perform this caching by using in-memory data structures,
while Hadoop takes advantage of the underlying buffer cache provided by the ope-
rating system that stores the data before writing to disk. In this case, it seems that

42

Chapter 2. BDEv: automating the evaluation of Big Data frameworks

Power (W)

CPU utilization (%)

Disk utilization (%)

Hadoop Spark Flink
Package msss= DRAM mmmmm Package msss= DRAM s Package msss= DRAM s
180 180 180
160 160 160
L LR
120 _ 120 120 b
100 2 00 i £ 100
5] 8
80 80 80
< I
60 60 60
40 40 40
20 20 20
0 0 0
0 200 400 600 800 1000 1200 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) Time (s) Time (s)
(a) (b) (c)

Wait /O

System mm— User

Wait /O

System mm—

User

Wait /O s System m— User mmmmm

100

100

80

80

100

80

60

ol

40

40

T

0

CPU utilization (%)

CPU utilization (%)

20N'|
0

20

[

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) Time (s) Time (s)
() () (f)
Util Util s Util s
100 100 100 I ||
80 g 80 g 80 l
; f ol | |
S S
60 = 60 % 60
Pl
40 z alf i P
k] k]
8 a
20 20 20
0 0 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) Time (s) Time (s)
() (h) (i)

Figure 2.6: Average power consumption and resource utilization per node
for K-Means

the amount of data being processed can be cached entirely in memory. Regarding
PageRank (Figure 2.7), Hadoop and Spark present high to medium disk utilization,

respectively, as shown in Figures 2.7g and 2.7h. This is especially relevant when

compared with Flink, which shows nearly zero disk I/O except an initial short peak

to read the input dataset (see Figure 2.7i). This means that the PageRank imple-

mentations of Hadoop and Spark are generating a higher amount of intermediate

data than the Flink counterpart, thus causing higher disk I/O and runtime. Ne-
vertheless, it can be concluded that no disk bottleneck occurs for Spark and Flink.

Finally, Hadoop is not only the worst performer when running PageRank, but also

2.3 BDEv outcomes

43

Hadoop

Package msss= DRAM mmmm

180

160
140
120
2 100
]
80
<
60
40
20
0
0 100 200 300 400 500 600 700 800
Time (s)
(a)
Wait I/O System mm— User
g
<
Eel
3
3
=)
@
o
0
0 100 200 300 400 500 600 700 800
Time (s)
Uil
100 i I I
S 80
5 Il 1
S
= 60
N
5 Ll || I .
°
]
20
0

0 100 200 300 400 500 600 700 800
Time (s)

(2)

Power (W)

CPU utilization (%)

Disk utilization (%)

180
160
140
120
100
80
60
40
20

0
0 100 200 300 400 500 600 700 800

60 [

40

20

100

80

60

40

20 |

Spark

Package msss= DRAM s

Flink

Package msss= DRAM s

180

Power (W)

160
140 }
120 1
100
80
60
40
20
0

0 100 200 300 400 500 600 700 800

Time (s) Time (s)
(b) ()
Wait /O s System m— User mmmmm Wait /O System mm— User mmmm
100
L4l o
H
5 60 |
N
3
> 40
o
o
20
[0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (s) Time (s)
(e) (f)
Util s Uil s
100
g 80
<
S
g 60
{ 2 a0
2
i 3
{ 20
0 o bli. ul
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (s) Time (s)
(h) (i)

Figure 2.7: Average power consumption and resource utilization per node

for PageRank

presents the highest power consumption, CPU and disk utilization by far. This
confirms Hadoop as the least energy efficient framework when executing iterative

workloads, as mentioned before when analyzing the energy results of Figure 2.4b.

2.3.4.

Microarchitecture-level metrics

The microarchitectural characterization has been carried out by measuring 10

hardware performance counters to calculate 5 different microarchitecture-level met-
rics: Instructions Per Cycle (IPC), branch misprediction ratio and L1/L2/L3 miss

44 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

ratios. The L1 total miss ratio is not supported by this CPU, and thus the L1 miss
ratio only refers to load instructions. Figure 2.8 displays the results obtained for
these metrics, calculated over the sum of the values recorded in all nodes of the

cluster.

Regarding IPC (see Figure 2.8a), Hadoop outperforms both Flink and Spark for
all the workloads, while Spark obtains higher values than Flink except for PageRank.
The higher IPC obtained by Hadoop does not mean that it is actually performing
better, as it only translates into more work being done per clock cycle. It is im-
portant to note that the efficiency indicated by the IPC metric may not be directly
related with the execution time, as the high-level source code used to implement
the frameworks (Java or Scala depending on the framework) and the workload itself
are quite different (i.e. the machine code executed in the end by the CPU can vary
completely). For the rest of the metrics, lower values generally translate into better
performance. The branch misprediction ratios displayed in Figure 2.8b show that
Hadoop presents higher values than Spark and Flink. In this case, a higher value
can directly affect performance by decreasing the throughput of the CPU pipeline,
as much more useless instructions are first being issued to the execution pipeline and
then discarded when the branch prediction turns out to be wrong. Flink and Spark
do not present any prevalence one over the other, aside from the PageRank imple-
mentation of Flink, that shows a noticeable lower value than Spark (highly correlated
with the execution times shown in Figure 2.4a). Although a higher branch mispre-
diction ratio may initially be related to a higher IPC value due to the additional
instructions that are executed, the IPC shown in the graph is actually calculated
using the INS RETIRED event. This event only counts those instructions that end
up being needed by the program flow. So, all those other instructions executed by
the CPU in a speculative way are not taken into account, such as the ones that are

issued when predicting a branch.

The miss ratios for the three cache levels available in this system (L1, L2 and
L3) are shown in Figures 2.8¢c, 2.8d and 2.8e, respectively. For the first level, there
is no clear difference between the frameworks, as this cache turns out to be highly
efficient obtaining very low ratios overall (below 2.5%). As data is generally read
in a sequential way when processed by these frameworks, most of these accesses hit

the L1 cache. For the L2 cache, Hadoop presents lower miss ratios than Spark and

2.3 BDEv outcomes

45

Hadoop wwwwwera
Spark s
Flink s

2 Hadoop wwwwwwn 2
Spark s
Flink s
é 15 ’ ’o\? 1.5
* s 2
g - SN
* - .
TeraSort ConComp K-Means PageRank TeraSort

(a) Instructions Per Cycle (IPC)

ConCo

NI
Hm

NN

i
R

e

R
i

NN
S

=

55

AN
b

K-M

3
@

p ans PageRank

(b) Branch misprediction ratio

8 Hadoop wwwwweri 100 Hadoop wwwwwwri

Spark s Spark s

25 Flink sy | 80 FIink:\:\\\\\\\\\\\\\\\\

] [N b

g g 40 N\ /\ %\
5§ 7 3 '%\ .
i } Ei };\ é\ ?,ﬁ@\
o5t . w2\ o ’@\
; %\ §§ %é§
0 TerSort ConCmp K-Mans Pageank TeraSort ConComp K-Means PageRank

(¢) L1 cache load miss ratio

Miss percentage (%)

(d) L2 cache miss ratio

100
Hadoop wwwwwsea
Spark s
link s
80
60
40 2
20 ’(@%
p 5&:\
| -
B |

TeraSort ConComp K-Means PageRank

(e) L3 cache miss ratio

Figure 2.8: Microarchitecture-level metrics results

Flink, with a wide difference in K-Means (86% and 88% lower, respectively). For

Spark and Flink there is no clear prevalent solution, as results are rather similar and

depend on the workload. The higher L2 miss ratios of Spark and Flink means that,

although they have shorter execution times for all the workloads except for TeraSort,

their memory accesses seem to present less data locality. The same behavior can be

46 Chapter 2. BDEv: automating the evaluation of Big Data frameworks

observed for the L3 cache, as Hadoop shows the lowest values. Furthermore, both
Hadoop and Flink have rather constant L.3 miss ratios across workloads, with values
under 20% and 30%, respectively. Meanwhile, Spark shows higher and more variable
ratios, ranging from 30% to 60%. PageRank presents the worst scenario with a
considerably higher ratio than Hadoop and Flink. Note that this may be related to
the PageRank execution time obtained by Spark, which is significantly worse than
Flink as shown in Figure 2.4a. The low variability of the L3 miss ratios of Hadoop
and Flink can be explained by the larger size of this last cache level compared with
the other ones. This fact mitigates any difference that the implementation of the

workload may present for each framework.

The analysis performed in this section has shown the utility of microarchitecture-
level metrics to evaluate the execution of Big Data workloads. Other scenarios
where the use of these metrics can be useful are: (1) comparing the behavior of
different implementations of the same algorithm using a particular Big Data frame-
work; (2) analyzing the impact of different configuration parameters of a framework;
and (3) improving a specific microarchitectural metric when optimizing applications

and frameworks.

2.4. Conclusions

Current Big Data applications are becoming increasingly larger and even more
resource consuming. However, the performance metrics generally used to characte-
rize Big Data processing frameworks, such as total execution time or average CPU
utilization, are often simplistic. Although these metrics can be useful to provide a
broad picture, the large scale of Big Data applications is demanding the conside-
ration of more insightful metrics, like energy consumption or low-level microarchi-
tecture events, to adequately assess the performance of both the frameworks and
workloads. However, only some recent state-of-the-art evaluations focus on energy
efficiency, while very little work takes into account microarchitecture-level aspects.
Furthermore, none of them provides reliable, portable and publicly available tools

to carry out the evaluations on different systems.

This chapter has first presented an overview of the state of the art regarding

2.4 Conclusions 47

the evaluation of distributed data processing frameworks for Big Data analytics,
highlighting the need of more advanced evaluation tools to enable the assessment of
resource utilization, energy efficiency and microarchitecture-level characterization.
Next, we have presented the design of BDEv, a powerful benchmarking tool that
allows the utilization of such metrics in multiple use cases, made by supporting
dstat-based records, Intel RAPL measurements and Oprofile-based monitoring. As
these utilities are available in a wide range of systems, the portability of the tool
is ensured. Finally, BDEv has been used to evaluate representative data processing
frameworks (Hadoop, Spark and Flink) in terms of performance, resource utilization,
energy efficiency and CPU events. The analysis of the results provided by BDEv
demonstrate its usefulness to fully understand the behavior of these frameworks

when processing large datasets.

Chapter 3

Flame-MR: efficient event-driven

MapReduce data processing

Most organizations that analyze their data with the MapReduce paradigm use
the popular Hadoop framework. As mentioned in Section 2.1.1, the performance
issues of its design have caused the development of several Hadoop modifications (e.g.
RDMA-Hadoop), which attempt to improve performance by changing some of its
underlying subsystems (e.g. network communications). However, these solutions are
not always capable to cope with all its performance bottlenecks, as they only focus on
certain parts of the Hadoop architecture. Therefore, the remaining parts can inherit
existing inefficiencies such as excessive object creations or redundant memory data
copies. The portability of the framework can also be affected if the optimizations are
system-specific, like the use of native libraries or hardware accelerators. Moreover,
Section 2.3 proved that up-to-date frameworks like Spark or Flink can achieve good
performance improvements, although they do not keep compatibility with Hadoop
applications. Adapting the source code of these applications (if possible) can be
an overwhelming task, so it may not compensate the actual performance benefits

obtained as a result.

For these reasons, there is a need for new frameworks in order to accelerate
existing Hadoop applications while preserving API compatibility. This chapter in-
troduces Flame-MR [127], a new event-driven MapReduce framework that redesigns

completely the underlying Hadoop architecture. It enables efficient MapReduce data

49

50 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

processing by avoiding redundant memory copies and pipelining data movements,
without requiring to modify the source code of existing applications.

Furthermore, Java applications often suffer from garbage collection overheads
when the size of the heap managed by the Java Virtual Machine (JVM) reaches the
available memory size [56]. This turns memory management into a crucial perfor-
mance factor to be considered when developing Big Data frameworks. One of the
main goals of Flame-MR is to maximize its in-memory data processing capabilities.
So, it must manage memory resources in an efficient way to minimize garbage col-
lection overheads. This chapter addresses this issue by presenting some proposals
in order to reduce memory allocations, while also caching intermediate results to
avoid unnecessary network and disk operations. The impact of these proposals on

the performance of Flame-MR is evaluated through experimental analysis.

This chapter is organized as follows. Section 3.1 describes the main characteris-
tics of the MapReduce programming model and its de facto standard implementa-
tion, Hadoop. Section 3.2 analyzes other existing works that attempt to optimize
the performance of Hadoop by utilizing different approaches. The design of Flame-
MR is next described in Section 3.3, giving some details about the most important
optimizations implemented. Section 3.4 analyzes the memory usage of Flame-MR
and describes some further optimizations. Finally, the conclusions extracted are

commented in Section 3.5.

3.1. Background

The MapReduce programming model was originally proposed by Google in [29].
This model allows developing large-scale Big Data workloads by keeping low-level
implementation details such as task parallelization and data communication hidden
to the programmer. The only thing that has to be defined are the data processing
functions, map and reduce, that operate the input data represented in form of key-
value pairs. The map function processes each input pair independently to extract

the relevant attributes and the reduce function operates them to get a final result.

As mentioned in Section 2.1.1, the most popular implementation of MapReduce

is Hadoop [8], an open-source Java-based framework frequently used for storing

3.1 Background 51

input map
HDFS output

reduce output
shuffle input HDFS

\ -

p-1-0 1 reduce HDFS
p-2-0 replication

HDFS
replication

Figure 3.1: Hadoop data flow with multiple map and reduce tasks

and processing large datasets. It mainly consists of two components, the MapRe-
duce data engine and the Hadoop Distributed File System (HDFS) [108], which
distributes the storage of large amounts of data over the nodes of a cluster. Hadoop
workloads commonly use the MapReduce model to process textual data stored in
HDEFS, following several steps: input, map, shuffle, merge, reduce and output. These
steps are depicted in Figure 3.1. As can be seen, the input dataset stored in HDFS
is divided in many splits that are read by map operations to extract the relevant
key-value pairs. These pairs are partitioned, sorted by key and sent through the
network to the nodes where they will be merged to form the reduce input. Each
reduce operation reads the pairs contained in its input partition, processing them
to generate the output result that is written to HDF'S.

Hadoop can adapt its behavior to the particular needs of each application, as it
provides a wide set of configuration options to do so. This includes the setting of
some software components defined via Java interfaces, modifying their implemen-
tation according to the computation that the user needs to perform. For example,
the user can configure a different input and output formatter class if the data is
not in textual format. Similarly, users can use primitive data types included in
Hadoop or define their own ones by developing a custom implementation of the
Writable interface. This interface establishes the methods that the custom data

52 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

types need to implement, which are mandatory to serialize and compare the data
objects. Moreover, other application types apart from MapReduce can be deployed
in a Hadoop cluster by using Yet Another Resource Negotiator (YARN) [121], which

was introduced in Hadoop 2 to manage the computational resources of the nodes.

Nowadays, many applications and libraries use Hadoop to carry out MapReduce
workloads. However, Hadoop presents some performance bottlenecks that hinder its
utilization for large-scale analytics due to poor resource utilization and inefficient
data parallelism. This situation has caused the appearance of several alternative
frameworks like Spark and Flink, which can be used to execute Big Data workloads
with a more flexible API and increased performance. However, rewriting existing
MapReduce applications to the new APIs generally requires a significant program-
ming effort. Furthermore, the source code is not always publicly available, which
precludes the users from rewriting it. This Thesis overcomes these issues by propo-
sing Flame-MR, a new MapReduce framework that redesigns completely the Hadoop
architecture in order to improve its performance and scalability while keeping com-
patibility with Hadoop APIs. Furthermore, its Java-based implementation ensures

its portability.

3.2. Related work

The broad adoption of the Hadoop project has caused the appearance of several
MapReduce frameworks that attempt to improve its performance. Most of them
modify some of its subsystems, like network communications or disk 1/0, to adapt
them to specific environments. That is the case of Mellanox Unstructured Data
Accelerator (UDA) [86] and RDMA-Hadoop [57|, which adapt Hadoop to HPC re-
sources, such as RDMA interconnects like InfiniBand. On the one hand, Mellanox
UDA is a plugin written in C++ which combines an RDMA-based communica-
tion protocol along with an efficient merge-sort algorithm based on the network
levitated merge [131]. On the other hand, RDMA-Hadoop redesigns the network
communications to take full advantage of RDMA interconnects, while performing
data prefetching and caching mechanisms [132]. RDMA-Hadoop incorporates these
modifications in a Hadoop distribution which is available separately. Both Mellanox
UDA and RDMA-Hadoop keep compatibility with the user interfaces. However, they

3.2 Related work 53

only modify certain Hadoop subsystems, which can lead to limited performance im-

provements compared to an overall redesign of the Hadoop underlying architecture.

Another modification of Hadoop is NativeTask [141], which rewrites some of its
parts using C++, like task delegation and memory management. Furthermore, it
takes into account the cache hierarchy to redesign the merge-sort algorithm [140].
However, the optimizations performed by NativeTask are highly dependent on the
underlying system, which hinders its portability. This is also the case of Main Me-
mory MapReduce (M3R) [107], which uses the X10 programming language [20] to
implement an iterative MapReduce framework that keeps compatibility with Hadoop
APIs. Another important drawback of M3R is that the workload has to fit in me-
mory, preventing its use for real-world Big Data scenarios. iMapReduce [147], ano-
ther iterative Hadoop modification, not only avoids to write intermediate results
to HDFS, but also minimizes task scheduling and synchronization overheads. Ne-
vertheless, the applicability of these optimizations is limited to applications with

single-job iterations.

The performance bottlenecks of Hadoop have caused the emergence of new
frameworks that fully replace the Hadoop implementation. One of these frame-
works is DataMPI [78|, which makes use of the MPI standard to leverage the high-
performance interconnects that are usually available in HPC systems. MapReduce
Implementation Adapted for HPC Environments (MARIANE) [36] is designed to
take advantage of the General Parallel Filesystem (GPFS), which is also commonly
found in HPC systems. Other solutions, like Spark [145] and Flink [7], optimize the
memory usage by using collections of elements as an alternative to key-value pairs.
Both expand the set of operations available to the end user, rather than providing
only map and reduce functions. The main problem with this kind of proposals is
that they do not provide full compatibility with Hadoop APIs, so the code of the

applications must be adapted or even rewritten from scratch.

Memory efficiency has been the subject of study of many works. Some of
them [83, 113] enhanced the scalability of MPT libraries in terms of memory usage.
Although these works are not focused on Big Data processing, some of the challenges
they face are similar to our case (e.g. keeping memory scalability as the number
of processes grows). Regarding Big Data frameworks, there exist some previous

works that have investigated their memory efficiency. In [32]|, the memory usage

54 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

of Hadoop and Hive is characterized by analyzing the memory footprint, memory
bandwidth and cache misses of different workloads. The authors of [95] studied the
use of large memory pages when executing Big Data applications in non-uniform
memory access systems, concluding that large pages do not show significant perfor-
mance improvements when the dataset is sufficiently large. The scalability of Spark
has been evaluated in [142|, studying whether it is better to increase the number
of nodes in the cluster or improve the hardware characteristics (CPU, memory and
disk) of the nodes. Although each configuration performed differently depending
on the workload type, the one with faster nodes showed a better performance per

watt ratio.

The development of new techniques to improve memory management in Big Data
frameworks has been addressed in different ways. In [139], the authors presented
a novel two-level storage system with an upper-level in-memory file system that
leverages high 1/O throughput and data locality, while a lower-level in-disk parallel
file system provides consistency and larger capacity. Moreover, works like [25] use
new storage technologies, such as SSD disks, to alleviate bandwidth and memory
requirements. Other proposals target the memory management performed by object-
oriented languages (e.g. Scala, Java) in order to adapt it to the characteristics
of Big Data workloads. That is the case of Yak [92]|, which proposes a hybrid
garbage collection approach that distinguishes between objects belonging to the
control space and the data space. Yak adapts the memory management of each
object type to its lifespan characteristics, being able to alleviate the overhead of
garbage collection operations in Big Data frameworks like Hadoop. Another work,
Deca [77|, analyzes the data objects of Spark applications to estimate their expected
lifespan, allocating and releasing memory accordingly to minimize garbage collection
overheads. Although it would be interesting to compare these alternatives with

Flame-MR, these projects are not publicly available.

Finally, another modification of Hadoop, called SHadoop [54], also improves the
job and task execution mechanisms, although the improvement is mostly significant

in jobs with short runtimes.

3.3 Flame-MR design 95

3.3. Flame-MR design

This section presents the overall design of Flame-MR. First, the main characteris-
tics of its internal architecture are discussed in Section 3.3.1. Second, Section 3.3.2
describes in more detail the different phases of the MapReduce data processing

pipeline in this architecture.

3.3.1. Flame-MR architecture

Flame-MR is a distributed processing framework implemented in “pure” Java
code (i.e. 100% Java) for executing standard MapReduce algorithms. Being fully
integrated with the Hadoop ecosystem, Flame-MR runs on YARN, which is its
resource management layer, and uses HDF'S for data storage. Its design is oriented
to optimize the performance of the overall MapReduce data processing, improving
the utilization of the system resources (CPU, memory, disk and network) and the
overlapping of the data flow. Moreover, the architecture of Flame-MR has a strong
flexibility due to the use of the same software interfaces to manage in-memory data,
network communications and HDFS I/0O. Flame-MR acts as a plugin that is fully
compatible with Hadoop APIs, so existing MapReduce applications do not have to

be rewritten.

The Flame-MR workflow is composed of the classic MapReduce phases: input,
map, sort, copy (or shuffle), merge, reduce and output. The input phase reads the
input dataset from HDFS and the map phase extracts the valuable information by
applying the user-defined map function to each input pair. Once the map output
is generated, the sort phase ensures the correct ordering of the output pairs, which
are sent through the network during the copy step. The merge phase generates the
reduce input by merging all the incoming map output pairs. Next, the reducer ap-
plies the user-defined reduce function to each set of key-value pairs, computing the
final output which is written to HDFS in the output step. In Hadoop, one or more
phases are performed for a certain part of the input dataset by independent Java
processes called tasks (e.g. a map task performs the input, map and sort phases).
However, Flame-MR arranges the phases into MapReduce operations, which are lo-

gical processing units performed by a Java thread. Unlike Hadoop, these operations

56 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

/ Nodel \
/ Workerl \
p

Node2

DataPool ThreadPool

\
BEOM

Node3

Buffers Node4
...
H Cl C2 C3 Chunks E

\ | Worker2 | |AppMaster| /

Figure 3.2: High-level architectural overview of Flame-MR
O: Operations B: Buffers C: Chunks

are executed within the same Java process (from now on, Worker). For a given
input data, each operation performs some of the explained phases depending on its

operation type (map, merge or reduce), as will be described in Section 3.3.2.

Figure 3.2 presents a high-level overview of the Flame-MR architecture, which is
based on a traditional master-slave model. This model has been adapted to YARN,
in which the master and the slaves are executed inside YARN containers. At the
application launching, the master container (AppMaster in the figure) allocates one
or more Workers per computing node in the cluster as configured by the user. In
the same way, the user configures the CPU cores and memory allocated to each
YARN container, which in turn determines the resources available for the Workers.
The configuration of the Workers (i.e. number of Workers per node and resources
available for the Worker) provides higher flexibility than the Hadoop model, in which
each map /reduce task is allocated in a separate container depending on the amount
of memory available in each node. Furthermore, each Worker in Flame-MR allocates

memory and CPU resources by means of a DataPool and a ThreadPool, respectively.

3.3 Flame-MR design Y

The DataPool structure manages the amount of memory available in the Worker,
allocating memory buffers for the different MapReduce operations. Likewise, these

operations allocate CPU cores by means of the ThreadPool scheduler.

The input and output data is read and written, respectively, by using Data-
Structures. Basically, these structures are data queues that contain a certain number
of data chunks to be processed. Moreover, the Workers use the network to transfer
the map output data and synchronize their computation at certain moments of the
process (e.g. before the reduce phase). More details about the architectural design

of Flame-MR are provided next.

Optimized memory usage

Flame-MR manages in-memory data using chunks, which are treated as logical
data units in the same way as HDF'S uses blocks. The chunks are written by an
operation in a MapReduce phase and read by another operation in the next phase.
Internally, each chunk has a number of memory buffers that contain the physical
data in memory or abstract a file path in disk. In order to manage the buffers that
fit in memory, each Worker defines a DataPool for allocating them. This pool is
shared among all the MapReduce operations in a certain Worker, optimizing the
amount of memory needed at any moment. When a configurable threshold size is
exceeded, the DataPool begins to spill buffers to disk, allocating the freed space to
new buffers, until the threshold condition is satisfied again. After that, if a spilled
buffer is attempted to be read, the DataPool reallocates its original size and the

data is read back from disk.

All buffers have a fixed size, which is configurable by the user (the default value is
1 MB). The configuration of the buffer size is useful in order to handle the available
memory and balance the number of buffers managed by the DataPool during the
MapReduce data processing. Moreover, the DataPool uses a single operation to spill
a buffer to disk or read it back, so the buffer size is a relevant parameter in order to

optimize the I/O throughput.

58 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Thread-based processing model

In Hadoop, each map/reduce task is executed in a YARN container (i.e. in a
JVM), which has a separate resource allocation. This can lead to poor resource
utilization at some stages during the MapReduce workflow. For example, reducers
which are waiting for the mappers to complete cannot share their resources with
them and so the finalization of the mappers is delayed. Flame-MR differs from this
model by treating each map/reduce task as an operation, which is carried out by
a Java thread. Moreover, the overhead of thread creation/destruction is minimized
by means of a ThreadPool which runs as many threads as the number of CPU
cores available for the Worker. As in the case of the DataPool, the ThreadPool
is shared by all the MapReduce operations in a Worker, optimizing the number of
them being executed at any moment and maximizing the memory utilization and

CPU resources.

The ThreadPool has a queue of operations waiting to be processed, which are
ordered by using a priority system. The priority of each operation is determined
by the MapReduce phase to which it belongs. For example, map operations have
a higher priority than merge operations, in order to maximize the amount of map
outputs that can be processed by the merge operations. Further details about the

operations performed by Flame-MR are given in Section 3.3.2.

Event-driven architecture

The relationship between data chunks and the operations that process them
is made through an event-driven architecture. This architecture is composed of
several DataStructures that contain the data chunks waiting to be processed. De-
pending on the specific MapReduce phase, the pending operations are queued to the
ThreadPool to process all the input data chunks existing in a DataStructure (e.g.
at the beginning of the reduce phase) or to process the chunks as they arrive to
the DataStructure (e.g. in the input of the merge phase). In the latter case, when
the DataStructure receives new data chunks it generates an event to indicate the

ThreadPool that there are data waiting to be processed.

There are three main types of DataStructures: in-memory, network and HDFS.

3.3 Flame-MR design 59

In-memory DataStructures (i.e. the input for merge and reduce operations) contain
several data chunks which are waiting to be processed. They behave as a queue
between MapReduce operations (e.g. between merge and reduce operations in the
case of the reduce input DataStructure, which will be further depicted in Figure 3.4).
Network DataStructures abstract network communications (i.e. the map output).
Data chunks added to these DataStructures will be sent through the network to the
corresponding Worker, which is determined by the partition assigned to the chunk.
Finally, HDF'S DataStructures abstract I/O movements to HDFS, reading the input
at the beginning of the MapReduce workflow (i.e. the map input) and writing the
output at the end (i.e. the reduce output). These three kinds of DataStructures

implement the same interface, which provides a flexible software architecture.

The design of the event-driven architecture in Flame-MR keeps some similarities
with the Staged Event-Driven Architecture (SEDA) [135]. SEDA proposes an ar-
chitecture for well-conditioned, scalable Internet services consisting of several stages
connected by queues, in which each stage represents a step of the whole process.
Flame-MR also carries out a series of stages by means of the MapReduce opera-
tions, which are connected by DataStructures that work in a similar way as the
queues in SEDA. However, Flame-MR uses the same ThreadPool for all the opera-
tions instead of using one ThreadPool per stage as in the case of SEDA. By doing
this, Flame-MR optimizes the number of operations that are being executed at any

moment and prioritizes them in order to maximize the amount of data processed.

Copy-avoidance mechanism

One of the main performance bottlenecks of Hadoop is the high number of re-
dundant memory copies. Many of them are performed when reading from HDFS
and translating the input data stream to Writable objects (e.g. Text, IntWritable,
LongWritable). In order to alleviate this situation, equivalent primitive Writable
types in Flame-MR do not copy data fields from the input chunks to the correspon-
ding memory objects, but keep references to these fields instead. Using the position
where each field starts and its length, the information is not retrieved and trans-
lated unless it is needed, avoiding extra data copies. Furthermore, data fields do not
have to be translated into the Writable objects when written to another data chunk.

This is especially relevant in identity map/reduce functions, which write their input

60 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

key-value pairs to the output chunks without modifying them. In this kind of func-
tions, which are very common in some workloads (e.g. Sort), the references kept by
the Writable objects are used to copy each data field directly from the input to the

output chunk, and thus involving a single memory copy.

Hadoop-like map and reduce functions

Existing Hadoop applications can be executed without any source code modi-
fication, as Flame-MR implements the Hadoop APIs. An example of the source
code defined by the user is presented in Figure 3.3, which shows the map and re-
duce functions (Figures 3.3a and 3.3b, respectively) for the WordCount program.
Note that there is no difference between the source code of both Flame-MR and
Hadoop functions, so they are displayed only once. Likewise, the Hadoop driver of

the MapReduce job does not need any change to be run with Flame-MR.

3.3.2. MapReduce operations

As mentioned before, the MapReduce data processing in Flame-MR is divided
into three operation types: map, merge and reduce. These operations can be ob-
served in Figure 3.4, which shows an overview of the whole data processing pipeline.
More details about the computation that these operations perform and their specific

optimizations are provided next.

Map operations

At the beginning of the job execution, the AppMaster (see Figure 3.2) divides the
input dataset into independent splits, and then they are allocated to the different
Workers. Next, each Worker creates one map operation per input split and queues
them to the ThreadPool. Each map operation processes the input, map, sort and
copy phases for its associated split. The basic stages of a map operation are depicted
in the left part of Figure 3.4a. In the input step, the map operation (O1 in the figure)
creates a new data chunk (C1) and uses the DataPool to allocate enough space for
it. The chunk is filled with the data using the HDFS client libraries. Once the input

3.3 Flame-MR design

61

public static class WordCountMapper extends

Mapper<Object, Text, Text, IntWritable>

{
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(Object key, Text value,
Context context) throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
}

(a) WordCount mapper

public static class WordCountReducer extends
Reducer<Text, IntWritable, Text, IntWritable>

{
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{

int sum = 0;

for (IntWritable val : values)

{

sum += val.get();

}

result.set(sum);
context.write(key, result);

(b) WordCount reducer

Figure 3.3: Code examples for WordCount map and reduce functions
in Flame-MR and Hadoop

62 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

C1 (I >

Map input Map output Merge input Reduce input
DataStructure Workerl DataStructure Network DataStructure "VO'K€'2 DataStructure
'¢ . *~‘ Q\ — l¢ Merde -~ : —
’ Map operation N ' 9
! Pop AR copy § ! ®operation .
. B2 [T B v — \\\ » ' '
: -V \ v | S8 | merge !
linput map Sort (3 § ya “a (G5 :
: ..} §\ ’ .

]
']
. i
: cs :
: O .., == \ | :
--]]
\ 85 d N > . '
M 4 k 1 [}
‘e ’ (N ’

---------------- - s._________’¢
N— e) S e

(a) MapReduce data flow of map and merge operations

Reduce output
DataStructure

—

Reduce input
DataStructure

—

Worker2

P) -

*
S @ Reduce operation .
reduce output !

— —

(b) MapReduce data flow of reduce operations

Figure 3.4: Overview of the MapReduce workflow in Flame-MR
O: Operations B: Buffers C: Chunks

chunk resides in an in-memory buffer (B1), its key-value pairs are read one by one
and passed to the user-defined map function. As the map function generates the
output key-value pairs, these are kept in memory and grouped by their partition
number. This number is calculated based on the key of the pair, which determines
the Worker that will merge and reduce it. Once the size of the output pairs exceeds
a certain threshold, a partition group is sorted in memory and written to a new
data chunk. During the copy stage, this data chunk is sent through the network to
the corresponding Worker. Further characteristics of map operations are explained

next.

3.3 Flame-MR design 63

e Two-level partitioning

In Hadoop, each map output pair belongs to a partition that corresponds
with the reducer that will process it. In Flame-MR, each Worker can run
more than one reduce operation, and so each Worker has a set of partition
numbers that belongs to it. Hence, there are two levels of partitioning: the
first one defines the Worker that will reduce the partition and the second one
defines the reduce operation within the Worker. This two-level partitioning is
necessary in order to parallelize the reduce phase, while enabling the Worker to
share the computational resources allocated to it among the different parti-

tions.

e In-memory object sort

Unlike Hadoop, map output pairs are not written to a temporary chunk while
they are not sorted. As mentioned before, the Writable objects produced by
the user-defined map function are kept in memory. When the size of the objects
exceeds a certain threshold, they are sorted and written to the final data chunk
that is sent through the network. This threshold is calculated as a percentage
of the DataPool size divided by the number of threads in the ThreadPool. This
value can be tuned by the user via a configurable parameter to adapt it to the
characteristics of the underlying system, although a default value is provided.
The in-memory object sort allows Flame-MR to avoid many memory copies
during the sort phase. Furthermore, the copy-avoidance mechanism explained
in Section 3.3.1 enables to store the output of identity map operations as
objects that reference the input data, copying directly the input data to the

output chunk when sorting the results.

e Pipelined map, sort and copy phases

As explained in the previous paragraph, mappers sort and send their output
pairs through the network once they exceed a certain threshold size. This
behavior acts as a pipeline that alternates the computation of the map, sort
and copy phases. The design of Hadoop takes a different approach, as the
reducers are responsible for retrieving the output. The mappers sort and
store their output locally until it is requested, by means of a network service
called ShufleHandler. This service is shared by the mappers of a node and

64 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

so it is placed in a separate Java process. Moreover, if a mapper runs out
of memory, it will spill some of the output pairs to disk, reading them back
when the reducer queries the map output. As Flame-MR map operations
send directly their output chunks from the memory space of the Worker, the
locality of in-memory data is higher compared with Hadoop. Flame-MR also
avoids waiting for the reducers to retrieve the map output, which can delay
the communications and cause unnecessary spill operations. However, this
feature may have some impact on the fault tolerance of Flame-MR. As the
mapper does not retain the map output pairs, they cannot be retrieved back
if a node fails like in the case of Hadoop. Nevertheless, our first prototype
focuses primarily on performance aspects of MapReduce applications. Further
work is planned to study how to improve the fault tolerance of Flame-MR

without harming performance.

The chunks are sent through the network by sending each data buffer to the
destination. Flame-MR can be configured to send each data buffer in several
packets, using a fixed packet size. The use of the packet size is useful to
adapt the communications to the characteristics of the underlying network
(e.g. maximum transmission unit), while the buffer size can be optimized for

spilling to disk.

Merge operations

Merge operations are responsible for processing the map output chunks received
through the network, merging them to form the reduce input. The data flow of
merge operations can be seen in the right part of Figure 3.4a. When a Worker
receives a map output chunk, it is stored in a DataStructure and a new merge
operation (O6 in the figure) is queued to the ThreadPool. When this operation
is executed, it first checks the DataStructure for unprocessed partitions, selecting
one of them and taking all its incoming chunks. Then, the operation merges these
chunks until getting a single one, which is added to the reduce input DataStructure.
Moreover, this chunk can be merged again as new chunks arrive at the Worker.
Next, we provide some further details about the optimizations implemented in merge

operations.

3.3 Flame-MR design 65

1. Write first pair

of C2to C4
m 2. Update pointers
p2 & p4
/ K2 <K1'< K3
sz DZ% s p4‘ p4%
Cc2 [Kzlvz KZ'I v2' IKZ"IVZ']v, [K3 I V3 I K1 I V1 IK3'I v3 | K2 j V2]
pl

Merged chunk

\ 4
Cl[K1 I Vi | KU I V1]A 3. Update list order:
C1 is first now
p3 K1' < K2' < K3"

c3 [K3 I V3 IKs'I V3 ‘ K3"I V3"]

Input chunk list

Figure 3.5: k-way merge (k=4)
C: Chunks K: Keys V: Values p: pointers

e k-way merger

The merge algorithm used in Hadoop is a 2-way algorithm that merges two pairs
at a time. Flame-MR uses a different approach by performing a k-way merge
algorithm that merges k£ chunks at a time. The input chunks are organized in
a list and sorted by the first key that appears in each chunk. Next, the first
pair of the first chunk is copied to the merged chunk, advancing the position
of the read chunk and reordering the chunk list according to it. The pairs
are read until there is none left. An example of this algorithm is depicted in
Figure 3.5, which shows the input chunks C1, C2 and C3 being merged to
chunk C4. Each chunk contains a list of key-value pairs <Kx,Vx>. It can be
seen that the first chunk of the list is C2, which is currently pointing to the
key-value pair <K2,V2>. Hence, this pair is copied to chunk C4 in step 1.
Next, the current positions of C2 and C4 are moved forward by updating their
pointers (p2 and p4, respectively) in step 2. Finally, step 3 updates the list
order by placing C1 in the first place as <K1’,V1’> becomes the lowest key
in the list.

As the k-way merge algorithm processes multiple data chunks at once, it min-
imizes the number of merge operations needed to compute the reduce input,

thus avoiding many comparisons and memory copies. Furthermore, Flame-MR

66

Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

calculates k£ based on a percentage of the available memory, which enhances

memory efficiency and avoids spilling data to disk.

Binary comparison

In Hadoop, many data types define the BinaryComparable interface. This
enables to compare the binary representations of the objects in the merge phase
using the memory buffers that contain their data, without translating the data
fields to the Writable objects. Flame-MR also uses binary comparison, but it
does not create the objects. Instead, it compares the fragments of the chunks
corresponding to the objects. By doing so, it avoids creating and destroying

many objects and the corresponding overhead of the JVM garbage collection.

Reduce operations

Reduce operations perform two phases: reduce and output. Their data flow

is shown in Figure 3.4b. Once all map outputs have been merged, each Worker

generates a reduce operation per chunk partition. Each reduce operation (09 in

the figure) reads its associated input data chunk and reduces the final output by

applying the user-defined function to each set of key-value pairs. Finally, the chunks

are stored in HDFS during the output phase. This phase has been optimized as

explained below.

e Pipelined output

Hadoop writes the reduce output pairs to HDFS as they are being generated
by the reduce function. This causes a large number of writes to HDFS, with a
significant overhead each of them. In order to avoid this, reduce operations in
Flame-MR store their output pairs to a data chunk, which is written to HDFS
once it reaches a certain threshold size. This mechanism is similar to the way
map output pairs are sent through the network. The use of the threshold size
ensures that the reduce output does not exceed the available memory space in
the DataPool, in which case the data buffers would have to be spilled to a local
disk. Furthermore, it also acts as a write pipeline that allows to alternate the

computation of the reduce function and the writing of the results to HDFS.

3.4 Memory management optimizations 67

3.4. Memory management optimizations

Memory usage is a crucial factor for avoiding performance issues when using
large memory spaces. This section focuses on the development of efficient memory
management techniques to analyze their impact on overall performance. Using the
original implementation of Flame-MR presented in Section 3.3 as a baseline, several
optimizations have been developed and evaluated comparatively through experimen-
tal analysis. First, Section 3.4.1 analyzes the performance overhead caused by long
pauses of the Garbage Collector (GC), explaining several optimizations to reduce
them. Second, Section 3.4.2 analyzes different implementations of the in-memory
buffers that contain the data to be processed. Finally, Section 3.4.3 focuses on itera-
tive workloads, explaining how to avoid the writing of intermediate results to HDF'S

and the benefits of doing so.

The optimizations presented in each of these sections are evaluated by means
of several performance experiments carried out in a multi-core cluster, Pluton. Ta-
ble 3.1 contains the main hardware and software characteristics of this cluster. Ac-
cording to these characteristics, Flame-MR has been configured as shown in Ta-
ble 3.2, which also contains the relevant configuration parameters for HDFS. More-
over, Flame-MR has been configured to use the IPoIB interface, which allows to
employ this network through the IP protocol and obtain lower latencies and higher
bandwidths than with Gigabit Ethernet. The version of Hadoop deployed to make
use of YARN and HDFS components is 2.7.2. The experiments have been carried

out using 9 nodes, corresponding with 1 master and 8 slaves.

The execution of the experiments has been automated by using BDEv, selec-
ting Sort and PageRank among the workloads supported as they are representative
examples of I/O-bound and iterative workloads, respectively (see Section 2.2.3).
Sort has been used to order a 100 GB input text dataset, while the input dataset
of PageRank has a size of approximately 20 GB (30 Mpages), with a maximum of
5 iterations per execution. The results provided in this section take into account a
minimum of 10 executions for each experiment making sure to clear the OS buffer
cache between each execution. Finally, the GC used is Parallel GC, which is enabled

by default and provides the best throughput as the number of cores increases [46].

68 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.1: Node characteristics of Pluton

Hardware configuration

CPU model 2 x Intel Xeon E5-2660 (Sandy Bridge-EP)
CPU Speed (Turbo) 2.20 GHz (3 GHz)
#Cores 16
Cache (L1 /L2 /L3) 32 KB / 256 KB / 20 MB
Memory 64 GB DDR3 1600 MHz
Disk 1 TB HDD
Networks InfiniBand FDR & GbE

Software configuration

OS version CentOS release 6.4
Kernel 2.6.32-573
Java Oracle JDK 1.8.0 45

Table 3.2: Configuration of Flame-MR in Pluton

Flame-MR
Workers per node 4
ThreadPool size 4
Worker heap size 10.5 GB
DataPool size 6.3 GB
DataBuffer size 1 MB

HDF'S block size 128 MB

Replication factor 3

3.4 Memory management optimizations 69

3.4.1. Garbage collection reduction

The JVM provides automatic memory management by allocating available me-
mory on the heap to objects when they are created. The programmer cannot control
when this memory is released, as Java objects cannot be explicitly destroyed. Ins-
tead, the JVM tracks the objects on the heap and their references from the Java
code, removing an object and releasing its memory when it has no other objects
referencing to it. This process is transparently performed by the GC included in
the JVM [114]. Using large heap sizes, garbage collection can consume a considera-
ble amount of computational resources, incurring significant performance penalties
and even program stalls. In fact, it is one of the most common performance issues
in Java applications [56]. For Big Data frameworks, this issue becomes even more
important, as they execute workloads with very long execution times, creating a
large number of objects and having high memory usage. For this reason, Flame-MR
has been analyzed to identify means of reducing the amount of garbage collection
performed, which has led to two main techniques, static memory allocation and
buffered map output, explained next. These techniques have been incorporated into
a modified version of Flame-MR, called Flame-MR-GCop.

Static memory allocation

In the original implementation of Flame-MR, MapReduce operations (e.g. map,
merge) allocate memory space by requesting DataBuffers to a DataPool. Each of
these requests causes a new object to be created, with its corresponding memory
allocation on the heap. Once the DataBuffer is used, it is returned to the DataPool,
which dereferences the DataBuffer in order to be garbage collected. This behavior
involves a lot of DataBuffer object creations and collections, with their correspon-
ding memory allocations and deallocations. Moreover, the default implementation
of DataBuffers relies on primitive byte arrays (i.e. byte[|) to contain the data, which
are initialized to a default value at the time of creation. In Flame-MR-GCop, the
behavior of the DataPool has been completely redesigned, using static memory al-

location in order to avoid the excessive creation of DataBuffers and to minimize

GC overheads.

The basic principle of static memory allocation is that once the memory has

70 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

/ DataPool \

{ . N (\
MapReduce Logical I\ée?ory
operations Buffe 9 uffers
L1l L2 D Free
Non-f
L3 \ . on-free
vl L L6

-

Figure 3.6: DataPool overview in Flame-MR-GCop

been allocated, it is reused by several operations, without neither releasing it nor
dereferencing the objects. Figure 3.6 depicts the new design of the DataPool, where
DataBuffers are managed by means of two different classes: LogicalBuffers and
MemoryBuffers. On the one hand, LogicalBuffers are associated with the data they
contain, which can be in memory or in disk. On the other hand, MemoryBuffers are
associated with the memory space that is allocated to them, each one containing a
byte array of a fixed size (1 MB by default). LogicalBuffers reference to Memory-
Buffers, using them to store the data from the operations. When a LogicalBuffer
is created by an operation, it requests a MemoryBuffer to the DataPool. If the
DataPool has a free MemoryBuffer available then it is returned, otherwise a new

one is created.

When the DataPool reaches the maximum number of buffers, it will not be able
to create a new one. Instead, the DataPool picks a LogicalBuffer from the list and
spills its corresponding MemoryBuffer to disk, giving it to the new LogicalBuffer.
The former LogicalBuffer keeps a reference to the disk file, retrieving the data when
an operation attempts to read its content. Finally, when a LogicalBuffer stops
being used, its MemoryBuffer is put back to the DataPool. In order to minimize the
number of data spills and recoveries, the DataPool chooses the victim LogicalBuffer
using a priority-aware schema, which uses one queue for each operation type that
creates the LogicalBuffers. These queues are ordered depending on the likelihood
of the LogicalBuffers to be requested back from disk. For example, LogicalBuffers
created in shuffle operations have the lowest priority, as they will have to wait until

the end of the map phase to be merged. Therefore, they are the first candidates

3.4 Memory management optimizations 71

to be spilled.

In Flame-MR, most of the Worker memory is held by the DataPool, and so
reusing MemoryBuffers reduces a high amount of memory allocations and dealloca-
tions. It also reduces the time taken to initialize the arrays when they are allocated,
as the MemoryBuffers are reused without being reinitialized. Instead, they are lazily
cleared by setting their writing position to zero. Moreover, both LogicalBuffers and
MemoryBuffers use the same DataBuffer interface in order to keep a good design
flexibility. MapReduce operations can therefore allocate buffers and operate the

data without having specific information about where they are stored.

Buffered map output

One of the main objectives of Flame-MR is to minimize the redundant memory
copies in operations like sort and merge. To this end, the key-value objects produced
by the map operations are kept in memory until being sorted, without writing
them to a temporary buffer. This behavior allows to reduce the memory copies
but can lead to scalability issues with very large problem sizes due to the high
amount of objects to be managed during garbage collection, causing long stalls.
In order to overcome these limitations, the writing of the map output has been
improved in Flame-MR-GCop by storing binary representations of the output pairs
to a temporary buffer. This avoids to keep the objects in memory and reduces the
garbage collection overhead, although it increases the number of memory copies.
Furthermore, the partitioning and sorting mechanisms have been carefully studied,

reassembling them for improved performance and scalability, as described next.

In Flame-MR-GCop, each mapper has a set of temporary buffers available for
writing the output. When a map operation produces an output key-value pair,
it is written to one of these buffers. Once a buffer is full, the output pairs are
sorted and sent through the network. The number of times this event is triggered
depends on how many temporary buffers are available for each mapper. Using one
single buffer for all partitions is likely to cause an excessive number of sorts, as the
buffer will be filled very quickly. However, having one buffer per partition is not a
feasible option due to its poor scalability (the number of partitions increases with

the number of computing nodes in the cluster). Therefore, the solution adopted in

72 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Partition Grouped partitions Actual partitions
P9
Go |
operation
peratony 61|k vi|k2| v2 | k3| vs|
Group = 2
partition mod #groupsG [
=9mod4=1 G3 [
#groups=4
(a) Partitioning
Index
Sorting partition P9 19 Sorted partition

3 ™

----- » SO K4 :VA K6 V6! K3 | V3 |
(K4 vt P K3 | V3 g

N e IR ddha o ;
61 ki|vafka| va [ka|va|ralva] ks [vs[ke[ve] | |sort

K4 < K6 < K3

(b) Indexed sort

Figure 3.7: Map output example

Flame-MR-GCop is to arrange the partitions into a set of groups, calculated as a
configurable percentage of the available memory. Each group has an assigned buffer,
which contains the output pairs belonging to the partitions in that group. When
this buffer is full, the sorter is in charge of iterating the several partitions of the
group and sorting their corresponding pairs. Figure 3.7a shows an example of a pair
partitioning, calculating the partition group number and its associated temporary
buffer. The key-value pair <K,,V,> is in partition 9, which belongs to group 1. This
group contains those partitions P; which meet the condition i mod #groups = 1,

which are Pq, P5, Py, and so on.

Each partition has an associated index that keeps track of the positions where the
pairs are stored in the buffer. In the sort operation, this index is used for ordering
the positions by comparing the pairs in the buffer. No data objects are created in
this operation. Instead, the sort algorithm uses a binary comparison of the content
of the positions. Figure 3.7b shows an example of a sort operation. The index (Ig) is
used to access the positions that contain pairs <Ky,V,>, <Kg,Vg> and <Kj3,V3>.
Then, the index is sorted according to the order of the keys, K; < Kg < Kj. Finally,
the output pairs are copied to another buffer (Sg) which will be used for sending the

3.4 Memory management optimizations 73

data to the corresponding Worker.

Experimental results

This section evaluates the optimizations described previously by comparing the
original version of Flame-MR and the optimized one (Flame-MR-GCop) using the
Sort benchmark. As the map and reduce functions do not perform any compu-
tation over the data, the results are only affected by the overall efficiency of the
MapReduce engine, which makes Sort a suitable benchmark for evaluating memory
optimizations. In order to avoid repetitive results, the optimizations have not been
assessed separately, thus focusing on the benefits that Flame-MR-GCop can provide
as a whole. Some early experiments have been carried out in order to assess the
indexed sort mechanism, which reduced up to 39% the longest Garbage Collection
Time (GCT) among the Workers compared to sorting the map output buffer by
creating all the objects. This provided some reductions in execution time, and so
the indexed sorting mechanism has been used in the next experiments. Regarding
the number of map output buffers, by default they occupy up to 40% of the available
Worker heap size. In the experiments, the corresponding number of buffers is higher
than the total number of partitions in the cluster, so each buffer has been assigned

to a single partition.

Table 3.3 shows the experimental results. The Execution Time (ET in the table)
represents the time taken by the workload to be completed. Due to the high variabi-
lity between experiments, the results include the minimum, median and maximum
ET. The corresponding GCT metric also shows great variability, and so several re-
sults are provided. The best and worst cases represent the Workers with the shortest
and longest GCT, respectively, while the total GCT represents the sum of the GCT
from all the 32 Workers (i.e. 8 slave nodes and 4 Workers per node, see Table 3.2).
The GCT of each Worker was obtained with jstat [118|. As can be seen, the me-
mory management improvements of Flame-MR-GCop obtain a much lower GCT
(best, worst and total) compared to the previous version. This is reflected on ET,
especially in the maximum case, which has an 85% reduction in total GCT and a
44% reduction in ET. Note that the worst GCT is the value that determines the
delay caused by GC overheads, since the fastest Workers will have to wait for the

slowest ones. The results show a clear correlation between the worst GCT and ET

74 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.3: Sort results for Flame-MR and Flame-MR-GCop
ET: Execution Time; GCT: Garbage Collection Time

ET GCT
Framework Minimum Best / Worst / Total
Flame-MR 864s 10s / 34s / 685s
Flame-MR-GCop 649s 3s/7s/119s

‘ Median Best / Worst / Total

Flame-MR
Flame-MR-GCop

1000s 12s / 36s / 782s
7445 3s/6s/128s

‘ Maximum Best / Worst / Total

Flame-MR
Flame-MR-GCop

1454s 14s / 170s / 828s
819s 3s/bs /) 124s

for Flame-MR, but not for Flame-MR-GCop. This means that the worst GCT of the

improved version does not have such a great impact on ET as in the previous version.

Figure 3.8 presents the evolution of memory usage over time. The graphs show
two scenarios: the Worker with the shortest GCT (Figures 3.8a and 3.8b) and the
longest GCT (Figures 3.8c and 3.8d) for the experiment with median ET, previously
shown in Table 3.3. The lines in these graphs depict different values related with me-
mory behavior, including the accumulated GCT along the execution of the Worker.
The JVM memory size shows the memory occupied by the Worker process, while the
heap usage shows the actual size of memory that is being used by Java objects. It can
be seen that Flame-MR-GCop (Figures 3.8b and 3.8d) presents a significantly lower
GCT than Flame-MR (Figures 3.8a and 3.8¢), along with a more stable heap usage.
In Flame-MR, the heap usage has a great variability over time, as the DataBuffers
are created and dereferenced as needed. It can be observed that merge operations,
which begin at 240s approximately in both scenarios, cause the highest variability
in heap size, increasing the JVM size to its maximum value. This behavior is moti-
vated by the high amount of DataBuffers that each merge operation consumes and
produces, which also increases GCT, as shown in the graphs. In contrast, the heap
usage of Flame-MR-GCop has a low variability, with increasing values until a cer-

tain maximum. Once this maximum is reached, the heap usage does not decrease,

3.4 Memory management optimizations 75

Flame-MR Flame-MR-GCop
&~
QO GCT —— Heap size JVM size —o— GCT —— Heap size JVM size —o—
O 40 12 40 12
-
) 35 |
-8 1 10 a0 | 1 10
é 0 18 w 18
m m
S £] g o}
F 18 ¢ F 18 ¢
.'S 2 14 O o 14 @
S O O
3
“ 12 12
)
2 0 : : ‘ : 0 0 ‘ : : : 0
é 0 240 480 720 960 1200 0 240 480 720 960 1200
= Time (s) Time (s)
(a) (b)
&~
Q GCT —— Heap size JVM size —o— GCT —— Heap size JVM size —o—
©] 12 40 12
"5 110 351 110
30 -
> = 18 =z 18
£ o m o 257+ m
L E c} £ 0]
= 16 o = 16 o)
=) N =) N
T & 14 @ & 14 @
o &
K]
“ 12 12
Q
< 0 : ‘ : ‘ 0 0 : ‘ ‘ ‘ 0
Q 0 240 480 720 960 1200 0 240 480 720 960 1200
E Time (s) Time (s)
(c) (d)

Figure 3.8: GCT and memory usage over time for Flame-MR and
Flame-MR-GCop

as the DataBuffers are kept by the DataPool in order to be reused. The reuse of
DataBuffers also reduces the GCT, making the merge operations go unnoticed in

terms of memory activity compared with Flame-MR.

The results shown in this section demonstrate the impact of the GC overhead on
workload performance, as well as the effectiveness of the static memory allocation
and buffered map output techniques for reducing the GCT and thus the overall

execution time. Moreover, the variability on heap size is also significantly reduced.

76 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

3.4.2. Buffer type analysis

In Java, there are two basic ways of allocating memory for new objects: on-heap
and off-heap. On the one hand, on-heap memory is used by general objects and
classes, being always tracked and deleted if needed by the GC. On the other hand, off-
heap memory can be used for allocating buffers outside the Java heap (i.e. in native
memory), which avoids copying data from heap space to native memory during OS
calls (e.g. I/O operations). For storing bytes, which is the data type internally
used by Flame-MR, both kinds of memory can be allocated using the ByteBuffer
class provided by the JVM. ByteBuffer objects can then be used as the source and
destination of I/O system calls. The underlying memory type that is being used is
encapsulated by the ByteBuffer object, using the HeapByteBuffer subclass for on-
heap memory (wrapping a primitive byte array) and the DirectByteBuffer subclass
for off-heap memory (wrapping memory allocated outside the heap using a malloc-
like call). Although off-heap memory is out of the control of the GC (i.e. memory
buffers are never moved), DirectByteBuffer objects can be garbage collected. So, the
deallocation of off-heap memory is also performed during GC execution. This section
discusses the different alternatives for implementing MemoryBuffers, evaluating their

performance and their impact on garbage collection.

MemoryBuffer implementations

As introduced in Section 3.3.1, Flame-MR manages memory using buffers (Me-
moryBuffer objects). The underlying implementation of these buffers is abstracted
by the DataBuffer interface, and so their external behavior is separated from the
actual memory operations they perform. This feature allows the implementation of
several kinds of MemoryBuffers that allocate memory in different ways. By default,
MemoryBuffers use primitive byte arrays to store the data in the heap. Additionally,
two MemoryBuffer implementations have been developed in Flame-MR-GCop, using

HeapByteBuffers and DirectByteBuffers, respectively.

On the one hand, HeapByteBuffers operate over encapsulated primitive byte
arrays but also provide methods to extract them. This is useful to perform some
operations in Flame-MR, like binary comparisons, by working directly with the byte

array and overcoming certain limitations of the ByteBuffer interface. On the other

3.4 Memory management optimizations 7

Table 3.4: Sort results for different buffer types in Flame-MR-GCop
ET: Execution Time; GCT: Garbage Collection Time

ET GCT
Buffer type Minimum Best / Worst / Total
Byte array 649s 3s/7s/119s
HeapByteBuffer 681s 2s /6s / 118s
DirectByteBuffer 649s 2s /Ts /121s

Median Best / Worst / Total

Byte array 744s 3s / 6s /128s
HeapByteBuffer 764s 3s/bs/117s
DirectByteBuffer 696s 2s /11s/130s

Maximum Best / Worst / Total

Byte array 819s 3s/5s/124s
HeapByteBuffer 855s 3s/6s/124s
DirectByteBuffer 779s 2s / 8s / 130s

hand, DirectByteBuffers can potentially reduce memory copies and improve the
performance of some I/O operations. However, DirectByteBuffers do not provide
any method to extract the underlying byte array, and so any data access must comply
with the ByteBuffer interface. Moreover, Hadoop libraries do not currently support
the use of ByteBuffers for writing data to HDF'S, and so output operations performed
by Flame-MR have to use primitive byte arrays. While HeapByteBuffers allow
extracting the encapsulated arrays to perform these operations, DirectByteBuffers
must first copy their data to the heap. These issues make it difficult to determine
theoretically which MemoryBuffer implementation is the most suitable. The next

section analyzes the performance of the different alternatives.

Experimental results

The experiments to evaluate the three implementations of MemoryBuffers were
conducted in a similar way to those of Section 3.4.1. The ET and GCT results

of the Sort executions are shown in Table 3.4. Regarding ET, it can be seen that

78 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

DirectByteBuffers obtain better results than the other two alternatives. Although
the minimum ET is the same as with byte arrays, the median and maximum results
are better. As mentioned before, HeapByteBuffers behave as encapsulated byte
arrays, showing similar performance than these ones, plus the overhead of mana-
ging the actual ByteBuffer objects, which causes HeapByteBuffers to have a higher
ET. Moreover, the results do not show any clear correlation between GCT and
ET. Although DirectByteBuffers are the ones with slightly higher total GCT, the

differences are almost negligible.

The graphs of Figure 3.9 show the accumulated GCT, heap size and JVM size of
the Worker with the shortest and the longest GCT for the experiment with median
ET (see Table 3.4). As expected, these graphs do not show any significant variation
between byte arrays (Figures 3.9a and 3.9d) and HeapByteBuffers (Figures 3.9b
and 3.9e), as they are using the same kind of memory in the end. However, the
behavior of DirectByteBuffers (Figures 3.9c and 3.9f) greatly differs from them,
showing a smaller heap size and larger JVM size. The former is caused by the off-
heap allocation of DirectByteBuffers, which is obviously not reflected in the heap
size. Meanwhile, the additional copies needed for accessing the data from the heap
are responsible for the larger JVM size. The use of off-heap memory also reduces
the GCT during most of the computation time. However, the scenario of the Worker
with the longest GCT (Figure 3.9f) shows a remarkable characteristic, which is a
high amount of GCT consumed in a short period of time when reaching the end
of the workload. This is caused by the deallocation of off-heap buffers to make
room for on-heap ones, needed to write the final output to HDFS due to its API
incompatibility. When the off-heap MemoryBuffers are deleted from the DataPool,
the DirectByteBuffers stop being referenced, and so the GC collects them. The
deallocation of off-heap memory, included in this process, incurs a high performance
penalty, and so the GCT is affected.

The conclusion that can be extracted from these results is that off-heap buffers
generally obtain a better performance than on-heap alternatives. Although some
operations are more expensive when performed outside the heap (e.g. binary com-
parison), the improvement of I/O operations allows to get better overall results. Cur-
rently, the main issue about using DirectByteBuffers is the lack of an API method

for storing them to HDFS, which is expected to be overcome with future releases of

Figure 3.9: GCT and memory usage over time for the different DataBuffer implementations in Flame-MR-GCop

GCT —— Heap size

Byte array

JVM size —o—

Size (GB)
CPU Time (s)

Size (GB)
CPU Time (s)

&~
QO
O]
12 12
-~
«
X 10 1 10
é —
L 8 18
S
< F 6 16
~ o}
§ % 4 14
q% 2 12
Y - A
Q 180 360 540 720 900
E Time (s)
(a)
&~
QO GCT —— Heap size JVM size —o—
O 12 12
-
3 10 110
gh —
L 8 18
3 ¢
< = 6 16
= -]
§ & 4 14
S 2 12
=
S 0 : : : - 0
§ 180 360 540 720 900
Time (s)
(d)

Size (GB)

Size (GB)

HeapByteBuffer
GCT —— Heap size JVM size —o—
12 12
10 1 10
8 18
6 16
4 14
2 12
0 : : : : 0
180 360 540 720 900
Time (s)
(b)
GCT —— Heap size JVM size —o—
12 12
10 1 10
8 18
6 16
4 {4
2 12
0 : : : : 0
180 360 540 720 900
Time (s)
(e)

CPU Time (s)

CPU Time (s)

GCT —— Heap size
12

Direct Byte Buffer

12

GCT —— Heap size

12

JVM size —o—

Size (GB)

JVM size —o—

Size (GB)

suorjyeziuarydo juowoseurw AIOWSN §°¢

6.

80 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Hadoop libraries.

3.4.3. Iterative support

In real use cases, most MapReduce applications are composed by more than a
single job, iterating several times over the input dataset to get a final result. Each
MapReduce job reads the output of the previous one and generates a new dataset,
until meeting a certain stop condition or reaching the maximum number of itera-
tions. Although iterative applications are very common, MapReduce frameworks
like Hadoop are not well suited for them. This is caused by the writing of interme-
diate results to HDFS and the high overhead of launching and finishing jobs, which

leads to poor performance of the overall workload.

Like Hadoop, the versions of Flame-MR discussed in the previous sections are
not oriented to iterative applications. This section focuses on how to improve the
performance of these applications, avoiding to write intermediate results to HDFS
by caching data in memory to minimize the use of disk and maximize in-memory
processing. Two steps have been carried out to achieve this objective: the use of

long-lived Workers and the implementation of a data cache.

Long-lived Workers

In each execution of a MapReduce job, Flame-MR starts one or more Workers
per computing node in the cluster. When the job finishes these Workers are stopped,
and hence they have to be restarted to launch the following job. In a similar way,
Hadoop starts a Java process for each mapper or reducer, and so each job also
involves the launching and stopping of multiple JVMs. Both approaches prevent
caching intermediate results in memory between iterations, as all in-memory data
are lost when the corresponding JVMs are finalized (i.e. all the output data have to
be written to HDFS). Therefore, the first requisite for implementing a data cache in
Flame-MR is to avoid stopping and restarting the Workers, reusing them through all
the MapReduce jobs performed during the execution of an application. This feature

also minimizes the overhead of launching new Worker processes for each job.

The proposed solution is to modify the way Workers are managed, avoiding the

3.4 Memory management optimizations 81

(MR Driver | worker | | Worker | [MR Driver | | worker | | Worker |
" —

startAndLaunchJob()

T ———

startAndLaunchJob()

joblsFinished /

(a) Short-lived Workers (b) Long-lived Workers

Figure 3.10: Short-lived vs long-lived Workers

finalization of their JVMs when a MapReduce job is completed. Figure 3.10 depicts
the main differences between the previous behavior of Workers, called short-lived
Workers, and the new approach, long-lived Workers. On the one hand, short-lived
Workers (see Figure 3.10a) are started for executing a certain job, being stopped after
this job is finished. On the other hand, long-lived Workers (Figure 3.10b) are reused
several times. Instead of being started for running a job, these Workers are initialized
at the beginning of the MapReduce Driver (MR Driver in the figures). They keep
waiting until they receive a job launch message from the driver and execute the
corresponding MapReduce job. When the job finishes, they send a message back to
the driver and keep waiting for more jobs to run. When the application concludes,
the driver sends a message for stopping the Workers and releasing the computational
resources allocated to them.

The use of long-lived Workers is mandatory to implement a data cache. It also
improves the performance of iterative applications, reducing the overhead between
iterations by avoiding the costly initialization of new JVM processes in each job.
Furthermore, the internal structures of Flame-MR, such as DataPool and Thread-
Pool, are also reused along the entire application workflow, initializing them only
once. Note that this includes the costly allocation and initialization of Memory-

Buffers, already commented in Section 3.4.1.

82 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

/ Worker \

| Job | / DataCache \
get(Path2)

Output path DataStructure

—

'\retuTy [Path1] [

[pame | (o7 | b2
) (

put(Path4, D4) S oatha

T~ em

.

Figure 3.11: Data cache example

Data cache

Long-lived Workers can be configured to use a data cache in order to avoid the
writing of intermediate results to HDFS. When this feature is activated, each Worker
stores its output DataBuffers to an in-memory DataStructure, which is indexed in
the DataCache. Figure 3.11 illustrates the behavior of the DataCache with an
example of a cache hit. The output from several MapReduce jobs is tracked by
associating the output path of each one (Path;) with its corresponding DataStructure
(D;), which contains a set of LogicalBuffers (L;). When a new job starts, the Worker
reads the entries in the DataCache to check if the input path of the job is present.
In this example, the input data (D3) is read directly from the DataStructure stored
in the DataCache. Otherwise, the input data has to be read from HDFS. When the
job finishes, it adds its own output DataStructure (D4) to the DataCache, making
it available for future jobs. When the entire application finishes and the Worker
is stopped, the contents of the DataCache are flushed to HDFS making use of the
path information. After that, the dataset stored in HDF'S is equivalent to the one

written by a non-cached execution of the application.

It is important to note that the output of a MapReduce job is often accessed by
the MR Driver before the entire application is completed. In fact, many iterative
applications perform different kinds of operations over the intermediate results, like

moving data from one path to another, deleting discarded results or reading some

3.4 Memory management optimizations 83

of them to check a stop condition. In these cases, the data cached by the Workers
would be unavailable for the MR Driver, causing either errors in the driver program
or incorrect results. Thus, the behavior of HDFS calls must be modified in order
to ensure the same results as in non-cached jobs. First, jobs create empty output
directories when finished, so the HDFS state from the point of view of the MR
Driver remains the same. The HDFS calls are then monitored during execution to
modify the content of the DataCaches accordingly. When the MR Driver attempts
to delete a path that is cached, its entry is removed and the DataBuffers are released.
When a path is moved, the corresponding entries change the associated path, with
no writings to HDFS. Finally, when the MR Driver attempts to read a dataset,
the Workers flush the content of the cached DataStructures to HDFS, filling the
empty output directories. After the data are available in HDFS, the corresponding
DataCache entries are removed and the MR Driver can then access data in the
standard way. This behavior ensures that the data of the output directory are
always entirely in memory or in HDF'S, preventing any inconsistency in subsequent
jobs. However, in some cases, a MapReduce job can process data from HDFS and
the DataCache simultaneously, when the input is composed of several paths stored
in different places. As data are independently stored either in DataBuffers or HDFS
blocks, they can always be read and processed in parallel. Note also that HDFS
generally keeps several replicas of each data block as configured by the user, which
ensures the reliability of the intermediate results. Our current implementation of
the DataCache does not perform any replication, and so if a Worker is torn down,
it would mean the loss of all its intermediate results. Although the reliability of the
final results is ensured after writing them to HDFS, new fault tolerance mechanisms
are needed to avoid data loss in case of Worker breakdown, but reducing disk and

network overheads.

The approach described has some similarities with the one implemented in the
M3R framework [107], which uses a key-value pair cache through the execution of
in-memory iterative jobs. However, our implementation differs in the way data are
represented in memory, using instead a binary format to store the data in Data-
Buffers and thus reducing the overhead incurred by the GC tracking. Futhermore,
the data size can be higher than the available memory space, in which case Flame-
MR will spill some of the buffers to disk, while M3R can only work with in-memory

data and thus with a maximum data size.

84 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

Table 3.5: Execution times for PageRank

Flame-MR Flame-MR- Flame-MR-It- | Flame-MR-It-
GCop NoCache Cache
1895s | 1429s | 1176s | 1060s

The optimizations explained in this section, long-lived Workers and the data
cache, have been integrated in Flame-MR-GCop, resulting in a new version called
Flame-MR-It. The following section analyzes the performance improvement ob-

tained with this iterative-aware version.

Experimental results

This section analyzes the performance and resource efficiency of the iterative
application PageRank. Although other iterative workloads have also been tested,
the results did not differ significantly from the ones obtained with PageRank, and so
they were not included in this section. Table 3.5 shows the median execution time
of the different versions of Flame-MR. In order to analyze the performance improve-
ment obtained by the use of the data cache, Flame-MR-It has been executed with
and without activating the cache (Flame-MR-It-Cache and Flame-MR-It-NoCache,
respectively). The results show that both configurations of Flame-MR-It reduce
significantly the execution time of PageRank with respect to the previous versions.
Using Flame-MR-GCop as baseline, Flame-MR-It-NoCache reduces the execution
time by 18%, while Flame-MR-It-Cache decreases it by 26%. Hence, most part of
the obtained improvement is because of the use of long-lived Workers. This reveals
that for this application the initialization of the Workers has a significant impact
on performance, being even more significant than the writing of the intermediate
results to HDFS (only 38 GB per iteration in this case), avoided by the use of the

data cache.

Figure 3.12 depicts the resource utilization statistics of Flame-MR and both
versions of Flame-MR-It. In terms of CPU usage, both Flame-MR-It versions show
lower values along the entire computation of the workload. This is caused by the
GC optimizations explained in Section 3.4.1, as well as by the reduction of the

initialization overhead between iterations. Furthermore, the activation of the data

3.4 Memory management optimizations

85

Flame-MR

Wait /O System mmm

User mmm

100

80

60

40

20

Swapped

400 800 1200

Time (s)

Free

1600

2000

Used === Cached mmm

70 GB
60 GB
50 GB
40 GB

30GB

<
S
T
N
5
>
5
£
3
=

20GB

10GB

0B

o

400 800 1200

Time (s)

Uil

1600

2000

Disk utilization (%)

700 MB

600 MB

500 MB

400 MB

300 MB

Network traffic

200 MB
100 MB

0B

800
Time (s)

1200

Recv === Send mem

1600

2000

u n L |

800 1200
Time (s)

1600

2000

CPU utilization (%)

Memory utilization

Disk utilization (%)

Network traffic

Flame-MR-1It-
NoCache

Flame-MR-It-Cache

Wait I/0 e System mmm User mmm Wait I/O mm System mmm User mmm
100 100
80 I 80
<
S
60 T 60
N
L I
40 o 40
o
S
20 1 20 1
0 0
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Time (s) Time (s)
Swapped Free Used mmm Cached wem Swapped - Free Used mmm Cached wem
70 GB 70 GB
60 GB 60 GB ol
50 GB & 5ocB ol
T
40 GB £ 40GB 1
5
30GB g 30GB 4
£
20GB 2 2068 .
10GB 10GB ol
0B 0B
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Time (s) Time (s)
Util Uil
100 100
80 ISR
<
S
60 = 60
£
40 _3 40
]
2
20 20
0 0
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Time (s) Time (s)
Recv === Send mem Recv === Send mmm
700 MB 700 MB
600 MB 600 MB
500 MB ., S00MB
400 MB £ s00Mm8
=<
300 MB £ s00mB
3
200 MB = 200 MB
100 MB al 100 MB
0B 0B
400 800 1200 1600 2000 400 800 1200 1600 2000
Time (s) Time (s)

Figure 3.12: Resource utilization statistics of Flame-MR, Flame-MR-It-NoCache
and Flame-MR-It-Cache

86 Chapter 3. Flame-MR: efficient event-driven MapReduce data processing

cache has a direct effect on CPU usage, almost eliminating the CPU time waiting for
I/0O. Regarding memory usage!, Flame-MR-It-NoCache takes further advantage of
the memory optimizations, avoiding the maximum and minimum peaks of Flame-
MR by means of the static DataBuffer allocation (see Section 3.4.1). The use of
long-lived Workers also improves memory usage by avoiding the release of the entire
JVM memory space each time a job is finished. Activating the data cache also
contributes to a more stable memory usage, as it avoids the increase of the memory
used by the OS buffer cache.

Both Flame-MR and Flame-MR-It-NoCache show high disk utilization in each
iteration of PageRank, reaching 100% values during several intervals of the workload.
Meanwhile, Flame-MR-It-Cache shows almost no disk utilization, as the interme-
diate results are neither written to nor read from HDFS. Regarding network traffic,
both Flame-MR and Flame-MR-It-NoCache show higher values than Flame-MR-It-
Cache. This is caused by the sending of data blocks through the network when they
are replicated according to the configured replication factor (3, see Table 3.2). As
Flame-MR-It-Cache does not write any intermediate results to HDF'S, it only incurs
the traffic belonging to the shuffle phase. In conclusion, the use of the data cache

not only improves performance but also increases resource efficiency.

3.5. Conclusions

Hadoop is the most popular open-source MapReduce framework to handle Big
Data applications. Although the need for improving the performance of MapReduce
applications is steadily increasing, the high cost (or impossibility) of rewriting their
source code can make the adoption of new frameworks like Spark or Flink unfeasible.
In order to overcome this situation, this chapter has presented Flame-MR, a new
MapReduce framework that improves the performance of Hadoop without modifying
the source code of the applications. Flame-MR transparently replaces the internal
design of Hadoop with an event-driven architecture that optimizes the use of me-
mory and CPU resources, while also alleviating other performance bottlenecks such

as redundant memory copies and the overhead of object creation/destruction. Fur-

INote that the label “Cached” refers to the OS buffer cache, not to the data cache of Flame-
MR-It-Cache

3.5 Conclusions 87

thermore, it pipelines the output of map and reduce phases to decrease disk usage

and improve the overlapping of data processing with disk and network operations.

Future systems are expected to have increasing memory sizes, which can be
challenging to current data processing frameworks. Thus, the impact of memory
efficiency on the performance of Flame-MR has been analyzed in depth, presenting
several memory optimization techniques that have been implemented and evaluated.
The obtained results have shown that these techniques can reduce the amount of
object allocations and deallocations, decreasing GC overheads and overall execution
times by 85% and 44%, respectively. Moreover, several memory buffer implemen-
tations have been analyzed, showing that direct byte buffers can improve the per-
formance of I/O-bound operations. Finally, the performance of iterative workloads
was improved by reusing Worker processes and caching intermediate data to avoid

unnecessary writ